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Thermogenic brown and beige adipocytes might open up new strategies in combating
obesity. Recent studies in rodents and humans have indicated that these adipocytes
release cytokines, termed “batokines.” Irisin was discovered as a polypeptide regulator
of beige adipocytes released by myocytes, primarily during exercise. We performed
global RNA sequencing on adipocytes derived from human subcutaneous and deep-
neck precursors, which were differentiated in the presence or absence of irisin. Irisin
did not exert an effect on the expression of characteristic thermogenic genes, while
upregulated genes belonging to various cytokine signaling pathways. Out of the several
upregulated cytokines, CXCL1, the highest upregulated, was released throughout the
entire differentiation period, and predominantly by differentiated adipocytes. Deep-neck
area tissue biopsies also showed a significant release of CXCL1 during 24 h irisin
treatment. Gene expression data indicated upregulation of the NFκB pathway upon
irisin treatment, which was validated by an increase of p50 and decrease of IκBα

protein level, respectively. Continuous blocking of the NFκB pathway, using a cell
permeable inhibitor of NFκB nuclear translocation, significantly reduced CXCL1 release.
The released CXCL1 exerted a positive effect on the adhesion of endothelial cells.
Together, our findings demonstrate that irisin stimulates the release of a novel adipokine,
CXCL1, via upregulation of NFκB pathway in neck area derived adipocytes, which might
play an important role in improving tissue vascularization.

Keywords: obesity, adipose tissue, irisin, cytokines, CXCL1, Q14integrins, NFκB, angiogenesis

Abbreviations: BAT, brown adipose tissue; CXCL, C-X-C motif chemokine ligand; DN, deep-neck derived adipocytes;
GRO, growth-related oncogene; hASCs, human adipose-derived stromal cells; HUVEC, human umbilical vein endothelial
cells; IgG, immunoglobulin G; IL, interleukin; MCP1, monocyte chemoattractant protein 1; NFκB, nuclear factor-κB; PI,
propidium iodide; SC, subcutaneous neck derived adipocytes; WAT, white adipose tissue.
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INTRODUCTION

Recent studies indicated the
Q15

presence of thermogenic adipose
tissue, capable of dissipating energy as heat under sub-thermal
conditions in healthy human adults (Cypess et al., 2009; Leitner
et al., 2017). These are located in cervical, supraclavicular,
axillary, mediastinal, paravertebral, and abdominal depots (Saito
et al., 2009; van Marken Lichtenbelt et al., 2009; Virtanen et al.,
2009); supraclavicular, deep-neck (DN), and paravertebral having
the highest amounts. Together these depots account for 5% of
basal metabolic rate in adults, highlighting their importance in
combating obesity and type 2 diabetes mellitus (van Marken
Lichtenbelt and Schrauwen, 2011). In rodents, these thermogenic
adipocytes are either classical brown or beige depending on their
origin and distribution (Rosen and Spiegelman, 2014; Kajimura
et al., 2015). In addition to their role in thermogenesis, these
adipocytes also secrete adipokines, termed “batokines,” which
have been shown to exert autocrine, paracrine, or endocrine
activity (Villarroya et al., 2017). For example, vascular endothelial
growth factor A (VEGF-A) secreted by brown adipocytes
promotes angiogenesis and vascularization of brown adipose
tissue (BAT) (Xue et al., 2009; Sun et al., 2014; Mahdaviani
et al., 2016) while Fibroblast growth factor (FGF) 21 enhances
the beiging of white adipose tissue (WAT) in animal studies
(Cuevas-Ramos et al., 2019) and increases thermogenesis in BAT
(Hondares et al., 2011; Wang et al., 2015; Ruan et al., 2018).
Understanding the roles of batokines in the human body is an
area of active research (Villarroya et al., 2019; Ahmad et al., 2021).

Irisin, a cleaved product of the transmembrane protein
Fibronectin Type III domain-containing protein 5 (FNDC5),
was discovered as a myokine in mice and was shown to be a
browning inducing endocrine hormone (Boström et al., 2012;
Zhang et al., 2014), presumably acting via integrin receptors
(Kim et al., 2018). A recent publication has shown that obese
individuals with obesity exhibited a downregulation of FNDC5
gene and protein expression in visceral and subcutaneous fat
depots (Frühbeck et al., 2020). In mice, irisin secretion was
induced by physical exercise and shivering of skeletal myocytes,
which induced a beige differentiation program in subcutaneous
WAT (Boström et al., 2012). In rats, irisin was also found
to be released from cardiomyocytes at much higher amount
than skeletal muscles (Aydin et al., 2014). Lower levels of
circulating irisin was observed in patients with cardiovascular
disease (Polyzos et al., 2018). Irisin has also been shown
to improve cardiac function and inhibit pressure overload
induced cardiac hypertrophy and fibrosis (Yu et al., 2019).
In humans, inconsistent effects were found when adipocytes
of different anatomical origins were treated with recombinant
irisin (Raschke et al., 2013; Lee et al., 2014; Silva et al., 2014;
Kristóf et al., 2015; Klusóczki et al., 2019; Li et al., 2019).
How irisin affects the differentiation of the thermogenically
prone neck area adipocytes still awaits description. We have
previously reported that human DN adipose tissue biopsies
released significantly higher amounts of interleukin (IL)-6, IL-
8, monocyte chemoattractant protein 1 (MCP1) as compared
to subcutaneous ones, which was further enhanced upon irisin
treatment (Kristóf et al., 2019).

C-X-C Motif Chemokine Ligand (CXCL) 1, previously
known as growth-related oncogene (GRO)-α, is a small peptide
belonging to the CXC chemokine family. Newly synthetized
CXCL1 by vessel-associated endothelial cells and pericytes
facilitates the process of neutrophil diapedesis (Gillitzer and
Goebeler, 2001). A recent study showed that the chemokine
CXCL14 is secreted by BAT under thermogenic stimulation,
which induces browning of WAT by recruitment and activation
of M2-macrophages (Cereijo et al., 2018). This study reinforced
the fact that chemokines play an important role in thermogenic
activation, which led us to focus on CXCL1 as a potential
beneficial chemokine in the current study.

In this study, we aimed to get an overview of all the
genes in which expression is regulated by irisin. For this,
we have performed a global RNA-Sequencing comprising of
ex vivo differentiated adipocytes of subcutaneous and deep
depots of human neck from nine individuals and analyzed the
upregulated genes upon irisin treatment. Surprisingly, several
genes which encode secreted proteins were upregulated. Out of
those, CXCL1 was found to be the highest expressed and a novel
adipokine induced in differentiating adipocytes of both origins.
The CXCL1 release was stimulated partially via the upregulation
of nuclear factor-κB (NFκB) pathway. We found that the secreted
CXCL1 had an adhesion promoting effect on endothelial cells,
supporting that irisin can exert effects not directly linked to
heat production.

MATERIALS AND METHODS

Materials
All chemicals were obtained from Sigma Aldrich (Munich,
Germany) unless otherwise stated.

Isolation, Cell Culture, Differentiation,
and Treatment of hASCs
Human adipose-derived stromal cells (hASCs) were obtained
from stromal-vascular fractions of subcutaneous neck (SC) and
DN tissues of volunteers, aged between 35–75 years, undergoing
planned surgical treatment. A pair of biopsies from SC and
DN areas was obtained from the same donor, to avoid inter-
individual variations (Sárvári et al., 2015; Kristóf et al., 2019;
Tóth et al., 2020). Patients with known diabetes, body mass
index> 30, malignant tumor, infection or with abnormal thyroid
hormone levels at the time of surgery were excluded from
the study. Written informed consent was obtained from all
participants before the surgery. Data of the donors included in
RNA-sequencing are listed in Supplementary Table 1.

Human adipose-derived stromal cells were isolated and
cultivated as previously described (Sárvári et al., 2015; Kristóf
et al., 2019; Tóth et al., 2020). The absence of mycoplasma
was confirmed by PCR analysis (PCR Mycoplasma Test Kit
I/C, Promocell, Heidelberg, Germany). Cells were differentiated
following a previously described white adipogenic differentiation
protocol, with or without the addition of human recombinant
irisin (Cayman Chemicals, MI, United States) (provided in
50 mM Tris pH 8.0, 150 mM sodium chloride, and 20% glycerol
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stocks) at 250 ng/mL (20 nM) concentration (the stock was
diluted 1:6,500) (Fischer-Posovszky et al., 2008; Raschke et al.,
2013; Kristóf et al., 2019). Media were changed every other 4 days
and cells were used after 14 days of differentiation. In every
repetition, untreated and irisin treated samples were obtained
from the same donor. Cells were incubated at 5% CO2 and
37◦C. Where indicated, cells were treated with RGDS peptide
(10 µg/mL, R&D systems, MN, United States) (Kim et al., 2018)
or SN50 (50 µg/mL, Med Chem Express, NJ, United States)
(Sárvári et al., 2015).

RNA Isolation, RT-qPCR, and
RNA-Sequencing
Cells were collected in Trizol reagent (Thermo Fisher Scientific,
MA, United States) and RNA was isolated manually by
chloroform extraction and isopropanol precipitation. To obtain
global transcriptome data, high throughput mRNA sequencing
was performed on Illumina Sequencing platform (Tóth et al.,
2020). Total RNA sample quality was checked by Agilent
Bioanalyzer using Eukaryotic Total RNA Nano Kit; samples
with RNA integrity number >7 were used to prepare the
library. Libraries were prepared by NEBNext R© UltraTM II RNA
Library Prep for Illumina (New England BioLabs, Ipswich,
MA, United States). Sequencing runs were executed on
Illumina NextSeq500 using single-end 75 cycles sequencing.
The reads were aligned to the GRCh38 reference genome
(with EnsEMBL 95 annotation) using STAR aligner (Dobin
et al., 2013). To quantify the reads, featureCounts was used
(Liao et al., 2014). Gene expression analysis was performed
using the R program. Genes with very low expression and
with outlier values were removed from further analysis. To
further remove outlier genes, Cook’s distance was calculated
and genes with Cook’s distance higher than 1 were filtered
out. PCA analysis did not show any batch effect considering
sequencing date and the donor origin, sex or tissue origin
(data not shown). DESeq2 algorithm was used to detect the
differentially expressed genes based on adjusted p values < 0.05
and log2 fold change threshold >0.85. Grouping was performed
based on Panther Reactome pathways1. Heatmap visualization
was performed on the Morpheus web tool2 using Pearson
correlation of rows and complete linkage based on calculated
z-score of DESeq normalized data after log2 transformation
(Tóth et al., 2020). The interaction networks were determined
using STRING3 and constructed using Gephi 0.9.24. The
size of the nodes was determined based on fold change
(Tóth et al., 2020).

For RT-PCR, RNA quality was evaluated by
spectrophotometry and cDNA was generated by TaqMan
reverse transcription reagents kit (Thermo Fisher Scientific)
followed by qPCR analysis (Szatmári-Tóth et al., 2020).
LightCycler 480 (Roche Diagnostics, IN, United States) was
used to determine the normalized gene expression using the

1Q17 https://pantherdb.org
2https://software.broadinstitute.org/morpheus
3https://string-db.org
4https://gephi.org

probes (Applied Biosystems, MA, United States) which are
listed in Supplementary Table 2. Human GAPDH was used
as an endogenous control. Samples were run in triplicate and
gene expression values were calculated by the comparative cycle
threshold (Ct) method. 1Ct represents the Ct of target after
deducting the GAPDH. Normalized gene expression levels were
calculated by 2−1Ct.

Antibodies and Immunoblotting
Samples were collected, separated by SDS-PAGE, and transferred
to PVDF Immobilon-P transfer membrane (Merck-Millipore,
Darmstadt, Germany) as previously described (Szatmári-Tóth
et al., 2020). The following primary antibodies were used
overnight in 1% skimmed milk solution: anti-p50 (1:1,000, 13755,
Cayman Chemicals), anti- IκBα (1:1,000, 4812, Cell Signaling
Technology, MA, United States), and anti-β-actin (1:5,000,
A2066, Novus Biologicals, CO, United States). HRP-conjugated
goat anti-rabbit (1:10,000, Advansta, CA, United States, R-
05072-500) or anti-mouse (1:5,000, Advansta, R-05071-500) IgG
were used as secondary antibodies, respectively. Immobilion
western chemiluminescence substrate (Merck-Millipore) was
used to visualize the immunoreactive proteins. FIJI was used
for densitometry.

Immunostaining Analysis and Image
Analysis
Human adipose-derived stromal cells from SC and DN areas
were plated and differentiated in eight well Ibidi µ-chambers
(Ibidi GmbH, Gräfelfing, Germany). Cells were treated with
Brefeldin A (100 ng/mL), an inhibitor of intracellular protein
transport, 24 h prior collection to sequester the released
CXCL1 (Sárvári et al., 2015; Kristóf et al., 2019). After that,
cells were washed with PBS, fixed by 4% paraformaldehyde,
permeabilized with 0.1% saponin and blocked by 5% milk as
per described protocols (Szatmári-Tóth et al., 2020). The cells
were incubated subsequently with anti-CXCL1 primary antibody
(1:100, 712317, Thermo Fisher Scientific) and Alexa 488 goat
anti-rabbit IgG (1:1,000, A11034, Thermo Fischer Scientific)
secondary antibody for 12 and 3 h at room temperature,
respectively. Propidium iodide (1.5 µg/mL, 1 h) was used to
label the nuclei. A secondary antibody test was also performed
where the cells were incubated only with the respective secondary
antibodies. Images were acquired with Olympus FluoView 1000
confocal microscope and analyzed by FIJI (Szatmári-Tóth et al.,
2020). Boundaries of preadipocytes and differentiated adipocytes
were identified manually based on brightfield (BF) images and
nuclear staining, followed by quantification of immunostaining
intensity. Adipogenic differentiation rate was quantified as
described previously (Doan-Xuan et al., 2013; Kristóf et al.,
2015).

Determination of the Released Factors
Supernatants of samples from cell culture experiments were
collected at the regular replacement of the media, on days 4,
12, 18, 21 of differentiation, wherever indicated. For SC and
DN, supernatants were collected and stored at −20◦C from the
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differentiated cells of the same donor and considered as one
repetition, followed by repetition with subsequent donors. For
tissues, 10–20 mg of SC and DN tissue samples from the same
donor were floated for 24 h in DMEM-F12-HAM medium with
or without the presence of 250 ng/mL irisin (Ballak et al., 2013;
Kristóf et al., 2019). The release of CXCL1, CX3CL1, IL-32, TNFα

and IL1-β were analyzed from the stored samples using ELISA
Kits (R&D systems, MN, United States).

Human Umbilical Vein Endothelial Cell
Adhesion Assay
A human umbilical vein endothelial cell (HUVEC) cell line
was generated from endothelial cells isolated from the human
umbilical cord vein of a healthy newborn by collagenase
digestion as described earlier (Palatka et al., 2006). Cells were
cultured in M199 medium (Biosera, Nuaille, France) containing
10% FBS (Thermo Fisher Scientific), 10% EGM2 Endothelial
Growth Medium (Lonza, Basel, Switzerland), 20 mM HEPES
(Biosera), 100 U/mL Penicillin, 100 µg/mL Streptomycin and
2.5 µg/mL Amphotericin B (Biosera), and immortalized by
the viral delivery of telomerase gene using pBABE-neo-hTERT
(Counter et al., 1998) (gift from Bob Weinberg, 1774, Addgene).
The virus packaging was performed in HEK293FT cells (Thermo
Fisher Scientific) based on a calcium precipitation method
using pUMVC and pCMV-VSV-G vectors (Stewart et al., 2003)
(gift from Bob Weinberg, 8449 and 8454, Addgene). The
pseudovirion containing supernatant was used for infection,
and selection was started 72 h later using 300 µg/mL G418
(Merck-Millipore). Immortalized cells completely retain the
morphological properties of primary endothelial cells.

Prior to the adhesion assay, EGM2 was omitted from
the standard medium of HUVEC cells and FBS content was
decreased to 1% (in which condition cell proliferation is
unlikely) for 24 h. 96-well plates (Thermo Fisher Scientific)
were precoated with fibronectin (Merck-Millipore) at 1.25 µg/mL
concentration in PBS, for 1 h at 37◦C and then washed twice
with PBS. After centrifugation, trypsinized HUVEC samples were
diluted for coating based on counting with three parallels using
KOVA Glasstic Slide with Counting Grids (KOVA International,
Netherlands). Then cells were plated at 1,000 cells/well density
and left to adhere for 2 h in the CO2-incubator in the mixture (1:1
ratio) of starvation and conditioned media (incubation period
from day 8–12 of differentiation) from SC and DN adipocytes,
differentiated in the presence or absence of 250 ng/mL irisin,
respectively. Where indicated, recombinant human CXCL1 (275-
GR, R&D Systems) was used at 2,500 pg/mL concentration, at
the highest observed concentration in media of irisin treated
ex vivo differentiated adipocytes, in starvation media. Unattached
cells were removed by once washing with PBS and adhered cells
were incubated with starvation media containing CellTiter-Blue
Cell Viability reagent (resazurin; Promega, WI, United States;
36 times dilution). To determine the ratio of attached cells in
various conditions, the fluorescent intensity change of each well
(Ex:530 nm/Em:590 nm), due to the conversion of resazurin to
resorufin by cellular metabolism, was measured using Synergy
H1 (BioTek, Hungary) plate reader 2, 4, 6, 18, and 24 h

after adding resazurin. Fluorescent intensity values were plotted
with respect to time, followed by calculation of slope, which
gave the relative adhesion values, after subtraction of values
for only starvation media without cells. A linear slope was
obtained, which proved that the assay measured suggests that
there could be only negligible cell proliferation, and the gained
values represent endothelial cell adhesion measuring the attached
viable endothelial cells during the treatments. The final value
of adhesion was represented in RFU/hr units and taken to be
from the mean of technical parallels with a minimum of three
independent repetitions.

Statistics and Image
Analysis/Preparation
Results are expressed as mean ± SD for the number of
independent repetitions indicated. For multiple comparisons of
groups, statistical significance was determined by one- or two-
way analysis of variance followed by Tukey post hoc test. In
comparison of two groups, two-tailed unpaired Student’s t-test
was used. For the design of graphs and evaluation of statistics,
Graphpad Prism 9 was used.

RESULTS

Irisin Did Not Change the Differentiation
Potential of Adipocytes While Increased
the Expression of Integrin Receptor
Genes in Both SC and DN Origins
Primary hASCs from nine independent donors were isolated
and cultivated from SC and DN area of human neck, as
described (Tóth et al., 2020). Adipogenic differentiation was
driven by a white adipocyte differentiation medium with
or without the presence of irisin for 14 days. Then, the
global gene expression pattern of differentiated adipocytes
and undifferentiated hASCs were determined by global RNA-
sequencing (Tóth et al., 2020). Gene expression of general
adipocyte markers (e.g., FABP4, ADIPOQ) was higher in
all differentiated adipocytes as compared to preadipocytes
(Figure 1A). Quantification of the adipogenic differentiation rate
by laser-scanning cytometry (Kristóf et al., 2015) revealed that
more than 50% of the cells were differentiated following our 14-
days long differentiation protocol (Figure 1B). The presence of
irisin did not affect the differentiation and gene expression of
general adipocyte markers (Figures 1A,B). A recent publication
proposed the receptors for irisin to be integrins, Integrin
subunit alpha V (ITGAV) and Integrin subunit beta (ITGB)
1/3/5 (ITGB1/3/5) (Kim et al., 2018). Hence the expression of
ITGAV was analyzed from RNA-sequencing data (Figure 1C),
which revealed that it is expressed in both the preadipocytes
and differentiated adipocytes. Upon RT-qPCR validation, a
significant increase of ITGAV expression was observed in DN
adipocytes in response to irisin (Figure 1D). RNA-sequencing
data showed that ITGB1, 3, and 5 were also expressed at a
high extent in preadipocytes and in differentiated adipocytes
irrespective of the presence of irisin (Supplementary Figure 1).
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FIGURE 1 | PreadipocytesQ5 from

Q6

subcutaneous (SC) and deep-neck (DN) depots of human neck differentiated at a similar extent irrespective of the presence of irisin.
SC and DN preadipocytes (Pre) were differentiated for 2 weeks to white adipocytes. Where indicated, 250 ng/ml irisin was administered during the whole
differentiation process. (A) Heatmap illustrating the expression of general adipogenic differentiation markers in samples used for Global RNA Sequencing (n = 9),
(B) Quantification of differentiation rate by laser-scanning cytometry (n = 9), (C) Quantification of ITGAV gene expression determined by RNA Sequencing (n = 9) and
(D) RT-qPCR, normalized to GAPDH (n = 5). Data presented as Mean ± SD. ∗∗p < 0.01. Statistics: Welch’s t-test (D).

Genes Involved in Chemokine Signaling
Pathways Were Upregulated in
Adipocytes Differentiated With Irisin
RNA-Sequencing analysis identified 79 genes to be higher
expressed upon irisin treatment that are visualized by a Volcano
plot (Figure 2A). 50 and 66 genes were significantly upregulated
in SC and DN area adipocytes, respectively, each of which are
listed in Supplementary Table 3. 37 genes, including CXCL1,
CX3CL1, IL32, IL34, IL6, and CCL2 were found to be commonly
upregulated in adipocytes of both depots (Figures 2A,B and
Supplementary Table 3). Surprisingly, thermogenic marker
genes did not appear among these. Panther enrichment analysis
of genes upregulated in both SC and DN adipocytes by
irisin treatment revealed pathways such as cytokine signaling
(NFKB2, CXCL1, CXCL2, IL32, IL34, IL6, CCL2), interleukin-
4 and 13 signaling (IL6, CCL2, JUNB, ICAM1), and class A/1

rhodopsin like receptors (CXCL3, CXCL5, CX3CL1, CXCL2,
CCL2, CXCL1), which were commonly upregulated in both
SC and DN adipocytes (Table 1). Gephi diagrams illustrate
the interaction of upregulated genes that belong to several
pathways (Figures 2C,D). Interleukin-10 signaling were amongst
the upregulated pathways in SC adipocytes (Figure 2C), while
in DN, G-alpha-I and response to metal ions were upregulated
(Figure 2D). Cluster analyses and heatmap illustration of the
gene expression values of the 79 higher expressed genes upon
irisin treatment identified two main clusters: a cluster of 25 genes
that were uniquely expressed in irisin treated mature adipocytes,
and another group of genes that were expressed highly
in preadipocytes, but suppressed in differentiated adipocytes
without irisin treatment (Supplementary Figure 2). The higher
expression of IL6, CCL2, CX3CL1, and IL32, cytokine encoding
genes was observed by both RNA Sequencing and RT-qPCR
analysis (Supplementary Figure 3). Next, we investigated if
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FIGURE 2 | Irisin upregulated similar gene-sets that encode for cytokines in subcutaneous (SC) and deep-neck (DN) depots of human neck area adipocytes. SC and
DN preadipocytes were differentiated and treated as in Figure 1. (A) Volcano plot showing each of the upregulated genes in SC (red) and DN (blue) depots upon
irisin treatment; the highest upregulated genes are listed separately, (B) Venn-diagram illustrating the genes commonly upregulated by irisin treatment in SC and DN
depots. Gephi illustrations highlighting the most important pathways and the interaction of genes upregulated by irisin treatment in SC (C) and DN (D) derived
adipocytes.

fractalkine (encoded by CX3CL1 gene) and IL-32 were released
into the conditioned media collected during the differentiation
on days number 4 and 12; however, we were unable to detect these
factors (data not shown).

Irisin Dependent Induction of CXCL1
Release Occurred Predominantly From
Differentiating and Mature Adipocytes
Irisin upregulated CXCL1 gene expression at the largest extent
in both SC and DN area adipocytes (Figures 2A, 3A and
Supplementary Table 3). This observation was verified by RT-
qPCR (Figure 3B). As a next step, release of CXCL1 from
irisin treated and untreated adipocytes was investigated into
the conditioned differentiation media collected on the fourth
and twelfth days of differentiation. Irisin treatment resulted in
significant increase in CXCL1 secretion at the intervals of days
0–4 and 8–12 in both types of adipocytes (Figure 3C).

We aimed to further investigate the dependence of CXCL1
release on the presence of irisin. Therefore, we differentiated
hASCs for 21 days, with three sets of samples, each from
SC and DN derived adipocytes. Two sets of hASCs were
differentiated as previously described, and for the third set, irisin
treatment was discontinued after 14 days. Conditioned media
were collected on days number 4, 12, 18, 21 and measured
for the release of CXCL1. Large amounts of CXCL1 were
secreted throughout the differentiation period in the presence
of irisin; however, discontinuation of irisin administration
led to gradual and significant reduction of the released
chemokine (Figure 3D).

A recent publication indicated that RGDS peptide, an integrin
receptor inhibitor, can potentially inhibit the effect of irisin (Kim
et al., 2018). Hence, we checked the effect of this peptide on
the release of CXCL1 on top of irisin treatment. RGDS partially
reduced the irisin-stimulated release of CXCL1 by DN adipocytes
at day 12 of the differentiation period (Figure 3E).
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TABLE 1 | Pathways of significantly upregulated genes upon irisin treatment during differentiation of subcutaneous (SC) and deep-neck (DN) derived adipocytes.

Panther reactome pathways Gene name FDR

SC Irisin upregulated

IkBA variant leads to EDA-ID NFKBIA, NFKB2 4.49 × 10−2

Cytokine signaling in immune system IL6, NFKBIA, JUNB, IL32, SOD2, MT2A, NFKB2, CXCL2, CCL2, IL15RA, IL18, IL34, ICAM1, CXCL1,
RELB, BIRC3

5.23 × 10−8

Interleukin-10 signaling IL6, CXCL2, CCL2, IL18, ICAM1, CXCL1 1.65 × 10−6

Class A/1 (Rhodopsin like receptors) CXCL3, CXCL5, CX3CL1, CXCL2, CCL2, CXCL1 3.5 × 10−2

Interleukin-4 and Interleukin-13 signaling IL6, JUNB, CCL2, IL18, ICAM1 2.3 × 10−3

DN Irisin Upregulated

Response to metal ions MT2A, MT1E, MT1F 4.74 × 10−3

Class A/1 (Rhodopsin like receptors) CCL11, CXCL3, CXCL5, CX3CL1, CXCL2, CCL2, CXCL1 1.85 × 10−2

Cytokine signaling in immune system IL6, CCL11, ITGB2, NFKBIA, JUNB, IL32, SOD2, MT2A, NFKB2, IL7R, CXCL2, CCL2, IL34, ICAM1,
HCK, CXCL1, RELB, BIRC3

5.55 × 10−8

Interleukin-4 and Interleukin-13 signaling IL6, CCL11, ITGB2, JUNB, CCL2, ICAM1 6.33 × 10−4

G-alpha (i) signaling events CXCL3, CXCL5, CX3CL1, ADCY4, RGS16, CXCL2, CXCL1 5.07 × 10−2

Genes commonly upregulated in both SC and DN area adipocytes are marked red.
CXCL1 was the highest upregulated gene in both SC and DN area adipocytes.
FDR, false discovery rate.

Release of CXCL1 throughout the whole differentiation period
raised a possibility that both undifferentiated preadipocytes and
differentiated adipocytes are able to release the chemokine.
To investigate this, the secretion machinery of the mixed cell
population was inhibited by Brefeldin A, followed by CXCL1
immunostaining and image acquisition by confocal microscopy.
Irisin treatment significantly increased CXCL1 immunostaining
intensity in both SC (Figure 4A) and DN adipocytes (Figure 4B).
Irisin treated adipocytes accumulated significantly more CXCL1
compared to their preadipocyte counterparts in both SC
(Figure 4A) and DN areas (Figure 4B). A test for the secondary
antibody alone confirmed that the applied secondary antibody
did not produce a labeling on its own by unspecifically binding to
the cells (Supplementary Figure 4). Our data suggests that irisin
stimulates the release of CXCL1 from differentiating and mature
adipocytes which is strongly dependent on the presence of irisin
but not prominently on its presumed integrin receptor.

Irisin Stimulates the Release of CXCL1
via the Upregulation of NFκB Pathway
Next, we aimed to investigate the molecular mechanisms
underlying the irisin-induced CXCL1 release. According to our
RNA Sequencing data, irisin treatment resulted in a significant
upregulation of NFKB2 and a very modest trend for an increase
in NFKB1 and RELA (Supplementary Figures 5A–C) genes. RT-
qPCR validation indicated significant upregulation of NFKB1
(p50 subunit) and RELA (p65 subunit) in DN, while an increasing
trend was observed in SC adipocytes (Figures 5A,B). p50
protein expression was significantly increased in DN and a
slightly increasing trend was found in the case of SC adipocytes
(Figure 5C). Protein expression of IκBα, the inhibitor of NFκB
transcription factor, decreased significantly upon irisin treatment
in SC and a decreasing trend was observed in DN adipocytes
(Figure 5D), indicating the upregulation of NFκB pathway.

To prove the direct involvement of the NFκB pathway in
adipocyte response to irisin, we applied a cell permeable inhibitor

of NFκB nuclear translocation, SN50 (Sárvári et al., 2015), which
significantly reduced the release of the chemokine from both
types of adipocytes, when it was applied on top of irisin on both
the fourth and twelfth days of differentiation, as compared to cells
stimulated only by irisin (Figure 5E).

The observed effects of irisin are not likely to be caused
by any contamination of endotoxins, which is proved by the
negligible expression of TNFα or CCL3 genes (Supplementary
Figures 5D,E), and the decreasing trend of IL1β gene expression
(Supplementary Figure 5F) in irisin treated adipocytes.
Furthermore, we did not detect secreted TNFα or IL-1β in the
conditioned media of either untreated or irisin treated SC and
DN derived adipocytes (data not shown).

CXCL1 Released From Irisin Stimulated
Adipocytes and Adipose Tissue
Improves the Adhesion Property of
Endothelial Cells
Finally, SC and DN paired tissue biopsies were floated in
the presence or absence of irisin dissolved in empty media,
followed by quantification of CXCL1 release. The secretion of the
chemokine was significantly stimulated from DN tissue biopsies
upon irisin treatment (Figure 6A).

Secretion of CXCL1 plays an important role in wound
repair and angiogenesis (Gillitzer and Goebeler, 2001). which
process Angiogenesis is crucial for the thermogenic function of
BAT (Cannon and Nedergaard, 2004). Therefore, we intended
to detect whether the released chemokine can contribute to
increased adhesion ability of endothelial cells. Conditioned media
collected on the twelfth day of ex vivo differentiation, from
untreated and irisin treated SC and DN area adipocytes, were
added to HUVECs followed by a resorufin based adhesion assay.
The conditioned medium from irisin treated adipocytes, which
contains various released factors (including CXCL1) was able
to significantly increase the adhesion number of attached viable
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FIGURE 3 | Irisin dependent CXCL1 release was stimulated from differentiating subcutaneous (SC) and deep-neck (DN) area adipocytes. SC and DN preadipocytes
were differentiated and treated as in Figures 1, 2. Where indicated, irisin was omitted from the differentiation medium at day 14. Conditioned differentiation media
was collected and secreted CXCL1 was measured by sandwich ELISA. (A) Quantification of CXCL1 gene expression as determined by RNA Sequencing (n = 9) or
RT-qPCR (B) normalized to GAPDH (n = 5), (C) CXCL1 release by ex vivo differentiating SC and DN adipocytes into the conditioned media collected at the indicated
intervals, in the presence or absence of irisin (n = 4), (D) CXCL1 release in conditioned medium collected at indicated intervals from untreated (21 days) and irisin
treated (14 and 21 days as indicated) cell-culture samples (n = 3), (E) CXCL1 release from differentiating adipocytes with or without irisin treatment, in the presence
or absence of 10 µg/ml RGDS (n = 4). Comparisons are for the respective days in case of ELISA. Data presented as Mean ± SD. ∗p < 0.05, ∗∗p < 0.01. Statistics:
GLM (A), One-way ANOVA with Tukey’s post-test (B), Two-way ANOVA with Tukey’s post-test (C–E).

HUVECs, compared to the conditioned medium of untreated
adipocytes (Figures 6B,C). When HUVECs were treated with
recombinant CXCL1, at the highest observed concentration in
media of irisin treated ex vivo differentiated adipocytes, their
adhesion property was enhanced significantly (Figure 6D). This
suggests a potential beneficial role of the released CXCL1 in
promoting endothelial functions and adipose tissue remodeling
to support efficient thermogenesis indirectly by enhancing
vascularization.

DISCUSSION

Irisin was discovered as a proteolytic product of FNDC5,
released by cardiac and skeletal myocytes, which induces a beige
differentiation program in mouse subcutaneous WAT (Boström
et al., 2012; Aydin et al., 2014). In humans, Adenine has been
shown to be replaced by guanine in the start codon of the human

FNDC5 gene, which was shown to result in a shorter precursor
protein lacking the part from which irisin is cleaved (Raschke
et al., 2013). Despite this, the presence of irisin in human
blood plasma could be detected using mass spectrometry or
different antibodies at 3–4 ng/mL (Jedrychowski et al., 2015). The
reported concentration range, however, is subject to uncertainty
even according the authors themselves, who discussed that they
could not account for how much irisin was lost during sample
preparation (Jedrychowski et al., 2015). A recent publication
indicated the level of circulating irisin in mice to be 0.3 ng/mL,
which was previously estimated to be 800 ng/mL (Maak et al.,
2021). Furthermore, it is present in the cerebrospinal fluid, liver,
pancreas, stomach, saliva, and urine (Mahgoub et al., 2018).
However, further research and validated commercially available
techniques are required to assess the irisin concentration of
human samples in a reproducible manner.

The applied concentrations and time intervals of recombinant
irisin largely vary in the experiments reported. The effect of irisin
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FIGURE 4 | Irisin stimulated CXCL1 release predominantly from subcutaneous (A) and deep-neck (B) area differentiated adipocytes. SC and DN preadipocytes (Pre)
were plated and differentiated into adipocytes (Ad) on Ibidi chambers, with or without irisin treatment as in Figures 1–3. Cells were treated with 100 ng/ml
brefeldin-A for 24 h to block the secretion of CXCL1, which was followed by fixation and image acquisition by confocal microscopy. Propidium Iodide (PI) was used
to stain the nucleus. BF represents the bright field image. Confocal images of differentiated adipocytes were shown followed by wider coverage of undifferentiated
and differentiated adipocytes. Scale bars represent 10 µm for single differentiated Ad and 30 µm for wider coverage of Pre and Ad. Yellow and green arrows point
the undifferentiated preadipocytes and the differentiated adipocytes, respectively. Quantification of fluorescence intensity normalized to per cell are shown on the
right bar graphs. Data presented as Mean ± SD. n = 35 cells (A) and 50 cells (B) from two independent donors. ∗∗∗∗p < 0.0001. Statistics: One-way ANOVA with
Tukey’s post-test.
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FIGURE 5 | CXCL1 release is stimulated via the NFκB pathway during the differentiation of subcutaneous (SC) and deep-neck (DN) area adipocytes. SC and DN
preadipocytes were differentiated and treated as in Figures 1–4. Quantification of gene expression for NFKB1 (A) and RELA (B), normalized to GAPDH by RT-qPCR
(n = 5), (C) p50 and IKBA (D) protein expression, normalized to β-actin (n = 6), (E) CXCL1 release from differentiating adipocytes with or without irisin treatment, in
the presence or absence of 50 µg/ml SN50 (n = 4); comparisons are for the respective days. Data presented as Mean ± SD. ∗p < 0.05, ∗∗p < 0.01, and
∗∗∗p < 0.001. Statistics: One-way ANOVA with Tukey’s post-test (A–D) and Two-way ANOVA with Tukey’s post-test (E).
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FIGURE 6 | Irisin stimulated the release of CXCL1 from DN tissue biopsies, which improves the adhesion property of endothelial cells. (A) CXCL1 released into the
conditioned media of paired SC and DN biopsies after 24 h incubation in the presence or absence of irisin (n = 4), Quantification of adhesion of endothelial cells upon
incubation with the conditioned media (with or without irisin treatment) from ex vivo differentiated (incubation period from day 8–12 of differentiation) SC (B) and DN
(C) area adipocytes (n = 5), (D) Quantification of endothelial cell adhesion upon incubation with recombinant CXCL1 in starvation medium (n = 3). Data presented as
Mean ± SD. ∗p < 0.05, ∗∗p < 0.01. Statistics: One-way ANOVA with Tukey’s post-test (A) and Welch’s t-test (B–D).

has been intensively studied in various cellular models before
any measurement of the hormone level in a physiological context
was successfully carried out. In several studies, the recombinant
peptide was applied at higher concentrations than its reported
range in human plasma (Jedrychowski et al., 2015). Of note,
the biological activity of commercially available recombinant
peptides might be less than the endogenous hormone, as a result
of folding deficiency, partial denaturation or lack of possible
post-translational modifications. Irisin significantly increased
UCP1 gene and protein expression of rat primary adipocytes
at concentrations from 2 to 100 nM that corresponds to 25–
1,250 ng/mL (Zhang et al., 2014). The expression of BAT marker
proteins (PGC1α, PRDM16, and UCP1) was increased when
the peptide was applied at 20 nM (250 ng/mL) on 3T3L1
adipocytes (Tsai et al., 2020). Irisin also protected murine
osteocyte-like cells from hydrogen peroxide induced apoptotic
cell death at concentrations up to 500 ng/mL (Kim et al.,
2018). Controversial effects were observed when differentiating
human adipocytes of distinct anatomical origins were treated
with the recombinant hormone. Irisin elevated mitochondrial
respiration of human visceral and subcutaneous WAT-derived
and perirenal BAT-derived adipocytes when applied at 50 nM

(625 ng/mL) (Li et al., 2019). Another study reported that irisin
treatment induced UCP1 protein expression in subcutaneous
human adipocytes when the peptide was applied at 50 nM (Huh
et al., 2014). Mediastinal brown hASCs that were directionally
differentiated in the presence of FNDC5 at 20 nM (800 ng/mL)
exhibited a higher gene expression profile of brown marker
genes as compared to the untreated cells (Silva et al., 2014).
We reported that recombinant irisin at above 50 ng/mL induced
a beige phenotype of human primary abdominal subcutaneous
and Simpson-Golabi-Behmel syndrome (SGBS) adipocytes when
they were treated on top the white adipogenic protocol that was
used in this study (Kristóf et al., 2015; Klusóczki et al., 2019).
In our previous experiments, irisin administration at 250 ng/mL
also facilitated the secretion of batokines, such as IL-6 and
MCP1, by abdominal subcutaneous and neck area adipocytes
(Kristóf et al., 2019).

Adipocytes from the neck, especially the DN, area play a
significant role in maintaining whole body energy homeostasis by
performing continuous non-shivering thermogenesis (Svensson
et al., 2011; Wu et al., 2012; Cypess et al., 2013; Jespersen et al.,
2013). However, the effect of irisin during the differentiation of
SC and DN area adipocytes has not yet been elucidated. Recent
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publications pointed out that irisin may induce a different degree
of browning response based on the origin of the human adipose
tissue (Buscemi et al., 2018; Li et al., 2019). According to our
RNA-sequencing results presented here, irisin did not directly
influence the expression of thermogenesis-related genes in the SC
and DN area adipocytes. However, it induced components of a
secretory pathway leading to the release of CXCL1.

The targeted genetic impairment of the thermogenic capacity
of BAT in mice (e.g., Ucp1−/− mice) results in a less
pronounced phenotype than the ablation of BAT (Villarroya
et al., 2019). Transplantation of small amounts of BAT
or activated beige adipocytes leads to significant effects on
systemic metabolism, including increased glucose tolerance
or attenuated fat accumulation in the liver in response
to an obesogenic diet (Min et al., 2016). Further studies
highlighted the important secretory role of BAT, leading to
an increased interest in identifying batokines in rodents that
can exert autocrine, paracrine or endocrine effects. Several
recently discovered batokines, such as FGF21, NRG4, BMP8b,
CXCL14, or adiponectin have been shown to exert a protective
role against obesity by enhancing beiging of WAT, lipolysis,
sympathetic innervation, or polarization of M2 macrophages
(Ahmad et al., 2021). We found that IL-6, released as a batokine,
directly improves browning of human abdominal subcutaneous
adipocytes (Kristóf et al., 2019). Our findings suggest that CXCL1
is a novel adipokine, which can be secreted in response to
specific cues. This is further supported by gene expression data
from single cell analysis of human subcutaneous adipocytes; in
thermogenic cells, genes of CXCL1, and other secreted factors,
such asCXCL2,CXCL3,CXCL5,CCL2, and IL6, were significantly
upregulated in response to forskolin that models adrenergic
stimulation of heat production (Min et al., 2019).

CXCL1 is a small peptide belonging to the CXC chemokine
family. Upon binding to its receptor, CXCR2 (Silva et al., 2017),
it acts as a chemoattractant of several immune cells, especially
neutrophils (Schumacher et al., 1992). CXCL1 initiates the
migration of immune and endothelial cells upon injury-mediated
tissue repair (Gillitzer and Goebeler, 2001). Conditioned medium
containing CXCL1, collected during differentiation of SC and
DN adipocytes in the presence of irisin, significantly improved
the adhesion property of HUVECs. We observed the similar
response when they were directly treated with the recombinant
chemokine (Figure 6D). Together this raised a possible beneficial
paracrine role of the released CXCL1 from differentiating
adipocytes upon irisin treatment, which can be further proven
by applying a neutralizing antibody against the chemokine or
its receptor. Of note, significant involvement of other released
factors cannot be excluded.

Our study shed light on an important role of irisin, as a
regulator of cytokine release from differentiating adipocytes of
the neck area. The study also indicated the upregulation of
various other cytokines, such as CX3CL1, IL32, CXCL2, IL34,
CXCL5, and CXCL3. Release of IL-6 and MCP1, encoded by
CCL2, was detected from media collected during differentiation
and was found to be specifically released by differentiated
lipid laden adipocytes as described in our previous publication
(Kristóf et al., 2019). Further studies are required to reveal the

impact of irisin stimulated release of other cytokines, which may
have beneficial effects on local tissue homeostasis or metabolic
parameters of the entire body.

Irisin can exert non-thermogenic effects on several tissues,
including the liver (Tang et al., 2016), central nervous system
(Ferrante et al., 2016; Zsuga et al., 2018), blood vessels (Han
et al., 2015), or the heart (Xie et al., 2015). In mouse osteocytes,
irisin acts via a subset of integrin receptor complexes, which
are assembled from ITGAV and either ITGB1, ITGB3, or
ITGB5 (Kim et al., 2018). These integrins transmit the effect
of irisin in inguinal fat and osteoclasts in vivo (Kim et al.,
2018; Estell et al., 2020). In our experiments, RT-qPCR analysis
of ITGAV expression has revealed its high expression in both
preadipocytes and differentiated adipocytes, which was further
upregulated upon irisin treatment in DN adipocytes (Figure 1D).
RNA Sequencing also proved that the β-integrin subunits were
abundantly expressed in both preadipocytes and differentiated
adipocytes (Supplementary Figure 1). However, RGDS peptide
exerted only a moderate effect on the irisin-stimulated CXCL1
secretion by DN adipocytes. This suggests that irisin initiates
some of its biological effects via other, currently unknown
receptor(s) as well. The canonical integrin signaling includes the
phosphorylation of FAK and Zyxin, followed by phosphorylation
of AKT (at T308) and CREB (Kim et al., 2018). However, other
studies proposed positive effects of irisin on cAMP-PKA-HSL
(Xiong et al., 2015), AMPK (So and Leung, 2016; Xin et al.,
2016), or p38 MAPK (Zhang et al., 2014) pathways. Of note,
RGDS peptide was applied at a relatively low concentration, in
which anoikis was not observed. It is still possible that some
of the administered irisin still access their integrin receptors
at this condition.

It has already been reported that CXCL1 gene expression
is directly controlled by NFκB (Burke et al., 2014). NFκB-
signaling might be induced in ex vivo differentiated adipocytes
by released saturated fatty acids that can activate toll-like
receptor (TLR) 4, which is abundantly expressed at mRNA
level in hASCs and adipocytes of human neck (data not
shown) (Lee et al., 2003; Suganami et al., 2007). Our data
indicate that genes of canonical NFκB-signaling, which are
abundantly expressed in neck area adipocytes, are upregulated
when differentiated in the presence of irisin (Figures 5A,B).
The induced expression of inflammation-related genes might
explain why thermogenic genes were not upregulated further
when adipocytes were differentiated in the presence of irisin
(Chung et al., 2017). The absence of TNFα or IL-1β-upregulation
and release during the differentiation in the presence of irisin
excluded the possibility of endotoxin contamination of the
recombinant hormone. Although, irisin was reported previously
to inhibit LPS-induced NFκB activation (Mazur-Bialy et al., 2017;
Jiang et al., 2020), adipocytes differentiated in the presence of
both SN50 and irisin released less CXCL1 than those of treated
with irisin alone (Figure 5E). Further research is needed to
explore the irisin-induced molecular events in the distinct human
adipocyte subsets.

In this study, we have shown that irisin applied in a
supraphysiological higher concentration than that reported in
human blood plasma upregulated the expression of several genes
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with respect to cytokine signaling in human adipocytes derived
from the neck. CXCL1 was upregulated at the greatest extent,
at least partially by upregulation of the NFκB pathway, and was
proved to be secreted mainly by differentiated adipocytes. Of
note, the expression of thermogenesis-related genes were not
induced that might be explained by the desensitization of irisin
receptors by the high concentration of the hormone. On the other
hand, results of in vitro endothelial adhesion assay suggested a
positive effect of the released chemokine on angiogenesis. Further
studies are required to assess how irisin at physiological levels
affects thermogenesis and cytokine release of human adipocytes.
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