
1

003-0572

Hammock Activities in Project Scheduling

Sixteenth Annual Conference of POMS,

Chicago, IL, April 29 - May 2, 2005.

György Csébfalvi

University of Pécs, Faculty of Business and Economics, Department of Business Informatics

H-7622 Pécs, Rákóczi út 80, Hungary

E-mail: cseb@ktk.pte.hu, Phone: +36 72 211 433, Fax: +36 72 501 553

Anikó Csébfalvi

University of Pécs, Faculty of Engineering, Department of Structural Engineering

H-7624 Pécs, Boszorkány út 2, Hungary

E-mail: csebfalv@garfield.pmmf.hu, Phone: +36 72 328 684, Fax: +36 72 214 682



2

Abstract

The concept of hammock activities plays a central role in project management. They are used to

fill the time span between other "normal" activities since their duration cannot be calculated or

estimated at the initial stage of project planning. However, the recent literature does not offer a

general and useful method to compute the unconstrained (resource constrained) duration of such

activities. In the proposed approach, a hammock activity is characterized by two dummy

activities; therefore the estimation of the unconstrained hammock duration can be formulated as

a simple linear programming (LP) problem. The resource-constrained hammock activity duration

computation can be described as a mixed integer linear programming (MILP) problem with big-

M constraints, which can be solved directly for small-scale projects in reasonable time. The

presented implicit enumeration algorithm for the resource constrained hammock activity duration

is formulated as a tree-search problem with effective pruning rules. The first pruning rule is

based on a special consistency check, which can help to visibilize the "invisible" inconsistencies.

The second pruning rule eliminates schedules from explicit enumeration that are known to be

unnecessary. The third pruning rule is based on the relaxation of a MILP model, which is a

tighter reformulation of the traditional zero-one resource constrained project scheduling model.

According to the NP-hard nature of the problem, the proposed implicit enumeration algorithm

provides exact solutions for small to medium size problems in reasonable time. Large-scale

problems can be managed by introducing an optimality tolerance. In order to illustrate the

essence and viability of the proposed new approach, we present detailed computational results

for a simple example.



3

1. Introduction

The concept of hammock activities plays a central role in project management. They are used to

fill the time span between other "normal" activities since their duration cannot be calculated or

estimated at the initial stage of project planning. Typically, they have been used to denote usage

of equipment needed for a particular subset of activities without predetermining the estimated

time the equipment must be present on site. Over the past few years the use of hammocks has

become popular and most computer software on project scheduling - in the unconstrained case -

can now treat them as a part of the whole project analysis process. Nonetheless, some confusion

still exists among hammock users, related to the procedure that must be used to calculate their

durations after the normal time analysis is performed.

In the unconstrained case, Harhalakis (1990) proposed the first rigorous algorithm to calculate

the hammock durations. However, the recent literature does not offer a general and useful

method to estimate the hammock durations in the resource-constrained case. The paper presents

a new exact approach to cope with this problem.

In order to model hammock activities in projects, we consider the following resource constrained

project-scheduling problem: A single project consists of N  real activities { }N    i ,...,2,1∈  with a

nonpreemptable duration of iD  periods. The activities are interrelated by precedence and

resource constraints:

Precedence constraints - as known from traditional CPM-analysis - force an activity not to be

started before all its predecessors are finished. These are given by relations ji → , where ji →

means that activity j  cannot start before activity i  is completed. Furthermore, activity

( )10 +== Ni i  is defined to be the unique dummy source (sink). Let { }1,1, +∈ N  ,... i IPi  denote

the set of immediate predecessors for activity i .



4

Resource constraints arise as follows: In order to be processed, activity i  requires r iR  units of

resource type { }R  ,... r ,1∈  during every period of its duration. Since resource r , { }R  ,... r ,1∈ , is

only available with the constant period availability of rR  units for each period, activities might

not be scheduled at their earliest (network-feasible) start time but later.

Let T denote the project's makespan and let 1+T  denote the start time of the unique dummy

sink. The traditional approach minimizes the starting time of the unique sink and thus the

makespan of the project. In this paper, without loss of generality, we assume that makespan T  is

the resource-constrained minimal makespan and fix the position of the unique dummy sink in

period 1+T .

Let iS , iii LSSES ≤≤ , denote the start time of activity i , for { }N  ,... ,i 1∈ , where ( )ii SL  ES

denotes the earliest (latest) starting time of activity i  in the unconstrained case. Because

preemption is not allowed, the ordered set { }N S ,... SS ,1=  defines a schedule of the project.

Let { } { }{ }N  ,... ,j N  ,... ,i  j,i   ji PS 1,1 ∈∈≠→=  denote the set of predecessor-successor

relations. A schedule is network-feasible if satisfies the predecessor-successor relations:

jii SDS ≤+ , if PSji ∈→ . (1)

Let ℜ  denote the set of network-feasible schedules. For a network feasible schedule ℜ⊂S , let

{ } { }T  ,... ,t DStS  i A iiit 1, ∈+<≤= denote the set of active (working) activities in period t  and

let

∑
∈

=
tAi

r ir t rU , { }T  ,... t ,1∈ , { }R  ,... r ,1∈ (2)

be the amount of resource r  used in period t .

A network-feasible schedule ℜ⊂S  is resource-feasible if satisfies the resource constraints:

rr t RU ≤ , { }T  ,... t ,1∈ , { }R  ,... r ,1∈ . (3)

Let ℜ⊆ℜ  denote the set of resource-feasible schedules.

Let H denote the number of hammock activities. A hammock activity { } H  ,...  h H h ,1, ∈ can be

represented by a dummy activity pair with zero duration:



5

{ } { }{ }0,0,,1,,1 ==≠∈∈↔=
hh jihhhhhhh D D ,j  i N  ,... j N  ,... i   ji H (4)

Let { } H  ,...  h Dh ,1, ∈  denote the hammock activity duration. Each { }H  ,... h ji hh ,1, ∈↔

dummy activity pair defines a subset of "normal" activities, which has a common start ( )hi  and a

common end point ( )hj . In other words, a dummy activity pair defines the left and right hanging

up points of the corresponding "hammock". In general, the duration of a hammock activity is

equal to the longest path from the start point to the end point in the corresponding activity subset.

Consider a simple resource-constrained example with eighteen "normal" and one hammock

activities. The activities are numbered 1 through 20 (plus the dummy activities 0 and 21). The

left (right) hanging up point of the hammock is defined by dummy activity 2 (17). There is only

one resource type and eleven units are available from the resource type. Without loss of

generality, we assume that we know the minimal resource feasible makespan, which is in this

example 18=T , so we fix the position of the dummy sink in period 19. Table 1 and Figure 1

illustrate the essence of the example.

In Figure 1, the presented network-feasible schedule is not resource feasible, because there are

over-utilization in period 11 and 12.

In Figure 1, the activities are represented by bars, the network relations by lines. The unique

dummy source (sink) is represented by the ( )<>  symbol.

The hammock hanging up points are represented by small dark circles, the distance of the

hanging up points is illustrated by a gray left-right arrow ( ↔ ). For the sake of simplicity an

absolute time scale is being used in this example. The time periods are labeled by consecutive

{ }1,1,0 +∈ T T,  ,...  t  integers.



6

Note the convention of starting an activity at the beginning of a time period and finishing it at the

end of it. (According to the applied convention, time period one is the first working period.)

Table 1. A simple resource-constrained example
i D i ES i LS i R i 1 IP i
0 1 0 0
1 2 1 4 3 {0}
2 0 5 8 0 {3, 4}
3 3 1 1 5 {0}
4 2 3 6 6 {1}
5 3 5 9 5 {2}
6 5 5 8 3 {2}
7 4 4 4 2 {3}
8 3 5 9 1 {4}
9 3 8 12 6 {5}

10 2 10 13 5 {6}
11 2 8 8 2 {7}
12 3 8 12 1 {8}
13 2 11 15 2 {9}
14 2 12 15 3 {10}
15 3 10 10 1 {11}
16 2 11 15 3 {12}
17 0 14 17 0 {13, 14}
18 2 13 13 2 {15}
19 2 14 17 6 {16, 17}
20 4 15 15 5 {18}
21 1 19 19 {19, 20}

R 1 11

This paper is organized as follows. In Section 2, we show that the calculation of the

unconstrained hammock durations can be formulated as a simple linear programming (LP)

problem. In Section 3, we present a mixed integer linear programming (MILP) model and an

implicit enumeration (IE) algorithm for the computation of resource-constrained hammock

durations. Implementation details are presented in Section 4. The last section lists some issues

that call for further investigation.



7

R 11

8 8

11

8

3

11 11 11

6

11

15 15

7 7

5

11 11

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

> 1

3

4

5

6

7

8

9

10

11

12

13

14

15

16

18

19

20

<

172

H1 = {2, 17}

Figure 1. A simple resource-constrained example

2. Unconstrained Hammock Durations

The computation of the unconstrained hammock durations can be formulated as a very simple LP

problem. We find a network-feasible ℜ⊂∗S  schedule, for which the sum of the hammock

durations ( )HD  is minimal:

( ) ∗

==

=






 ℜ∈−== ∑∑ HD S  SSDHDmin

H

h
ij

H

h
h hh

11

(5)



8

Figure 2 illustrates the essence of the problem, which, as determined by the well-known software

package CPLEX 8.1 (called from MPL modeling environment), has solution 9=∗HD . so we

can replace the corresponding activity subset { }141061395 , , , , ,  with a single hammock

activity. The result will be an "upper-level" network, which preserve the information on

precedence relations and activity durations. This "upper-level" network can be investigated by

the traditional CPM-analysis. The "upper-level" network is illustrated in Figure 3. Figure 4 show

the early and late schedules of the "low-level" network. The "low-level" network can be

investigated by an "augmented formulation", in which the additional constraint ∗= HDHD

describes the hammock duration.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

> 1

3

4

5

6

7

8

9

10

11

12

13

14

15

16

18

19

20

<

172

H1 = {2, 17}

Figure 2. A simple unconstrained example

H1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

> 1

3

4

7

8

11

12

15

16

18

19

20

<

Figure 3. A simple unconstrained example (the upper-level network)



9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

> 1

3

4

5

6

7

8

9

10

11

12

13

14

15

16

18

19

20

<

2 17

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

> 1

3

4

5

6

7

8

9

10

11

12

13

14

15

16

18

19

20

<

2 17

Figure 4. A simple unconstrained example (the low-level early and late schedules)

3. Resource-constrained Hammock Durations

In this section, we present MILP models and an IE algorithm for the computation of resource-

constrained hammock durations. The second MILP formulation and the IE algorithm are based

on the forbidden (resource constraint violating) set concept. A forbidden activity set F  is

identified such that: (1) all activities in the set may be executed concurrently, (2) the usage of

some resource by these activities exceeds the resource availability, and (3) the set does not

contain another forbidden set as a proper subset. See, for example, Bell and Park (1990). A

resource conflict can be repaired explicitly by inserting a network feasible precedence relation



10

between two forbidden set members, which will guarantee that not all members of forbidden set

can be executed concurrently. An inserted explicit conflict repairing relation (as its side effect)

might be able to repair one or more other conflicts implicitly, at the same time. Let

ji →→ denote that activity j  is a direct (indirect) successor of activity i . An ji → explicit

repairing relation might be replaced by a qp →  implicit relation, where pi →→  and

jq →→ , jq  pi ≠∨≠ , if there is an other forbidden set for which qp →  is an explicit

repairing relation. Let ( ) ( )( )FIR FER  denote the set of implicit (explicit) repairing relations for

forbidden set .F Figure 9 shows the early CPM schedule of our simple example.

R1 11

8 8

11

8

11 11 11

12 12

13

11

9

5

8

11

5 5 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

> 1

3

4

5

6

7

8

9

10

11

12

13

14

15

16

18

19

20

<

2 17

Figure 5. A simple resource-constrained example (the early CPM schedule)



11

Table 2 (3) shows the forbidden sets and their explicit (implicit) repairing sets of the example. In

the presented earliest CPM schedule every conflict is feasible. Note that a feasible conflict may

be "visible" or "hidden". A hidden conflict is "invisible" in the earliest CPM schedule, but might

be visible in a shifted schedule. In our example, the total number of forbidden sets is sixteen, but

in the early schedule only three conflicts - namely { }14131 ,, F F F  - are visible (active).

Table 2. Forbidden Sets and Explicit Repairs
i V Interval FS i ER(FS i)
1 V [08,09] {6, 9, 11, 12} {6→9, 6→12, 11→9, 9→12, 12→9, 11→12}
2 [11,11] {5, 10, 16} {5→10, 5→16, 10→16, 16→10}
3 [12,14] {9, 14, 16} {9→14, 9→16, 14→16, 16→14}
4 [15,16] {13, 14, 16, 20} {13→14, 14→13, 13→16, 16→13, 13→20, 14→16, 16→14, 14→20, 16→20}
5 [08,09] {6, 8, 9, 11} {8→6, 6→9, 8→9, 8→11, 11→9}
6 [13,14] {10, 13, 16, 18} {10→13, 13→10, 10→16, 16→10, 10→18, 13→16, 16→13, 13→18, 18→13, 16→18, 18→16}
7 [11,11] {5, 6, 15, 16} {5→6, 5→15, 5→16, 6→15, 6→16, 15→16}
8 [11,12] {6, 9, 16} {6→9, 6→16, 9→16}
9 [13,14] {9, 10, 18} {9→10, 10→9, 9→18, 10→18}

10 [11,14] {9, 10, 16} {9→10, 10→9, 9→16, 10→16, 16→10}
11 [10,11] {5, 8, 10, 15} {5→8, 8→5, 5→10, 5→15, 8→10, 8→15, 15→10}
12 [13,14] {9, 12, 14, 18} {9→12, 12→9, 9→14, 9→18, 12→14, 12→18, 18→14}
13 V [10,12] {9, 10, 15} {9→10, 10→9, 15→10}
14 V [10,14] {9, 10, 12} {9→10, 10→9, 9→12, 12→9, 10→12, 12→10}
15 [10,11] {5, 10, 12, 15} {5→10, 5→12, 5→15, 10→12, 12→10, 15→10}
16 [10,11] {8, 9, 10} {8→9, 8→10, 9→10, 10→9}

Table 3. Forbidden Sets and Implicit Repairs
i V Interval FS i IR(F i)
1 V [08,09] {6, 9, 11, 12} {10→9, 10→12}
2 [11,11] {5, 10, 16} {13→10, 5→6, 9→10, 9→12, 9→16, 13→16, 5→8, 5→12, 14→16, 10→12}
3 [12,14] {9, 14, 16} {13→14, 13→10, 9→10, 9→12, 13→16, 16→10}
4 [15,16] {13, 14, 16, 20} {13→10, 13→18, 16→10, 16→18}
5 [08,09] {6, 8, 9, 11} {10→9, 12→9, 8→5}
6 [13,14] {10, 13, 16, 18} {14→13, 10→9, 14→16, 10→12}
7 [11,11] {5, 6, 15, 16} {9→12, 9→16, 13→16, 5→8, 5→12, 6→12, 10→16, 14→16, 10→12, 18→16}
8 [11,12] {6, 9, 16} {10→9, 6→12, 10→16, 14→16, 10→12, 9→12, 13→16}
9 [13,14] {9, 10, 18} {13→10, 13→18}

10 [11,14] {9, 10, 16} {13→10, 9→12, 13→16, 14→16, 10→12}
11 [10,11] {5, 8, 10, 15} {13→10, 5→6, 9→10, 16→10, 8→6, 12→10, 8→11}
12 [13,14] {9, 12, 14, 18} {13→14, 13→10, 9→10, 13→18, 16→10, 16→14, 12→10, 16→18}
13 V [10,12] {9, 10, 15} {13→10}
14 V [10,14] {9, 10, 12} {13→10, 16→10}
15 [10,11] {5, 10, 12, 15} {13→10, 5→6, 9→10, 9→12, 5→8, 16→10}
16 [10,11] {8, 9, 10} {12→9, 8→5, 16→10, 8→6, 12→10, 13→10}



12

Note that in the unconstrained case the hammock durations can be calculated uniquely and

unambiguously, while in the resource-constrained case the calculation of the hammock durations

can be performed following one of two ways.

 Let { } H  ,...  h Ch ,1, ∈  define the per period cost of hammock activities. In the first approach, we

apply the traditional "visible conflict" oriented repairing strategy, so we find a resource-feasible

ℜ⊂∗S  schedule, for which the resource-constrained total hammock cost ( )HC  is minimal:

( ) ∗

==

=






 ℜ∈−== ∑∑ HC S  SSCD CCHmin

hh ij

H

h
h

H

h
hh

11

(6)

Note that in this approach the optimal solution ℜ⊂∗   S  is a schedule (the variables are activity

starting times and we describe the resource constraints explicitly), so we know nothing about the

resource-feasible activity shifts. In other words, a shifted version of the optimal schedule not

necessarily will be resource-feasible.

In the second approach, we replace the traditional "visible conflict" oriented strategy by a

"feasible conflict" oriented one. In other words, we repair every feasible resource conflict

regardless of whether it is "visible" or "hidden". In this case, the primary variables are conflict

repairing relations, so the optimal solution will be a resource-feasible solution set, in which every

movable activity can be shifted without effecting the resource feasibility. Note that the resource-

feasible scheduling flexibility of the optimal solution can be investigated by the traditional CPM-

analysis.

Let ℜ  define the set of the feasible conflict repairing sets. Let ℜ⊂FR  denote a feasible

conflict repairing set. A feasible repairing set ℜ⊂FR  is a consistent relation set, which is able

to resolve every visible or hidden resource conflict in the given project, so after inserting all the

relations of such a set we get a resource-feasible schedule set. In this case, the starting times are



13

secondary variables: ( )FRSS = . In the second approach, we find a ℜ⊂∗CR  conflict repairing

set, for which the resource-constrained total hammock cost ( )HC  is minimal:

( ) ∗

==

=






 ℜ⊂−== ∑∑ HCFR  SS CD CCHmin

hh ij

H

h
h

H

h
hh

11

(7)

In the second case we describe the resource constraints implicitly. Note that the application of

either approach may give totally different hammock durations in the function of the current

{ } H  ,...  h Ch ,1, ∈  costs, when 1>H . Applying the second model, we can answer several "what

if" like questions. For example, from managerial point of view, may be interesting to know

which schedule set gives the maximal hammock cost, because a higher hammock cost may be

compensated by a larger scheduling flexibility. Let us denote with { } ... PR PRPR 2 ,,1=  the set of

possible conflict repairing relations. In our simple problem 50=PR , the possible conflict

repairing relations are shown in Table 4. A feasible conflict repairing set FR  is a subset of PR :

PRFR ⊆ .

Table 4.
i FR i i FR i
1 6→9 26 13→10
2 6→12 27 10→18
3 11→9 28 13→18
4 9→12 29 18→13
5 12→9 30 16→18
6 11→12 31 18→16
7 5→10 32 5→6
8 5→16 33 5→15
9 10→16 34 6→15
10 16→10 35 6→16
11 9→14 36 15→16
12 9→16 37 9→10
13 14→16 38 10→9
14 16→14 39 9→18
15 13→14 40 5→8
16 14→13 41 8→5
17 13→16 42 8→10
18 16→13 43 8→15
19 13→20 44 15→10
20 14→20 45 12→14
21 16→20 46 12→18
22 8→6 47 18→14
23 8→9 48 10→12
24 8→11 49 12→10
25 10→13 50 5→12



14

3.1 MILP formulations

The first model for the resource-constrained hammock cost is a simple modification of the

traditional resource-constrained MILP model:

( )
to subject

HCSSCD CCH min
hh ij

H

h
h

H

h
hh

∗

==

=



 −== ∑∑

11

(8)

{ } N  ,... ,,  i S
i

i

LS

ESt  
t i 21,1 ∈=∑

=

(9)

{ }∑
=

∈∗=
i

i

LS

ESt  
t ii  N  ,... ,,  i StS 21,

(10)

PSji DS tS t i

LS

ESt  
t i

LS

ESt  
t j

i

i

j

j

∈→+∗≥∗ ∑∑
==

,
(11)

{ } { } T  ,... ,,  t  R  ,... ,,  r RS  R r

t

Dts     
 si

N

i
r i

i

21,21,
11

∈∈≤∗ ∑∑
+−==

(12)

{ } { } { }iit i LS  ,... ES t  N  ,... ,,  i  ,, S ,,2110 ∈∈∈ (13)

The objective function (8) minimizes the total hammock cost. Constraint set (9) assures that to

each activity a unique start time within its time window is assigned. Constraint set (10) describes

the relation between the integer and binary start time variables. Constraints (11) take into

consideration the precedence relations between each pair of activities ji → , where

i immediately precedes j . Finally, constraint set (12) limits the total resource usage within each

period to the available amount.

Using the first model, the optimal solution of our example is 9 HC =∗ . The optimal schedule is

presented in Figure 5. Unfortunately, this model is unable to give information about the resource-



15

constrained activity shifts (some delay may be able to destroy the resource-feasibility), so the

practical importance of the first model is limited. Naturally, the application of either model to

calculate the hammock cost yield the same total hammock cost, but the second model gives

additional information about the scheduling flexibility.

R 1 11

8 8

11

8 8

11 11 11 11

10

6

7

8 8 8 8

11 11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

> 1

3

4

5

6

7

8

9

10

11

12

13

14

15

16

18

19

20

<

Figure 6. A simple resource-constrained example (the optimal hammock duration using the first model)

The second model is based on the forbidden set concept. In this model the total number of zero-

one variables is  RP , and the formulation is based on well-known "big-M" constraints.

Defining the decision variables

RPji   where   ,
otherwise0

insertedj  i  if
Y j i ∈→



 →

=
1

,
(14)



16

the following MILP model arises:

( ) ∗

==

=



 −== ∑∑ HCSSCD CCH min

hh ij

H

h
h

H

h
hh

11

subject to

(15)

 ,1Y
f S  ji

j i ≥∑
∈→

where ( ) ( )fff F IRF ERS ∪= , { } FS  ,...  f ,1∈ (16)

( ) ( )j iijijii Y DESLS SDS −∗+−+≤+ 1 , PRji ∈→ (17)

jii SDS ≤+ , PSji ∈→ (18)

{ }1 ,0Y j i ∈ , for every PRji ∈→ . (19)

The objective function (15) minimizes the proposed resource constrained total hammock cost.

Constraint set (16) assures the resource feasibility (we have to repair each resource conflict

explicitly or implicitly, therefore from each conflict repairing set we must choose at least one

element).

Constraint sets (17) take into consideration the precedence relations between activities in the

function of repairing relations. In constraint sets (17) ( )ji ES LS  denotes the latest (earliest) start

time of activity ( )j i  in the network-feasible earliest (latest) CPM schedule. Note that the

( )iji DESLS +−  values are optimal (minimal) "big-M" constants in the constraint set (17).

Constraint sets (18) take into consideration the original precedence relations between activities.

The optimal schedule of the second model is presented in Figure 5. Easy to see, that the

additional conflict repairing relations destroy the original structure of the project.



17

R1 11

8 8

11

8

11 11 11 11 11

8

9 9

8 8

11 11

5 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

> 1

3

4

5

6

7

8

9

10

11

12

13

14

15

16

18

19

20

<

2 17

Figure 7. A simple resource-constrained example (the optimal hammock duration using the second model)

3.2 An Implicit Enumeration Algorithm

In this section we present a new exact implicit enumeration algorithm for the computation of the

resource-constrained total hammock cost. The crucial point of such a development is the

constraining power of the applied lower bounding technique. Without tight lower bounds the size

of the search tree would be extremely large. The "big-M" formulation applied in the second

MILP approach is the simplest way to model the resource feasibility, but it does suffer,

unfortunately, from a weak LP relaxation as any other "big-M" like formulation does. The IE



18

algorithm is formulated as a tree-search problem with three effective pruning rules. The first

pruning rule is based on a special consistency check, which can help to visibilize the "invisible"

inconsistencies. The second pruning rule eliminates schedules from explicit enumeration that are

known to be unnecessary. The third pruning rule is based on the relaxation of a MILP model,

which is a tighter reformulation of the traditional zero-one resource constrained project

scheduling model. To solve the relaxed problems a fast "state-of-the-art" interior point solver

(BPMPD) was used. According to the NP-hard nature of the problem, the proposed IE algorithm

provides exact solutions for small to medium size problems in reasonable time. Large-scale

problems can be managed by introducing an optimality tolerance. Use of optimality tolerance

drastically decreases the size of the searching tree. In order to illustrate the essence and viability

of the proposed new algorithm, we present detailed computational results for our simple

example.

The proposed lower bounding technique is based on the forbidden set concept. Let

{ } { }{ } { }{ }   FS   ,... ,  f    N  ,... ,,  F  , FS   ,... ,  i  F FS FS i ffi ff 2,1212,1 ∈∈∈==  denote the set

of the feasible forbidden sets of the project. Our objective is to repair every feasible resource

conflict such that the proposed HC  measure is minimized.

In order to develop an appropriate lower bounding technique, let t iS , where ii LStES ≤≤ ,

denote a zero-one decision variable:





=
otherwise

t period in   startedis  iactivity   if
S t i 0

1
, { }N  ,... ,i 1∈ .

(20)

According to the applied notation:

∑
=

∗=
i

i

LS

ESt  
t ii StS , 1=∑

=

i

i

LS

ESt  
t iS , { }N  ,... ,i 1∈ .

(21)



19

The traditional zero-one resource-constrained project scheduling model with the new objective is

the following:

( )
to subject

HCSSCD CCH min
hh ij

H

h
h

H

h
hh

∗

==

=



 −== ∑∑

11

(22)

{ } N  ,... ,,  i S
i

i

LS

ESt  
t i 21,1 ∈=∑

=

(23)

{ }∑
=

∈∗=
i

i

LS

ESt  
t ii  N  ,... ,,  i StS 21,

(24)

PSji DS tS t i

LS

ESt  
t i

LS

ESt  
t j

i

i

j

j

∈→+∗≥∗ ∑∑
==

,
(25)

{ } { } T  ,... ,,  t  R  ,... ,,  r RS  R r

t

Dts     
 si

N

i
r i

i

21,21,
11

∈∈≤∗ ∑∑
+−==

(26)

{ } { } { }iit i LS  ,... ES t  N  ,... ,,  i  ,, S ,,2110 ∈∈∈ (27)

The objective function (22) minimizes the total hammock cost. Constraint set (23) assures that to

each activity a unique start time within its time window is assigned. Constraints (24) describe the

relation between the integer and binary start time variables. Constraints (25) take into

consideration the precedence relations between each pair of activities ji → , where

i immediately precedes j . Finally, constraint set (26) limits the total resource usage within each

period to the available amount. We can replace the traditional precedence constraint set (25) with

a totally unimodular formulation:

{ } LS  ,... DES t  PSji  SS iij

Dt

ESs
s j

LS

ts
s i

i

j

i

,1,,1
1

+−∈∈→≤+ ∑∑
−+

==

(28)

Constraint set (28) assures that activity j  must not be begun before time iDt +  if activity i  is

started at time t  or later. Note that the LP relaxation (22)-(24), (26), and (28) is stronger then

(22)-(26). See, for example, Demeulemeester and Herroelen (2002).



20

We will now show that the traditional resource constraint set (26) can be replaced by a new

forbidden set oriented formulation. Let ( )ff P P  denote the first (last) time period in which

forbidden set fFS , { }  FS   ,... ,,  f 21∈  may be active (visible):

{ }

{ }fiif

fif

FSi  DLSP

FSi ESP

∈−+=

∈=

1min

max (29)

The forbidden set oriented formulation can be described as follows:

{ } { } { }  FS   ,... ,,  f     P  ,... ,P  t    R  ,... ,,  r FS S fff
FSi 

t

Dts  
 si

f i

21,,21,1
1

∈∈∈−≤∑ ∑
∈ +−=

(30)

Constraints (30), according to the definition, simply describe the fact that the concurrent

execution of the forbidden set members is prohibited in every affected time period. Note that the

LP relaxation (22)-(24), (26), and (28) may be weaker or stronger than (22)-(24), (28), and (30).

Therefore, the LP relaxation (22)-(24), (26), (28), and (30) will be at least as strong as (22)-(24),

(26), and (28) or (22)-(24), (28), and (30). Theoretically, (22)-(24), (26), (28), and (30) is a

redundant MILP model, in which either (26) or (30) is not necessary, but the redundant

constraints, as valid cuts, greatly strengthen the LP relaxation of the model.

Relaxing the integrality assumption { } [ ]( ) ,   S  ,   S t it i 1010 ∈⇒∈ , we get an LP problem, which

- using a fast interior point solver - can be solved in reasonable time. When we solve the relaxed

minimization problem, we get a lower bound for HC :

( )∗∗

=

−= ∑ hh ij

H

h
h SSC HC

1

(31)

The LP relaxation provides good quality lower bounds for the total hammock cost, which is

essential in a tree search process. According to the progress of the tree search process, the



21

schedules become more and more resource constrained. The more constrained a schedule, the

smaller the gap between the estimated and the true lower bounds.

The tree-building process is based on the forbidden set concept. The nodes of the tree correspond

to "partial" schedules. In our IE algorithm, any partial schedule satisfies all original precedence

constraints and assigns a start time to all activities. But it is "partial" because it may violate one

or more "visible" or "hidden" resource constraints. The nodes are characterized by the non-

redundant subset of the original network relations and the additional conflict repairing relations,

the feasible subset of the original forbidden sets, the visible subset of the feasible subset, and the

precedence but not necessarily resource feasible earliest (latest) starting times:

( ) ( ) ( ) { } { }{ }{ }    N  ,... ,,  i   LS ES    ,VS FS  FR (n)(n)
i

nn n 21,,, ∈ (32)

where (n) FR  denotes the set of the inserted conflict repairing relations, ( ) ( ) FSFSFS 0 n =⊆ , and

(n) VS  denotes the visible subset, ( ) ( )n n FS VS ⊆ . Leaf nodes of search tree are resource feasible

or pruned schedules. Our node evaluation (fitness) function is very simple: It assigns to each

{ } ... ,, ,  n 210∈  node the estimated ( )n HC  lower bound value. Thus, at each step of the tree-

building process, we select the most promising node, which has been generated but not

expanded. A parent node is transformed into a set of child nodes by repairing its "best" resource

conflict all the possible ways. Note that, in this context, "best" means a conflict with minimal

number of possible repairing relations. According to our "best-first" searching strategy, a node

without feasible resource conflicts will be a solution of the total hammock cost minimization

problem. Note that an inserted explicit conflict repairing relation (as its side effect) may be able

to repair one or more other conflicts implicitly, at the same time.

In the traditional forbidden set oriented problem solving strategy a parent node is transformed

into a set of child nodes by repairing its first resource conflict all the possible ways, where "first"



22

always means the earliest conflict in time interval [ ]T,1 . The reason is very simple: in the

traditional case we would like to get a resource feasible solution as early as possible and after

that the searching process terminates.

In our case: (1) we have to generate all the solutions of the problem, (2) the first resource-

constrained solution will not necessarily be optimal for HC , so we have to find other solutions

(when we use the modified "best" conflict repairing strategy, the tree usually will be smaller than

the traditional tree), and (3) the total hammock cost is not a regular measure of performance,

therefore the application of a traditional regular pruning rule may "over-prune" the searching

tree. So we have to develop special pruning rules to cut down the effective branching factor of

the search tree. In this study we applied three pruning rules which are able to substantially reduce

the number of generated nodes.

(1) The first "cyclic repairs rule" is based on a special consistency check, which can help to

visibilize the "invisible" inconsistencies. The basic idea of this rule is very simple: After

inserting a conflict repairing relation and updating the schedule, our tree-building process "looks

ahead" and in a cyclically repeatable repairing process repairs each resource conflict in the child

node which has exactly one repairing possibility. This cyclical repairing process immediately

terminates and the child node is discarded if one ore more conflicts become non-repairable or the

updated project duration exceeds the prescribed maximal project duration.

(2) The second "at least as shiftable rule" is a straightforward modification of the well-known

"left shiftable rule" which is an efficient regular pruning rule. Let ( ) { } ... ,, ,  n MS n 210, ∈  denote



23

the non-redundant subset of the predecessor-successor relations for the movable (non-critical)

activities:

( ) ( ){ } ( ) ( ) ( ) ( ){ }jjiinn LSES LSES  FRPS NonRedji j i MS <<∪∈→→= ,, (33)

The applied {}⋅ NonRed  operator eliminates the redundant predecessor-successor relations, for

example, { } { } kj j,i  ki  k,j j,i NonRed →→⇒→→→ . The modified rule compares two

nodes: If ( ) ( )ba MSMS ⊇ , ( ) ( )ba ESES ≥ , ( ) ( )ba LSLS ≤ , and ( ) ( )ba FSFS = , then node a  can be

immediately pruned (in other words, node a  is dominated by node b ).

(3) The third rule is based on the relaxation of the proposed new MILP formulation. A child node

is discarded if the relaxed LP solution is primal infeasible. In this study, to solve the relaxed LP,

a very fast primal-dual interior method (BPMPD) developed by Mészáros (1996) was used.

In the tree building process, the applied new redundant MILP formulation is able to detect the

resource unfeasibility earlier than the traditional formulation does, therefore results in a smaller

tree.

The algorithm maintains the dynamically changing{ } { } CH best  HC Best Node, Best (best)  ,=  set.

A generated child node c  can be immediately discarded if ( ) (best)  c HCHC ≥ .

The search tree of our example is shown in Figure 7. Figure 8 illustrate the optimal schedule set

for the proposed objective. In the optimal schedule set ( 22=n ) the total hammock cost is ten

( )11 =C . The size of the search tree is 28. The proposed IE algorithm solved the problem very

quickly, the computation time was 0.134 sec.



24

0. {}    { [10,  12] ,  {9,  10,  15},  16,  3} {9, 9}   1   

1. {9 → 10}    { [8,  9] ,  {6,  9,  11,  12},  5,  1} {10, 10}   1   

11. {6 → 9}    { [15,  16] ,  {13,  14,  16,  20},  2,  0} {12, 12}   7 (8)   

12. {6 → 12}    { [8,  9] ,  {6,  8,  9,  11},  3,  0} {10, 10}   1   

16. {6 → 9}    { [13,  14] ,  {10,  13,  16,  18},  2,  1}    3 (11)   

17. {8 → 9}    { [15,  16] ,  {13,  14,  16,  20},  2,  0} {10, 10}   1   

20. {13 → 14}    { [13,  14] ,  {10,  13,  16,  18},  1,  0} {10, 10}   7 (22)   

21. {14 → 13}   {12, 12}   7 (8)   

22. {13 → 16}   {10, 10}   8   

23. {16 → 13}   {12, 12}   7 (22)   

24. {13 → 20}    { [13,  14] ,  {10,  13,  16,  18},  1,  0} {10, 10}   7 (22)   

25. {14 → 16}   {10, 10}   7 (22)   

26. {16 → 14}    { [13,  14] ,  {10,  13,  16,  18},  1,  0} {12, 12}   7 (22)   

27. {14 → 20}   {10, 10}   7 (22)   

28. {16 → 20}    { [13,  14] ,  {10,  13,  16,  18},  1,  0} {10, 10}   7 (22)   

18. {8 → 11}    { [15,  16] ,  {13,  14,  16,  20},  2,  0} {10, 10}   7 (22)   

19. {11 → 9}    { [13,  14] ,  {10,  13,  16,  18},  2,  1} {10, 12}   7 (22)   

13. {11 → 9}    { [15,  16] ,  {13,  14,  16,  20},  3,  0} {10, 12}   7 (22)   

14. {9 → 12}    { [8,  9] ,  {6,  8,  9,  11},  3,  0} {10, 10}   7 (22)   

15. {11 → 12}    { [8,  9] ,  {6,  8,  9,  11},  3,  0} {10, 10}   7 (22)   

2. {10 → 9}    { [12,  14] ,  {9,  14,  16},  6,  1} {12, 12}   7 (8)   

3. {15 → 10}    { [8,  9] ,  {6,  9,  11,  12},  9,  1} {10, 12}   7 (22)   

4. {13 → 10}    { [8,  9] ,  {6,  9,  11,  12},  2,  1} {12, 12}   1   

5. {6 → 12}    { [8,  9] ,  {6,  8,  9,  11},  1,  0}    3 (7)   

6. {9 → 12}    { [8,  9] ,  {6,  8,  9,  11},  1,  0}    3 (7)   

7. {11 → 12}    { [8,  9] ,  {6,  8,  9,  11},  1,  0} {12, 12}   1   

8. {8 → 6}   {12, 12}   2   

9. {8 → 9}   {12, 12}   7 (8)   

10. {8 → 11}      3 (9)   

[ ] [ ]{ } { }
( )

[ ]Conflicts Cyclic   

Optimal8
) Best (By  Pruned7

 SetsleUnrepairab6
 SetleUnrepairab5

Infeasible Primalif4
 Node By  Pruned3

Feasible2
Expanded1
Generated0

 Flag   CHHC     VS   FS Conflict  P,P    Repairs Cyclic   Repair  Node.

 :Legend




















=,,,,

Figure 8. A simple resource-constrained example (the search tree)



25

4. Implementation Details

In this study, as a MILP solver, the popular and very fast "state-of-the-art" CPLEX 8.1 (called

from MPL modeling environment) was used. Naturally, this solver can be replaced by any other

commercial MILP solver. The automatic MPL input file generator of the proposed model has

been programmed in Visual C++ Version 6.0. The generator, as a DLL, was built into the

ProMan system developed by Ghobadian and Csébfalvi (1995), Csébfalvi (2002). The implicit

enumeration algorithm has been programmed in Visual C++ Version 6.0. The algorithm, as a

DLL, was built into the ProMan system.

The figures (projects and trees) presented in this paper, are Windows meta-files, which have

been generated automatically by the ProMan system. In ProMan a "Windows-like" tree

representation form has been applied. Note that ProMan is a mouse-oriented system, so each

dummy activity has positive duration to allow drag and drop actions.

To solve the relaxed MILP problems a fast "state-of-the-art" primal-dual interior point solver,

namely the BPMPD developed by Mészáros (1996), was used. Naturally, this solver can be

replaced by any other commercial (academic) LP solver. The computational results were

obtained by running ProMan and MPL (CPLEX 8.1) on a 1.8 GHz Pentium IV IBM PC with 256

MB of memory under Microsoft Windows XP operation system.



26

5. Conclusions

In this paper, we presented a new mixed integer linear programming models and an implicit

enumeration algorithm for the computation of the hammock durations (cost). In the proposed

approach, a hammock activity was characterized by two dummy activities. The calculation of the

unconstrained hammock durations was formulated as a simple linear programming (LP)

problem. The resource-constrained hammock activity duration computation was described as a

mixed integer linear programming (MILP) problem with big-M constraints. The presented

implicit enumeration algorithm for the resource constrained hammock activity duration was

formulated as a tree-search problem with effective pruning rules, According to the NP-hard

nature of the problem, the proposed implicit enumeration algorithm provides exact solutions for

small to medium size problems in reasonable time. Large-scale problems can be managed by

introducing an optimality tolerance. The obtained results left a margin for at least three

interesting improvements:

(1) In the presented new MILP model the objective function can be replaced by any other

objective, which can be described as a function of the earliest (latest) starting time variables.

(2). In the proposed algorithm we have to solve LP problems to get a lower bound values. It is an

open and very hard question, what would be the "best" big-M free formulation, which would be

able to produce tighter lower bounds.

(3) In the node-expanding phase of the algorithm, we applied very simple rules to select the most

promising node and conflict. It is a very interesting and challenging question, what would be the

"best" selection-expansion strategy, which would be able to produce smaller trees.



27

Acknowledgement

The author would like to express his thanks to Cs. Mészáros for making the unlimited

WIN95/NT DLL version of the BPMPD (www.sztaki.hu/~meszaros/bpmpd) interior

point solver available.

References

Alvares-Valdés, R. and Tamarit, J. M. (1993) The Project scheduling Polyhedron: Dimension,

Facests and Lifting Theorem, European Journal of Operational Research, 67, 204-220.

Bell, C. E., and Park, K. (1990) Solving Resource-constrained Project Scheduling Problems by

A* Search, Naval Research Logistics, 37, 61-84.

Csébfalvi, G. (1998) A fast exact solution procedure for the multiple resource-constrained

project scheduling problem, Proc. APMOD '98 Extended Abstracts, Limasol, Cyprus.

Csébfalvi, G. (2002) ProMan Manual (Version 2.1), University of Pécs, Faculty of Business and

Economics, Hungary.

Demeulemeester, E. L., and Herroelen, W. S. (2002) Project Scheduling: A Research Handbook,

Kluwer, Boston / Dordrecht / London.

Ghobadian, A., and Csébfalvi, G. (1995) "Workshop on Developing Interactive Learning

Material for Project Management," Proc. of 1995 Annual Meeting of Decision Sciences

Institute, Boston, US.

Harhalakis, G. (1990) Special Features of precedence network charts, European Journal of

Operational Research, 49, 50-59.

Mészáros, Cs. (1996) The Efficient Implementation of Interior Point Methods for Linear

Programming and their Applications, PhD Thesis, Eötvös Loránd University of Sciences,

Hungary.


