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Received: 8 April 2020 / Revised: 3 October 2020 / Accepted: 9 October 2020 /
Published online: 17 October 2020
� The Author(s) 2020

Abstract
In intensively used landscapes biodiversity is often restricted to fragmented habitats.

Exploring the biodiversity potential of habitat fragments is essential in order to reveal their

complementary role in maintaining landscape-scale biodiversity. We investigated the

conservation potential of dry grassland fragments in the Great Hungarian Plain, i.e. patch-

like habitats on ancient burial mounds and linear-shaped habitats in verges, and compared

them to continuous grasslands. We focused on plant taxonomic diversity, species richness

of specialists, generalists and weeds, and the phylogenetic diversity conserved in the

habitats. Verges meshing the landscape are characterised by a small core area and high

level of disturbance. Their species pool was more similar to grasslands than mounds due to

the lack of dispersal limitations. They held high species richness of weeds and generalists

and only few specialists. Verges preserved only a small proportion of the evolutionary

history of specialists, which were evenly distributed between the clades. Isolated mounds

are characterised by a small area, a high level of environmental heterogeneity, and a low

level of disturbance. Steep slopes of species accumulation curves suggest that high envi-

ronmental heterogeneity likely contributes to the high species richness of specialists on

mounds. Mounds preserved the same amount of phylogenetic diversity represented by the

branch-lengths as grasslands. Abundance-weighted evolutionary distinctiveness of spe-

cialists was more clustered in these habitats due to the special habitat conditions. For the

protection of specialists in transformed landscapes it is essential to focus efforts on pre-

serving both patch-like and linear grassland fragments containing additional components of

biodiversity.
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Introduction

Dry grasslands are amongst the most endangered habitats of Europe, due to the large-scale

habitat loss and landscape-level fragmentation of grassland habitats (Fletcher et al. 2018).

The expansion of agricultural fields and the exponential spread of urban infrastructure

(such as roads, canals and settlements) has led to the irreversible loss of many grassland

habitats (Deák et al. 2016; Lindborg et al. 2014). As a result, in intensively managed

landscapes elements of grassland biodiversity have often been able to survive in small

fragments that were not suitable for agriculture or for infrastructural developments

(Bhagwat and Rutte 2006; Deák et al. 2020; Löki et al. 2019; Molnár et al. 2017). These

fragments often harbour populations of grassland specialist plants, act as an integral ele-

ment of the semi-natural habitat network, and have a considerable role in maintaining

landscape-scale diversity. Nevertheless, they are often considered to be of lower conser-

vation priority compared to continuous grassland stands, and do not receive any legal

protection (Lindborg et al. 2014; Deák et al. 2020). Grassland fragments, either of primary

(i.e. remnants of a large pristine habitat) or secondary origin (i.e. old recovered grasslands

preserving a considerable proportion of the habitat specific species pool), often exist as

habitat islands, such as rocky outcrops, midfield islets, ancient burial mounds and ceme-

teries. Grassland fragments can also be found on linear landscape elements such as road

verges, field margins and river embankments (Bátori et al. 2016; Dembicz et al. 2018; Löki

et al. 2019). A common attribute of these fragmented habitats is the presence of an

unfriendly matrix around them, which is generally represented by agricultural fields or

urban areas. Due to their small size, the management of these habitats is often not optimal

from a conservation point view; they are often abandoned or used in an over-intensified

way.

Given the fact that grassland fragments may hold a considerable amount of the habitat-

specific species pool in transformed landscapes, one current task of conservation is to

evaluate their conservation value, which is greatly determined by the level of both taxo-

nomic diversity (richness of the total species pool and the species groups of specialists,

generalists and weeds) and phylogenetic diversity (interspecific evolutionary distances)

(Devictor et al. 2010). From a conservation point of view, the most important segments of

the plant species pool are represented by the habitat specialist species (i.e. species confined

exclusively to grasslands); either their presence or absence in a certain fragment can be

informative for strategic conservation planning (Szava-Kovats et al. 2012). Besides, the

species richness of generalists and weeds may also provide important information on the

ecological processes related to degradation.

It is widely accepted that phylogenetic diversity is a proper measure for the evaluation

of habitat conservation priorities, as it can combine aspects of taxonomic diversity and the

total evolutionary history of conservation interest typical of a certain area or habitat type

(Devictor et al. 2010). Phylogenetic data derived from undisturbed natural habitats in a

favourable conservation status can serve as references for conservation or even for

restoration (Barak et al. 2017). Phylogenetic diversity can also be used as a predictor of

ecosystem functions and properties since phylogenetic information might provide a proxy

for functional trait attributes via phylogenetic niche conservatism (Barak et al. 2017).

Therefore, it can help us to better understand the mechanisms affecting grassland com-

munities (Cadotte et al. 2010; Barak et al. 2017).

In fragmented habitats the species richness of specialists, generalists and weeds are

influenced by environmental and dispersal filters acting on the local- and landscape-scales.
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According to the classical theory of island biogeography, the richness of specialist species

and the available habitat area are positively correlated; thus, habitat area can considerably

influence biodiversity patterns in small fragmented habitats (MacArthur and Wilson 1967).

However, other habitat-scale factors such as the shape and the environmental heterogeneity

of the fragment can considerably modify this pattern (Báldi 2008; Bátori et al. 2017). For

instance, a high perimeter-to-area ratio results in the reduction of core areas that act as safe

havens for specialists, and thus supports the immigration of generalists (Kuussaari et al.

2009). Environmental heterogeneity (e.g. topographic, climatic or edaphic variables) may

increase the number of available micro-sites in grasslands and has the potential to enhance

the structural complexity of the resources and limiting factors (Lisetskii et al. 2016; Stein

et al. 2014). Thus, grasslands with a high level of environmental heterogeneity are

potentially able to sustain a higher level of biodiversity, and as a corollary of this, have the

potential to maintain a higher proportion of the landscape-scale species pool compared to

homogeneous habitats (Stein et al. 2014). Landscape composition, and especially the level

of connectivity with other grassland habitats, act as crucial drivers of the meta-population

dynamics of specialist and generalist species (Deák et al. 2018; Fletcher et al. 2018).

To reveal the relative importance of habitat size, habitat shape, environmental hetero-

geneity and habitat connectivity in driving the species composition and diversity of con-

tinuous grasslands and fragmented grasslands (i.e. patch-like and linear-shaped

grasslands), we used a comparative approach. We investigated three grassland types typical

of lowland agricultural landscapes in Central and Eastern Europe: continuous grasslands,

patch-like grassland fragments on kurgans (ancient earthen burial mounds) and linear-

shaped grassland fragments (verges).

Patch-like grassland fragments such as midfield islets and rocky outcrops are typical

elements of agricultural landscapes in Europe. Despite their small size, small core area and

isolated state, they often act as important refuges for grassland specialists (Lindborg et al.

2014). In our study we used kurgans—built in the Eneolithic and Iron Age—as model

habitats for patch-like grassland fragments, as they are widespread elements of the con-

tinental parts of Eurasia (their estimated number is more than half a million), preserving

grassland patches in agricultural landscapes (Deák et al. 2016; Sudnik-Wójcikowska et al.

2011).

Verges are linear landscape elements with a high perimeter-to-area ratio but without a

notable core area. As verges are often positioned along roads, they are affected by different

types of disturbances related to the traffic and maintenance of the roads (van der Ree et al.

2015), such as pollution, application of herbicides and improper management (i.e. too

frequent mowing). Given the fact that verges are usually surrounded by hostile environ-

ments (e.g. roads and agricultural fields) and frequently experience high disturbance levels

due to stochastic events, they generally hold relatively young (a few hundred years or

decades old) and disturbed secondary grasslands. However, given their linear shape, they

may act as corridors for the dispersal of several plant species (both native and non-native).

We compared the taxonomic diversity, the species richness of species groups (spe-

cialists, generalists and weeds) and the phylogenetic diversity conserved by these habitats.

We asked the following questions: (i) What are the differences in the species composition

of continuous and fragmented grasslands? (ii) Do the taxonomic diversity and species

accumulation curves of specialist, generalist and weed species differ in the grassland types

studied? (iii) Is there any difference in between-habitat interspecific evolutionary distances

represented by phylogenetic diversity? (iv) Which are the characteristic species of the

continuous and fragmented grasslands; and how do these species contribute to the main-

tenance of phylogenetic diversity?
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Materials and methods

Study area

The study area is situated in the Hungarian Great Plain, covering approximately 5800 km2.

The Hungarian Great Plain is a typical lowland agricultural landscape which represents

well the land use changes and agricultural intensification processes relevant for many

European landscapes. The area has a continental climate with a mean annual temperature

of 10.4 �C and a mean annual precipitation of 538 mm (Fick and Hijmans 2017). The

historical landscape was characterised by loess and alkaline grasslands and wetlands, but

due to agricultural intensification since the eighteenth century there have been considerable

losses in the area of grasslands. Loess grasslands (Salvio nemorosae—Festucetum rupi-

colae) on nutrient-rich chernozem soils have suffered the most severe decline due to

ploughing. As a result, their area has decreased by 90% in past decades (Biró et al. 2018).

They are species-rich dry grasslands included in the Natura 2000 network as habitats of

European importance (6250 Pannonic loess steppic grasslands) (Council Directive 92/43/

EEC). The dominant graminoid species include Festuca rupicola, Bromus inermis, Carex
praecox, Koeleria cristata, Poa angustifolia and Stipa capillata. Loess grasslands usually
harbour a high number of forb species, including Achillea collina, Agrimonia eupatoria,
Filipendula vulgaris, Fragaria viridis, Phlomis tuberosa, Salvia austriaca, S. nemorosa,
Thymus glabrescens and Verbascum phoeniceum.

We studied loess grasslands, which typically occur under three circumstances in our

study area: (i) continuous (pristine) grasslands, (ii) patch-like fragmented (secondary)

grasslands on kurgans and (iii) linear-shaped fragmented (secondary) grasslands in road-

side verges. For information on the size of the study sites and their distance from the

nearest continuous grassland stand (in the case of kurgans and verges), please see Online

Resource 1.

Continuous grasslands with a mean area of 272.1 ha (SD = 364.4) typically occur on

loess plateaus. They are traditionally managed by cattle grazing and in some cases by

annual mowing. This traditional extensive management system is still maintained in the

sampled continuous grassland stands. Since they are often characterised by a large core

area, they are less affected by the negative effects (e.g. chemical infiltration and seed rain

of weeds) originating from the neighbouring matrix (Biró et al. 2018).

Patch-like secondary grasslands on kurgans are generally surrounded by ploughlands

and forest plantations. Before the huge loss and fragmentation of grassland habitats in the

eighteenth century, they were also managed by grazing as they were integral elements of

large continuous grassland stands. After their isolation due to the reduction in continuous

grassland stands, they became abandoned, since their small size and difficult accessibility

made the management of these grassland patches challenging and less cost-efficient. The

mean size of the kurgans studied was uniform, with an area of 0.2 ha (SD = 0.1). The

kurgans surveyed were isolated, with a mean distance from the nearest continuous

grassland stand of 716.4 m (SD = 700.6). Due to their special dome shape, kurgans contain

several contrasting microhabitats within a small area (Lisetskii et al. 2016). Their slopes

with different inclinations are characterised by different microclimate and soil conditions

leading to a high level of microhabitat diversity (Dembicz et al. 2018; Lisetskii et al. 2016).

Roadside verges also harbour secondary loess grasslands, which are generally managed

by mowing at least twice per year. Estimation of their age is more challenging compared to

kurgans (which are marked even on the Military Surveys of the Habsburg Empire from the
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eighteenth century), but they likely have existed for centuries as remnants of the contin-

uous grasslands which were formerly present. The mean length of the studied verges was

839.3 m (SD = 395.9) and their average distance from continuous grasslands was 185.9 m

(SD = 206.9), but in some cases they had close contact with them at some points.

Vegetation sampling

We selected eight sites of the three habitat types for vegetation sampling, i.e. pristine

continuous loess grasslands, loess grassland fragments on kurgans and roadside verges,

referred to hereafter as ’continuous grasslands’, ’kurgans’ and ’verges’. All the 24 sites

selected were typical representatives of the loess grasslands in the study area. We selected

sites not affected by woody encroachment (although in some sites there were saplings of

some woody species). We recorded the percentage cover of each vascular plant species in

25 plots of 1 m2 in each site in July 2019. In total we sampled 600 plots (3 habitats 9 8

sites 9 25 plots). In order to ensure that the sampling effort was the same in all habitat

types we used a uniform sampling method, and we arranged our plots randomly within an

area of 0.1 hectare fitted to the area of the smallest kurgan. In the case of kurgans the 25

plots were placed in such a way as to represent the environmental heterogeneity of the

kurgans: we surveyed all kurgan microhabitats (north-, east-, south- and west-facing slopes

and the top) by placing five random plots in each microhabitat (5 kurgan

microhabitats 9 5 plots).

Statistical analysis

Species were assigned to three species groups relevant for conservation: specialists, gen-

eralists and weeds. Species richness and cover of specialist species provide information

about the conservation value preserved by the grasslands. Proportions of weeds indicate

unfavourable processes in the grasslands studied (such as improper management, distur-

bance and plant invasions). Generalist species are important components of grassland

habitats that contribute to the total species richness but do not directly indicate degradation

or favourable conservation status. Therefore, we treated them as a separate group. When

generalist species are present in high numbers and abundance, they can competitively

exclude both specialists and weeds; therefore, they can indirectly affect the conservation

status of the grasslands. Based on this classification, the presence of weeds indicates acute

degradation processes that should be dealt with urgently by conservation managers.

However, moderate species richness and abundance of generalists might not necessarily

mean a drastic decline in the conservation value of the grasslands, since many of them are

also integral parts of grassland ecosystems with good conservation values.

Specialist species were classified according to their phytosociological affiliation to the

Festuco-Brometea phytosociological class (Borhidi 1995). Weeds were classified based on

their social behaviour types: weed, ruderal competitor and adventive competitor species

were classified as weeds (Borhidi 1995). All other species were considered as generalists.

All statistical analyses were carried out in the R environment for statistical computing (ver.

3.6.1; R Core Team 2019). To test whether there are general differences in species

composition between the three habitat types we applied permutational multivariate analysis

of variance (PERMANOVA; R-package ‘‘vegan’’, Oksanen et al. 2019). Visualization of

species composition was done using the Barnes-Hut implementation of t-distributed

stochastic neighbour embedding (t-SNE: Van der Maaten 2014; R-package ‘‘Rtsne’’:
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Krijthe 2015), in which a species abundance matrix was used, and dimensionality was set

to 2. We preferred t-SNE over principal component analysis, because with the former we

could explicitly specify the dimensions onto which the raw data should be transformed,

whereas this is not the case with principal component analysis.

When comparing total species richness (i.e. total number of species per sampling plot)

and species richness of specialists, generalists and weeds between habitat types, general-

ized linear mixed-effects models (GLMM; R-packages ‘‘lme4’’ and ‘‘lmerTest’’: Bates

et al. 2015; Kuznetsova et al. 2017) were fitted with Poisson error distribution, in which

total species richness and richness of specialists, generalists and weeds were the dependent

variables, habitat type (a factor with three levels: continuous grassland, kurgan and verge)

was the fixed predictor, and sampling site ID was used as random factor. We also fitted

Gaussian linear mixed-effects models (LMM) on the Shannon diversity of the total species

pool per habitat type; similarly to the Poisson GLMMs, habitat type was the fixed predictor

variable, and sample site ID was used as random factor. From all models, statistical

significances of pairwise differences between habitat types were acquired by computing

estimated marginal means (EMM), and regression slope estimates for habitat types were

acquired by computing estimated marginal mean linear trends (EMT; R-package ‘‘em-

means’’: Lenth 2019). P-value adjustments for multiple comparisons within models were

done using Tukey’s method (Lenth 2019).

By increasing the variability of available niches, the environmental heterogeneity of a

certain habitat can considerably influence the patchiness, and thus the species richness of

the vegetation. For estimating this patchiness within the three habitat types, we used

species accumulation curves. Species accumulation curves were estimated for total species

richness and for species groups, by using Gaussian LMMs. Since all sampling plots rep-

resented the same area sizes of sampling, we used sampling plot numbers (i.e. sampling

intensity) for the species accumulation analysis. We randomly drew 1, 2, …, 25 samples

from the species richness data, repeated 50 times from each sampling site and for each

sampling size; by doing so we obtained species richness data for different sampling sizes

(from 1 to 25). In the models the response variable was the power function of species

richness using log S-space formula (Dengler et al. 2020), while the fixed predictor was the

sample size (ranging from 1 to 25), the habitat type, and the interaction between the two

predictors. Sampling plot ID was used as random factor, and sampling plot-level variances

in slopes were also controlled for (i.e. we utilized a random intercept and slope model).

To identify indicator species for the habitat types we used multi-level pattern analysis

with the R-package ‘‘indicspecies’’ (Cáceres and Legendre 2009), with 1000 permutations.

In the analysis, group combinations were included in order to identify species that might be

indicators for a combination of two habitat types, which could indicate wider niche

breadths for certain species (Cáceres et al. 2010). We also quantified the proportion of plots

at a certain habitat, where at least one habitat type-specific indicator species was present

(referred to as indicator frequency).

For tests of habitat type differences in phylogenetic diversity (PD) we used the mega-

phylogeny of plants by Durka and Michalski (2012) updated by Qian and Jin (2016). Three

species were excluded from the PD analyses due to a lack of phylogenetic information on

them (namely: Equisetum arvense, E. ramosissimum, and Lepidium draba). For estimating

the differences in the quantity of phylogenetic differences conserved by the three habitat

types we used PD ’richness metrics’ suggested by Tucker et al. (2017). We used com-

munity PD (cPD) expressing the amount of evolutionary history across species, and

abundance-weighted evolutionary distinctiveness (AED) expressing the abundance

weighted phylogenetic information on present species in a given community. These indices
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were used as response variables in separate Gaussian LMM models, with habitat type as

the fixed predictor, and sampling plot ID as the random factor. In addition, phylogenetic

diversity models were re-fitted on a subset of data, using only specialist species in the

analysis, as these species are of special conservation interest. Notably, AED can be cal-

culated separately for species within a community, rendering it possible to assess the

relative importance of species in terms of their contribution to the phylogenetic diversity of

the given community. Hence, one can assess for each monitored species what the average

species-AED is in the different habitat types. We utilized species-AED to see whether

species that were predicted to be indicators for a given habitat type also had the highest

species-AED values in the given habitat types, by checking the overlap between the

indicator and highest-species-AED species.

Results

In total we recorded 229 vascular plant species in the study sites: 135 species occurred in

the continuous grasslands, 145 on the kurgans and 136 in the verges. There were a total of

55 specialist, 111 generalist and 63 weed species in the study sites. We recorded a total of

33, 41 and 27 specialist species in continuous grasslands, kurgans and verges, respectively.

7 specialist species were present only in continuous grasslands, 17 only on kurgans and 4

only in verges. There were 72 generalist species in continuous grasslands, 64 on kurgans

and 65 in verges. 12 generalist species occurred only in continuous grasslands, 19 only on

kurgans and 19 in verges. A total of 30 weed species were found in continuous grasslands,

40 on kurgans and 44 in verges. 1 weed species was present only in continuous grasslands,

14 only on kurgans and 14 in verges.

Species composition

Both the results of the t-SNE (Fig. 1) and the PERMANOVA analyses (sum of

squares = 14.802; F = 21.541; R2 = 0.067; P = 0.001) revealed that whilst the species

composition of verges was similar to the continuous grasslands, kurgans held a somewhat

different species composition which was more homogeneous compared to the composition

of the other two habitat types.

Shannon diversity and species richness

Shannon diversity calculated for the total species pool was significantly lower on kurgans

than in continuous grasslands and verges. Total species richness on kurgans was signifi-

cantly lower than in verges, but did not differ from continuous grasslands, nor was there a

significant difference between verges and continuous grasslands. Habitat type differences

were somewhat more nuanced when tested separately for species groups (Fig. 2, Online

Resource 2). The species richness of specialists was the lowest in verges, while it did not

significantly differ between continuous grasslands and kurgans. For generalist species, the

lowest species richness was observed on kurgans, whereas continuous grasslands and

verges did not differ. The species richness of weeds was the lowest in continuous grass-

lands, but there was no difference between kurgans and verges.
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Fig. 1 Species composition of
the three habitat types displayed
by t-distributed stochastic
neighbour embedding (t-SNE)

Fig. 2 Shannon diversity (A), total species richness (B) and species richness of specialists (C), generalists
(D) and weeds (E) in the three habitat types (continuous grassland, kurgan, verge), and the results of the
LMM (for Shannon’s diversity) and the GLMMs (for species richness). Superscript letters denote significant
differences between groups (P B 0.05 after Tukey’s test)
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Indicator species

Multilevel pattern analysis identified 135 species as significant indicator species of a

habitat type, or of a combination of two habitat types (Online Resource 3). From these, 20,

43, and 33 species were found to be exclusive indicators of continuous grasslands, kurgans

and verges, respectively. Besides, 10 indicator species were found for the continuous

grassland–kurgan combination, 18 species for the continuous grassland–verge combina-

tion, and 11 species for the kurgan–verge combination. The highest number of specialist

indicator species was observed on kurgans, but kurgans also harboured the most weed

indicator species, whereas the highest number of generalist indicator species was recorded

in verges (Online Resource 4). Indicator frequency (i.e. the proportion of plots where

particular indicator species were present) was 80%, 99%, and 91% for continuous grass-

lands, kurgans, and verges, respectively. In the case of habitat type combinations, indicator

frequency was estimated to be 85.5%, 99.5%, and 93% in continuous grassland–kurgan,

continuous grassland–verge, and kurgan–verge combinations, respectively.

Species accumulation curves

Species accumulation curves calculated for the total species richness were positive (species

richness increases with an increasing number of samples) and significant for continuous

grasslands (EMT = 0.377, SE = 0.014, z-ratio = 27.52, P\ 0.001), kurgans (EMT =

0.402, SE = 0.014, z-ratio = 29.34, P\ 0.001), and verges (EMT = 0.375, SE = 0.014,

z-ratio = 27.37, P\ 0.001). In the LMM with all species the accumulation curve was

steeper in kurgans than in continuous grasslands and verges, while accumulation curves did

not significantly differ between the latter two (Fig. 3, Online Resource 5). Within spe-

cialists, the accumulation curve was the steepest in kurgans and continuous grasslands, and

was the shallowest in verges. No significant difference was found in the accumulation

curve between kurgans and continuous grasslands. Considering generalists, kurgans had

the steepest accumulation curve, while continuous grasslands and verges had a signifi-

cantly shallower curve and they did not differ significantly. For weeds, kurgans showed the

steepest species accumulation curve, whereas continuous grasslands showed the shallow-

est, and all habitat types were significantly different from one another in their species

accumulation rates.

Phylogenetic diversity

Community PD values calculated for the total species pool were significantly smaller for

kurgans than for continuous grasslands, while kurgans and continuous grasslands did not

differ from verges (Fig. 4, Online Resource 6). Habitat types did not differ in their AED

values. When only specialist species were considered, we found significant differences

among habitats both in the case of cPD and AED. We found that the cPD values were

lower for verges than for continuous grasslands. AED was significantly lower in verges

than in the other two habitats.

The joint assessment of indicator species analysis and species-AED showed that there

were 17 continuous grassland, 36 kurgan and 29 verge indicator species which also showed

the highest species-AED values in the given habitat types. In other words, these indicator

species contributed substantially to the (abundance-weighted) phylogenetic diversity of

their habitats. When only specialist species were considered, the number of predicted
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indicator species with high species-AED values was 8, 11 and 6 in continuous grasslands,

kurgans, and verges, respectively (Fig. 5).

Discussion

Species composition

We found that continuous grasslands and verges harboured a similar species pool (Fig. 1).

The reason for this is twofold. As verges were formed during the past centuries in parallel

with the increasing agricultural activities, they were able to preserve a large subset of the

regional species pool similar to that harboured by the continuous grasslands. Similar

species pools also suggest that verges and continuous grasslands might have a functional

spatial connection even in fragmented landscapes (i.e. at certain locations they have

connection points), allowing the dispersal of species between the two habitat types. This

connection is supported by the linear structure of the verges; they mesh the landscape and

therefore they provide corridors for the dispersion of plants. Given the fact that verges are

in close contact with roads, dispersal of plants is also supported by the various means of

transportation and mowing machines used for cutting the verges (Fekete et al. 2018). In

Fig. 3 Species accumulation curves displayed for all species (A), specialists (B), generalists (C) and weeds
(D) in the three habitat types
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addition, in agricultural landscapes human vectors can transport grassland specialist spe-

cies on the clothes of field workers and on agricultural machinery (Auffret and Cousins

2013). However, humans can also act as dispersal vectors for invasive and weed species

(Valkó et al. 2020). By decreasing dispersal limitations, all the above processes can

considerably increase the similarity of the species composition between continuous

grasslands and verges.

As shown by the results of the t-SNE and the PERMANOVA analyses, the species

composition of the vegetation on the kurgans differed considerably from that of the

Fig. 4 Community phylogenetic diversity (cPD) and abundance-weighted evolutionary distinctiveness
(AED) calculated for all species (a, b) and specialists (c, d) in the three habitat types (continuous grassland,
kurgan and verge). Superscript letters denote significant differences between groups (GLMM; P B 0.05
after Tukey’s test)
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vegetation of the continuous grasslands and verges. This might be due to their ancient

origin; secondary grasslands on kurgans were formed millennia ago, before the large-scale

landscape transformations. After the emergence of the kurgans they were likely occupied

by the species that were present in the historical species pool since they were surrounded

by grassland habitats and even the soil used for their construction contained the propagules

of grassland species (Lisetskii et al. 2016). However, the special environmental conditions

provided by the shape of the kurgans should have acted as an environmental filter for plant

establishment, allowing only a certain subset of species to establish on the kurgans after

their construction (Lisetskii et al. 2016; Szava-Kovats et al. 2012). This compositional

difference was conserved by the special hill shape of the kurgans in subsequent millennia,

Fig. 5 Linking abundance-weighted evolutionary distinctiveness to indicator scores using phylogenetic
information. Specialist species that were significant indicators of a particular habitat type are displayed on
the figure
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both by environmental filtering, and by preventing certain human disturbances such as

ploughing or construction.

Shannon diversity and species richness

Differences in the Shannon diversity and richness of the studied species groups among the

three habitat types can be explained by the marked differences in their origin, the shape and

size of the habitats, the applied management regimes, and the level of habitat heterogeneity

typical of them. Despite their small area, lack of management and the neighbouring

unfavourable landscape matrix (i.e. ploughlands), the millennia-old grassland islands

maintained by kurgans were able to preserve a high number of specialists. Patch-like

grassland fragments embedded in agricultural fields are generally characterised by drier

soil conditions than the neighbouring areas, and this provides a favourable habitat for

stress-tolerant dry grassland specialists even without management (Lindborg et al. 2014).

In the case of kurgans this effect is enhanced by the special hill shape, which results in an

enhanced flow of precipitation on the slopes and an increased distance between the topsoil

layer and the groundwater (Lisetskii et al. 2016). Due to their steep slopes human dis-

turbances (e.g. ploughing) have been suppressed on kurgans, which has further increased

the chance for the maintenance of specialists (Deák et al. 2016). Furthermore, despite their

small size the increased level of microhabitat diversity preserved on the heterogeneous

surface of kurgans allows the co-existence of specialist species with slightly different

habitat requirements (Lisetskii et al. 2016; Deák et al. 2016). In contrast, the species

richness of generalists was low on kurgans. The main reason for this is that generalists

typically occur under less stressful habitat conditions than those provided by kurgans.

However, we found high species richness and cover of weeds on kurgans, indicating the

vulnerability of these grassland fragments to the mass effect of incoming seed rain from the

neighbouring ploughlands (Deák et al. 2018).

Due to the small or missing core area, specialists in the verges are especially exposed to

the negative effects (e.g. chemical load, seed rain of weeds and soil disturbances) origi-

nating from the neighbouring matrix (roads and ploughlands) and to local disturbances

(trampling, frequent mowing and application of pesticides), leading to the stochastic

extinction of specialists from certain habitat patches (Tikka et al. 2000). In contrast with

kurgans and continuous grasslands, the small level of environmental heterogeneity in

verges cannot counterbalance these negative changes (Tikka et al. 2000). Due to the dense

seed bank, high dispersal ability and high regeneration potential of weeds and generalists,

they have a higher chance to re-establish in the disturbed patches than specialists; thus, in

the long term, their populations dominate these habitats (Cousins 2006). Even though

linear landscape elements have the potential to act as green corridors for grassland spe-

cialists given their connections to continuous grasslands (Bátori et al. 2016, 2020), they

may also provide corridors for generalist and weed species, especially in transformed

landscapes (Fekete et al. 2018), where their spread is enhanced by transportation and by

mowing machinery (Tikka et al. 2000).

Species accumulation curves

Despite their small size and isolated state, the steepest accumulation curves calculated for

the total species pool were found on kurgans, which might be the result of the high

topographic heterogeneity and microhabitat diversity (that are also responsible for their
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high species richness) (Fig. 3). As was found by Polyakova et al. (2016) in steppe habitats

and Filibeck et al. (2019) in limestone grasslands, variability in the micro-relief and

unevenness of the surface support the existence of numerous microhabitats within short

distances, providing various niche spaces available for several taxa. These adjacent

microhabitats are characterised by different species pools; thus, spatial variability of

species combinations increases considerably even within small spatial scales of a few

metres.

As was found in the case of midfield islets (Lindborg et al. 2014) and coastal grasslands

(Dupre and Diekmann 2001), abandonment did not flatten the accumulation curve, in fact it

even made it steeper. The reason for this pattern is likely the presence of harsh environ-

mental conditions, such as drought stress in the case of midfield islets and kurgans and salt

stress in the case of coastal habitats, preventing the monodominance of a few strong

competitors and providing patchy species occurrence patterns in the community.

Regarding the total species pool, the steepness of the curves was similar in continuous

grasslands and verges; however, mechanisms sustaining these patterns were likely dif-

ferent. In continuous grasslands the extensive and often selective cattle grazing and

trampling suppress the abundant competitor species, and allow the establishment of sub-

ordinate species with poorer competitive abilities (Polyakova et al. 2016). In this way,

grazing enhances the patchiness of the vegetation, and thus the steepness of the species

accumulation curve. In verges, the high level of disturbance resulting in open patches

might be the main factor that maintains a steepness comparable to continuous grasslands.

On the level of specialist species, kurgans and continuous grasslands were characterised

by a similarly high steepness in the accumulation curve, suggesting that the number and

spatial variability of species of high conservation importance are the highest in these

habitats. In continuous grasslands the traditional method of land use is responsible for this

pattern. Probably the most interesting finding of our study is that kurgans—despite their

abandonment, small size and isolated state—showed a comparable conservation value to

continuous grasslands; because they have preserved a considerable proportion of the his-

torical habitat-specific species pool. The preservation of specialist species is also supported

by the harsh environment and their heterogeneous topography. In verges, the accumulation

curve was flatter for the specialists due to the high level of disturbance by frequent mowing

and trampling, eliminating several disturbance-sensitive species. Another reason for this

pattern might be the increased level of nutrients received from the neighbouring agricul-

tural land. As was observed in grasslands in Italy and Germany (Chiarucci et al. 2006),

increased nutrient levels might suppress specialists and flatten the species accumulation

curves. Although kurgans were characterised by steep accumulation slopes for specialists,

they also had the steepest slopes for generalists and weeds, suggesting that these important

refuges are highly endangered. The reason for the above patterns is the presence of several

disturbed microhabitats (ploughing and chemical infiltration at the foot of the kurgan, the

presence of fox burrows, and microsites with high litter accumulation) on the kurgans that

can be occupied by generalist and weed species (see also Godó et al. 2018).

Indicator species

We found several indicator species for the habitat types studied, which may reflect the

history, management and landscape context of these habitats. The presence of grazing-

tolerant specialists (such as Centaurea scabiosa s.l., Thymus glabrescens, Koeleria cristata
and Dianthus pontederae) in continuous grasslands indicated the century-long grazing
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management applied. Kurgans were characterised by some tall-growing specialists (e.g.

Elymus hispidus, Agropyron cristatum and Thalictrum minus), and some protected species

(e.g. Inula germanica, Phlomis tuberosa and Carduus hamulosus) that are usually missing

from the continuous grasslands of the region. Although most of these species could have

been typical of the continuous grasslands in the past, their populations have almost

completely disappeared from the landscape due to agricultural intensification and melio-

ration works (Biró et al. 2018). The presence of these specialists underlines the high

conservation importance of kurgans, which often hold the remnant populations of many

species that are endangered due to intensive land use (Deák et al. 2020).

The shared indicator species between continuous grasslands and kurgans were mostly

specialists (Cruciata pedemontana, Verbascum phoeniceum and Stipa capillata) and

generalist species typical to grasslands (Alopecurus pratensis, Veronica verna, Hypericum
perforatum and Cerastium semidecandrum) reflecting the common historical species pool.

Whilst continuous grasslands held weeds typical of extensive pastures, the abandoned

kurgans were characterised by weeds typical of oldfields and ploughlands. The presence of

Lepidium draba indicates soil disturbance by foxes, which prefer kurgans embedded in

ploughlands for burrowing (Godó et al. 2018). Other arable weeds such as Lathyrus
tuberosus, Vicia spp. and Bromus arvensis were likely established on the kurgans from the

neighbouring ploughlands and oldfields (Sudnik-Wójcikowska et al. 2011). The invasion

of the terrestrial reed (Phragmites communis) indicates the long-term abandonment of the

grasslands on kurgans. The unique species composition of kurgans is also indicated by the

high (99%) coverage of indicator species.

Verges harboured many generalist and weed indicator species, reflecting the species

pool of the contemporary intensively used landscape. Indicator generalist species of verges

(Verbascum chaixii, Equisetum ramosissimum, Bromus commutatus and Silene vulgaris)
and shared generalists between continuous grasslands and verges (Festuca rupicola,
Achillea collina, Eryngium campestre, Plantago lanceolata, Centaurea pannonica, Agri-
monia eupatoria and Knautia arvensis) are adapted to frequent disturbances such as bio-

mass removal and trampling, which are typical in mown verges affected by continuous

human presence. Due to the high level and frequency of disturbances, only a few specialist

species such as Peucedanum alsaticum and Aster sedifolius could establish in the verges.

These species are able to colonize open disturbed soil surfaces due to their good dispersal

and establishment ability. Bromus inermis was typical both on kurgans and in verges, as

the effective clonal spread of this species is a successful strategy both in disturbed and

environmentally heterogeneous habitats (Rosenthal and Lederbogen 2008). The presence

of woody indicator species (Rubus caesius and Prunus spinosa) was also typical on the

kurgans and in the verges. On kurgans their presence is a consequence of the abandonment,

while in verges they are typical because of the high disturbance levels, and their effective

dispersal is supported by birds and transportation on the adjacent roads (Suárez-Esteban

et al. 2013).

Phylogenetic diversity

We found that cPD values calculated for the total species pool were lower on kurgans than

in continuous grasslands, which might be attributed to the high number of generalist

species in continuous grasslands which increased the sum of the branch lengths (Fig. 4). A

possible reason for this pattern is that the earliest terrestrial plant species may have been

generalists and cosmopolitans (Steemans et al. 2009), which then underwent a rapid
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diversification, and thus are located on different branches of the phylogenetic tree. The

high cPD values calculated for the total species pool in verges might also be attributed to

the high number of generalists and also to the high number of weeds. We found that in the

case of specialists, kurgans represented a similarly high phylogenetic diversity to that of

continuous grasslands due to the presence of phylogenetically distinct specialist species

and species groups. This suggests that both kurgans and continuous grasslands have been

able to preserve a considerable amount of evolutionary history across the specialist species,

and hence should be the focus of conservation (Barak et al. 2017). The low cPD values of

specialists in verges are due to the low species richness of specialists. In verges the species

pool was likely filtered by the special habitat characteristics, to which only a narrow group

of species (likely with the same evolutionary history) could adapt.

The high phylogenetic diversity of specialists represented by the branch lengths in the

continuous grasslands is due to the maintenance of the original species pool preserving the

original community structure, whilst in case of kurgans it is likely the outcome of the high

level of environmental heterogeneity that supports the co-existence of several specialist

species with different evolutionary histories (Kassen 2002). The increased taxonomic and

phylogenetic diversity of specialists on kurgans provides flexibility under changing envi-

ronmental conditions, such as climate fluctuations or small-scale disturbances (Szabó et al.

2019). High diversity of species and the presence of adaptation abilities coded on the gene

level provide a higher chance for an adaptive community-level response both for local and

larger scale habitat changes. In a taxonomically and phylogenetically more diverse com-

munity, there is a higher chance that at least some of the species can survive in a changing

environment (Bátori et al. 2019). The low cPD scores for specialist species in verges may

be attributed to the high level of disturbance. As previous studies have shown, both

secondary origin and disturbance by frequent mowing can considerably decrease the

phylogenetic diversity in grasslands (Barak et al. 2017; Turley and Brudvig 2016). Due to

dispersal constrains and the presence of abiotic filters, secondary origin can mitigate the

immigration of specialist species that otherwise could inhabit the grassland fragment. The

increased frequency of mowing can decrease the level of competition, and may result in the

selection of close-relative disturbance-tolerant taxa (Grime 1979; Helmus et al. 2010).

High AED values of specialists on kurgans and in continuous grasslands suggest that

abundances of specialists are phylogenetically more clustered in these habitats, meaning

that species belonging to fewer numbers of clades dominate in these habitats compared to

verges. Thus, abundances of indicator specialists are not evenly distributed across the

phylogenetic tree. Linking AED to IndVal scores further clarifies this pattern: most of the

indicator species representing an evolutionarily unique set of the given community’s

specialists were present on kurgans (11) and in continuous grasslands (8); their number was

lower in verges (6) (Fig. 5). The phylogenetic imbalance observed in continuous grass-

lands and on kurgans might be attributed to the special habitat conditions to which spe-

cialists are adapted. In the case of the continuous grasslands, specialists are especially

clustered towards the Lamiaceae family reflecting the long-term moderate level of grazing

applied in these habitats. In case of the kurgans, specialists are represented by the tussock-

forming species of Poaceae, which are adapted to dry kurgan microhabitats. Specialists

belonging to the Asteraceae family and to the clade consisting of the Lamiaceae and

Scrophulariaceae families represent a species pool adapted to dry, but relatively nutrient

rich microhabitats, and can tolerate the effects of abandonment typical of kurgan habitats.

We did not observe such clustering in the case of verges, which might be due to their

relatively young age and the high level of disturbance. These circumstances allowed a

smaller portion of the historical species pool of specialists to occur in verges, and also, due
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to the frequent and often stochastic disturbances evolutionary adaptations are mostly

related to re-colonisation (i.e. good dispersal ability) and toleration of disturbance.

Conclusions

We revealed that both patch-like (kurgans) and linear (verges) grassland fragments have a

considerable role in maintaining populations of grassland specialist plant species in

transformed landscapes. Kurgans and verges conserve different segments of the species

pool due to the differences in their origin, shape, size, applied management regimes and

level of habitat heterogeneity. Our results also suggest that for prioritizing the protection of

specialists in transformed landscapes, it is essential to focus conservation efforts not only

on remnant continuous grassland stands, but also on grassland fragments, as by their

protection additional components of diversity can be preserved. Despite their small area,

kurgans have the potential to preserve a high species richness of specialists. The main

reason for this is that kurgans are characterised by high environmental heterogeneity and

provide various microhabitats for species with different habitat demands. Therefore, their

protection can offer a cost-effective way of improving the landscape-scale diversity of

grassland species in transformed lowland landscapes. We also highlighted that encroach-

ment of weeds poses a serious threat to grassland fragments. Thus, targeted management

efforts are needed for the long-term maintenance of these fragile habitats and their vul-

nerable species. It would be essential to introduce a continuous biomass removal and the

suppression of weedy species on abandoned kurgans by annual hand mowing, and if

necessary, by brush cutting. In verges, the reduction of management intensity would be

favourable in order to decrease the level of disturbance caused by too frequent mowing. In

this habitat type mowing would be favourable once or twice per year. This option would be

optimal for keeping the well-kept appearance of the verges and to hinder woody

encroachment, but would also allow disturbance-sensitive grassland species to establish

and reproduce in these habitats.
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G (2017) Large- and small-scale environmental factors drive distributions of cool-adapted plants in
karstic microrefugia. Ann Bot 119:301–309
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Suárez-Esteban A, Delibes M, Fedriani JM (2013) Unpaved road verges as hotspots of fleshy-fruited shrub

recruitment and establishment. Biol Conserv 167:50–56
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1 Lendület Seed Ecology Research Group, Institute of Ecology and Botany, Centre for Ecological
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