
Journal of Hazardous Materials 416 (2021) 125788

Available online 2 April 2021
0304-3894/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Research Paper 

Embryonic exposure to low concentrations of aflatoxin B1 triggers global 
transcriptomic changes, defective yolk lipid mobilization, abnormal 
gastrointestinal tract development and inflammation in zebrafish 

Bence Ivanovics a, Gyongyi Gazsi a, Marta Reining a, Izabella Berta a, Szilard Poliska b, 
Marta Toth c, Apolka Domokos b,d, Bela Nagy Jr e, Adam Staszny a, Matyas Cserhati a, Eva Csosz b, 
Attila Bacsi c, Zsolt Csenki-Bakos a, Andras Acs a, Bela Urbanyi a,*, Zsolt Czimmerer b,* 

a Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Godollo, Hungary 
b Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary 
c Department of Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary 
d Molecular Cell and Immunobiology Doctoral School, Faculty of Medicine, University of Debrecen, H-4032, Debrecen, Hungary 
e Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary   

A R T I C L E  I N F O   

Editor: Dr. S Nan  

Keywords: 
Aflatoxin B1 
Embryonic toxicity 
Zebrafish 
Inflammation 
Yolk lipid mobilization 
L-arginine 
Gastrointestinal tract development 

A B S T R A C T   

Aflatoxin B1-contaminated feeds and foods induce various health problems in domesticated animals and humans, 
including tumor development and hepatotoxicity. Aflatoxin B1 also has embryotoxic effects in different livestock 
species and humans. However, it is difficult to distinguish between the indirect, maternally-mediated toxic ef-
fects and the direct embryotoxicity of aflatoxin B1 in mammals. In the present study, we investigated the afla-
toxin B1-induced direct embryotoxic effects in a zebrafish embryo model system combining toxicological, 
transcriptomic, immunological, and biochemical approaches. Embryonic exposure to aflatoxin B1 induced sig-
nificant changes at the transcriptome level resulting in elevated expression of inflammatory gene network and 
repression of lipid metabolism and gastrointestinal tract development-related gene sets. According to the gene 
expression changes, massive neutrophil granulocyte influx, elevated nitric oxide production, and yolk lipid 
accumulation were observed in the abdominal region of aflatoxin B1-exposed larvae. In parallel, aflatoxin B1- 
induced defective gastrointestinal tract development and reduced L-arginine level were found in our model 
system. Our results revealed the complex direct embryotoxic effects of aflatoxin B1, including inhibited lipid 
utilization, defective intestinal development, and inflammation.   

1. Introduction 

One of the most urgent challenges posed by the changing global 
environment is to manage the decrease in food and feed quality and 
quantity. As common contaminants of staple foods and feeds, myco-
toxins may significantly contribute to these losses (Marroquín-Cardona 
et al., 2014). As the secondary metabolites of filamentous fungi, myco-
toxins have various adverse effects on human and animal health (Hus-
sein and Brasel, 2001). In the last decades, several predictive models 
have established aiming to forecast infection risk and mycotoxin 
contamination of crops during the pre-and postharvest periods (Battilani 
et al., 2012; Battilani and Leggieri, 2015; van der Fels-Klerx et al., 2010). 
However, climate change can extraordinarily influence the outcomes of 

these predictions. Relatively small changes in environmental conditions, 
including average temperature, precipitation pattern, and humidity, 
may promote fungal growth and mycotoxin production resulting in 
increased food and feed safety concerns (Marroquín-Cardona et al., 
2014; Medina et al., 2014). 

It has been well documented that aflatoxin B1 (AFB1) has the highest 
acute and chronic toxicity among mycotoxins, and the International 
Agency for Research on Cancer (IARC) classifies it as a Group-1 human 
carcinogen (IARC, 1993). AFB1 induces widespread harmful effects 
from hepatotoxicity (Lu et al., 2013; McGlynn et al., 2003) to impaired 
immunological (Jiang et al., 2005; Meissonnier et al., 2008; Reddy et al., 
1987) and reproductive function (El-Azab et al., 2010; Supriya et al., 
2014) in both humans and animals. The most endangered areas of AFB1 
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contamination are the tropical and subtropical regions (Gong et al., 
2016; Wild et al., 1990). However, it is anticipated that the major AFB1 
producer Aspergillus flavus and its toxic metabolites will become more 
frequent in the Mediterranean and temperate zones due to the increasing 
average temperature. The work of Battilani et al. (2016) draws attention 
to the potential emergence of AFB1 in maize even during cultivation in 
southern and certain central European countries under a + 2 ◦C climate 
change scenario. Similar predictions were made for the United States: 
the pre-harvest contamination of maize in the Corn Belt is expected to 
become an emerging food and feed safety issue in the near future 
(Mitchell et al., 2016; Yu et al., 2018). 

In utero exposure to xenobiotics in mammals frequently results in 
developmental or metabolic alterations and leads to increased suscep-
tibility to different diseases (Barr et al., 2007; Dufour-Rainfray et al., 
2011; Selgrade et al., 2013). Furthermore, it should be emphasized that 
embryonic exposure to various environmental pollutants (e.g., heavy 
metals (Shirai et al., 2010), endocrine disruptors (Huang et al., 2014; 
Schönfelder et al., 2002) or pesticides (Ribas-Fitó et al., 2006)) can 
promote disease development or induce malformations at relatively low 
concentrations. It has been described that AFB1 can also cross the 
placental barrier and cause teratogenic and embryotoxic effects in 
mammals, therefore, maternal exposure may implies a serious health 
risk to the developing embryo (El-Nahla et al., 2013; Partanen et al., 
2010; Wangikar et al., 2005). Furthermore, previous human studies 
demonstrated that elevated maternal aflatoxin-albumin adduct levels 
correlated with adverse birth outcomes (most commonly low birth 
weight) and postnatal growth faltering (Abdulrazzaq et al., 2002; Lauer 
et al., 2019; Smith et al., 2017; Turner et al., 2007). However, the bio-
logical consequences of embryonic exposition to AFB1 at low doses, 
especially in humans, are not completely understood. 

The zebrafish (Danio rerio), as a promising vertebrate model organ-
ism, has appeared firstly in developmental and genetic studies and soon 
has become one of the most widely used in vivo models in many 
different research areas. The externally fertilized and transparent em-
bryos can be easily monitored and manipulated, providing a useful in 
vivo system for toxicological investigations (Scholz et al., 2008). 
Zebrafish possess several conservative traits and functions compared to 
mammals and humans. The zebrafish genome-sequencing project has 
revealed that almost 70% of zebrafish genes have at least one human 
orthologue (Howe et al., 2013). Thus, developing zebrafish systems for 
modeling human diseases, including immunological and metabolic 
disorders, have become widely accepted (Anderson et al., 2011; Fang 
et al., 2014; Gomes and Mostowy, 2020; Iwanami, 2014; Meeker and 
Trede, 2008; Seth et al., 2013). In parallel, zebrafish is also a suitable 
model organism for the study of the role of xenobiotics in the evolve-
ment of acute and chronic disorders (Lieschke and Currie, 2007; Scholz 
et al., 2008; Sun et al., 2020). AFB1-related diseases such as hepato-
cellular carcinoma and the toxin’s metabolism have been investigated in 
zebrafish (Troxel et al., 1997; Wrighton et al., 2019). Exploring the ef-
fects of embryonic exposure to xenobiotics in mammals encounter lim-
itations and generate ethical concerns. Besides, xenobiotics can affect 
the developing fetus directly and also indirectly through 
maternally-mediated harmful effects, making it challenging to explore 
the underlying mechanisms of embryotoxicity (Smith et al., 2017). The 
ex utero developing zebrafish embryos and larvae offer a cost-effective, 
non-mammalian vertebrate model system to reveal the direct toxic ef-
fects and the potential consequences of embryonic exposure to AFB1. 

The present study aimed to investigate the direct adverse effects of 
embryonic exposure to AFB1 at relatively low, sublethal (<LC10) con-
centrations on zebrafish embryos and larvae integrating toxicological, 
transcriptomic, metabolomic, and immunological methodologies. Our 
strategy has led to the identification of various harmful effects of sub-
lethal AFB1 exposure, including altered lipid transport and utilization, 
defective gastrointestinal tract development, elevated inflammation, 
and reduced L-arginine level. 

2. Materials and methods 

2.1. Ethics statement 

Experiments were performed in accordance with the Hungarian 
Animal Welfare Law (XIV-I-001/2303–4/2012) and the European 
directive (2010/63/EU) on the protection of animals used for scientific 
purposes. 

2.2. Chemicals 

Aflatoxin B1; Oil red O (ORO); DAF-FM-DA (4-amino-5-methyl-
amino-2′,7′-difluorofluorescein diacetate); Ringer tablets; Trypsin- 
EDTA solution; fetal bovine serum (FBS) and fluorescent microbeads 
(carboxylate-modified polystyrene, fluorescent red) were purchased 
from Sigma-Aldrich. Stock solution of AFB1 was prepared by dissolving 
the AFB1 powder in dimethyl sulfoxide (DMSO) to the concentration of 
1 mg/mL and was stored at − 24 ◦C. 

2.3. Zebrafish maintenance and egg collection 

The wild-type AB strain and the Tg(mpx:EGFP) transgenic line of 
zebrafish (Danio rerio) were maintained at the Department of Aqua-
culture (Szent Istvan University, Hungary) in a Tecniplast ZebTEC 
recirculation system (Tecniplast S.p.A., Italy) at 25.5 ± 0.5 ◦C, pH 7.0 ±
0.2, conductivity 550 ± 50 µS (system water) with 14 h/10 h light/dark 
cycles. Tg(mpx:EGFP) transgenic line (Mathias et al., 2006) were ob-
tained from Karlsruhe Institute of Technology (KIT), Karlsruhe, 
Germany. 

Before the spawning day, late in the afternoon males and females 
were placed separately in breeding tanks. On the morning after the onset 
of light the separation walls were removed allowing the fish to spawn. 
After the collection of eggs, about 2 h post fertilization, the embryos 
were sorted under a stereo microscope in order to select the normally 
developing ones and to synchronize their development. 

2.4. Embryonic exposure to AFB1 

The embryo toxicity test was conducted based on the OECD guideline 
236 (2013). Test solutions were prepared by diluting stock solution (1 
mg AFB1 / mL DMSO) with UV-disinfected, carbon filtered system water 
(parameters: 25.5 ± 0.5 ◦C, pH 7.0 ± 0.2, conductivity 550 ± 50 µS) as 
exposure medium. The embryos (n = 10 / replicate) were exposed 
individually to AFB1 at the concentrations of 0.03125, 0.0625, 0.125, 
0.25 and 0.5 mg/L in 24-well plates (2 mL / well) from 4 to 120 h post 
fertilization (hpf) in two independent experiments with three replicates 
per group in each experiment. Mortality was monitored daily during the 
treatment period. In the control groups only one out of sixty embryo 
died during the treatment period (background mortality = 1.67%). 
120-h lethal concentration values (LC1, LC10, LC50) were obtained by 
estimating the concentration-response relationship based on the lethal 
endpoints using OriginPro® (2018) software. Concentration-response 
relationship for estimation LC-values was performed according to the 
following equation: y = A1 + (A2-A1)/(1 + 10^((LOGx0-x)*p)), where: 
A1: bottom asymptote; A2: top asymptote; LOGx0: center; p: hill slope. 
Any further embryonic exposition was performed by using a sublethal, 
low concentration range (˂LC10) of AFB1. In these experiments, previ-
ously sorted embryos were exposed in goups to AFB1 at the concentra-
tions of 0.025, 0.05, 0.075 and 0.1 mg/Lfrom 4 to 120 h post fertilization 
in polystyrene 100-mm Petri dishes containing 40 mL (20 embryo / Petri 
dish) or 45 mL (30 embryo / Petri dish) of test/control solutions DMSO 
was used as solvent control. 

2.5. Evaluation of morphological alterations 

The morphological changes of the larvae were assessed at the end of 
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the AFB1-exposure (120 hpf). The larvae were anesthetized with tricaine 
methane sulfonate (MS222, 168 mg/l, Matthews and Varga, 2012) 
positioned laterally and pictured under a stereo microscope (Leica M205 
FA, Leica DFC 7000 T camera, Leica Application Suite X software, Leica 
Microsystems GmbH; Wetzlar, Germany). Total body length, swim 
bladder area and the length of the gut were measured by image analysis 
using ImageJ software (Schneider et al., 2012) (n = 3 replicates, n = 10 
larvae per replicate). 

2.6. Total RNA extraction and quantitative RT-PCR 

Total RNAs from 30 pooled larvae per replicate (n = 5 replicates) 
were isolated by Trizol reagent. RNA quality and quantity were assessed 
by NanoDrop One (Thermo Fisher Scientific, Madison, USA) spectro-
photometer. cDNA was synthesized from 1 µg of total RNA by using High 
Capacity cDNA Reverse Transcription kit (Applied Biosystems). 
Expression levels of reference and target genes were measured using 5x 
HOT FIREPol EvaGreen qPCR Supermix (Solis BioDyne) on a LightCycler 
480 Instrument II (Roche). Nucleotide sequences of primers are shown 
in the Supplementary Table S1. 

2.7. RNA sequencing and data analysis 

To obtain global transcriptome data high throughput mRNA 
sequencing analysis was performed on Illumina sequencing platform. 
Total RNA sample quality was checked on Agilent BioAnalyzer using 
Eukaryotic Total RNA Nano Kit according to manufacturer’s protocol. 
Samples with RNA integrity number (RIN) value > 7 were accepted for 
library preparation process. RNA-Seq libraries were prepared from total 
RNA using Ultra II RNA Sample Prep kit (New England BioLabs) ac-
cording to the manufacturer’s protocol. Briefly, poly-A RNAs were 
captured by oligo-dT conjugated magnetic beads then the mRNAs were 
eluted and fragmented at 94-Celsius degree. First strand cDNA was 
generated by random priming reverse transcription and after second 
strand synthesis step double stranded cDNA was generated. After 
repairing ends, A-tailing and adapter ligation steps adapter ligated 
fragments were amplified in enrichment PCR and finally sequencing 
libraries were generated. Sequencing run were executed on Illumina 
NextSeq500 instrument using single-end 75 cycles sequencing. 

Raw sequencing data (fastq) was aligned to Danio rerio reference 
genome (version GRCz11) using HISAT2 algorithm and BAM files were 
generated. Downstream analysis was performed using StrandNGS soft-
ware (www.strand-ngs.com). BAM files were imported into the software 
DESeq1 algorithm was used for normalization. To identify differentially 
expressed genes between treated and non-treated conditions Moderated 
T-test with Benjamini-Hochberg FDR for multiple testing correction was 
used. Significance was defined at corrected p value 〈 0.05. Raw 
sequencing data submitted to NCBI Sequence Read Archive (SRA) 
database (PRJNA684994). 

2.8. Oil red O staining and assessment of lipid distribution 

Oil red O (ORO) was used for staining neutral lipids in whole 
zebrafish larvae (Schlegel and Stainier, 2006). 10 larvae from each 
replicate (n = 2 replicates) were euthanized at 120 hpf by immersion in 
ice water, then washed in PBS and fixed in 4% paraformaldehyde at 4 ◦C 
for 6 h, washed again and stained with 0.1% filtered ORO in 60% iso-
propanol for 2 h. After incubation, the larvae were washed in PBS and 
gradually transferred into 95% glycerol. Bright field images from the 
lateral view of the larvae were taken under a Leica M205 FA stereo 
microscope. Lipid distribution was assessed by measuring optical den-
sity (OD) of the abdominal region (yolk and intestinal area) after OD 
calibration by Rodbard method (https://imagej.nih.gov/ij/docs/ex 
amples/calibration/) using ImageJ software. 

2.9. Measurement of NO production 

The NO production in zebrafish larvae was evaluated by using a 
fluorescent probe DAF FM DA. 120 hpf larvae from two independent 
experiments (n = 10 larvae per experiment) were transferred individu-
ally into 96-well plates containing 200 µL 5 µM DAF FM DA solution per 
well, and incubated in the dark at 25.5 ◦C for 1 h. After incubation, 
larvae were rinsed in system water, anesthetized in a solution of tricaine 
methane sulfonate (MS222, 168 mg/l), positioned laterally and imaged 
by using Leica M205 FA fluorescent microscope equipped with GFP2 
long pass filter. Fluorescent intensity of the whole larva or the abdom-
inal region alone were measured in greyscale using ImageJ software. 

2.10. Investigation of arginine content 

Nitric oxide production’s substrate L-Arginine level was determined 
by UPLC spectrometry. Embryos were homogenized in 1% SDS- 
containing borate buffer (pH 9) with 19 G needles. The homogenate 
was centrifuged at 14000 rpm for 10 min using a benchtop Eppendorf 
centrifuge, and the supernatant was filtered through a 3 kDa filter (Pall) 
according to the manufacturer’s instructions. The filtrate was dried in a 
speed-vac (Thermo Scientific), redissolved in 80 µL borate buffer and 
used for amino acid analysis. Derivatization was carried out with AccQ- 
Tag Ultra derivatization kit (Waters) and the samples were examined in 
duplicates on an H-class UPLC (Waters) according to the manufacturer’s 
instructions. For data analysis the Empower software (Waters) was used. 

2.11. Neutrophile number and distribution 

To investigate the neutrophil granulocyte number and distribution, 
Tg(mpx:EGFP) transgenic zebrafish line was used. In Tg(mpx:EGFP) 
transgenic zebrafish line, the expression of enhanced green fluorescent 
protein (EGFP) transgen is driven by neutrophil granulocyte-specific 
myeloperoxidase (mpx) promoter (Renshaw et al., 2006). In order to 
measure the total number of neutrophils in whole larvae, fluorescence 
activated cell sorting (FACS) was conducted according to a previously 
published protocol (Oehlers et al., 2013). Briefly, 120 hpf Tg(mpx:EGFP) 
larvae from two independent experiments with three replicates per 
group (n = 15 larvae per replicate) were euthanized by submersion in 
ice water, then rinsed with Ringer solution and dissociated in 0.25% 
Trypsin-EDTA. Digestion was stopped by fetal bovine serum (FBS) and 
calcium chloride. Samples were centrifugated (400 g; 5 min), resus-
pended in 5% FBS/PBS, then filtered through 40 µm cell strainers. The 
frequency of GFP+ neutrophil granulocytes was determined by the 
NovoCyte Flow Cytometer (ACEA Biosciences). Neutrophile distribution 
in 120 hpf Tg(mpx:EGFP) larvae from three independent experiments (n 
= 10 larvae per experiment) was evaluated by visual observation and 
quantified by counting the neutrophils in the abdominal region. Images 
were taken from the lateral view of the larvae under a Leica M205 FA 
fluorescent microscope equipped with a GFP2 long pass filter. 

2.12. Tail fin transection model 

Tail fin transection were performed as previously described (Cheng 
et al., 2020), with minor modifications. 108 hpf Tg(mpx:EGFP) larvae 
from five independent experiments (n = 10 larvae per experiment) were 
anesthetized with tricaine methane sulfonate (MS222, 168 mg/l) and 
the tail fins of the larvae were transected along a straight line between 
the tip of the notochord and the caudal end of the fin. Neutrophil 
migration to the site of injury was monitored by imaging the caudal 
region of the larvae under a Leica M205 FA fluorescent microscope at 4 
and 12 h post-injury. The number of neutrophils at the site of injury was 
counted using ImageJ software. 
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Fig. 1. Embryonic exposure to sub-lethal concentrations of AFB1 reduces total body length and swim bladder area. (A) Concentration-response relationship and the 
estimated LC% values for 120 h toxicity test of zebrafish embryos exposed to AFB1 (n = 6 replicates, n = 10 embryo per replicate). (B) Schematic representation of 
the applied experimental system. (C) Representative images of 120 hpf zebrafish larvae after embryonic, sub-lethal exposure to AFB1. Red arrows indicate swim 
bladder. Scale bar = 500 µm. The graphs showing (D) total body length and (E) swim bladder area of control, and AFB1-exposed 120 hpf larvae (n = 3 replicates, 
n = 10 larvae per replicate). Data represent the mean and SD. “*” indicates statistical significance at p < 0.05 vs. the control (DMSO). 
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2.13. Fluorescence microsphere swallowing assay 

Before use, 2.5% fluorescent microbead suspension was washed and 
reconstituted with reverse osmosis water. 120 hpf larvae from two in-
dependent experiments (n = 10 larvae per experiment) were transferred 
into microcentrifuge tubes (5 larvae/tube) containing 1 mL microbe-
ad− water suspension at a final concentration of 0.025%. After 3 h in-
cubation at 25.5 ◦C, the larvae were washed thoroughly with system 
water, anesthetized with tricaine methane sulfonate (MS222, 168 mg/l) 
and imaged under a Leica M205 FA fluorescence microscope using 
mCherry filter. The quantification of the accumulated microspheres is 
based on the measurement of the fluorescence intensity in the intestinal 
tract, including intestinal bulb, middle and posterior intestines (Hama 
et al., 2009). Intensities of fluorescent signals from the gut were 
measured in greyscale using ImageJ software. 

2.14. Statistical analyses 

Data were tested for normality using Shapiro-Wilk test and analyzed 
with one-way parametric ANOVA followed by post-hoc Dunnett test or 
Kruskall-Wallis test (non-parametric ANOVA) followed by post-hoc 
Dunn test using GraphPad Prism 8. Results are presented as the mean 
±standard deviation (SD). Differences at the value of p < 0.05 were 
considered statistically significant. 

3. Results 

3.1. Sub-lethal AFB1 exposure-induced morphological and transcriptional 
changes in zebrafish larvae 

To study the AFB1 exposure-induced adverse effects during the 
embryonal development of zebrafish, we performed an embryo toxicity 
test and determined the toxicity values, including LC1, LC10, and LC50 
values at 120 hpf (Fig. 1A). LC1 and LC10 value proved to be 0.081 mg/L 
and 0.108 mg/L, thus we selected a sub-lethal, low concentration range 
(0.025, 0.05, 0.075, 0.1 mg/L) for the investigation of sub-lethal AFB1 
exposure-induced embryonal deformities (Fig. 1A, B). Although dra-
matic morphological malformations were not observed, AFB1 induced a 
significant reduction in the total body length at 0.1 mg/L and the swim 
bladder area in a concentration-dependent manner (Fig. 1C–E). 

To further examine the harmful effects of sub-lethal AFB1 exposition, 
we performed high-throughput RNA-seq analysis identifying the AFB1 
exposition-induced gene expression changes in 120 hpf zebrafish larvae. 
Our global transcriptome analysis identified 1216 significantly differ-
entially expressed genes (DEGs) in response to 0.1 mg/L AFB1 treat-
ment. Among DEGs, 829 genes were down-regulated, and 387 genes 
showed up-regulation following AFB1 exposition (Fig. 2A; Supplemen-
tary Table S2.). To identify the embryonic AFB1 exposition-modulated 
biological processes, we applied in silico GO biological process analysis 
using Cytoscape’s ClueGo application (Bindea et al., 2009). Among the 

Fig. 2. Embryonic exposure to AFB1 results in global gene expression changes in zebrafish larvae. (A) Heat map showing the differentially expressed genes between 
the control (DMSO) and the AFB1-exposed (0.1 mg/L) 120 hpf larvae. Data represent the normalized gene expression values of the four independent biological 
replicates per treatment. (B) Scatter plot showing the top 10 most significantly over-represented Gene Ontology terms among up-regulatedgenes in AFB1-exposed 120 
hpf larvae. Y-axis represents the negative log (base 10) of the term significance (p-value). X-axis represents the number of genes associated with the term. (C) Scatter 
plot showing the top 10 most significantly over-represented Gene Ontology terms among down-regulated genes in AFB1-exposed 120 hpf larvae. Y-axis represents the 
negative log (base 10) of the term significance (p-value). X-axis represents the number of genes associated with the term. 
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AFB1-induced genes, various immune response- and 
inflammation-related functional categories were prominently enriched 
(Fig. 2B, Supplementary Table S3). In contrast, oxidoreductive pro-
cesses, organic acid and organic hydroxyl compound metabolism, and 
lipid metabolism were the most significantly overrepresented biological 
processes among the AFB1-repressed genes (Fig. 2C, Supplementary 
Table S3). 

Taken together, these findings suggest that sub-lethal AFB1 exposure 
does not cause dramatic embryonal deformities except for swim bladder 
area but influences lipid metabolism and the function of the immune 
system. 

3.2. AFB1-induced inflammatory gene signature associates with abnormal 
neutrophil granulocyte distribution, number, and migratory capacity 

To further characterize the potential immunomodulatory and pro- 
inflammatory effects of AFB1, we selected four genes, including inter-
leukin 1 beta (il1β), matrix metallopeptidase 9 (mmp9), chemokine (C-X- 
C motif) ligand 8b, duplicate 1 (cxcl8b.1), and chemokine (C-X-C motif) 

ligand 18b (cxcl18b) from the immune response-related gene sets 
(Fig. 3A) and examined their AFB1-regulated expression at the mRNA 
level in 120 hpf zebrafish larvae using the RT-qPCR method. As ex-
pected, AFB1 exposition increased the mRNA expression of each 
selected gene in a concentration-dependent manner. In the case of three 
selected genes, including il1β, mmp9, and cxcl8b.1, significant differ-
ences could be detected between the control and AFB1-exposed groups 
at 0.1 mg/L, while in the case of cxcl18b, at 0.075 and 0.1 mg/L 
(Fig. 3B). 

The AFB1-induced inflammation-related gene set includes some 
neutrophil granulocyte chemoattractant factors such as cxcl8b.1 and 
cxcl18b, raising the possibility of altered neutrophil granulocyte distri-
bution, migration and number in AFB1-exposed zebrafish larvae (de 
Oliveira et al., 2015; Torraca et al., 2017). To determine whether AFB1 
regulates neutrophil granulocyte distribution, we used a neutrophil 
granulocyte-specific transgenic Tg(mpx:EGFP) zebrafish line. The fluo-
rescent microscopy-based in vivo detection of neutrophil granulocytes 
demonstrated that sub-lethal AFB1-exposure resulted in a diffuse and 
widespread neutrophil granulocyte distribution in a 

Fig. 3. AFB1 induces the expression of immune- and inflammation-related genes in zebrafish larvae. (A) Heat maps illustrating the significantly up-regulated im-
mune response- and inflammation-associated genes in the AFB1 (0.1 mg/L) -exposed 120 hpf zebrafish larvae compare to the control. Data represent the normalized 
gene expression values of the four independent biological replicates per treatment. Red asterisks indicate the selected genes for RT-qPCR. (B) RT-qPCR-based gene 
expression on a set of AFB1-induced inflammatory genes in the AFB1 (0.025–0.1 mg/L) -exposed 120 hpf zebrafish larvae (n = 5 replicates, n = 30 pooled larvae per 
replicate). Data represent the mean and SD. “*” indicates statistical significance at p < 0.05 vs. the control (DMSO). 
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Fig. 4. AFB1 alters the distribution of neutrophil granulocytes and modulates the inflammatory response to a local injury in zebrafish larvae. (A) Representative 
images of 120 hpf neutrophil-reporter Tg(mpx:EGFP) larvae after embryonic, sub-lethal exposure to AFB1. Scale bar = 500 µm. (B) The number of neutrophils 
counted in the abdominal region of the control and AFB1-exposed larvae (n = 3 replicates, n = 10 larvae per replicates). (C) Flow cytometric detection of mpx: 
EGFP+cells per 100.000 cells in control and AFB1-exposed larvae (n = 6 replicates, n = 15 pooled larvae per replicate). (D) Schematic figure of the tail fin tran-
section model and the representative images of the transected fins of control and AFB1-exposed Tg(mpx:EGFP) larvae at 4 h post injury. After tail fin transection, 
neutrophils started to migrate to the site of injury. Scale bar = 500 µm (E) The graph showing the number of neutrophils at the wound site at 4 h and 12 h post injury 
(n = 5 replicates, n = 10 larvae per replicate). Data represent the mean and SD. “*” indicates statistical significance at p < 0.05 vs. the control (DMSO). 
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concentration-dependent manner (Fig. 4A). Additionally, neutrophil 
granulocytes were observed in huge numbers in the abdominal region of 
AFB1-exposed zebrafish larvae (Fig. 4A, B). Next, we studied the total 
neutrophil granulocyte number in AFB1-exposed zebrafish larvae at 120 
hpf using flow cytometry analysis (FACS). The FACS analysis revealed 
that a significant reduction in the GFP positive neutrophil granulocyte 
number occurred only at the highest (0.1 mg/L) AFB1 concentration 
(Fig. 4C). 

Next, we aimed to examine the potential effects of AFB1 on 

neutrophil granulocyte migration using the tail fin transection model. 
After tail fin removal, we determined the number of migrating neutro-
phil granulocytes to the wound. Our results showed that the number of 
the migrated neutrophils was decreased significantly in the AFB1- 
treated 108 hpf larvae at 4 and 12 h after tail fin transection in a 
concentration-dependent manner (Fig. 4D, E). 

These findings indicate that low concentration (≤LC10) AFB1 
exposition-induced inflammation is associated with abnormal neutro-
phil granulocyte distribution, number, and migratory capacity. 

Fig. 5. AFB1 induces nitric oxide production and arginine depletion in zebrafish larvae. (A) Representative fluorescence images of DAF-FM-DA stained 120 hpf 
larvae after embryonic exposure to AFB1. Fluorescence signals indicate nitric-oxide generation. Scale bar = 500 µm. The graphs showing the mean fluorescence 
intensities of (B) the whole larvae and (C) the abdominal region (yolk and intestinal area) of the larvae after AFB1 exposure (n = 2 replicates, n = 10 larvae per 
replicate). (D) Schematic representation of iNOS enzyme-catalyzed NO synthesis. (E)The graph showing the normalized free L-arginine levels of 120 hpf larvae after 
AFB1 exposure (n = 3 replicates, n = 30 pooled larvae per replicate). Data represent the mean and SD. “*” indicates statistical significance at p < 0.05 vs. the 
control (DMSO). 

B. Ivanovics et al.                                                                                                                                                                                                                               



Journal of Hazardous Materials 416 (2021) 125788

9

(caption on next page) 

B. Ivanovics et al.                                                                                                                                                                                                                               



Journal of Hazardous Materials 416 (2021) 125788

10

3.3. AFB1-induced nitric oxide production is associated with attenuated 
arginine level 

Nitric oxide (NO) is produced by inducible nitric oxide synthase 
(iNOS) following pathogen infections or xenobiotic-exposures in various 
innate immune cells (Braun et al., 1999; Jin et al., 2011; Neves-Souza 
et al., 2005). As an easily detectable molecule, nitric oxide (NO) is a 
widely used inflammatory marker in different experimental systems, 
including zebrafish embryos (Cha et al., 2018; Ryu et al., 2015). 
Therefore, we decided to further characterize the AFB1-induced 
inflammation with the DAF-FM-DA fluorescent staining-based detec-
tion of NO production. As expected, the NO level was significantly 
increased in the whole body of 120 hpf zebrafish larvae in a 
concentration-dependent manner by AFB1 (Fig. 5A, B). Like the 
neutrophil granulocyte distribution, AFB1-induced NO production was 
the most pronounced in the abdominal region (Fig. 5C). iNOS utilizes 
L-arginine substrate for NO production (Fig. 5D) (Aktan, 2006). There-
fore, we investigated the effect of AFB1 on L-arginine content in whole 
zebrafish larvae lysates using the AccQ-Tag derivatization method. 
AFB1 exposure significantly decreased the L-arginine level at 0.05, 
0.075, and 0.1 mg/L concentrations (Fig. 5E). 

These findings indicate that low concentration (≤LC10) AFB1 
exposure-induced inflammation is associated with elevated NO pro-
duction and reduced L-arginine level. 

3.4. AFB1-induced abnormalities in a gastrointestinal tract development 

Based on the neutrophil granulocyte distribution pattern and NO 
production, we hypothesized that the abdominal region is one of the 
dominant targets of the harmful effects of AFB1 in zebrafish larvae. 
Besides, our transcriptome analysis identified several AFB1-repressed 
genes, including claudin 15a (cldn15a), aldehyde dehydrogenase 1 
family, member A2 (aldh1a2), dehydrogenase/reductase (SDR family) 
member 9 (dhrs9), plasmolipin (pllp), and caudal type homeobox 1 b 
(cdx1b), which have an essential role in the digestive tract morpho-
genesis (Fig. 6A). Our RT-qPCR-based validation of dhrs2 and cdx1b 
expression confirmed that both selected genes were inhibited in a 
concentration-dependent manner by AFB1 (Fig. 6B). Therefore, we 
decided to investigate whether AFB1 exposition can influence the size of 
the larval gut. Thus, we measured the approximate gut length based on 
the method of Chuang et al. (2019). As expected, embryonic 
AFB1-exposure significantly decreased the gut length in a 
concentration-dependent manner (Fig. 6C). 

Next, we investigated whether AFB1 can modify the intestinal 
function in zebrafish larvae. To examine the intestinal function of non- 
feeding zebrafish larvae, we applied the fluorescence microsphere 
swallowing assay (Hama et al., 2009). Interestingly, we could detect 
considerable differences in the fluorescence intensity values in the in-
testinal tract between the control and the AFB1-treated 120 hpf larvae. 
On the one hand, significantly reduced microsphere accumulation was 
observed in the intestinal tract of the AFB1-treated larvae at 0.05, 0.075, 
and 0.1 mg/L (Fig. 6D and E). On the other hand, 55% of individuals 
showed a strong microsphere accumulation in the pharyngeal region at 
0.075 and 0.1 mg/L (Fig. 6D and F). 

Overall, these findings suggest that AFB1-induced abdominal 

inflammation is associated with abnormal development of the gastro-
intestinal system. 

3.5. AFB1-induced abnormal yolk lipid utilization 

Maternally deposited lipids within the yolk play an essential role 
during embryogenesis, providing an energy source for the developing 
zebrafish embryo. However, the yolk is not passive lipid storage; it is 
metabolically active, processing yolk lipids before mobilization to the 
embryonic body (Fraher et al., 2016). Our transcriptome analysis 
revealed metabolic pathways, including lipid metabolism and transport 
as major target processes were repressed by 0.1 mg/L AFB1 exposition 
(Fig. 2C). In parallel, we found defective gastrointestinal tract devel-
opment and abdominal inflammation in AFB-exposed 120 hpf zebrafish 
larvae (Figs. 4A, B; 5A, C, 6) indicating that the abdominal region is 
strongly affected by AFB1-induced toxicity. Thus, we hypothesized that 
sub-lethal AFB1 exposition reduces the expression of yolk lipid meta-
bolism and transport-linked genes attenuating the mobilization of yolk 
lipids during zebrafish embryogenesis. 

To test this hypothesis, we first performed a gene set enrichment 
analysis (GSEA) comparing the AFB1-regulated genes to a lipid meta-
bolism- and transport-associated gene set identified in the zebrafish yolk 
by Fraher et al. (2016). Our GSEA analysis demonstrated that the 
yolk-specific lipid metabolism and transport-associated gene set was 
significantly enriched (FDR q-value < 0.1; NES: - 1.53) among the 
AFB1-repressed genes (Fig. 7A, B). To investigate the concentration 
dependency of AFB1-inhibited lipid transport and metabolism-linked 
gene signature, we selected four AFB1-repressed genes, including 
microsomal triglyceride transfer protein (mtp), apolipoprotein A-IV a 
(apoa4a), apolipoprotein Bb, tandem duplicate 1 (apobb.1), and fatty 
acid binding protein 1b, tandem duplicate 1 (fabp1b.1). We measured 
their mRNA expression in 120 hpf zebrafish larvae after 0.025, 0.05, 
0.075, and 0.1 mg/L AFB1 exposure using RT-qPCR method. Each 
selected gene showed a significantly attenuated expression at 0.05 mg/L 
AFB1 concentration or higher (Fig. 7C). 

To investigate whether the AFB1 exposure-dependent repression of 
lipid metabolism and transport-associated gene signature results in 
defective lipid mobilization from the yolk sac, we determined the lipid 
content and distribution in AFB-exposed 120 hpf zebrafish larvae using 
ORO staining. As expected, extensive lipid accumulation was observed 
in the yolk sac of the control and AFB1-exposed zebrafish larvae at 120 
hpf, but the lipid content in the abdominal region was significantly 
increased even at the lowest applied AFB1 concentration suggesting the 
AFB1-inhibited lipid mobilization from the yolk sac (Fig. 7D, E). 

Taken together, these findings indicate that AFB1 can impair lipid 
utilization during zebrafish embryogenesis even at a sub-lethal con-
centration resulting in impaired yolk lipid mobilization. 

4. Discussion 

AFB1 contamination could be detected worldwide in various food 
and feed ingredients in the last decades, causing severe health problems 
from domesticated animals to humans. Though AFB1 is known as a 
carcinogen agent, it has also neurotoxic, immunotoxic and embryotoxic 
effects (Mahato et al., 2019; Martinez-Miranda et al., 2019; McGlynn 

Fig. 6. Embryonic exposure to AFB1 impairs gastrointestinal tract development in zebrafish larvae. (A) Heat map illustrating significant down-regulation of digestive 
tract development-associated gene set in the AFB1 (0.1 mg/L) -exposed 120 hpf zebrafish larvae compared to the control. Data represent the normalized gene 
expression values of the four independent biological replicates per treatment. Red asterisks indicate the selected genes for RT-qPCR. (B) RT-qPCR-based analysis of 2 
selected gastrointestinal tract development-related genes after embryonic exposure to different sub-lethal concentrations of AFB1 (n = 5 replicates, n = 30 pooled 
larvae per replicate). (C) Length of the larval gut after AFB1 exposure (n = 3 replicates, n = 10 larvae per replicate). (D) Microsphere swallowing assay. Repre-
sentative images of 120 hpf zebrafish larvae incubated in fluorescence microsphere suspension after AFB1 exposure. Scale bar = 500 µm (E) Scatter plot representing 
the integrated fluorescence intensities of the swallowed microspheres accumulated in the larval gut after AFB1 exposure (n = 2 replicates, n = 10 larvae per 
replicate). (F) Proportion of the larvae observed in different fluorescence categories indicating the microsphere accumulation level in the pharyngeal region (n = 2 
replicates, n = 10 larvae per replicate). Fluorescence level was categorized as “low” < 5 × 104, 5 × 104 < ”medium”< 5 × 105 and 5 × 105 < ”high” (expressed as 
the sum of the pixel values). Data represent the mean and SD. “*” indicates statistical significance at p < 0.05 vs. the control (DMSO). 
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et al., 2003; Mehrzad et al., 2018; Meissonnier et al., 2008; Park et al., 
2020; Wangikar et al., 2005). It has been described that AFB1 exposure 
during pregnancy induces impaired fetal growth and may increase the 
risk of pregnancy loss or prematurity (Smith et al., 2017). AFB1 
exposure-induced fetal abnormalities may originate from three different 
mechanisms: (i) indirect maternal toxicities including increased 
maternal pro-inflammatory cytokine production and impaired nutrient 
absorption; (ii) placental injuries such as reduced placental mass or 
elevated placental pro-inflammatory cytokine production and (iii) direct 
AFB1-caused embryotoxic effects (reviewed in Smith et al., 2017). 
However, it is difficult to distinguish between the direct and indirect 
embryotoxic effects of in utero exposure to AFB1 in mammals. Despite 
the obvious differences in fertilization and fetal growth, the high 
genomic and molecular similarities, as well as the conserved develop-
ment of several organ systems between mammals and zebrafish, indi-
cating that the lessons learned from various studies in a zebrafish 
embryo model system may be applicable to humans (Ellett and Lieschke, 
2010; Howe et al., 2013; Lieschke and Currie, 2007; Veldman and Lin, 
2008; Williams and Hong, 2011; Yuan et al., 2018). Therefore, we 
investigated the direct AFB1-induced embryotoxicity in a zebrafish 
embryo model system integrating toxicological, transcriptomic, immu-
nological, and biochemical approaches. 

At the applied sub-lethal AFB1 concentrations between 0.025 mg/L 
and 0.1 mg/L, we did not observe severe morphological deformities in 
120 hpf zebrafish larvae consistently with the findings of Wu et al. 
(2019). Besides, our global transcriptome analysis showed that 
AFB1-regulates more than a thousand genes at mRNA revel. Among the 
AFB1-induced genes, the immune and inflammation-related gene sets 
were the most significantly enriched ones, indicating an immunomod-
ulatory and inflammatory role of AFB1. It has been recently published 
that AFB1 induces elevated ROS production in the yolk sac area of 
zebrafish larvae (Dey and Kang, 2020). Similarly to this finding, we 
could detect increased neutrophil granulocyte number and NO produc-
tion in the abdominal region of 120 hpf larvae. Interestingly, we found a 
significant reduction in NO synthesis substrate L-Arginine level in 
AFB1-exposed larvae indicating that the elevated NO production is 
associated with the depletion of free L-Arginine storage. Taken together, 
our results show that AFB1-induces inflammation in zebrafish embryos 
which is most pronounced in the abdominal region. 

Recently, Park et al. (2020) demonstrated that AFB1 exposure be-
tween 24 and 48 hpf could significantly enhance yolk sac diameter 
during zebrafish embryogenesis. These findings raised the possibility 
that AFB1 exposure can negatively affect the utilization of nutrients 
from the yolk sac. It has been known that yolk is metabolically active, 
participating in both the processing and transport of various nutrients 
including lipids (Fraher et al., 2016). We showed decreased mRNA 
expression of most yolk sac lipid metabolism-related enzymes and 
transporters with elevated lipid level in the abdominal region of 
AFB1-exposed zebrafish larvae indicating the association between lipid 
accumulation and inflammation. The abnormal lipid accumulation 
might be associated with inflammation in various diseases, including 
obesity and non-alcoholic fatty liver disease (de Oliveira et al., 2019; 
Gao and Tsukamoto, 2016). Furthermore, xenobiotics-induced acute 
hepatotoxicity may be also related to abnormal lipid accumulation. It 
has been described that tamoxifen, a selective estrogen receptor 
modulator, induces increased lipid accumulation and elevated 

inflammatory gene expression in zebrafish liver (Yu et al., 2020). The 
acute AFB1-induced hepatotoxicity also involves inflammatory cell 
infiltration, activation of liver resident Kupffer cells as well as elevated 
liver cholesterol, triacylglycerol, and phospholipid contents, suggesting 
a tight connection between pathological lipid accumulation and 
inflammation (Lu et al., 2013; Rotimi et al., 2017; Ugbaja et al., 2020; 
Zhang et al., 2019). Nevertheless, in the case of AFB1-induced abdom-
inal lipid accumulation and inflammation in zebrafish larvae, it remains 
to be elucidated whether AFB1-induced inflammation inhibits lipid 
utilization or AFB1 attenuates lipid absorption leading to enhanced 
inflammation. 

It has been demonstrated that AFB1 reduces intestinal barrier func-
tion and causes dysregulation of gut microbiota in vertebrates, but its 
adverse effects on gastrointestinal tract development are not fully un-
derstood (Hernández-Ramírez et al., 2020; Wang et al., 2016; Yang 
et al., 2017; Yunus et al., 2011). Our transcriptome analysis identified an 
AFB1-attenuated gene set including cldn15a, aldh12a, dhrs9, pllp, and 
cdx1b, which are essential for proper gastrointestinal tract development 
(Bagnat et al., 2007; Flores et al., 2008; Nadauld et al., 2005; Pittlik and 
Begemann, 2012; Rodríguez-Fraticelli et al., 2015). We found a signif-
icant reduction in gut length and abnormalities in intestinal function in 
AFB1-exposed zebrafish larvae according to the gene expression 
changes. These results collectively support the hypothesis that AFB1 can 
impair gastrointestinal development, but the exact molecular mecha-
nisms remain unclear. 

It has been previously described that maternal AFB1 exposure may 
increase the risk of adverse birth outcomes, including low birth weight 
(Lauer et al., 2019; Shuaib et al., 2010). AFB1-impaired growth was also 
observed in 1–5 years old children in West Africa (Gong et al., 2008; 
Lauer et al., 2019). However, the molecular background of 
AFB1-impaired growth of the fetus and young children is currently un-
known (Gong et al., 2008; Lauer et al., 2019; Shuaib et al., 2010). In our 
zebrafish embryo model, AFB1-induced inflammation, diminished lipid 
transport, and abnormal gastrointestinal tract development were also 
associated with the slight but significant reduction in the body length at 
the highest (0.1 mg/L) applied AFB1 concentration. Interestingly, the 
AFB1 exposure-affected biological processes show remarkably 
conserved regulation in zebrafish and mammals. For instance, the gene 
regulation program of acute inflammation in zebrafish highly resembles 
one observed in mammals (Forn-Cuní et al., 2017). Regulatory and 
metabolic pathways for gastrointestinal tract development as well as 
nutrient uptake and transport are also highly conserved in zebrafish and 
mammals (Flynn III et al., 2009; Marza et al., 2005; Miyares et al., 2014; 
Quinlivan and Farber, 2017; Wallace and Pack, 2003). Nevertheless, the 
question is currently open whether the disorders of the gastrointestinal 
tract or lipid transport may underlie the AFB1-induced low birth-weight 
and growth faltering in young children. 

In conclusion, this study supports that exposure to relatively low 
concentrations of AFB1 has a complex direct embryotoxic effect in the 
zebrafish embryo model system. Although AFB1 does not induce dra-
matic developmental abnormalities at the applied concentrations but 
causes elevated inflammation and abnormal lipid accumulation in the 
abdominal area. Moreover, gastrointestinal disorders were observed in 
AFB1-exposed zebrafish larvae, which were characterized by reduced 
gut length and functional abnormalities. Data presented herein can 
provide more information for estimating the direct embryotoxicity of 

Fig. 7. Embryonic exposure to AFB1 disrupts yolk lipid metabolism in zebrafish larvae. (A) Gene set enrichment analysis (GSEA) of lipid metabolism and transport- 
associated genes in 120 hpf zebrafish larvae exposed to 0.1 mg/L AFB1. The selected lipid-associated genes were identified in the zebrafish yolk by Fraher et al. 
(2016). FDR: false discovery rate; NES: normalized enrichment score. (B) Heat map illustrating the expression level of 19 lipid-associated genes identified by GSEA 
between the control and the AFB1-exposed larvae. Data represent the normalized gene expression values of the four independent biological replicates per treatment. 
Red asterisks indicate the selected genes for RT-qPCR. (C) RT-qPCR-based analysis of four selected yolk lipid metabolism and transport-related genes after embryonic 
exposure to different sub-lethal concentrations of AFB1 (n = 5 replicates, n = 30 pooled larvae per replicate) (D) Representative images of Oil Red O (ORO) stained 
120 hpf larvae after AFB1 exposure. ORO staining indicates the lipid content and distribution in the larvae. Scale bar = 500 µm. (E) Lipid content was evaluated by 
optical density (OD) measurement. The graph showing OD values of the abdominal region relative to the control (100%) after AFB1 exposure (n = 2 replicates, 
n = 10 larvae per replicate). Data represent the mean and SD. “*” indicates statistical significance at p < 0.05 vs. the control (DMSO). 
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AFB1 and a useful, cost-effective vertebrate model system for developing 
various AFB1-mediated embryotoxicity-reducing strategies. 
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