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Background: The relative importance of variables explaining sex-related differences in

outcomes is scarcely explored in patients undergoing cardiac resynchronization therapy

(CRT). We sought to implement and evaluate machine learning (ML) algorithms for the

prediction of 1- and 3-year all-cause mortality in CRT patients. We also aimed to assess

the sex-specific differences in predictors of mortality utilizing ML.

Methods: Using a retrospective registry of 2,191 CRT patients, ML models were

implemented in 6 partially overlapping patient subsets (all patients, females, or males

with 1- or 3-year follow-up). Each cohort was randomly split into training (80%) and test

sets (20%). After hyperparameter tuning in the training sets, the best performing algorithm

was evaluated in the test sets. Model discrimination was quantified using the area under

the receiver-operating characteristic curves (AUC). The most important predictors were

identified using the permutation feature importances method.

Results: Conditional inference random forest exhibited the best performance with

AUCs of 0.728 (0.645–0.802) and 0.732 (0.681–0.784) for the prediction of 1- and

3-year mortality, respectively. Etiology of heart failure, NYHA class, left ventricular ejection

fraction, and QRS morphology had higher predictive power, whereas hemoglobin was

less important in females compared to males. The importance of atrial fibrillation and

age increased, while the importance of serum creatinine decreased from 1- to 3-year

follow-up in both sexes.

Conclusions: Using ML techniques in combination with easily obtainable clinical

features, our models effectively predicted 1- and 3-year all-cause mortality in CRT

patients. Sex-specific patterns of predictors were identified, showing a dynamic variation

over time.
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INTRODUCTION

Despite the comparable overall lifetime risk of heart failure (HF)
between sexes (1, 2), there are notable differences between males
and females with HF across the entire spectrum of ejection
fraction (EF) (3). In HF patients with reduced EF (HFrEF),
several studies have highlighted sex-related differences that
involve multiple aspects of the syndrome, such as epidemiology,
pathophysiology, phenotyping, and prognosis (4). Nevertheless,
females are under-represented in HFrEF trials questioning their
generalizability and leaving significant gaps in knowledge (4, 5).

While women with HFrEF have better survival and lower
hospitalization rates, they have a greater burden of symptoms
and more impaired health-related quality of life than men (6).
Although sex disparities are also remarkable in the accessibility
to HF device therapy, including cardiac resynchronization
therapy (CRT) (7–9), women are more likely to respond
favorably and derive a greater survival benefit from CRT
implantation (10–13). Nonetheless, the sex-related differences in
both short- and long-term outcomes and the varying importance
of different predictors are still scarcely explored in this patient
population (14). One conceivable explanation could be the
failure of the applied statistical methods to harness the potential
prognostic value of complex interactions between several weaker,
often unexpected risk factors and the outcome. However, this
limitation might be circumvented by advanced data analytic
techniques (15).

To improve predictive modeling and elucidate novel
determinants of a specific outcome, machine learning (ML) has
been increasingly utilized in cardiovascular research (16–20).
ML represents a collection of algorithms that autonomously
acquire knowledge by identifying patterns from complex, multi-
dimensional datasets. ML models can account for interactions
between myriads of predictors and their non-linear associations
with the outcome; therefore, their utilization could potentially
lead to improved explanatory models (21).

In the current study, we sought to implement and evaluate
ML algorithms for the prediction of 1- and 3-year all-cause
mortality among patients undergoing CRT implantation.We also
aimed to explore the sex-specific differences and similarities in
the predictors ofmortality using advancedML-based approaches.

METHODS

Study Population and Protocol
We identified 2,412 patients with chronic HFrEF (NYHA
functional class II-IV) who underwent successful CRT
implantation at the Heart and Vascular Center of Semmelweis
University (Budapest, Hungary) between September 2000
and September 2018. For each patient, pre-implant clinical
characteristics (demographics, medical history, physical
status, vitals, currently applied medical therapy, ECG-,
echocardiographic- and laboratory parameters) and procedural
parameters [type of the implanted device, left ventricular
(LV) lead position] were collected retrospectively from paper-
based or electronic medical records and entered to our
structured database.

The study protocol complies with the Declaration of Helsinki,
and it was approved by the Regional and Institutional Committee
of Science and Research Ethics (Approval No. 161/2019).

Study Outcomes
Follow-up data [status (dead or alive), date of death] was
obtained for all patients by querying the National Health
Insurance Database of Hungary in September 2019. Accordingly,
all patients included in our database were followed for at least 1
year or died within 1 year. In the entire study population, 2,116
patients also had 3-year outcome data available. The primary
endpoint of our study was all-cause mortality.

Feature Selection and Data Pre-processing
The data analysis pipeline, including feature selection, data
pre-processing, and ML model development and evaluation is
illustrated in Figure 1.

Feature selection included two consecutive steps. First,
any feature with ≥40% missing data was removed. Second,
collinear variables (Spearman correlation coefficient ≥ 0.3 or
≤-0.3) were also excluded as variables containing redundant
information might bias the further steps of the analysis
(Supplementary Figure 1). The final set of input features
comprised 30 pre-implant and procedural variables: baseline
demographics and clinical characteristics (n= 10), comorbidities
(n = 6), ECG- (n = 1), laboratory parameters (n = 3), and
currently applied medications (n = 10). The list of candidate
variables and the feature selection process are presented in
Table 1.

Patients with more than 30% of missing values were excluded
from further analyses. Missing values were imputed using
Multiple Imputation by Chained Equations (MICE). As the
range of different continuous features varied widely, Z-score
transformation was applied after imputation to eliminate the
possibility of model bias caused by the differing magnitude of the
numerical values.

ML Model Development and Evaluation
We developed ML models to predict two separate outcomes:
(1) 1-year all-cause mortality, and (2) 3-year all-cause mortality
in the entire cohort, in males and females separately (a
total of 6 separate binary classification tasks). To quantify a
model’s discriminatory power, receiver operating characteristic
curve analysis was performed, and the area under the curve
(AUC) was calculated. Model development included trials of
several binary classifiers such as logistic regression, support
vector machines, k-nearest neighbors classifier, gradient boosting
classifier, traditional random forest (TRF), conditional inference
random forest (CIRF), and multi-layer perceptron.

As the first step of model derivation, 20% of the given
patient subset (all, males or females) was randomly selected
as the holdout (test cohort). This split was performed in a
stratified manner to ensure that the original ratio of outcomes
is preserved in the training and test cohorts. Hyperparameter
tuning was performed with stratified 10-fold cross-validation in
the remaining data (80%, training cohort). The algorithm (with
fine-tuned hyperparameters) exhibiting the highest AUC was
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Structured Database
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using each subset (all/males/females)

Feature Importances

n/a n/a

n/a n/a

with ≥30% missing values

90% training

10x
80% Training

Cohort

Excluding collinear

features

20% Test

Cohort

Excluding features

with ≥40% missing values

n/a n/a

n/a

n/a

n/a X

X

X

X

Change in AUC?

Best ModelAUC

10x

Change in AUC?

10x

..
.

Change in AUC?

10x

Hyperparameter tuning
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FIGURE 1 | The schematic outline of the data analysis pipeline. The data analysis pipeline included three major steps: (1) data pre-processing, (2) machine learning

model development and evaluation, and (3) the calculation of feature importances. During data pre-processing, feature selection was performed, patients with a high

proportion of missing data were excluded, missing values were imputed using MICE, and z-transformation was performed. Then, machine learning models were

implemented in the 6 partially overlapping subsets of patients (in all patients, females, or males of the 1- and 3-year cohorts). Before model training, each patient

subset was split into training and test cohorts (80:20 ratio). Hyperparameter tuning was performed with 10-fold CV in each training cohort. Models’ discriminatory

power was estimated using the area under the receiver-operating characteristic curves. Each of the 6 models was retrained in the given training cohort, and its

performance was evaluated in the corresponding test cohort. Finally, to identify the most important predictors of mortality in each subset, permutation feature

importances were computed from each of the 6 final models. See text for further details. AUC, area under the receiver operating characteristic curve; CRT, cardiac

resynchronization therapy; CV, cross-validation; MICE, Multiple Imputation by Chained Equations.
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TABLE 1 | Steps of feature selection and the list of clinical features included in the machine learning models.

Demographics and

clinical characteristics

Comorbidities ECG Laboratory

parameters

Medications

Included in the ML

models

Age at CRT implantation

Sex

Body mass index

NYHA functional class

HF duration >18 months

Etiology of heart failure

LVEF

LV end-diastolic diameter

Type of implanted device

LV lead position

Hypertension

Diabetes mellitus

Type of AF

COPD

Smoking status

Valvular heart disease

QRS morphology Hemoglobin

Serum sodium

Serum creatinine

ACE-I/ARB

Beta-blockers

CCB

Loop diuretics

Thiazide diuretics

MRA

Digitalis

Amiodarone

Statin

Allopurinol

Excluded due to

collinearity

Height

Weight

History of MI

History of CABG

and/or PCI

Serum urea

GFR

Oral anticoagulants

Excluded due to

≥40% missing

values

Systolic blood pressure

Diastolic blood pressure

Heart rate

LV end-diastolic volume

LV end-systolic volume

QRS duration

PR interval

Lymphocyte

Total cholesterol

Serum uric acid

NT-proBNP

Feature selection included two consecutive steps. First, features missing in more than 40% of patients were excluded. Then, collinear variables (Spearman correlation coefficient ≥0.3 or

≤-0.3) were also eliminated as highly correlated variables might bias the further steps of the analysis. The final set of features included 30 clinical variables: age at CRT implantation, sex,

body mass index, New York Heart Association functional class, heart failure duration >18 months, etiology of heart failure (ischemic or non-ischemic), left ventricular ejection fraction

and end-diastolic diameter assessed with two-dimensional echocardiography, type of the implanted device (CRT-P or CRT-D), left ventricular lead position (anterior, lateral or posterior),

hypertension, diabetes mellitus, type of atrial fibrillation (paroxysmal, persistent or permanent), chronic obstructive pulmonary disease, smoking status, valvular heart disease (moderate

to severe aortic valve disease, moderate to severe mitral valve disease, severe tricuspid regurgitation), QRS morphology (non-LBBB or LBBB), hemoglobin concentration, serum sodium

and creatinine, medical treatment with angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers, beta-blockers, calcium channel blockers, loop diuretics, thiazide

diuretics, mineralocorticoid receptor antagonists, digitalis, amiodarone, statins, and allopurinol.

ACE-I, angiotensin-converting enzyme inhibitors; AF, atrial fibrillation; ARB, angiotensin II receptor blockers; CABG, coronary artery bypass grafting; CCB, calcium channel blocker;

COPD, chronic obstructive pulmonary disease; CRT, cardiac resynchronization therapy; ECG, electrocardiogram; EF, ejection fraction; GFR, glomerular filtration rate; HF, heart failure;

LV, left ventricular; MI, myocardial infarction; ML, machine learning; NYHA, New York Heart Association; NT-proBNP, N-terminal pro-brain natriuretic peptide; MRA, mineralocorticoid

receptor antagonists; PCI, percutaneous coronary intervention.

then retrained in the entire training cohort, and its performance
was evaluated in the test cohort in a statistically independent
way. Finally, calibration of the ML models was assessed in the
test cohort using Brier score (ranging from 0 to 1, with 0
representing the best possible calibration), which is defined as the
mean squared difference between the observed outcomes and the
predicted probabilities.

Feature Importances
To determine the major predictors of 1- and 3-year all-
cause mortality in each patient subset, permutation feature
importances were computed from each of the 6 final models.
Briefly, the importance of an input feature is measured by
calculating the increase in the model’s prediction error after
permuting its values while keeping other features the same as
before. In the current study, permutation was performed 10 times
for each feature. A feature is considered important if shuffling
its values decreases the model’s discriminatory power (AUC)
as the model relies heavily on that feature for the prediction.
On the other hand, a feature is unimportant if shuffling its
values leaves the AUC unchanged because, in this case, the
model ignores the feature while predicting the outcome. After
calculating the importance of each feature, we divided it by
the AUC measured in the dataset before shuffling any of its
features to enable the comparison of feature importances between
different models.

RESULTS

Baseline Clinical Characteristics and
All-Cause Mortality
The final 1- and 3-year cohorts included 2,191 (74.7% males,
56.7% CRT-D) and 1,900 patients (75.0% males, 54.1% CRT-D),
respectively (Figure 2). In the 1-year cohort, 50.4% of the patients
had ischemic etiology of HF, 57.8% had NYHA functional class
III/IV, and the median left ventricular EF (LVEF) was 28 (24–
32) %. In the 3-year cohort, ischemic etiology was reported in
51.5% of the patients, 61.0% presented with NYHA functional
class III/IV, and the median LVEF was 28 (24–32) %. The
baseline clinical characteristics of the patients are summarized in
Tables 2, 3.

In the 1-year cohort, 203 (12.4%) men and 49 (8.8%)
women died during the 1-year follow-up period. Univariable
Cox regression analysis revealed a significantly lower risk of all-
cause mortality in women compared to men [Hazard Ratio (HR):
0.698, 95% Confidence Interval (CI): 0.511–0.954; p = 0.024];
however, after adjusting for age, etiology of HF, QRSmorphology,
type of implanted device, and type of atrial fibrillation (AF,
history of or current), we could not observe a significant
difference between sexes (HR: 0.803, 95% CI: 0.581–1.110;
p= 0.183) (Figure 3A).

As observed in the 1-year cohort, males exhibited significantly
higher mortality rates compared to females in the 3-year cohort
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Structured Database

n = 2,412

1-year Follow-Up
n = 2,412

3-year Follow-Up
n = 2,116

1-year Cohort
n = 2,191

3-year Cohort
n = 1,900

All
n = 2,191

Males
n = 1,637

Females
n = 554

All
n = 1,900

Males
n = 1,425

Females
n = 475

Paper-based

Medical Records

Electronic Medical

Records

Excluded due to

Missing Data
n = 221 n = 216

Machine Learning Analysis

FIGURE 2 | Flowchart illustrating the steps of patient selection. For each patient who underwent successful CRT implantation at our center, pre-implantation clinical

characteristics and procedural parameters were collected retrospectively from paper-based or electronic medical records and entered to our structured database.

After excluding patients with ≥30% missing values, machine learning models were implemented to predict 1- and 3-year all-cause mortality in the entire cohort, in

males and females separately (altogether 6 separate binary classification tasks). CRT, cardiac resynchronization therapy.

as well [502 (35.2%) vs. 113 (23.8%); p < 0.001]. The univariable
Cox regression analysis also confirmed this finding as it showed
a significantly lower risk of all-cause mortality in females
compared to males (HR: 0.625, 95% CI: 0.510–0.767; p < 0.001)
(Figure 3B). Moreover, this difference remained significant even
after adjusting for the previously listed covariates (HR: 0.686, 95%
CI: 0.555–0.848; p < 0.001).

Patients with ischemic etiology had a significantly increased
risk of death in both sexes; however, this difference was more
pronounced in females compared to males in the 1- and 3-year
cohorts as well (Supplementary Figure 2).

ML for the Prediction of All-Cause Mortality
Among the evaluated ML classifiers, CIRF exhibited the best
performance for discrimination between survival/all-cause death
with an AUC of 0.717 (95% CI: 0.676–0.758) and 0.739
(95% CI: 0.715–0.762) in the 1- and 3-year training cohorts,
respectively (Supplementary Tables 5, 6). When evaluating the
models’ discriminatory power in the test cohorts, we observed an
AUC of 0.728 (95% CI: 0.645–0.802) and 0.732 (95% CI: 0.681–
0.784) for the prediction of 1- and 3-year mortality, respectively.
Models were also trained and tested separately in the female and
male subsets of the 1- and 3-year cohorts. The AUCs ranged
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TABLE 2 | Clinical characteristics of the 1-year cohort.

All patients

(n = 2,191)

Males

(n = 1,637)

Females

(n = 554)

p-value

Demographics, vitals, and key electrophysiological characteristics

Age, years* 68 (61–74) 68 (60–74) 69 (63–75) <0.001

Weight, kg (1,423) 80 (70–91) 84 (75–95) 70 (60–80) <0.001

Height, cm (1,413) 172 (165–177) 175 (170–179) 162 (157–167) <0.001

BMI, kg/m2 (1,413)* 27.4 (24.5–30.7) 27.6 (24.8–30.8) 26.7 (23.4–30.5) <0.001

SBP, mmHg (807) 125 (111–136) 125 (111–136) 124 (110–136) 0.403

DBP, mmHg (807) 73 (65–80) 74 (65–80) 71 (64–80) 0.089

NYHA III/IV (1,803)* 1,043 (57.8) 781 (57.9) 262 (57.7) 0.945

CRT-D* 1,239 (56.5) 1,005 (61.4) 234 (42.2) <0.001

QRS duration, ms (754) 160 (140–180) 160 (140–180) 160 (140–170) 0.068

QRS morphology, LBBB* 1,572 (71.7) 1,127 (68.8) 445 (80.3) <0.001

LV lead position (1,890)*

Anterior 84 (4.4) 62 (4.4) 22 (4.7)

Lateral 1,227 (64.9) 932 (65.7) 295 (62.5)

Posterior 579 (30.6) 424 (25.9) 155 (32.8) 0.442

Medical history

Ischemic etiology of HF* 1,104 (50.4) 902 (55.1) 202 (36.5) <0.001

History of MI 868 (39.6) 713 (43.6) 155 (28.0) <0.001

HF duration >18 months* 680 (31.0) 519 (31.7) 161 (29.1) 0.245

History of or current AF*

No AF 1,394 (63.6) 998 (61.0) 396 (71.5)

Paroxysmal 342 (15.6) 257 (15.7) 85 (15.3)

Persistent 59 (2.7) 51 (3.1) 8 (1.4)

Permanent 396 (18.1) 331 (20.2) 65 (11.7) <0.001

Valvular heart disease* 135 (6.2) 99 (6.0) 36 (6.5) 0.780

Hypertension* 1,618 (73.8) 1,216 (74.3) 402 (72.6) 0.459

Diabetes mellitus* 813 (37.1) 624 (38.1) 189 (34.1) 0.092

COPD* 325 (14.8) 239 (14.6) 86 (15.5) 0.597

Current smoker* 131 (6.0) 103 (6.3) 28 (5.1) 0.288

Laboratory parameters

Hemoglobin, g/L (1,440)* 136 (123–148) 139 (126–150) 130 (120–140) <0.001

Serum sodium, mmol/L (1,374)* 138 (136–141) 138 (136–140) 139 (136–141) 0.019

Total cholesterol, mmol/L (956) 4.1 (3.4–5.1) 4.0 (3.3–4.9) 4.7 (3.6–5.5) <0.001

Serum creatinine, µmol/L (1,473)* 101 (82–131) 105 (87–134) 86 (71–112) <0.001

Urea, mmol/L (1,445) 8.3 (6.4–11.7) 8.6 (6.6–11.8) 7.5 (6.0–10.9) <0.001

Uric acid, µmol/L (766) 405 (322–492) 412 (330–494) 383 (307–474) 0.020

NT-proBNP, pg/mL (309) 2,640 (1,262–3,699) 2,490 (1,367–3,473) 2,680 (1,250–3,710) 0.938

Echocardiographic parameters

LV ejection fraction, % (1,610)* 28 (24–32) 28 (23–32) 28 (25–33) 0.046

LVEDD, mL (1,610)* 64 (58–70) 65 (59–71) 61 (55–66) <0.001

Medications

ACE-I/ARB* 2,014 (91.9) 1,509 (92.2) 505 (91.2) 0.499

Beta-blocker* 1,951 (89.0) 1,457 (89.0) 494 (89.2) 0.914

Ca-channel blocker* 127 (5.8) 99 (6.0) 28 (5.1) 0.387

Loop diuretics* 1,757 (80.2) 1,315 (80.3) 442 (79.8) 0.780

Thiazide diuretics* 516 (23.6) 402 (24.6) 114 (20.6) 0.056

MRA* 1,497 (68.3) 1,115 (68.1) 382 (69.0) 0.713

Digitalis* 464 (21.2) 359 (21.9) 105 (19.0) 0.138

Amiodarone* 593 (27.1) 466 (28.5) 127 (22.9) 0.011

Statin* 1,314 (60.0) 995 (60.8) 319 (57.6) 0.184

(Continued)
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TABLE 2 | Continued

All patients

(n = 2,191)

Males

(n = 1,637)

Females

(n = 554)

p-value

Allopurinol* 591 (27.0) 475 (29.0) 116 (20.9) <0.001

Oral anticoagulants 729 (33.3) 598 (36.5) 131 (23.6) <0.001

Outcome

1-year all-cause mortality 252 (11.5) 203 (12.4) 49 (8.8) 0.028

*Features included in the machine learning models.

The value (in parenthesis) after a feature’s name indicates the number of patients with available data. If there is no value reported, the given feature was available for all patients.

Continuous variables are presented as median (interquartile range), categorical variables as n (%). The comparison between males and females was performed using unpaired Student’s

t-test or Mann-Whitney U test for continuous variables, Chi-squared or Fisher’s exact test for categorical variables, as appropriate.

ACE-I, angiotensin-converting enzyme inhibitors; AF, atrial fibrillation; ARB, angiotensin receptor blocker; BMI, body mass index; COPD, chronic obstructive pulmonary disease; CRT-D,

cardiac resynchronization therapy defibrillator; DBP, diastolic blood pressure; DM, diabetes mellitus; HF, heart failure; LBBB, left bundle branch block; LVEDD, left ventricular end-diastolic

diameter; MI, myocardial infarction; MRA, mineralocorticoid receptor antagonist; NT-proBNP, N-terminal pro-brain natriuretic peptide; NYHA, New York Heart Association functional class;

SBP, systolic blood pressure.

from 0.712 to 0.748 in the training sets and from 0.681 to 0.798
in the test sets suggesting a modest variability in the models’
predictive capabilities across the different subsets of patients
(Supplementary Tables 7, 8).

After sorting the patients in ascending order based on the
predicted probability of death and plotting the distribution of
probability values, the accumulation of patients who died during
the given follow-up period could be observed in the higher risk
regions of the plots (Supplementary Figure 3). These findings
suggest that our models can perform risk stratification effectively.

The Brier score—measuring the accuracy of the probabilistic
predictions—for the 1- and 3-year models were 0.197 and
0.201, indicating a sufficiently good calibration of our models.
Supplementary Table 9 summarizes the Brier scores for the
remainder of the CIRF models.

Most Important Predictors of Mortality as
Assessed Using ML
Leading predictors of all-cause mortality are illustrated in
Figure 4, and the comprehensive list of feature importances is
provided as Supplementary Tables 10, 11.

Top Predictors of Mortality in the 1- and 3-Year

Cohorts
In the overall study population (including both sexes), the
most important predictor of 1-year mortality was serum
sodium, which was followed by serum creatinine, hemoglobin
concentration, age, and etiology of HF (Figure 4). These features
were also found among the strongest predictors of 3-year
mortality, however, in different order of importance (serum
sodium, age at implantation, hemoglobin concentration, serum
creatinine, and etiology). Digitalis and type of AF were found to
show the most prominent change in their importance from 1 to 3
years (both p < 0.001).

Sex-Specific Patterns of Mortality Predictors at

1-Year Follow-Up
We observed several sex-specific differences during the subgroup
analysis. In males, the top predictors of 1-year mortality were
hemoglobin concentration, serum sodium, serum creatinine,

LBBB morphology, and age, whereas, in females, the most
important predictors were serum sodium, etiology, LVEF, age,
and serum creatinine (Figure 4).

The comparison of predictors by sex at 1-year revealed that
etiology (p < 0.001), LVEF (p < 0.001), and treatment with
amiodarone (p< 0.01) were at least twice as important in females
as in males. Moreover, age at implantation and NYHA functional
class were also significantly more predictive for 1-year mortality
in women compared to men (both p < 0.001). Whereas, in
males, hemoglobin concentration, type of the implanted device,
treatment with allopurinol had significantly higher predictive
power than in females (all p < 0.001).

Sex-Specific Patterns of Mortality Predictors at

3-Year Follow-Up
In males, the strongest determinants of 3-year mortality were
serum sodium, hemoglobin concentration, age at implantation,
serum creatinine, and allopurinol, whereas, in females, these
features were serum sodium, age at implantation, type of
AF, NYHA functional class, and etiology in decreasing order
(Figure 4).

Regarding females, NYHA functional class, etiology, LVEF,
and type of AF exhibited significantly higher predictive power
than inmen (all p< 0.001). Inmales, features with at least a 2-fold
higher importance were loop diuretics (p < 0.001), hemoglobin
concentration (p = 0.021), allopurinol (p < 0.001), diabetes (p
< 0.001), LV lead position (p < 0.001) and LBBB morphology
(p < 0.001).

Longitudinal Changes in the Sex-Specific Patterns of

Mortality Predictors
We also identified features with the most prominent changes in
importance from 1 to 3 years of follow-up.

Among males, the most prominent increase of feature
importance occurred in LV lead position, NYHA class, age, type
of AF, hypertension, and digitalis (all p < 0.001). The importance
of serum creatinine declined significantly (p= 0.026).

In females, we observed the greatest increase in the
importance of NYHA functional class (p < 0.001), type of AF
(p < 0.001), hypertension (p < 0.001), and age at implantation
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TABLE 3 | Clinical characteristics of the 3-year cohort.

All patients

(n = 1,900)

Males

(n = 1,425)

Females

(n = 475)

p-value

Demographics, vitals, and key electrophysiological characteristics

Age, years* 68 (61–74) 68 (60–74) 69 (63–75) <0.001

Weight, kg (1,280) 80 (70–90) 84 (75–95) 70 (60–80) <0.001

Height, cm (1,270) 172 (165–177) 175 (170–179) 161 (157–167) <0.001

BMI, kg/m2 (1,270)* 27.3 (24.3–30.5) 27.5 (24.7–30.5) 26.5 (23.3–30.5) <0.001

SBP, mmHg (660) 123 (110–136) 124 (111–136) 122 (110–135) 0.463

DBP, mmHg (660) 72 (65–80) 72 (65–80) 71 (64–80) 0.292

NYHA III/IV (1,568)* 956 (61.0) 719 (61.0) 237 (60.9) 0.984

CRT-D* 1,027 (54.1) 839 (58.9) 188 (39.6) <0.001

QRS duration, ms (718) 160 (140–180) 160 (142–180) 160 (140–170) 0.035

QRS morphology, LBBB* 1,385 (72.9) 1,000 (70.2) 385 (81.1) <0.001

LV lead position (1,630)*

Anterior 75 (4.6) 54 (4.4) 21 (5.2)

Lateral 1,072 (65.8) 814 (66.3) 258 (64.0)

Posterior 483 (29.6) 359 (29.3) 124 (30.8) 0.633

Medical history

Ischemic etiology* 979 (51.5) 802 (56.3) 177 (37.3) <0.001

History of MI 793 (41.7) 655 (46.0) 138 (29.1) <0.001

HF duration >18 months* 616 (32.4) 477 (33.5) 139 (29.3) 0.090

History of or current AF*

No AF 1,181 (62.2) 850 (59.6) 331 (69.7)

Paroxysmal 306 (16.1) 227 (15.9) 79 (16.6)

Persistent 49 (2.6) 43 (3.0) 6 (1.3)

Permanent 364 (19.2) 305 (21.4) 59 (12.4) <0.001

Valvular heart disease* 131 (6.9) 97 (6.8) 34 (7.2) 0.875

Hypertension* 1,417 (74.6) 1,067 (74.9) 350 (73.7) 0.648

Diabetes mellitus* 704 (37.1) 542 (38.0) 162 (34.1) 0.125

COPD* 288 (15.2) 213 (14.9) 75 (15.8) 0.658

Current smoker* 110 (5.8) 89 (6.2) 21 (4.4) 0.140

Laboratory parameters

Hemoglobin, g/L (1,254)* 136 (123–148) 139 (125–150) 131 (120–140) <0.001

Serum sodium, mmol/L (1,180)* 138 (136–141) 138 (136–140) 139 (136–141) 0.020

Total cholesterol, mmol/L (827) 4.1 (3.4–5.1) 4 (3.3–4.9) 4.7 (3.6–5.5) <0.001

Serum creatinine, µmol/L (1,278)* 102 (82–132) 106 (87–135) 87 (71–113) <0.001

Urea, mmol/L (1,254) 8.5 (6.4–11.7) 8.8 (6.6–12.0) 7.7 (6.1–10.9) <0.001

Uric acid, µmol/L (655) 406 (323–494) 409 (329–495) 386 (313–479) 0.082

NT-proBNP, pg/mL (237) 2,758 (1,398–3,570) 2,610 (1,496–3,376) 2,804 (1,290–3,616) 0.931

Echocardiographic parameters

LV ejection fraction, % (1,378)* 28 (24–32) 28 (23–32) 28 (25–32) 0.185

LVEDD, mL (1,378)* 64 (58–70) 65 (59–71) 61 (56–67) <0.001

Medications

ACE-I/ARB* 1,731 (91.1) 1,303 (91.4) 428 (90.1) 0.429

Beta-blocker* 1,691 (89.0) 1,264 (88.7) 427 (89.9) 0.472

Ca-channel blocker* 106 (5.6) 81 (5.7) 25 (5.3) 0.729

Loop diuretics* 1,526 (80.3) 1,153 (80.9) 373 (78.5) 0.257

Thiazide diuretics* 456 (24.0) 354 (24.8) 102 (21.5) 0.137

MRA* 1,270 (66.8) 953 (66.9) 317 (66.7) 0.955

Digitalis* 442 (23.3) 341 (23.9) 101 (21.3) 0.234

Amiodarone* 528 (27.8) 415 (29.1) 113 (23.8) 0.025

Statin* 1,134 (59.7) 862 (60.5) 272 (57.3) 0.214

(Continued)

Frontiers in Cardiovascular Medicine | www.frontiersin.org 8 February 2021 | Volume 8 | Article 611055

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Tokodi et al. Sex Differences in CRT Patients

TABLE 3 | Continued

All patients

(n = 1,900)

Males

(n = 1,425)

Females

(n = 475)

p-value

Allopurinol* 521 (27.4) 422 (29.6) 99 (20.8) <0.001

Oral anticoagulants 627 (33.0) 510 (35.8) 117 (24.6) <0.001

Outcome

3-year all-cause mortality 615 (32.4) 502 (35.2) 113 (23.8) <0.001

*Features included in the machine learning models.

The value (in parenthesis) after a feature’s name indicates the number of patients with available data. If there is no value reported, the given feature was available for all patients.

Continuous variables are presented as median (interquartile range), categorical variables as n (%). The comparison between males and females was performed using unpaired Student’s

t-test or Mann-Whitney U test for continuous variables, Chi-squared or Fisher’s exact test for categorical variables, as appropriate.

ACE-I, angiotensin-converting enzyme inhibitors; AF, atrial fibrillation; ARB, angiotensin receptor blocker; BMI, body mass index; COPD, chronic obstructive pulmonary disease; CRT-D,

cardiac resynchronization therapy defibrillator; DBP, diastolic blood pressure; DM, diabetes mellitus; HF, heart failure; LBBB, left bundle branch block; LVEDD, left ventricular end-diastolic

diameter; MI, myocardial infarction; MRA, mineralocorticoid receptor antagonist; NT-proBNP, N-terminal pro-brain natriuretic peptide; NYHA, New York Heart Association functional class;

SBP, systolic blood pressure.
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FIGURE 3 | Kaplan-Meier curves for males and females in the 1- (A) and 3-year (B) cohorts. Kaplan-Meier curve analysis illustrates the difference in the survival of

male and female CRT patients during 1- and 3-year follow-up. Cox proportional hazards models were used to compute hazard ratios with 95% confidence intervals.

Hazard ratios were adjusted for age (at implantation), QRS morphology, etiology of heart failure, the type of the implanted device, and the type of atrial fibrillation. CI,

confidence interval; CRT, cardiac resynchronization therapy; HR, hazard ratio.

(p < 0.014). Among the top 10 predictors, the most considerable
decrease from 1- to 3-year in feature importance was noted in the
following factors: serum creatinine, LV end-diastolic diameter,
QRS morphology, and amiodarone (all p < 0.001).

In-depth Analysis of the Associations Between Top

Predictors and Outcomes
The association between the most important predictors and the
predicted outcome is visually presented in Figures 5, 6. Older
age, higher serum levels of creatinine, lower values of LVEF,
serum sodium, hemoglobin concentration, ischemic etiology,
non-LBBB morphology, higher NYHA classes, and the history
of or current paroxysmal, persistent or permanent AF were
associated with a higher predicted probability of 1- and 3-year

all-cause mortality. Males exhibited higher values of predicted
probability of all-cause death in all examined features compared
to females. However, as ML models capture complex, high-level
interactions among a multitude of variables, it is challenging
to determine the effect of a single feature on the predicted
probability of mortality, and the results of univariable analyses
should be interpreted with caution.

DISCUSSION

Using data from a single-center cohort of HF patients undergoing
CRT implantation, we developed and evaluated ML-based
algorithms for the prediction of 1- and 3-year all-cause mortality.
The resulting CIRF models demonstrated good discriminatory
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FIGURE 4 | The most important predictors of 1- and 3-year all-cause mortality in patients undergoing CRT implantation. The importance of each feature was

quantified with the permutation feature importances method, which measures the importance of a feature by calculating the mean decrease in the model’s

performance (area under the receiver-operating characteristic curve) after permuting its values 10 times (see text for further details). To keep the data comparable

between the different models, we identified the top 5 predictors in each model and took the union of these features; then, we plotted the results on radar charts. AF,

atrial fibrillation; LBBB, left bundle branch block; LVEF, left ventricular ejection fraction; NYHA, New York Heart Association.

power in assessing the risk of mortality with an AUC over
0.700 at 1- and 3-year follow-up. Moreover, ML performed
substantially well across patient subsets containing exclusively
males or females (AUCs ranging from 0.681 to 0.798). Serum
sodium, creatinine, hemoglobin, age, and HF etiology were
among the most important determinants of short- and mid-term
mortality; however, their relative importance varied over time.

As expected, female sex was associated with significantly better
survival rates in our cohort as well. Sex-specific patterns were
also identified in the predictors of mortality. The role of HF
etiology (ischemic or non-ischemic), NYHA functional class, and
LVEF were more pronounced in females, whereas hemoglobin
concentration, QRS morphology, and treatment with allopurinol
were notably more predictive for all-cause mortality in males.
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FIGURE 5 | Effect of the most important features on the predicted probability of 1-year all-cause mortality in the training cohorts. The probability of death was

calculated for each patient in the training cohort with 10-fold cross-validation. The predicted probability is plotted for each patient, and second-order polynomial

trendlines are fitted to their values. *p < 0.05 vs. non-ischemic/non-LBBB morphology/NYHA class II/no AF, unpaired Student’s t-test or Mann-Whitney U test.

Abbreviations as in Figure 4.

Risk Stratification of HF Patients Using ML
The personalized prediction of prognosis is fundamental to
patient-centered care, both in optimizing treatment strategies
and informing patients as part of shared decision making. For
this purpose, an abundance of prediction models has been
developed; however, most of them had achieved only modest
success, particularly when they were applied in HF populations
other than those from which the scores were derived (22, 23).
The unsatisfactory results of previous HF risk scores are likely
due to multiple causes, including the fact that most of them
were created using conventional statistical methods that failed
to capture high-dimensional interactions among predictors that
bear relevant prognostic information.

In contrast to traditional statistics, ML was explicitly designed
to reveal and harness these correlations. Several studies have
proved that these advanced data analytic approaches can leverage
the complex, higher-level interplay between predictors and
outcomes to achieve better discrimination. ML can improve
the care of HF patients in various ways, e.g., by augmenting
the prediction of readmission after HF hospitalization or by
predicting the risk of mortality (16, 17, 19). In HF patients
undergoing CRT implantation, our research group has previously

confirmed the superiority of ML over pre-existing risk scores
(24), and similar results have been reported by others as well
(25, 26). Underpinning these findings, we were able to predict the
1- and 3-year mortality of CRT patients with good discrimination
and excellent calibration, even in subsets of patients divided by
sex. In light of the promising results of our single-center study,
we will endeavor to validate our models in external cohorts in a
multi-centric manner.

In our analysis, CIRF exhibited the best discriminative ability
for predicting both 1- and 3-year mortality. To understand
the outstanding performance of tree-based approaches such as
CIRF in outcome prediction, an important difference between
conventional regression models and tree-based methods should
be highlighted. The former favors variables that have a uniform
effect across the entire patient population, whereas the latter can
uncover variables that might act differently in different patient
subgroups. This is essential for personalized prognostication as in
an individual patient, the discriminatory power of a given feature
may be significantly enhanced or overshadowed by others. Due
to this attribute, tree-based methods such as TRF and CIRF are
extremely suitable for application as clinical decision-making
tools (27).
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FIGURE 6 | Effect of the most important features on the predicted probability of 3-year all-cause mortality in the training cohorts. The probability of death was

calculated for each patient in the training cohort with 10-fold cross-validation. The predicted probabilities are plotted for each patient, and second-order polynomial

trendlines are fitted to their values. *p < 0.05 vs. non-ischemic/non-LBBB morphology/ NYHA class II/no AF, unpaired Student’s t-test or Mann-Whitney U test.

Abbreviations as in Figure 4.

Sex-Specific Differences in Outcomes
Following CRT Implantation
Sex is increasingly recognized as an important modulator of
outcomes in CRT patients, and several studies such as the
MADIT-CRT (10), the RAFT (28), or the MASCOT (29) trials
have suggested a greater CRT benefit in women. Despite the
expanding knowledge about sex-related differences in HFrEF, the
reason women benefit more thanmen fromCRT remains unclear
(14). Numerous plausible explanations have been proposed,
such as the dissimilarities between sexes in the frequency of
ischemic cardiomyopathy (30), AF, and comorbidities (9), or
the sex-related differences in body height, LV size, and QRS
duration (31, 32). In addition, the impact of sex hormones on
the pathophysiology of HF or the sex-specific characteristics of
pharmacodynamics and pharmacokinetics are also considerable
factors (4, 33).

The sex-specific effects of QRS prolongation and morphology
on outcomes have been intensively investigated in CRT patients
(30, 31, 34–37). Thus, the findings of these studies have prompted
calls for sex-specific guideline recommendations regarding the
selection of CRT recipients. As women have shorter QRS
durations than men in the absence of any conduction delay, they

aremore likely to exhibit a true LBBB compared tomen at shorter
QRS duration (38, 39). It has also been reported that among
patients with LBBB and non-ischemic etiology, women have
electrical dyssynchrony more frequently compared to men at
any given QRS duration, and consequently, they would exhibit a
better response to CRT (35). According to the study conducted by
Beela et al., the interaction between HF etiology and mechanical
dyssynchrony seems to represent another important aspect:
due to the lower rate of ischemic etiology and the lower
extent of scarred myocardium, women have more frequently
uncomplicated patterns of LBBB-like mechanical dyssynchrony
which is better amendable by CRT (30).

The beneficial effects of CRT also depend on device
programming and the percentage of effective biventricular
pacing. Notably, that latter significantly varies by sex, and
therefore, sex-specific CRT programming has attracted increased
attention (40). According to the results of the SMART-AV trial,
the optimization of atrioventricular delay intervals is associated
with improved outcomes in women but not in men (41), which
might be attributable to the inherent sex-related differences
in atrial geometry and PR intervals. A higher percentage of
biventricular pacing has also been reported in women (29, 41, 42),
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most probably due to the lower rate of atrial fibrillation compared
to men (43, 44). This could also contribute to the observed
differences in mortality between sexes as even a small increment
in the biventricular pacing rate may improve outcomes (45).

Although there are still many open questions, it is clear that
multiple intercorrelated factors contribute to this phenomenon.
Therefore, during the search for answers, ML-based approaches
may come in handy, as they are particularly helpful in
uncovering hidden patterns in large datasets by simultaneously
interpreting predictors even in the presence of complex, non-
linear interactions.

Sex-Specific Patterns in Mortality
Predictors
Given the sex-related differences in the anatomy and physiology
of the cardiovascular system, encountering dissimilarities in the
importance of prognostic predictors between males and females
is to be expected in CRT patients. Nevertheless, there is only
a limited number of publications dedicated to the thorough
exploration of this topic. To the best of our knowledge, our
study is the first that evaluated the sex-related differences and
similarities in mortality predictors of CRT patients using ML. In
our analysis, we observed significant variations in the importance
of several predictors such as HF etiology, NYHA functional class,
LVEF, and AF between sexes, to name a few.

Utilizing the tools of conventional statistics, the sex-specific
prognostic value of HF etiology has been previously investigated
in large cohorts of HFrEF patients. In the MAGGIC meta-
analysis, the ischemic etiology appeared to attenuate the
protective effect of female sex on prognosis (46). In addition,
ischemic cardiomyopathy and the extent of myocardial scar were
found to be significant predictors of mortality in females but not
in males among CRT patients (30). In line with this evidence, the
paramount importance of HF etiology in women was proved in
our study as well.

When analyzing the interaction between sex and different
covariates in the prediction of survival after CRT implantation,
Beela et al. reported that NYHA class was a significant predictor
in males only (30). Moreover, among HFrEF patients, NYHA
class had a more prominent prognostic value in men than in
women (3). Contrary to these findings, a stronger association of
NYHA functional class with outcomes was observed in females
in our current analysis and the BEST trial as well (47).

Another well-established prognostic factor is LVEF, whose
interaction with sex in the prediction of all-cause death has
been demonstrated in CRT patients (30). Complementing these
findings and the results of the BEST trial (47), we have also
demonstrated that LVEF is a stronger predictor of prognosis in
women than in men.

In HFrEF patients, most studies agree on the prognostic value
of AF; however, there is some inconsistency regarding its exact
role as some investigations attribute more prognostic impact
to AF in females (47), whereas others observed comparable
predictive power inmales and females (3, 30). Our results support
the former as we found AF to have a more prominent effect on
outcomes in females.

According to our analysis, the prognostic relevance of
hyponatremia and renal function should also be emphasized in
CRT patients. Our results are in accordance with the findings
of Zusterzeel et al., who reported that despite being significant
determinants in both sexes, serum creatinine and hyponatremia
appeared to be stronger predictors in women than in men (34).

Lately, the interplay between sex and diabetes in HFrEF
patients has attracted increased attention among researchers.
Confirming the findings of the MAGGIC (46), the recently
published analysis of the ASIAN-HF registry demonstrated that
diabetes is coupled with a greater risk of adverse outcomes in
women than in men (48). In contrast, diabetes was associated
with a higher risk of all-cause death or HF hospitalization in
males in the Swedish HF Registry (3), and it was proven to
be a significant predictor only in men in the BEST trial (47).
Interestingly, in our study, diabetes was not ranked among the
top five predictors in any of the analyzed patient subsets, and
we detected inter-sex differences in its importance only at 3-
year follow-up.

Some of our findings coincide with those of previous studies,
whereas some others may not. These apparent discrepancies
might be partly attributable to the fact that most studies
applied Cox proportional hazards regression, whereas we utilized
an entirely different methodology that captures other aspects
of associations between risk factors and outcomes. Although
the exact reasons behind these contradicting results should
be clarified in further investigations, our findings underscore
the necessity of sex-specific approaches in the management of
HFrEF patients.

Limitations
Despite the highlighted advantages, there are a few limitations
to be acknowledged. First, our study represents results from
a single center. As we were aware of this limitation, we
performed hyperparameter tuning with 10-fold cross-validation
in the training cohorts, and we also tested our models in
statistically independent test cohorts to enhance generalizability.
Nonetheless, as the next step, the robustness of our models
should be tested in external populations as well. Second, the
utilized database bears the inherent limitations of retrospective
data collection, such as the higher proportion of missing data
(compared to prospective trials) and the heterogeneity partly
attributable to the changes in guideline recommendations
over the years. However, the use of such real-world data holds
the potential for better generalizability. Third, our models
use baseline (pre-implant and procedural) variables without
incorporating the time-varying values of these parameters.
Although a dynamic model integrating values of the same
parameter from multiple time points may be superior, in the
present study, we aimed to predict 1- and 3-year mortality using
clinical data that could be acquired at device implantation.
Finally, there may remain additional domains of variables
(e.g., imaging data, novel biomarkers, genetics, or quality of
life questionnaires) that could further improve the predictive
capability of our models. Future work should explore the
addition of such features to enhance the models proposed in the
present study.
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CONCLUSIONS

Using advanced ML techniques in combination with easily
obtainable clinical features, our models effectively predicted
1- and 3-year all-cause mortality in patients undergoing CRT
implantation. ML also exhibited good discriminative ability
in patient subsets containing males or females exclusively.
Moreover, sex-specific patterns of mortality predictors were
identified, which also changed over time. These models lay the
foundation stone for future testing of their clinical utility as
decision support tools to optimize candidate selection and to
improve the prognostication of CRT patients.
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