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To evaluate the expected availability of a backbone network service, the administrator should

consider all possible failure scenarios under the specific service availability model stipulated in the

corresponding service-level agreement. Given the increase in natural disasters and malicious attacks

with geographically extensive impact, considering only independent single component failures is often

insufficient. In this paper, we build a stochastic model of geographically correlated link failures caused

by disasters, to estimate the hazards an optical backbone network may be prone to and to understand

the complex correlation between possible link failures. We first consider link failures only, and then we

extend our model to capture also node failures. With such a model, one can quickly extract information,

such as the probability of an arbitrary set of network resources to fail simultaneously, the probability

of two nodes to be disconnected, the probability of a path to survive a disaster, etc. Furthermore, we

introduce standard data structures and a unified terminology on Probabilistic Shared Risk Link Groups

(PSRLGs), along with a pre-computation process, which represents the failure probability of a set of

resources succinctly. In particular, we generate, in polynomial time, a quasilinear-sized data structure,

which allows the efficient computation of the cumulative failure probability of any set of network

elements. Our evaluation is based on carefully pre-processed seismic hazard data matched to real-world

optical backbone network topologies.

I. INTRODUCTION

A crucial part of network management is guaranteeing high availability of network services.

For backbone optical network, the required level of service availability is usually explicitly

defined in a contract between the communication service provider (CSP) and the customer, called

service-level agreement (SLA). A violation of the agreed-upon service availability may lead to

a financial penalty for the CSP, hence, CSPs must carefully (under-) estimate the availability of

their services and, if necessary, reserve protection resources and implement recovery schemes

to meet the availability demands. A typical availability value is “five-nines” (99.999%), which

translates to an average of at most 5.26 minutes downtime per year. However, a recent taxonomy

of Internet failures [2] has revealed that big network outages last much longer, and are often

caused by disasters that are beyond the protection schemes deployed, or due to not properly

taking into account the co-dependency, and hence correlation, in tightly-coupled systems (most

often by wrongly assume link-failure events to be independent [3]–[5]).

The problem of correlated network element failures has become more severe in the last

decades, due to the increased use of virtual environments, whose physical structure is typically

hidden from the user. Nevertheless, networks are built on physical infrastructure and comprise

elements such as optical cross-connects and fibers, which are prone to physical failures. While
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Fig. 1. Main contributions: We offer 1) standard data structures (CFPs and FPs) for storing joint failure probabilities of link
sets, 2) a tractable stochastic model of network element failures caused by disasters, and finally 3) providing the seismic hazard
data represented it in a more precise way than the usual hazard maps.

some of these failures are isolated, in many cases, several nodes and links located in a geographic

area fail simultaneously, e.g., as a result of a natural disaster, such as an earthquake, a hurricane,

or a tsunami [6], [7]. A recent example is a few days long telecom outage during Cyclone

Amphan in West Bengal in May of 2020 as a result of around 100 fiber cuts due to tree falls by

a 190km/h wind. Such geographically correlated failure events are also called regional failures

and, due to their significant impact, are receiving increased attention [3], [7]–[24]. Unfortunately,

in addition to natural disasters, network operators also need to prepare more for destructive human

activities, such as terrorist attacks.

A. Related Work

Computing availability in the presence of independent single-point failures is a well-investigated

topic (cf. [25] and references therein). Also dealing with correlated failures has a long history

in the form of Shared Risk Link Groups (SRLGs) (e.g., [23], [26]–[30]). An SRLG typically

comprises few network components (links or nodes) with considerable risk of failing together.

There have been some efforts to attach probability values to an SRLG, called Probabilistic SRLG

(PSRLG) [31], [32]. A natural approach is to select a set of disaster scenarios as input [8], e.g.,

based on historical data. Mostly, it is assumed that the risk groups are given, after which, for

example, a pair of risk-disjoint paths need to be found. There has been some work, e.g., [23],

[33], where the risk groups are based on the proximity of links to each other, which may be

considered a simplistic form of geographically correlated failures. The terminology on PSRLGs

has not been unified yet.

Much of the work on regional failures has assumed a given disaster shape (often a circular disk

or even a line segment) and, under that particular model, has addressed specific sub-problems in

network planning, like finding the most vulnerable part(s) of the network [9]–[11], [15], studying

the impact on the network of a randomly placed disaster [19]–[21], designing a network and its



services with disaster resiliency in mind [12], [14], [16], [17], and (re)routing of connections to

minimize service impact due to a disaster [13], [22]. Some work has considered probabilities,

either in the context of a disaster having a certain probability of disconnecting a link, e.g., [3],

or in the context of only having partial (probabilistic) information on the geographical layout of

a network, e.g., [18].

While the papers mentioned above considered geographically correlated failures, a common

property of the targeted sub-problems is to search for the location(s) where a disaster will cause

the maximum expected damage to the network. In particular, this is a crude averaging process

that is unable to exhibit correlations among many important failure events. The problem of

precisely and quickly calculating the correlations between link failures for a more thorough

network vulnerability assessment has not been addressed sufficiently.

B. Main Contributions

The main contributions of this paper are the following:

• We provide a general stochastic model of disasters in order to explicitly capture the corre-

lations between resource failures, as a result of regional disasters.

• To unify the terminology, we offer two natural standard definitions of the meaning of the

probability involved in Probabilistic Shared Risk link Groups (PSRLGs). These definitions

are analogous to probability density functions (PDFs), and their cumulative distribution

functions (CDFs).

• We devise a pre-computation process to perform the necessary numerical integration off-

line. In terms of the network size, there may be exponentially many joint failure events.

However, we construct a concise representation of the joint probability distribution of link

failures, which under some practical assumptions has space complexity O((n + x)ρ3γ2),

where n is the number of nodes, x is the number of link crossings (in practice x � n), ρ

represents a density of the topology, which is independent of the network size, and finally,

γ stands for the maximum number of line segments a (polyline-shaped) link consists of.

• We provide proof-of-concept implementation and simulations, based on real seismic haz-

ard data and network topologies. Our simulations demonstrate how the above-mentioned

stochastic model can be efficiently computed, even on commodity computers. This facilitates

comprehensive service availability analysis considering disaster failures.
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Fig. 2. Computing service availability via a pre-computed data set: while the disaster hazard can be represented more succinctly
using FPs, with CFPs one can achieve lower query times.

Fig. 1 summarizes the three layers of our contributions. On the left, there are two data struc-

tures, analogous to CDF and PDF, which we believe should be the standard way of describing the

joint failure probability of network resource sets. The second layer, in the middle, is a stochastic

model that explicitly takes into account the correlation between the failures of geographically

close-by network elements. In the third layer, on the right, is the input to our framework, which

might need to be pre-processed in order to fit the model. As a specific example, we show how

to pre-process historical earthquake catalogs to provide proper input for our model. This way,

we describe a method of computing PSRLGs of a network from end to end.

This paper is organized as follows: Sec. II presents the framework for computing service

availability, Sec. III explains a stochastic model we use to represent regional failures. Sec.

IV proposes an offline pre-computation process with performance guarantees. Sec. V provides

theoretical bounds on the size and query time of the proposed data structures, and Sec. VI

extends the previously-defined link failure model to cope with arbitrary network resources. Sec.

VII demonstrates how the pre-computation and the query of the data structure can be computed

efficiently. Sec. VIII provides a numerical evaluation of the proposed schemes based on seismic

hazard data. Finally, Sec. IX concludes our work.

II. NETWORK MODEL AND FRAMEWORK TO COMPUTE SERVICE AVAILABILITY

A. Network Model

The network is modeled as an undirected connected geometric graph G = (V, E), with n = |V |

nodes and m = |E | links embedded in R2. The links can be either line segments or polylines

built up from at most γ adjacent line segments (where γ is a parameter of our model). The

number of link crossings is denoted by x. The geometric density of the network topology is the

maximum number of links that can be hit by a single disaster, and is denoted by ρ. The set of



links E is lexicographically sorted, any S ⊆ E is stored as a sorted list. Note that our algorithms

are mostly linear in the network size.

B. Framework to Compute Service Availability

We aim to develop a service availability computation engine, where the task is basically to

translate the compound problem of simultaneous network failures into a scalar. When setting

up an SLA between the user and network provider, the availability of a massive number of

network services must be evaluated. Therefore, we need to avoid committing resource-intensive

computations at every query. Intuitively, there is much redundancy in these queries. The main

idea behind our general framework (depicted on Fig. 2a) is to exploit this redundancy by pre-

computing some numerical integrals representing failure probabilities of sets of network elements.

This transforms the compound geometric and stochastic problem to a static data set. This data set

can address arbitrarily many service availability queries, each of which requiring only a lookup.

We propose two standard data structures for storing the failure probabilities of sets of network

elements: (1) the Cumulative Failure Probability (CFP), and (2) the Link Failure State Probability

(FP). While in this paper we focus on link failure probabilities, if necessary, these structures can

store failure probabilities of both link and node failures (see Sec. VI on extensions of our basic

model), or any other relevant network element.

Definition 1 (Cumulative Failure Probability (CFP)): Given a set of links S ⊆ E , the

cumulative failure probability (CFP) of S is the probability that all links S fail simultaneously

(and possibly other links too).

Definition 2 (Link Failure State Probability (FP)): Given a set of links S ⊆ E , the link failure

state probability (FP) of S is the probability that exactly the links of S fail simultaneously (and

no other links).

In a sense, FPs are like probability density functions (PDFs), while CFPs are like their

cumulative distribution functions (CDFs).

The space complexity of our CFP(resp., FP) availability computation engine is proportional

to the number of link sets S with CFP(S) > 0 (resp., FP(S) > 0). The engine’s time complexity

(namely, its query time) is the time needed to determine the cumulative failure probability of a

given link set.

As it turns out, the CFPand FPdata structures present a space-time trade-off: There are more

link sets with non-zero CFP than FP, since FP(S) > 0, implies that CFP(()S′) for all 2|S | − 1



Input:
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Network:
Failure model: Type: tornado earthquake EMP . . .
Model parameters:
pd : the probability of a disaster of type d in a specific geographic area and time
period;
h(p): quantitative hazard map of the area, that is the probability density function of
the location of the disaster epicenter (e.g. uniform distribution on a bounded area on
R2);
r(p, s): the shape function of the disaster depending on epicenter p and size s
returning the damaged zone of the disaster (e.g. a circular disk centered on p with
radius s · 50km);
Regional disaster model:
Hazard epicenter: random variable on R2 with probability density h().
Relative size: random variable uniform distribution on [0, 1]. Each link fails having
a point in the disaster area defined by shape function r(), the rest remain intact.

×r(p, 1)

Output:
CFP(a) =.0055 CFP(b) =.0055 CFP(c) =.005

CFP(d) =.005 CFP(e) =.005 CFP( f ) =.005CFP(a, b) =.00068 CFP(b, e) =.00064

CFP(a, e) =.00064 CFP(c, e) =.00056

CFP(d, e) =.00056 CFP(d, f ) =.00056

CFP(c, f ) =.00056 CFP(c, b) =.00052

CFP(a, d) =.00052

CFP(a, e, d) =.00031 CFP(b, e, c) =.00031

CFP(a, b, e) =0

Fig. 3. An illustration of the problem inputs and outputs.

nonempty sets such that S′ ⊆ S. On the other hand, availability queries are all expressed as

CFPs, and computing these from FPs requires iterating over all FPs in the data set. In Sec. V,

we study this trade-off in more detail and give formal bounds on the space complexity and query

time for both data structures (see Fig. 2b) when applied to our regional failure model.

C. On Availability Queries when Risk Failures are Correlated

Any availability query can be evaluated by iteratively calling CFP(S), i.e., the probability of

simultaneous failure of all elements in any arbitrary set S. Consider the example network and

corresponding CFPs in Fig. 3. Suppose we need to establish a high-availability connection from

the top node through a working path b and protection path a−e. The unavailability of the working

path is CFP({b}) = 0.0055, and the unavailability of the protection path is CFP({a})+CFP({e})−

CFP({a, e}) = 0.00986. The total connection availability is 1 − CFP({a, b}) − CFP({b, e}) +

CFP({a, b, e}) = 0.9987. In contrast, computing the total connection unavailability on an FP

data set requires iterating over the whole data set.

By considering joint failure probabilities, we have found out that the total connection avail-

ability is below three nines. For comparison, traditional approaches that assume independent path

failures, would have estimated the total connection availability by 1−0.0055·0.00986 = 0.999945,

i.e. four nines. Here, by not considering joint failure probabilities, the traditional approach

significantly overestimates the total connection availability, which can lead to more frequent

SLA violations and a financial burden on the CSP.

Unfortunately, (correlated) network failures are hard to compute and predict. Nonetheless,

to evaluate the expected availability of a service, a network administrator should consider



all possible failure scenarios under the specific service availability model stipulated in the

corresponding SLA.

D. Denomination Issues of Probabilistic SRLGs

Probabilistic extensions of SRLGs are called Probabilistic SRLGs, PSRLGs. The probabilistic

refinement can be defined in multiple ways, thus, in the literature, there are multiple definitions

of PSRLGs. E.g., in the first paper considering probabilistic extensions SRLGs (which was [31]),

each PSRLG event r ∈ R occurs with probability πr , and once a PSRLG event r occurs, link

(i, j) will fail independently of the other links with probability pr
i, j ∈ [0, 1]. Thus, we could call

the [31]-PSRLGs as ’two-stage PSRLGs’. We note that in contrast with this paper, [31] does

not tackle the issue of computing the PSRLGs.

Since both FPs and CFPs are probabilistic extensions of SRLGs, we say that, collectively, these

structures are PSRLGs. Moreover, since any version of probabilistic SRLGs can be described

with the help of (C)FPs, and due to their natural simplicity, we believe (C)FPs are the right

standard way of defining PSRLGs. In the following, we present a model for calculating the list

(C)FPs describing the correlated failure patterns of networks.

III. THE REGIONAL FAILURE MODEL

To compute the probability that a set of links (usually forming a cut) fails, we need to answer

the following question: what is the probability that a set of links S fails simultaneously?

In other words, we need to find the cumulative failure probability of S, i.e. CFP(S), which has

a complex relation with the correlation structure of link failures. Links that lie close together

more often fail simultaneously, while links that are further apart almost never do. In order to

find CFP(S), we first propose a general stochastic model of possible network failure events.

After some pre-computation, this will allow us to build the succinct representation of the joint

probability distribution of link failures as described in the previous section.

In our model, failures are considered to come solely from disasters affecting a bounded

geographical area. In this section, we focus only on link failures (node failures can be translated

to the joint failure of the set of all links adjacent to the node). We extend our model to incorporate

node failures as well in Sec. VI.

While traditional approaches focus on single-point failures, which represent hardware/node

failures, cable/link cuts, etc., we adopt a model for regional failures and focus on computing the
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Fig. 4. Example of real-world inputs.

conditional probability CFPd(S) that, in a given time period, a set of links S fail together under

a disaster of type d (e.g., a tornado, earthquake, Electromagnetic Pulse (EMP), etc.).

Assumption 1: We assume that, in the investigated time period, there will be at most one

disaster.1

In such a case, to obtain the availability values, we need to build a model for each disaster type,

and the resulting availability of S can be expressed as 1 −
∑

d∈D pd · CFPd(S), where D denotes

the set of modeled failure types and pd is the probability of disaster d. From now on, for ease

of notation, we will consider a fixed failure type d, and, therefore, the subscript d is omitted

hereafter.

A. Stochastic Modeling of Regional Failures

In the remainder of the paper, we will call events that bring down the network in a geographic

area simply as disasters, indifferent to their cause. We model regional failures caused by a disaster

with the following parameters with randomly chosen values:

epicenter p, which is a point in the plane R2,

shape (and size) s, which is a real value in [0, 1].

Each point p ∈ R2 is assigned with a hazard h(p) representing the probability that p becomes

the epicenter of the next disaster (see Fig. 4a). Specifically, h(p) is a probability density function

on the area R2, and therefore, ∫
p∈R2

h(p)dp = 1 . (1)

After a regional disaster of the examined type (e.g., EMP attacks, natural disasters, such as

solar flares, earthquakes, hurricanes, and floods), the physical infrastructure (such as optical

1The case, when more disasters are expected to happen simultaneously, can be handled by defining a new mixed disaster
type, see also [34].



fibers, amplifiers, routers, and switches) in some area is destroyed. The possible shapes for this

area are defined by a set r(p, s) that represents a closed region on the plane (the actual shape of

the destroyed area) as a function of epicenter p and the shape/size parameter s. This is a general

disaster model, where several possible damage areas can be defined by r(p, s).

Definition 3 (Regional disaster): We assume a regional disaster of epicenter p and shape/size

s will result in the failure of exactly those links of network G that have a point in r(p, s).

We assume that r(p, s) is monotone increasing in s (see Fig. 4b for an example)2, or more

formally we assume that

Assumption 2:

r(p, s) ⊆ r(p, s′) if s < s′ ∀p ∈ R2, 0 ≤ s, s′ ≤ 1 , (2)

r(p, s) for a given p is a result of uniform sampling of damage areas. Namely, for a given p the

probability of the failure to be of size smaller than s is exactly s. Thus, s is called relative size

in the remainder of the paper.

It is important to notice that given the disaster epicenter and relative size, the outcome of

the attack is deterministic. In other words, any link e within r(p, s) fails with probability 1, if

a failure event with parameters p and s occurs. Let us denote the set of failed links by R(p, s).

Definition 3 together with Assumption 2 imply that, given a point p, R(p, s) ⊆ R(p, s′) if s ≤ s′.

Let s(p, e) denote the corresponding smallest size s for which a failure at point p can cover link

e. Furthermore, we denote by ρ the maximum number of links that can be affected by a single

failure (of maximum size s = 1):

ρ = max
p∈R2

R(p, 1) . (3)

B. The Failure Probability of a Link Set

First, we will explain how to compute the probability that a set of links S ⊆ E fail simulta-

neously in the next disaster.

Let f (e, p) be the probability that link e fails if a disaster with epicenter p happens. Note

that f (e, p) > 0 can occur iff e ∈ R(p, 1). f (e, p) can be computed from R(p, s), where s is in

the range [0, 1]. Hence,

f (e, p) =
∫ 1

s=0
IR(p,s)(e)ds , (4)

2Various failure shapes were studied so far [3], [7], [9]–[23], mainly in the form of circular regional disasters or line-segment
failures, but in some cases also for arbitrary geometric objects [3], [11]. All of these models meet Assumption 2.



where the indicator function IR(p,s)(e) indicates whether e ∈ R(p, s). Thus,

IR(p,s)(e) =


1 if e ∈ R(p, s) ,

0 otherwise.
(5)

If IR(p,s)(e) = 1, then IR(p,s′)(e) = 1, for s ≤ s′.

We now extend our notation to capture the probability of the failure of link e in the next

disaster:

P(e) :=
∫

p∈R2
h(p) f (e, p)dp. (6)

We denote the probability that a set of links S ⊆ E fail simultaneously, given that the disaster

epicenter is p ∈ R2:

f (S, p) :=
∫ 1

s=0

∏
e∈S

IR(p,s)(e)ds . (7)

In other words, if the sequence of links is S = (e1, e2, . . . , e|S |) ⊆ R(p, 1) and s(p, e1) ≤ s(p, e2) ≤

· · · ≤ s(p, e|S |), then
∏

e∈S IR(p,s)(e) = 1 iff s ≥ s(p, e|S |), otherwise the product is 0. This implies

that

f (S, p) = f (e|S |, p) = min
e∈S

f (e, p) . (8)

Finally, CFP(S) denotes the probability that all links of a given set S fail simultaneously. Using

the above results:

CFP(S) =
∫

p∈R2
h(p) f (S, p)dp =

∫
p∈R2

h(p)min
e∈S

f (e, p)dp . (9)

For example, on the right of Fig. 3, the results of applying the formula to the 5-node network

are shown for all the non-zero joint link failure probabilities. In this example, r(p, s) is always

a circular disk of radius s · 50km. Potentially there are exponentially many joint failure events

in terms of the network size; however, links far from each other have zero probability of failing

jointly because of a single disaster. This holds, for example, for links f and e, whose smallest

distance is 200km.

Former works (e.g., [3, in the proof of Lemma 8]) expressed the joint failure probability of

a set S by multiplying the failure probabilities of the links in S, thus implicitly assuming these

failures are independent. Unlike [3], our model assumes deterministic failure outcome (once its

epicenter and shape are set). This implies that, in our model, failures are dependent. For example,



two lines in the same location (e.g., within the same conduit) always fail together (e.g., when

the conduit is cut).

C. Example of the Geographical Correlation of Failures

In this section, we first consider a simple linear and discrete model for some of the ideas

presented so far. We assume that the ground set of our simplified world is the set of 1000

integer points of a line with coordinates between zmin = −499, zmax = 500 and we have two

links e0 and ez, which themselves are integer points from the interval [−499, 500], e0 is at

position 0, and ez is at position z. Let the probability that i is the location of a disaster be

hi = 10−3 for i = −499, . . . 500 so that
∑500

i=−499 hi = 1. According to Eq. (9), the probability of

the failure of link e0 is

P(e0) :=
500∑

i=−499
hi f (e0, i) , (10)

where f (e0, i) is the conditional probability that link e0 fails if the failure is at position i.

According to Eq. (9), the joint probability of the failure of both links e0 and ez is

P({e0, ez}) :=
500∑

i=−499
hi min( f (e0, i), f (ez, i)) . (11)

Let P(ez |e0) denote the conditional probability that ez fails, on the condition that e0 fails. By

definition we have

P(ez |e0) :=
P({e0, ez})

P(e0)
. (12)

This is a function of z in our setting. Intuitively, P(ez |e0) is close to 1 if the two links are exactly

in the same location (i.e. z = 0). Besides, P(ez |e0) should be a decreasing function of z in the

range of [0, 500]. See Fig. 5 for an example of f (e0, i) values and the corresponding P(ez |e0).

IV. PRE-COMPUTATION TO SPEED UP QUERIES

In the previous section, we have described a model that generates a regional disaster according

to a hazard density h(p) and a failure shape function r(p, s). Recall that our task is to return

CFP(S) for a set of links S ⊆ E , which is the probability that links S fail together in case of

disaster d.

Unfortunately, the calculation of integrals (9) can be a computationally intensive process. One

solution is to calculate some FPs in advance, so that when a query comes on the CFP of an
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Fig. 5. An example of fi(0) at different i positions and the corresponding P(ez |e0) depending on z. Former models assumed
the link failures are independent given an epicenter of the disaster.

arbitrary set of links S, then the task would be only to sum up some of the pre-computed FP

values. As Lemma 1 will show, a full list of FPs with non-zero probabilities has O((n+ x)ρ2γ2)

items. Every CFP can be derived by summing up

CFP(S) =
∑
T⊇S

FP(T), ∀S ⊆ E . (13)

A. Precomputation of CFPs and FPs

In the remainder of this section, we make the following assumptions to be able to apply some

computational geometry results.

1) The shapes r(p, s) are limited to circular disks centered at p. This corresponds to the

case where the failure of a link e depends on the Euclidean distance dist(p, e) of e to the

epicenter of the disaster p. In this case, instead of r(p, s), the input is given by d as a

function of s. The maximum radius r is the same for every point, i.e. r(p, 1) is a circular

disks with radius r and center p for ∀p ∈ R2.

2) The relative size s is a uniformly Lipschitz continuous function of radius d. That is,

there exists a positive number K such that for every point p in the plane, if we have

neighborhoods r(p, s′) and r(p, s) with respective radii d′ and d, then |s′ − s | ≤ K |d′ − d |

holds.

3) In our geometric reasoning, we will transform the links of the graph into line segments

by slightly shortening them to ensure that no two segments share a common endpoint (see

the details of the transformation in Appendix A). We also assume that no more than two

links intersect in the same point, and no more than two end points lie on the same line.

For ease of presentation, we slightly reduce the domain we are integrating over. Let P denote

the set of points p of the plane such that dist(p, e) , dist(p, e′) whenever e and e′ are different



segments from E . We have that R2\P is of measure zero, hence in our considerations integrating

over the plane R2 can be replaced by integrating over P.

Inspired by (8), we can now define the sequence of possible link failures (see Fig. 6a), when

the epicenter of the attack is at p:

Definition 4: The sequence of link failures for epicenter p ∈ P is an ordered set of links

S(p) = (e1, e2, . . . , el), such that s(p, e1) < s(p, e2) < · · · < s(p, el), where l = |R(p, 1)|. Let

S j(p) denote the first j links of S(p), i.e. S j(p) = (e1, e2, . . . , e j).

Furthermore, the ordinal number of a set S within S(p) is defined as follows:

Definition 5:

j(S,S(p)) =


j, if S 1 S j−1(p) and S ⊆ S j(p)

0, otherwise.

Due to Assumption 2 and using also (9), if there is a disaster at point p, the conditional probability

of a set of links S ⊆ S(p) failing together is

f (S, p) = f (S j(S,S(p))(p), p) = f (e j(S,S(p)), p) . (14)

Finally, we use two practical input parameters, x and ρ, in estimating the space complexity of our

approaches. Let x be the number of link crossings in the network G. For backbone networks, x

is a small number, as typically, a switch is also installed on each link crossing [36]. The second

parameter is ρ, the link density of the network, which is defined as the maximal number of

links that could fail together (i.e., could be covered by a circle of radius r). The link density

ρ, practically, does not depend on the network size. Moreover, ρ is at least the maximal nodal

degree in the graph.

Let us divide the plane into disjoint regions R1, . . . , Rk , where to the points p ∈ Ri the

same sequence Si of link failures belongs (see Fig. 7a). Here k is the number of possible failure

sequences. For any point p ∈ Ri we have S(p) ≡ Si, i = 1, . . . , k.

Based on the observation of (14), it is sufficient to pre-compute and store the following

integrals:

Pi, j =

∫
p∈Ri

h(p) f (ei, j, p)dp i = 1, . . . , k, j = 1, . . . , |Si |, (15)

where ei, j denotes the j-th link in Si.

Finally, since the regions are mutually disjoint as a subset of P and cover it entirely, equation

(9) can be written as a sum and, according to (14), the failure probability of any link set S ⊆ E
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can be evaluated as

CFP(S) =
k∑

i=1

∫
p∈Ri

h(p) f (S, p)dp =
k∑

i=1
Pi, j(S,Si) , (16)

where we define Pi,0 := 0 for every i = 1, . . . , k.

Based on Eq. (13) and (16), one can derive that:

FP(S) =
∑
i, j

(
Pi, j − Pi, j+1

)
, (17)

where the summation is for those pairs (i, j) for which 1 ≤ i ≤ k and j(S,Si) = |S | > 0. As a

default, we set Pi,|Si |+1 = 0.

V. PROPERTIES OF STRUCTURES FP() AND CFP()

A. Cardinality of Structures FP() and CFP()

In the case of the failure model presented in Sec. III, the number of FPs can be nicely upper

bounded as follows.

Lemma 1: In case of circular disk shaped disasters (i.e. r(p, s) is circular), there are O((n +

x)ρ2γ2) FPs with nonzero probability.



Proof: Let us concentrate on line segment links for a moment. According to [23, Claim 2],

the number of links, m, is O(n+ x) for line segment links. We know from [37, Thm. 5] that the

number of k-Voronoi cells for line segments is O(k(m−k)+x), or alternatively, O(k(n+x−k)+x)

thus disasters hitting k links can hit at most this many link sets. Since a circular disk can hit at

most ρ links, this sums up to O(ρ2(n + x − ρ) + x), which is O(ρ2(n + x)).

If links can be polygonal chains consisting of at most γ line segments, there are O(kγ(n+ x)γ)

k-Voronoi regions, yielding an upper bound of O((n + x)ρ2γ)2) for the number of FPs.

While CFP(S) can be queried directly to obtain the joint failure probability of a link-set, the

number of CFPs needed to describe the stochastic effect of the next disaster can be very large:

Lemma 2: A lower and an upper bound on the number of CFPs with nonzero probabilities is

Ω(2ρ) and O(2ρ(n + x)ρ2γ2), respectively.

Proof: By the definition of ρ, there is a link set S with CFP(S) > 0 and |S | = ρ. As, for any

S′ ⊆ S, CFP(S) > 0 implies CFP(S′) > 0, implying the lower bound. By Lemma 1, there are at

most O((n+ x)ρ2γ2) nonzero FPs, each having at most 2ρ subsets, yielding the upper bound.

Since every FP and CFP contains at most ρ elements, the space requirement of FP() and

CFP() is upper bounded by O((n + x)ρ3γ2) and O(2ρ(n + x)ρ3γ2), respectively.

B. Query Time of Structures FP() and CFP()

By Eq. (13), querying the FP() structure for CFP(S) requires iterating over all non-zero FPs

and summing up all FP(T) such that T ⊇ S. Thus, S has to be compared with O((n + x)ρ2γ2)

(Lemma 1) other sets, and each comparision can be made in O(ρ). The number of possible

additions is also O((n + x)ρ2γ2), thus the query time of the FP() structure is upper-bounded by

O((n + x)ρ3γ2).

The query time of the CFP structure depends on the data structure used for storing all non-

empty CFPs. For example, if we store all non-empty CFPs in a list, the query time would be

Ω(2ρ) (Lemma 2). In contrast, by hashing all CFP(S) on S, we reduce the query time a constant

with very high probability. Last, when storing all non-empty CFPs in a self-balancing binary

tree, the worst-case query time would be O(ρ + log((n + x)ργ)) (Lemma 2). Although the CFP

structure can achieve impressive query times, this comes at the cost of its space complexity

(Ω(2ρ)), which makes it inefficient for larger network densities.



VI. MODEL EXTENSIONS

A. Different Link Types

Most optical backbone networks consist of multiple types of links, e.g. aerial, buried and

submarine. In case of a disaster, these link types have different failure patterns. For example,

in case of an earthquake, the failure regions of aerial cables can be different from the regions

for buried cables, while submarine cables tend to be cut at rupture zones. With this in mind,

we extend our model as follows. Let L be the set of different link types. For each link type l,

disaster zone r(p, s, l) denotes the area where links with type l fail in case of a disaster with

epicenter p and relative size s.

In this extension, Assumption 2 (r(p, s) is monotone increasing in relative size s) translates

to the following:

r(p, s, l) ⊆ r(p, s′, l) if s < s′ ∀p ∈ R2, 0 ≤ s, s′ ≤ 1 . (18)

Although their failure regions may differ, this extension still allows links of multiple types to

fail due to a single disaster, analogously to many natural settings.

B. Mixed Link Types

Taking the previous extension a step further, we introduce the concept of mixed types. One

can imagine that some links may consist of different “link types”. For example, a link which is

mainly buried may need to cross a river above-water. We implement these links by dividing each

link into sections with homogeneous types. If a single section fails, the whole link fails. More

formally, each link e ∈ E is partitioned to sections e1, . . . , eM with types l1, . . . , lM , respectively.

Section ei fails if it has a common point with r(p, s, li), and link e fails if at least one of its

sections fails.

C. Nodes Also Considered Vulnerable

Network nodes have different failure patterns than links, and their probabilistic failures can

be represented by PSRLGs as follows. For a node v ∈ V that can fail, the edges incident to v

have mixed link types, and in a small vicinity of v are considered to have a type lv ∈ L specific

to the node such that those parts of the links fail exactly then when the node would have failed.



This approach translates to CFPs or FPs as follows: the set S of links incident to v fails because

the disaster hits every l ∈ S or the disaster hits node v.3

VII. IMPLEMENTATION ISSUES

The approaches and performance guarantees we gave in Sections IV and V are valid under

the assumption that the shape of a regional failure is always a circular disk. In this section,

we propose a heuristic that (1) can accommodate any any disaster shape; (2) does not require

advanced geometric algorithms; and (3) is more suitable for digital inputs, as it uses discrete

functions instead of continuous ones.

We discretize the problem by defining a sufficiently fine grid over the plane such that for each

grid cell c, the disaster regions r(p, s) and hit link sets R(p, s) are “almost identical”4 for all

p ∈ c. This reduces the integration problem from Sec. III to a summation5.

We consider R2 as a Cartesian coordinate system. Let r denote the absolute maximum range

of a disaster in km. Let (xmin, ymin) be the bottom left corner and (xmax, ymax) the top right corner

of a rectangular area in which the network lies. It is sufficient to process each c in the rectangle

of bottom left corner (xmin − r, ymin − r) and top right corner (xmax + r, ymax + r), and we denote

by ci, j the grid cell in the i-th column and j-th row of this rectangle. We assume we are given

the probability hi, j of the next disaster epicenter p lying in cell c: hi, j =
∫

p∈ci, j
h(p)dp

Now, for each c, we can compute the sequence of link failures and store the link sets as

follows.

1) Structure CFP(): For our CFP() structure, we use an associative array CFP(), which can be

addressed by a set of links S = {e1, e2, . . . , ek} and returns its cumulative failure probability. In

the pre-computation process, we have to extract the contribution of ci, j to the failure probability of

every subset S of links. To do so, we iterate over the sequence of link failures Si, j = (e1, e2, . . . , el)

given a disaster epicenter at the center of ci, j , and increment the CFP() values accordingly:

CFP({e1})+ = hi, j · f (e1, ci, j), CFP({e2})+ = hi, j · f (e2, ci, j), CFP({e1, e2})+ = hi, j · f (e2, ci, j), etc.

By default, for every link set S, we set CFP(S) = 0.

To obtain CFP(S), we just look it up in the associative array. If S is not found, then CFP(S) = 0.

3Another possibility is to handle node failures natively, and assume the failure of a node v infers the failure of the links
incident to v.

4In particular, we may assume that f (e, p) is independent of p as long as it is in c and denote this common value by f (e, c).
5 [19] uses a similar grid approach.
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Fig. 8. Seismic input data

2) Structure FP(): For our FP() structure, we take a similar approach as for the CFP()

structure and use a list of ‘S, FP(S)’ set-failure probability pairs. In the pre-computation pro-

cess, we have to extract the contribution of ci, j to the link failure state probability of every

subset S of links. As in the case of the CFPs, we do so by iterating over the sequence of

link failures Si, j = (e1, e2, . . . , el) and incrementing the FP values accordingly: FP({e1})+ =

hi, j ·
(
f (e2, ci, j) − f (e1, ci, j)

)
, FP({e1, e2})+ = hi, j ·

(
f (e3, ci, j − f (e3, ci, j)

)
, FP({e1, e2, e3})+ =

hi, j ·
(
f (e4, ci, j − f (e3, ci, j)

)
, etc.

To obtain CFP(S), we sum up
∑

T⊇S
FP(T).

VIII. MODEL EVALUATION

BASED ON SEISMIC HAZARD DATA

In this section, we present numerical results that validate our model and demonstrate the

use of the proposed algorithms on some real backbone networks (taken from [39] and [40],

resp.) accompanied with real seismic hazard inputs. The algorithms were implemented in Python



3.6., using its various libraries6, respecting the regional failure model presented in Section III,

and following the implementation principles of Section VII. Run-times were measured on a

commodity laptop with core i5 CPU at 2.3 GHz with 8 GiB of RAM.

As a practical scenario, the simulations presented in this paper focus on transforming the

seismic hazard on network topologies to PSRLGs. For a more general proof-of-concept evalua-

tion, we refer the reader to the conference version of our paper [1]. There, we assumed that the

epicenter distribution is uniform over the investigated area, and the disasters have the shape of

a circular disk with a maximal radius r (at s = 1), which is constant over the region.

As a first step, we need to convert the historical seismic hazard data into a regional failure

model for our framework. Subsec. VIII-A discusses our earthquake representation, based on

epicenter and moment magnitude. In brief, the model translates the seismic hazard data to a

set of circular disk shaped disaster areas with radii depending on the actual moment magnitude

(Fig. 8). Note that the epicenter distribution is non-uniform here.

Taking this probabilistic earthquake set as input, Subsec. VIII-B presents our simulation results

validating our PSRLG model.

A. Seismic Hazard Representation

We are investigating the failures caused by the next earthquake within a given geographic area,

thus we assume there is exactly one earthquake in the investigated time period. Each earthquake

is uniquely identified by its epicenter and moment magnitude [41]:

epicenter ci, j, which represents a latitude-longitude cell on the Earth’s surface, taken from a

grid of cells over the network area.

moment magnitude Mw∈ {4.6, 4.7, . . . , 8.6} =:M.7

We index the grid cells such that i ∈ {1, . . . , imax} =: Ii, j ∈ {1, . . . , jmax} =: Ij .

Let Ei, j,Mw denote the set of earthquakes with centre point in ci, j and magnitude in (Mw −

0.1, Mw]. As cells and magnitude intervals are small enough that the failures caused by each

earthquake in Ei, j,Mw will often be identical8, we will represent all Ei, j,Mw with a single earthquake

having a center point in the center of ci, j and a magnitude of Mw. Let the probability that

6The simulation data can be downloaded from [39].
7Mw ≤ 4.5 means no damage, while Mw > 8.6 has not been experienced in the studied regions.
8The sides of grid cells used in our simulations were 0.05◦ long in the Italian rate map, and 0.1◦ in case of the EU and the

USA, meaning 4km to 10km of cell side length.



the next earthquake is in Ei, j,Mw be pi, j,Mw . Note that these probabilities add up to 1, i.e.∑
i, j∈Ii×Ij

∑
Mw∈M

pi, j,Mw = 1.

Our initial input are the activity rates ri, j,Mw of earthquake types (see Fig. 8a) instead of the

pi, j,Mw values, so we first have to translate these rates to probabilities. We claim that under

the assumption that each kind of earthquake Ei, j,Mw arrives according to independent Poisson

arrival processes with parameters ri, j,Mw , the rates of earthquakes Ei, j,Mw can be transformed to

probabilities pi, j,Mw as follows:

pi, j,Mw = ri, j,Mw

/ ∑
i, j∈Ii×Ij

∑
Mw∈M

ri, j,Mw . (19)

We assign each network element e an intensity threshold t(e). If the intensity I of the

ground shaking reaches this threshold (I ≥ t(e)) at any point of the physical embedding of e,

the element fails. In our simulation, every network element has the same threshold t(e) := t,

where t ∈ {VI,VII,VIII,IX,X,XI,XII} := T according to the Mercalli-Cancani-Sieberg (MCS)

scale [42]9.

After each earthquake, Ei, j,Mw , the physical infrastructure (such as optical fibers, amplifiers,

routers, and switches) in an area disk(ci, j, R(Mw, t)) of a circular disk is destroyed. The center

point of disk(ci, j, R(Mw, t)) is the center of ci, j , while its radius R(Mw, t) is monotone increasing

in the magnitude Mw, and decreasing in the intensity threshold t (see Fig. 8b and 8c). As

earthquakes can occur anywhere in the cell, we increase the radius by the distance between the

center of the cell and its outer corners. This way, the disk is always an overestimate of the

damaged area of any earthquake in cell ci, j with magnitude Mw.

1) Earthquake Activity Rates: these are the occurrence rates of earthquake events as a function

of space, time, and magnitude. To obtain them, we need to define an earthquake source model,

defined as an area or an active fault that could host earthquakes as testified by instrumental

seismic activity, historical seismicity, geomorphological evidence, and regional tectonics. The

choice of the earthquake source model is strongly driven by the available knowledge of the area

and by the scale of the problem. It may range from well-defined active faults, especially when

one is working at a local scale, to less understood and wider scale seismotectonic provinces.

When the catalog of earthquakes covers a long period, it can be used to compute earthquake

9Intensity I ≤V does not cause structural damage, while I =XII means total damage.



activity rates without any information of seismotectonic provinces and/or active faults, via, for

example, a smoothed seismicity approach. In this work, we evaluated the earthquake source

model for Italy and the USA from the most recent published earthquakes catalogs ( [38] and

[43], for Italy and the USA, respectively) that cover a long period and can be used to obtain

earthquake source model without other information. Although earthquakes can be clustered in

time and space with their distribution that is over-dispersed if compared to the Poisson law [44],

a common way to treat this problem (i.e., cluster in time and space) is to decluster the earthquake

catalog, i.e., removing all events not considered mainshocks, via a declustering filter [45]. Here,

both catalogs are considered declustered. The standard methodology to estimate the density of

seismicity in a grid, and used in this work, is the one developed by [46]. The smoothed rate of

events in each cell is determined as follows:

Sri =

∑
j r j exp

(
−d2(ci,cj )

d2
c

)
∑

j exp
(
−d2(ci,cj )

d2
c

) , (20)

where r j is the cumulative rate of events with magnitudes greater than the completeness magni-

tude Mc in each cell ci of the grid and computed from the historical catalogue of earthquakes,

d(ci, c j) is the distance between the centers of grid cells ci and c j . The parameter dc is the

correlation distance (for Italy, 30km [47] and for the USA, 75km [48]). Then, the earthquake

activity rates for each node of the grid are computed following the Truncated Gutenberg-Richter

model [49]:

λ(M) = λ0
exp (−βM) − exp (−βMu)

exp (−βM0) − exp (−βMu)
(21)

for all magnitudes M between M0 (lower or minimum magnitude) and Mu (upper or maximum

magnitude); otherwise λ(M) is 0. The upper and lower magnitude bounds represent, respectively,

the maximum magnitude, or the largest earthquake considered for a particular source model,

which depends on the regional tectonic context (in our case, Mw is at most 8.1, 8.6 and 8.3 for

Italy, Europe, and the US, respectively), and the minimum magnitude, or threshold value, below

which there is no engineering interest or lack of data (in this study, Mw > 4.5)10. Additionally, λ0

is the smoothed rate Sri of earthquakes at Mw = 4.5 and β = bln(10), where b is the b-value of

the magnitude-frequency distribution. For Italy, we calculated the b-value of the distribution on

10Fig. 8a shows that, in the investigated range of magnitudes, the global rate of earthquakes dips exponentially in the function
of the magnitude.
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a regional basis using the maximum-likelihood method from [50], while for the USA, it comes

from [43]. While for Italy and the USA we computed the earthquake rates (Fig. 8a) following

this approach and with the referenced data, for Europe, we used the already published SEIFA

model ( [51] and [52]), a kernel-smoothed, zonation-free stochastic earthquake rate model that

considers seismicity and accumulated fault moment. In this model, activity rates are based on the

frequency-magnitude distribution model of the SHARE European Earthquake Catalogue, while

the spatial distribution of model rates depends on the density distributions of earthquakes and

fault slip rates. A magnitude-frequency distribution indicates the probability that an earthquake,

of a size within the upper and lower bound of the distribution, may occur anywhere inside the

source during a specified period of time.

While this does give us the rates for all combinations of epicenters and magnitudes for Italy,

the USA, and Europe (Fig. 8a), we still need the relation between magnitude and disaster area

to be able to apply these rates to the network resiliency models.



2) The Radius of the Damaged Zone: The only earthquake effect that can be quantified at the

scale of the whole country is ground shaking because any other earthquake effects require a site

investigation. Shaking intensity is localized and is generally diminishing with distance from the

earthquake’s epicenter. At the scale of a whole country, we can assume that soil and topographic

conditions are relatively homogeneous, and the seismic intensity only depends on the distance

from the earthquake epicenter.

Here, we assume all links (and nodes) inside the area with a given MCS intensity I ≥ t (where

t ≥VI) are damaged, while all components outside of this area remain functioning.

Thus, to obtain all disaster areas, we now only need the disaster area radius for each magnitude

Mw ∈ {4.6, 4.7, . . . , 8.6}. For this purpose, we used the intensity prediction equation of [53] and

[54], for Italy/Europe, and the USA, respectively, where the expected intensity I at a site located

at epicentral distance R is:

IIt,EU = 1.621 · Mw − 1.343 − 0.0086(D − h) − 1.037(ln D − ln h), (22)

IUS = 0.44 + 1.70 · Mw − 0.0048 · D − 2.73 · log10 D, (23)

where D =
√

R2 + h2 is a sort of hypocentral distance, and h represents the hypocentral depth,

which may be viewed as the average depth of the apparent radiating source [53], h equaling

3.91km and 10km for Italy/Europe and the USA, respectively. In this way, it is possible to

compute for each Mw and intensity threshold t the site-distance R(Mw, t) from the epicenter of

the desired intensity threshold level. It is worth noting that Eq. (22) has been obtained using

only the Italian earthquake historical catalog and so it is not completely correct to use it for the

entire Europe. However, the Italian catalog is one of the more complete catalogs in Europe, and

because there is no similar equation in the literature for Europe (to the best of our knowledge),

and its development is beyond the scope of the paper, we assume that it can be considered

correct, in a first approximation, its application for the entire Europe.

B. Simulation results

We consider six topologies: one Italian topology, two other European topologies, and three US

topologies. Unless otherwise stated, we set the intensity tolerance threshold, t, to VI according

to the MCS scale. The node and link counts, as well as the number of CFPs and FPs with

nonzero probability, of all topologies are given in Table I. The difference between the number



TABLE I
THE INVESTIGATED NETWORK TOPOLOGIES

Network name n m # CFPs at t =VI # FPs at t =VI

Italian 25 34 8358809 764
US 26 43 229 144

Nobel EU 28 41 51812 256
EU 37 57 295235 362

N.-American 39 61 348 208
NFSNET 79 108 550 327

of CFPs for European networks compared to American networks is striking; the US topologies

have between 200 to 600 CFPs, while the European networks have between ∼ 5×104 to as much

as ∼ 107 CFPs. This difference is easily explainable when we consider our theoretical results

from Sec. V: the number of non-zero CFPs is lower-bounded by Ω(2ρ) (Lemma 2), which means

an exponential growth in the maximal number of hit links, ρ. Since the European networks tend

to have much shorter links than the Americans, their hit link sets tend to be larger as well. As

expected, the number of FPs aligns with the theoretical polynomial upper bound (Lemma 1) and

ranges between [144, 764], significantly smaller than the number of CFPs.

By only storing the x largest CFPs, we can trade in some precision in exchange for a significant

reduction in memory usage. Fig. 9a shows the precision of this approach versus x. For the Italian

topology, the highest probability among the omitted edge sets is 1.7 × 10−2 or 2.5 × 10−3 if we

store only the top 100 or 1000 CFPs respectively. Furthermore, increasing the precision by an

order of magnitude requires only a bit more than an order of magnitude more CFPs. Similarly,

in case of the European networks, storing the first 100 or 1000 CFPs means that the highest

probability among the omitted edge sets is roughly 5 × 10−5 or 3 × 10−6, respectively; and

increasing the number of CFPs by and order of magnitude is more than enough for increasing

the precision by a factor of 10. For the US networks, listing the first 100 CFPs means a precision

of 2 × 10−5, while 550 CFPs are enough for storing all the nonzero CFPs.

Speaking of the precision-memory trade, omitting some of the FPs is also possible. In this

case, the imprecision in the value of CFP(S) for some S can be upper bounded by the sum

of probabilities stored in the omitted FPs. On Fig. 9b, we can see the probability assigned to

the xth most probable FP. Fortunately, the highest number of nonzero FPs was low, 764 in our

experience, meaning that, most probably, no omission is needed.

As mentioned before, the difference in number of non-zero CFPs can be explained by a



difference in hit link set sizes. Fig. 9c shows the the maximal number of hit links, ρ, versus the

intensity threshold, t. We can confirm that European topologies tend to have a higher ρ than

US topologies. In particular, at t =VI, the Italian topology has a ρ = 22, for the Nobel EU and

EU topologies, ρ = 15, and the US N.-American, and NFSNET have geometric densities ρ of

5, 5 and 6, respectively. It seems that networks covering similar geographic areas have similar

ρ values, and thus presumably, similar orders of magnitude of CFPs.

We have also investigated the average CFP of a set of links with given cardinality. Fig.

9d shows the average failure probability with respect to the number of links failing together.

Single links have an average failure probability between [1.3 × 10−4, 4.1 × 10−2], depending on

the network topology. The average failure probability for double and triple link failures lies

in [1.2 × 10−5, 4.8 × 10−3] and [6.7 × 10−6, 1.1 × 10−3], respectively. These averages meet our

expectations that the correlation between link failures is significant. By our observations, the

combination of link failures with the highest CFPs are predominantly the combined failure of

links incident to a single node.

Fig. 10 further investigates the relationship between the space requirements of CFP() and FP().

In Fig. 10a, we show the space requirement of structures CFP() and FP() as a function of the

intensity threshold t. The number of CFPs drops quickly with the intensity threshold until t =IX,

and after t =IX, it is not significantly higher than the number of FPs. However, at an intensity

of IX the soil starts to liquefy and buildings are shifted from their foundations. Based on this,

we can assume that most network elements will have an intensity tolerance below IX, and that

in real life, the number of CFPs will be considerably higher than the number of FPs.

Fig. 10b depicts the number of CFPs and FPs with given cardinality for the Italian topology.

Since there are two link sets of cardinality 22 with positive FP, there must be over 106 subsets

of cardinality 11 with non-zero CFP. In comparison, the number of FPs per link peaks at 71 for

cardinality 4.

Continuining our study of the cardinality of failed link sets, Fig. 11a investigates the depen-

dency between CFP(S) and |S | in detail, for |S | = 1, 2 and 3. There are 34 single link failures in

the Italian network whose CFPs range between [0.0029, 0.12], there are 428 dual link failures

with non-zero probabilities between [5 × 10−9, 0.0035], and there are 3030 triple link failures

with non-zero probabilities between [5 × 10−9, 0.0015]. Here we can see that some CFPs with

size l are less probable than some other CFPs containing l + 1 links. Thus, only storing CFPs

with at most l links rarely yields the same result as only storing the most probable CFPs. Also,
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we can observe that the CFPs of the most probable triple link sets are not much smaller than

the CFPs of the most probable link pairs. This is another sign that the most probable double

and triple link failures are failures of the links incident to the same network node.

IX. CONCLUSION

In this paper, we 1) introduced a unified terminology for Probabilistic Shared Risk (Link)

Groups, 2) we proposed a general stochastic model of regional failures of elements (nodes and

links) of the physical network, and finally, 3) we evaluated the model after carefully processing

raw seismic hazard data. The pre-computation of the proposed PSRLGs is performed off-line

during network planning, by computing numerical integrals using information both about the

disasters’ effects and resistance of network equipment to the catastrophes. If feasible (in our

experience for moment magnitudes Mw <∼ 8, or alternatively, disaster ranges <∼ 150km), the

results of these pre-computation steps are stored as cumulative failure probabilities. Alternatively,



we use a space-efficient data structure that stores link failure state probabilities instead. Our

proposed pre-computation data sets allow us to quickly compute the cumulative failure probability

of any arbitrary set of links, and can be utilized to more accurately compute the availability of

network paths. We have proven that the memory usage of our memory-efficient data structure

is upper-bounded by O((n + x)ρ3γ2) if the failure of a link only depends on the distance to the

epicenter of the disaster, where n is the number of nodes, x is the number of link crossings (in

practice x � n), ρ is the maximal number of links subject to a disaster failure, and γ is the

maximal number of line segments of a single link. Our approach facilitates a comprehensive

service availability analysis and can be used to answer related questions as well, such as where

to place VMs in order to guarantee a certain SLA.
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[23] J. Tapolcai, L. Rónyai, B. Vass, and L. Gyimóthi, “List of shared risk link groups representing regional failures with

limited size,” in IEEE INFOCOM, Atlanta, USA, May 2017.

[24] T. Gomes, J. Tapolcai, C. Esposito, D. Hutchison, F. Kuipers et al., “A survey of strategies for communication networks to

protect against large-scale natural disasters,” in Int. Workshop on Reliable Networks Design and Modeling (RNDM), 2016.

[25] S. Verbrugge, D. Colle, P. Demeester, R. Huelsermann, and M. Jaeger, “General availability model for multilayer transport

networks,” in Design of Reliable Communication Networks (DRCN), Lacco Ameno, Italy, Oct. 16-19, 2005.

[26] D. Zhou and S. Subramaniam, “Survivability in optical networks,” IEEE network, vol. 14, no. 6, pp. 16–23, 2000.

[27] O. Crochat, J.-Y. Le Boudec, and O. Gerstel, “Protection interoperability for WDM optical networks,” IEEE/ACM Trans.

Netw., vol. 8, no. 3, pp. 384–395, 2000.

[28] C. S. Ou and B. Mukherjee, Survivable Optical WDM Networks. Springer Science & Business Media, 2005.

[29] A. Somani, Survivability and traffic grooming in WDM optical networks. Cambridge University Press, 2006.

[30] S. Yang, S. Trajanovski, and F. Kuipers, “Availability-based path selection and network vulnerability assessment,” Wiley

Networks, vol. 66, no. 4, pp. 306–319, 2015.

[31] H.-W. Lee, E. Modiano, and K. Lee, “Diverse routing in networks with probabilistic failures,” IEEE/ACM Trans. Netw.,

vol. 18, no. 6, pp. 1895–1907, 2010.

[32] J. Liu, J. Zhang, Y. Zhao, C. Ma, H. Yang et al., “Differentiated quality-of-protection provisioning with probabilistic SRLG

in flexi-grid optical networks,” in OSA Asia Communications and Photonics Conference, 2013, pp. AF2G–8.

[33] F. Iqbal, S. Trajanovski, and F. Kuipers, “Detection of spatially-close fiber segments in optical networks,” in Design of

Reliable Communication Networks (DRCN), 2016, pp. 95–102.

[34] M. Rahnamay-Naeini, J. E. Pezoa, G. Azar, N. Ghani, and M. M. Hayat, “Modeling stochastic correlated failures and their

effects on network reliability,” in IEEE Int. Conf. on Comp. Comm. and Networks (ICCCN), 2011, pp. 1–6.

[35] US National Seismic Hazard Maps.

[36] D. Eppstein, M. T. Goodrich, and D. Strash, “Linear-time algorithms for geometric graphs with sublinearly many edge

crossings,” SIAM Journal on Computing, vol. 39, no. 8, pp. 3814–3829, 2010.



[37] E. Papadopoulou and M. Zavershynskyi, “The higher-order Voronoi diagram of line segments,” Algorithmica, vol. 74,

no. 1, pp. 415–439, 2016.

[38] A. Rovida, M. Locati, R. Camassi, B. Lolli, and P. Gasperini, “Cpti15, the 2015 version of the parametric catalogue of

italian earthquakes,” Istituto Nazionale di Geofisica e Vulcanologia, 2016.

[39] Network library.

[40] A. Valentini, B. Vass, J. Oostenbrink, L. Csák, F. Kuipers et al., “Network resiliency against earthquakes,” in 2019 11th

International Workshop on Resilient Networks Design and Modeling (RNDM), Oct 2019, pp. 1–7.

[41] H. Kanamori, “The energy release in great earthquakes,” Journal of Geophysical Research (1896-1977), vol. 82, no. 20,

pp. 2981–2987, 1977.

[42] A. Sieberg, “Erdebeben,” Handbuch der Geophysic, vol. 4, pp. 552–554, 1931.

[43] C. Mueller, “Earthquake catalogs for the usgs national seismic hazard maps,” Seismological Research Letters, vol. 90, 10

2018.

[44] Y. Y. Kagan, “Statistical distributions of earthquake numbers: consequence of branching process,” Geophysical Journal

International, vol. 180, no. 3, pp. 1313–1328, 2010.

[45] J. K. Gardner and L. Knopoff, “Is the sequence of earthquakes in southern california, with aftershocks removed,

poissonian?” Bulletin of the Seismological Society of America, vol. 64, pp. 1363–1367, 1974.

[46] A. Frankel, “Simulating strong motions of large earthquakes using recordings of small earthquakes: the loma prieta

mainshock as a test case,” Bulletin of the Seismological Society of America, vol. 85, no. 4, pp. 1144–1160, 1995.

[47] A. Valentini, F. Visini, and B. Pace, “Integrating faults and past earthquakes into a probabilistic seismic hazard model for

peninsular italy,” Natural Hazards and Earth System Sciences, vol. 17, pp. 2017–2039, 2017.

[48] M. D. Petersen, A. M. Shumway, P. M. Powers, C. S. Mueller, M. P. Moschetti et al., “The 2018 update of the us national

seismic hazard model: Overview of model and implications,” Earthquake Spectra, vol. 36, no. 1, pp. 5–41, 2020.

[49] Y. Y. Kagan, “Seismic moment distribution revisited: I. statistical results,” Geophysical Journal International, vol. 148,

no. 3, pp. 520–541, 2002.

[50] D. H. Weichert, “Estimation of the earthquake recurrence parameters for unequal observation periods for different

magnitudes,” Bulletin of the Seismological Society of America, vol. 70, no. 4, pp. 1337–1346, 1980.

[51] S. Hiemer, J. Woessner, R. Basili, L. Danciu, D. Giardini, and S. Wiemer, “A smoothed stochastic earthquake rate model

considering seismicity and fault moment release for europe,” Geophysical Journal International, vol. 198, pp. 1159–1172,

06 2014.

[52] J. Giardini, D. and. Woessner, L. Danciu, H. Crowley, F. Cotton, G. Grunthal et al. (2013) Seismic hazard harmonization

in europe (share): Online data.

[53] P. C., D. Albarello, P. Gasperini, V. D’Amico, and B. Lolli, “The attenuation of seismic intensity in italy, part ii: modeling

and validation,” Bulletin of the Seismological Society of America, vol. 98, no. 2, pp. 692–708, 2008.

[54] W. Bakun, “MMI attenuation and historical earthquakes in the basin and range province of western North America,”

Bulletin of the Seismological Society of America, vol. 96, no. 6, pp. 2206–2220, 2006.

APPENDIX

A. Geometric Transformation of the Network

In our geometric reasoning, we transform the links of the graph into line segments. We also

need to ensure that no two segments share a common endpoint. In the network, the adjacent



links terminate in a single node; thus, we need to perform a minor transformation as follows.

Let S ⊆ E be a set of segments and ε > 0 a small number. Suppose that we shorten some

segments e of S, in a way that we delete ε long subsegment from both ends, in such a way that

the deleted intervals do not overlap. Let S′ denote the set of segments S after shortening.

Lemma 3: We have f (S, p) ≥ f (S′, p) and f (S, p) − f (S′, p) ≤ εK hold for every point p.

Proof: For the first inequality note that

f (S, p) =
∫ 1

s=0

∏
e∈S

IR(p,s)(e)ds

≥

∫ 1

s=0

∏
e′∈S′

IR(p,s)(e′)ds = f (S′, p) (24)

because IR(p,s)(e) ≥ IR(p,s)(e′) holds for every s, whenever e ∈ S.

We turn now to the second inequality. Let s be the smallest value such that
∏

e∈S IR(p,s)(e) = 1

(if there is any), and set s′ = s + εK . Let d and d′ be the radii of r(p, s) and r(p, s′), resp. By

the Lipschitz property we have

εK = s′ − s ≤ K(d′ − d)

giving that d′ > d + ε . We know by the definition of s that r(p, s) intersects every segment

e ∈ S in some point Qe. But then r(p, s′) intersects e′. This holds, because the larger disk r(p, s′)

clearly contains the disk of radius ε centered at Qe, and the latter disk must intersect e′ because

we deleted disjoint subintervals of length at most ε from e to obtain e′. We have therefore∏
e′∈S′ IR(p,s′)(e′) = 1, hence

f (p, S) − f (p, S′) =

1∫
y=0

(
∏
e∈S

IR(p,y)(e) −
∏
e′∈S′

IR(p,y)(e′))dy

≤

s′∫
y=s

1dy = εK . (25)

We transform our set of segments into one, where no segment e has an endpoint A on any

other segment. If we have such a segment, then we carry out the transformation by deleting an

ε long subsegment of e starting at A. Lemma 3 gives that if we set ε sufficiently small, then

all the values f (p, S) and f (p, S′) will be very close to each other, hence CFP(S) and CFP(S′)



will be very close to each other. Moreover, for any two segments e1, e2 ∈ E , we have that either

e1 ∩ e2 = ∅, or e1 ∩ e2 is an interior point of both segments.

As a simple example illustrating the Lipschitz condition 2) from IV-A, suppose that r(p, s) is

a disk centered at p having radius sRp, where Rp is the radius of r(p, 1). Then for radii d = sRp

and d′ = s′Rp we have

|s′ − s | =
1
Rp
|d′ − d |.

The Lipschitz condition then holds if there exists a k > 0 such that Rp ≥ k for every p.


