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Abstract: (1) Background: Ischemia reperfusion (IR) is the leading cause of acute kidney injury
(AKI) and results in predisposition to chronic kidney disease. We demonstrated that delayed con-
tralateral nephrectomy (Nx) greatly improved the function of the IR-injured kidney and decelerated
fibrosis progression. Our aim was to identify microRNAs (miRNA/miR) involved in this process.
(2) Methods: NMRI mice were subjected to 30 min of renal IR and one week later to Nx/sham
surgery. The experiments were conducted for 7–28 days after IR. On day 8, multiplex renal miRNA
profiling was performed. Expression of nine miRNAs was determined with qPCR at all time points.
Based on the target prediction, plexin-A2 and Cd2AP were measured by Western blot. (3) Results:
On day 8 after IR, the expression of 20/1195 miRNAs doubled, and 9/13 selected miRNAs were
upregulated at all time points. Nx reduced the expression of several ischemia-induced pro-fibrotic
miRNAs (fibromirs), such as miR-142a-duplex, miR-146a-5p, miR-199a-duplex, miR-214-3p and
miR-223-3p, in the injured kidneys at various time points. Plexin-A2 was upregulated by IR on
day 10, while Cd2AP was unchanged. (4) Conclusion: Nx delayed fibrosis progression and decreased
the expression of ischemia-induced fibromirs. The protein expression of plexin-A2 and Cd2AP is
mainly regulated by factors other than miRNAs.

Keywords: ischemia-reperfusion injury; kidney fibrosis; microRNAs; mice

1. Introduction

Renal ischemia reperfusion (IR) is one of the leading causes of acute kidney injury
(AKI) [1]. After severe renal tubular injury, maladaptive repair processes are activated that
drive renal fibrosis and the development of chronic kidney disease (CKD) [2,3].

Currently, no therapy exists to inhibit the progression of renal fibrosis. Combined
inhibition of the renin-angiotensin-aldosterone system is beneficial but does not prevent
renal fibrosis and progression to end-stage renal failure [4–6]. Serious unilateral renal IR
combined with delayed contralateral nephrectomy (Nx) is a relatively new and a promis-
ing murine model for studying the protective mechanisms of IR-induced progressive
renal fibrosis [7]. Without Nx, the function of the injured kidney was lost within a few
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weeks [8,9]. Surprisingly, Nx partially restored the function of the IR-injured kidneys and
delayed fibrosis progression for several months, making this model suitable for studying
the mechanisms of renal recovery following IR injury [7,9]. We demonstrated recently that
Nx considerably delayed the progression of fibrosis, as the development of end-stage renal
failure was postponed from 14 to 140 days [9]. As this is a relatively new model, the un-
derlying mechanisms of the Nx-induced functional improvement are largely unexplored.
The role of reduced hypoxia [10], inflammation and macrophage infiltration [9,10] has been
implicated in the beneficial effects of Nx.

Regarding post-transcriptional regulation, the involvement of histone modifications
has been demonstrated in renal IR injury [8]. Furthermore, the roles of several protective
and pathogenic miRNAs have been implicated in AKI and renal fibrosis, which inhibit
or promote inflammation, apoptosis and fibrosis [11–16]. The role of miR-21 has been
most extensively explored in renal IR [17–26] and fibrosis [27–36]. MiR-21 expression
was elevated after IR and induced tissue protection by promoting angiogenesis [26] and
inhibiting inflammation and apoptosis [18,19,22]. However, renal fibrosis sustained the
upregulation of miR-21, which contributed to fibrosis progression [33,34]. IR also upreg-
ulated miR-146a, which has anti-inflammatory properties and inhibits renal fibrosis and
macrophage infiltration [37–39]. Nonetheless, the function of most miRNAs implicated in
AKI and renal fibrosis has not been thoroughly evaluated, and the results are sometimes
conflicting [12,40]. Thus, currently, there is little information available on changes in the
renal miRNome following IR-induced fibrosis.

Our aim was to systematically study the time course of the expression pattern of
miRNAs after Nx-induced functional recovery in the IR-injured kidney.

2. Materials and Methods
2.1. Animal Studies

Male Naval Medical Research Institute (NMRI) mice (weighing 25–30 g; Toxi-Coop
Ltd., Budapest, Hungary) were used. Mice were housed under standard conditions with
free access to food and tap water. In order to reduce the number of experimental an-
imals used, the molecular parameters of the right kidneys were used for control after
confirming the functional similarity of right kidneys in mice subjected to IR or sham
operation. All protocols were approved by the Pest County Government Office and the An-
imal Ethics Committee of Semmelweis University (PE/EA/2202-5/2017, date of approval:
14/12/2017). All experiments were performed in accordance with the protocol approved
and the relevant guidelines and EU regulations.

2.2. Renal Ischemia-Reperfusion and Nephrectomy

Experiments were performed on 104 mice according to the experimental protocol of
Skrypnyk et al. [7] as summarized in Table 1. Mice were anesthetized with intraperitoneal
(i.p.) injection of ketamine (80 mg/kg; Richter-Gedeon Nyrt., Budapest, Hungary) and xy-
lazine (10 mg/kg; Streuli Pharma AG, Uznach, Switzerland). The body temperature of the
animals was kept at 37.0 ± 0.5 ◦C during the surgeries using a heating pad (Supertech Ltd.,
Budapest, Hungary). Mice were subjected to either 30 min of renal ischemia/reperfusion
(IR) or sham surgery (S) on the left kidney on day 0. Nx or S was performed on day 7,
resulting in four groups: IR-S, IR-Nx, S-S and S-Nx. The experiments were terminated 7,
8, 10, 14 or 28 days after the IR surgery. As stated above, the S-S and S-Nx groups were
included only in the experiments terminated on days 8 and 10 as we aimed to study the
effects of Nx on post-ischemic renal fibrosis progression by comparing the IR-S to the
IR-Nx group. Furthermore, all investigated molecular parameters demonstrated strong
similarities in the right kidneys in the S-S and S-Nx groups (Supplementary Figure S1).
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Table 1. Summary of the animal experiments performed.

Number of Animals

Day of Termination IR-S Group IR-Nx Group S-S Group S-Nx Group

Day 7 8 - - -
Day 8 9 10 6 6

Day 10 9 9 8 7
Day 14 8 7 - -
Day 28 9 8 - -

2.3. Organ Harvest

The right kidney was removed either at nephrectomy or at the time of termination.
The mice were injected with 5000 U/kg BW heparin i.p. (Ratiopharm GmbH, Ulm, Ger-
many), and 3 min later they were sacrificed by cervical dislocation. The chest was opened
and after cross-section of the vena cava, blood was collected from the thoracic cavity. Blood
was washed out from the blood vessels by intracardial injection of 10 mL 4 ◦C saline.
The kidneys were removed and decapsulated. One third of the upper pole of the kidneys
was placed in 500 µL TRI Reagent (TR 118, Molecular Research Center, Inc., Cincinnati,
OH, USA) and was snap frozen in liquid nitrogen and kept at −80 ◦C for RNA isolation.
A 1 mm cross-section of the kidney at the hilus level including all layers of cortex and
medulla was fixed in 4% buffered formaldehyde. On the next day, the section was dehy-
drated and embedded in paraffin (FFPE) for histology. The remaining parts of the kidney
were cut into pieces and snap frozen in liquid nitrogen and kept at −80 ◦C for any further
molecular biology analysis.

2.4. Plasma Urea Determination

Blood samples were collected on days −1, 1, 6, 8, 9, 10, 14, 21 and 28. The plasma was
separated by centrifugation (6000× g, 2 min) and stored at −80 ◦C.

Plasma urea concentrations were measured by a urease and glutamate-dehydrogenase
enzymatic assay with colorimetric detection at 340 nm according to the manufacturer’s
protocol (Diagnosticum Zrt., Budapest, Hungary). The urea concentration of the samples
was determined using a standard curve.

2.5. RNA Preparation

Total RNA was extracted from the kidneys with TRI Reagent (TR 118, Molecular
Research Center) according to the manufacturer’s protocol. RNA concentration and pu-
rity was checked with NanoDrop 2000c spectrophotometer (Thermo Fisher, Waltham,
MA, USA), and RNA integrity of the samples was verified by electrophoresis on a 1%
agarose gel (Invitrogen Ltd., Paisley, UK). The RNA solutions were stored at −80 ◦C until
further analysis.

2.6. qPCR Analysis of Gene Expression

Tumor necrosis factor alpha (Tnf-α; an inflammatory marker) and transforming
growth factor beta (Tgf-β; a fibrosis marker) mRNA levels were measured in the kidneys.
Renal tubular damage was assessed based on lipocalin-2 (Lcn-2), also called neutrophil
gelatinase-associated lipocalin (NGAL) gene expression. 18S rDNA was used as reference
gene. Right kidneys served as controls. Messenger RNA (mRNA) expression from kidney
tissue homogenates was measured as described previously. Reverse transcription into
cDNA was performed using the High-Capacity cDNA Archive Kit (Applied Biosystems,
Foster City, CA, USA) according to the protocol provided by the manufacturer. Gene ex-
pression was evaluated on the Bio-Rad C1000™ Thermal Cycler with CFX96™ Optics
Module real-time PCR system (Bio-Rad Laboratories, Inc., Hercules, California, USA).
The qPCR reaction was carried out with SensiFAST™ SYBR No-ROX Kit (Bioline Reagents
Limited, London, UK), according to the manufacturer’s protocol. Primer annealing was
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set to 60 ◦C. Primers (Table 2) were designed by NCBI/Primer-BLAST online software
and synthesized by Integrated DNA Technologies (Integrated DNA Technologies, Inc.,
Coralville, IA, USA). All samples were measured in duplicates. Gene expression was
calculated using the relative quantification (∆∆Cq) method. Standard curves were used for
verifying the efficiency of the qPCR reaction. The melting curves were also checked for
abnormalities of the PCR products.

Table 2. Sequences of primers used for measuring the expression of target genes by qPCR.

Target Forward Primer Reverse Primer

Lcn-2 AGGTGGTACGTTGTGGGC CTGTACCTGAGGATACCTGTG
Tnf-α AAATGGCCTCCCTCTCATCA AGATAGCAAATCGGCTGACG
Tgf-β CAACAATTCCTGGCGTTACCTTGG GAAAGCCCTGTATTCCGTCTCCTT
18S CCAGAATGAGGATCCCAGAA ACCACCTGAAACATGCAACA

2.7. MicroRNA Microarray of 1195 Targets

Representative left kidney samples from each group of the 8-day experiment (6-6
samples from the IR-S and IR-Nx groups and 4-4 samples from the S-S and S-Nx groups)
were selected for miRNA profiling based on plasma urea levels and the Tnf-α and Tgf-β
mRNA expressions in such a way that the mean and standard deviation of the original and
selected values were similar (the samples represented their groups).

The microarray measurements were carried out by Exiqon A/S (Vedbæk, Denmark).
In brief, the quality of the total RNA samples was verified by Agilent 2100 Bioanalyzer
(Agilent Technologies Inc., Santa Clara, CA, USA). The reference sample was generated
by pooling a fraction of the RNA samples. A measurement of 750 ng total RNA from
both the test and reference samples was labelled with fluorescent Hy3 and Hy5 labels
using the miRCURY LNA™ microRNA Hi-Power Labeling Kit, Hy3™/Hy5™ (Exiqon,
Denmark). Hybridization was performed according to the miRCURY LNA™ microRNA
Array instruction manual using a Tecan HS4800™ hybridization station (Tecan, Austria).
After hybridization, the slides were scanned using the Agilent G2565BA Microarray Scanner
System (Agilent). Image analysis was carried out with ImaGene® 9 (miRCURY LNA™
microRNA Array Analysis Software, Exiqon, Denmark). The quantified signals were
background corrected (Normexp with offset value 10) and normalized using the global
Lowess (Locally Weighted Scatterplot Smoothing) regression algorithm. Microarray data
discussed in this publication have been deposited in NCBI’s Gene Expression Omnibus [41]
and are accessible through GEO Series accession number GSE157221 (https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE157221 (accessed on 1 September 2020)).

2.8. MicroRNA qPCR

For validation of the microarray results, miRNA expression was measured in all
samples from the 8-day experiment by real-time PCR. Expression of successfully validated
miRNAs was measured in all samples from each time point. MiR-2137 was opted out
of further measurements because of its low signal intensity in the qPCR amplification.
Reverse transcription into cDNA was carried out by the Applied Biosystem™ TaqMan™
Advanced miRNA cDNA Synthesis Kit (Applied Biosystems) according to the manufac-
turer’s protocol. MicroRNA expression was evaluated using TaqMan™ Advanced miRNA
Assays and TaqMan™ Fast Advanced Master Mix (Applied Biosystems). All samples were
measured in duplicates and expression was calculated using the relative quantification
(∆∆Cq) method. Let-7g-5p was used as reference.

All miRNAs upregulated by IR with significant fold-changes (FCs) above 2.5 were
included in the validation except miR-199b-5p, for which TaqMan™ Advanced miRNA
Assay was not available. Three other miRNAs upregulated by IR with significant FCs
above 1.5 were also selected for validation based on literature data or because they belong
to miRNA families or clusters of other validated miRNAs. MicroRNA expression changes

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE157221
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE157221
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were considered verified if they were altered the same way significantly both by the
microarray and qPCR.

2.9. MicroRNA Target Network Analysis

We performed miRNA target network analysis for those miRNAs that were veri-
fied by qPCR. To identify mRNAs likely regulated by differentially expressed miRNAs,
we constructed miRNA-target interaction networks as implemented previously in other
studies [42–44] using the miRNAtarget software (mirnatarget.com (accessed several times
in October, 2020), Pharmahungary, Szeged, Hungary). The miRNAtarget software inte-
grates data specific for Mus musculus from the experimentally validated, manually curated
miRTarBase [45] database and in silico miRNA-target prediction databases, miRDB [46] and
TargetScan [47]. In particular, the following miRNA-target interaction data sources were
used: miRDB v5.0 (released in August 2014) filtered for Mus musculus records based on
taxonomy ID, ‘Conserved Sites context++ scores’ file from TargetScan Mouse 7.2 (released
in August, 2018) in which context++ scores of miRNA binding sites were summed for each
transcript, yielding total context++ scores and miRTarBase 8.0. Predictions with miRDB
scores and TargetScan total context++ scores ≤80 and ≥−0.2, respectively, were excluded
from further analysis. In the resulting networks, miRNAs and mRNAs are represented
as nodes, and edges symbolize predicted miRNA-target interactions. To visualize the
networks we used EntOptLayout plugin (version 2.1) [48] for Cytoscape (version 3.8.0),
alternately applying position and with optimization steps.

2.10. Western Blot

Western blot was performed as previously described (Kucsera D. et al. 2021, Front
Physiol., PMID: 33692700). Briefly, frozen kidney samples were homogenized in RIPA
buffer (Cell Signalling Technology, Danvers, MA, USA). After protein concentration mea-
surement, 20 µg of protein was loaded onto 4–20% polyacrylamide gels for separation with
90 V, and proteins were transferred (Criterion Blotter, BioRad, Hercules, CA, USA) onto
PVDF membranes (BioRad, Hercules, CA, USA). After a blocking step with 5% BSA in
0.05% Tris-buffered saline with Tween 20 (TBS-T), the membrane was incubated overnight
at 4 ◦C with the following primary antibodies (dissolved in 5% BSA solution): CD2AP
(5478, Cell Signaling Technology, Danvers, MA, USA, 1:1000 dilution) and PLEXIN A2
(6896, Cell Signaling Technology, Danvers, MA, USA, 1:1000 dilution). After washing the
membranes with 0.05% TBS-T (3 × 10 min), the membrane was incubated with a secondary
antibody (horseradish peroxidase-conjugated goat anti-rabbit, 7074, Cell Signaling Tech-
nology, Danvers, MA, USA, 1:2000 dilution) dissolved in 5% BSA solution for 2 h at room
temperature, followed by 3 × 10 min wash. For band detection, the membranes were incu-
bated with enhanced chemiluminescence reagent (Clarity Western ECL Substrate or Clarity
Max Western, BioRad, Hercules, CA, USA) for 5 min, and the signal was recorded with the
ChemiDoc XRS + System (BioRad, Hercules, CA, USA). Band intensity was evaluated using
the Image Lab Software (BioRad, Hercules, CA, USA). Loading control was determined by
measuring protein content by staining with the MemCode stain (24585, Pierce™ Reversible
Protein Stain Kit for PVDF Membranes, Thermo Fisher Scientific, Waltham, MA, USA).

2.11. Statistical Analysis

Only miRNAs with an average Hy3 signal intensity above 6.0 were included in the
analysis of the miArray after normalization by Lowess regression algorithm (M-value).
Relative miRNA expression values were calculated as 2M-value. FCs were log2 transformed
and compared to the right kidneys using paired t-test. Differentially expressed miRNAs
were further analysed if p < 0.05 and FC ≥ 1.5.

Messenger RNA and miRNA FCs as determined by RT-qPCR were calculated by
dividing each normalized expression value with the mean of the respective control group.
Outliers were determined with the ROUT method (combination of a robust nonlinear
regression and an outlier identification method based on the false discovery rate) [49].

mirnatarget.com
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Two-way ANOVA followed by Tukey’s multiple comparisons test was used for between-
group comparisons. ANOVA was performed after logarithmic transformation of the data
if Bartlett’s test indicated inhomogeneity of variances.

The null hypothesis was rejected if p < 0.05. Statistical analysis was performed using
GraphPad Prism6 (GraphPad Software Inc., San Diego, CA, USA) and IBM SPSS v25
Software (International Business Machines Corp., Armonk, NY, USA). Continuous data are
expressed as mean ± standard error of the mean (SEM) unless otherwise stated.

3. Results
3.1. Effects of Delayed Contralateral Nephrectomy on Kidney Function

Our previous study demonstrated that Nx performed on day 7 almost fully restored
the function of the otherwise hardly functioning and atrophying post-ischemic kidney [9].
IR significantly upregulated the renal expression of genes related to fibrosis, inflammation
and oxidative stress in the post-ischemic kidney, while Nx significantly attenuated these
changes at all times studied (published in our previous paper [9]).

IR significantly upregulated the expression of 43 miRNAs at least 1.5-fold and 20 miR-
NAs at least twofold 8 days after the injury (Figure 1A, Supplementary Table S1). At the
same time, 29 miRNAs were significantly downregulated at least 1.5-fold (Figure 1A,
Supplementary Table S2), but only six miRNAs were downregulated more than twofold.
One day after nephrectomy, only small changes in miRNA expression were observed in the
IR-Nx group in comparison to the IR-S group (Figure 1B). Nx did not upregulate any of the
miRNAs and downregulated only two miRNAs more than 1.5-fold (miR-762 (FC = 0.61,
p = 0.0280) and miR-2861 (FC = 0.65, p = 0.0237)) in the IR-injured kidneys.
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Figure 1. The effects of ischemia-reperfusion (IR) injury and delayed contralateral nephrectomy (Nx) on miRNA expression
in the kidneys 8 days after IR and 1 day after Nx based on the miRNA microarray. The level of significance (given as
−log10 p value) is plotted against the fold change (FC, given as log2FC). Vertical lines mark 1.5× and 2× FC, while the
horizontal line marks the significance level (p < 0.05). (A): Effect of IR (IR-S vs. S-S). �: miRNAs selected for validation
by qPCR; 1: mmu-miR-21a-5p, 2: mmu-miR-2137, 3: mmu-miR-142-3p, 4: mmu-miR-762, 5: mmu-miR-223-3p, 6: mmu-
miR-142-5p, 7: mmu-miR-2861, 8: mmu-miR-3102-5p, 9: mmu-miR-199a-5p, 10: mmu-miR-199a-3p/mmu-miR-199b-3p, 11:
mmu-miR-214-3p, 12: mmu-miR-146a-5p, 13: mmu-miR-21a-3p, 14: mmu-miR-129-1-3p. (B): Effects of Nx (IR-Nx vs. IR-S).

3.2. MicroRNA Validation

We attempted to validate all miRNAs up- or downregulated at least 2.5-fold using
qPCR (except miR-199b-5p, as no assay was available). Furthermore, we included three
more miRNAs from the top 20 upregulated miRNAs for validation (Table 3): miR-214-3p
(clustered with miR-199a), miR-21a-3p (miR-21 family member) and miR-146a-5p (known
role in AKI [17,37,50]). The two miRNAs downregulated at least 1.5x by Nx (miR-762 and
miR-2861) were also included in the validation as they were among the miRNAs most
affected by IR.
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Table 3. Validation of the miRNA microarray. One-way ANOVA with S-S, IR-S and IR-Nx groups.

miRNA
Fold Change
(S-S vs. IR-S,
Microarray)

p Value
ANOVA

(Microarray)

Fold Change
(S-S vs. IR-S,

qPCR)

p Value
ANOVA
(qPCR)

Result of
Validation

miRNAs upregulated by IR

1 mmu-miR-21a-5p 6.13 ± 0.63 0.0000 8.09 ± 1.35 0.000 verified
2 mmu-miR-2137 5.31 ± 1.88 0.0004 4.27 ± 2.51 0.011 verified
3 mmu-miR-142-3p 4.48 ± 1.31 0.0001 7.38 ± 2.10 0.000 verified
4 mmu-miR-762 4.15 ± 1.46 0.0005 0.96 ± 0.36 0.900 failed
5 mmu-miR-223-3p 3.79 ± 0.79 0.0000 5.42 ± 1.65 0.000 verified
6 mmu-miR-142-5p 3.58 ± 0.81 0.0002 9.63 ± 3.08 0.000 verified
7 mmu-miR-2861 3.08 ± 0.94 0.0011 - - failed
8 mmu-miR-3102-5p 2.99 ± 0.77 0.0001 0.64 ± 0.23 0.136 failed
9 mmu-miR-199a-5p 2.97 ± 0.39 0.0000 3.45 ± 1.34 0.000 verified

10 mmu-miR-199a-3p/
mmu-miR-199b-3p 2.92 ± 0.53 0.0000 4.03 ± 1.05 0.000 verified

11 mmu-miR-214-3p 2.33 ± 0.16 0.0000 4.19 ± 1.01 0.000 verified
12 mmu-miR-146a-5p 2.15 ± 0.45 0.0002 2.46 ± 0.75 0.000 verified
13 mmu-miR-21a-3p 2.13 ± 0.36 0.0000 12.91 ± 1.98 0.000 partially verified

miRNAs downregulated by IR

1 mmu-miR-129-1-3p 0.31 ± 0.06 0.0000 0.33 ± 0.19 0.174 failed

Real-time PCR validation verified the results of the microarray in 9 out of 14 miRNAs
(Table 3). They were similarly upregulated in the left kidneys in the IR-S and the IR-Nx
groups compared to the S-S group (Supplementary Table S3) and also to the contralateral
right kidneys (Figure 2). The MRNA expression of Tnf-α, Tgf-β, Lcn-2 and all miRNAs was
similar in the left kidneys in the S-S and S-Nx groups and the right kidneys in all groups
(Supplementary Table S4).

Real-time PCR validation confirmed that miR-21a-3p expression was upregulated
in the IR-injured kidneys (Table S3). Although there was no difference in its expression
between the IR-S and IR-Nx left kidneys based on the microarray, we detected significantly
elevated miR-21a-3p expression in the IR-Nx group compared to the IR-S group by qPCR
(Supplementary Table S3 and Figure 2).

Validation of the expression changes of miR-762, miR-2861, miR-3102-5p and miR-
129-1-3p was unsuccessful as we found no significant differences in miR-762, miR-3102-5p
and miR-129-1-3p expression either in the IR-injured left kidneys compared to the S-S left
kidneys or in the IR-Nx group compared to the IR-S group (Table 3). MiR-2861 expression
was below the limit of detection.

3.3. Temporal Changes of MicroRNA Expression

We evaluated the expression of nine miRNAs (miR-21a duplex (miR-21a-3p, miR-
21a-5p), miR-142a duplex, miR-146a-5p, miR-199a duplex, miR-214-3p and miR-223-3p)
in all the samples. IR significantly upregulated all miRNAs at all time points (Figure 2).
Nx significantly decreased the expression of seven out of the nine miRNAs at least at
one time point. However, miR-21a-3p was increased, but miR-21a-5p was not altered on
day 8. Nx significantly reduced the expression of miR-142a-duplex and miR-146a-5p on
day 10 and further suppressed the expression of miR-142a-5p and miR-146a-5p on day 14,
as their expression did not differ significantly in the IR-Nx and right kidneys. MiR-142a-
3p and miR-142a-5p expression remained suppressed on day 28 but stayed significantly
upregulated compared to the right kidneys. MiR-223-3p was downregulated by Nx only
on day 14. MiR-199a-3p and miR-214-3p expression was reduced on days 14 and 28, while
miR-199a-5p was diminished only on day 28.
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Figure 2. Fold changes of miRNA expression in the kidneys of mice relative to the control right
kidneys. The experiments were terminated 7, 8, 10, 14 and 28 days after IR. Red: IR-S left kidney,
green: IR-Nx left kidney, purple: control right kidneys. +: IR-S vs. control, #: IR-Nx vs. control,
*: IR-Nx vs. IR-S. */#: p < 0.05, **/++/##: p < 0.01, ***/+++/###: p < 0.001. (A): miR-21a-3p, (B): miR-
21a-5p, (C): miR-142a-3p, (D): miR-142a-5p, (E): miR-146a-5p, (F): miR-142a-3p, (G): miR-223-3p,
(H): miR-199a-5p, (I): miR-214-3p.
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3.4. MicroRNA Target Network Analysis

The miRNAtarget software for theoretic network analysis of successfully validated miR-
NAs (Table 4) identified several targets associated with more than one miRNA (Figure 3).

Table 4. Predicted target genes of miRNAs in the miRNA-target network built by the miRNAtarget software. In the
miRTarBase 8.0 column ‘+’ denotes that experimental evidence is available for the miRNA-target interaction in miRTarBase
8.0 database. Target-prediction algorithm scores (miRDB v5.0 score and TargetScan Mouse 7.2 context++ score) for each
miRNA are listed if the corresponding threshold criterion (>80 and <−0.2, respectively) is met, otherwise a ‘−’ symbol
is shown. (A) The effects of ischemia-reprefusion injury. The miRNA-target network was constructed for mmu-miR-21a-
duplex, 142a-duplex, 146a-5p, -199a-duplex, 214-3p and 223-3p. (B) The nephrectomy network was constructed for the
same miRs, except miR-21a-duplex, as miR-21a-duplex was not regulated by nephroctomy.

A Gene
Symbol

NCBI Gene
Description

miRNA
Target

Strength
Associated miRNAs miRTarBase

8.0

miRDB
v5.0

Score

TargetScan
Mouse 7.2

Context++ Score

1 CD2AP CD2-associated protein 4

mmu-miR-21a-3p − 93.3 -
mmu-miR-142a-3p + - -
mmu-miR-199a-3p − 94.5 −0.603
mmu-miR-223-3p − - −0.299

2 Cdk17 cyclin-dependent
kinase 17

4

mmu-miR-21a-3p − 95.4 −0.210
mmu-miR-142a-5p − 93.2 -
mmu-miR-199a-3p − 88.3 −0.342
mmu-miR-223-3p − 98.8 −0.834

3 Crebrf CREB3 regulatory factor 4

mmu-miR-21a-3p − 90.4 -
mmu-miR-199a-3p − - −0.220
mmu-miR-199a-5p − - −0.213
mmu-miR-223-3p − 80.4 -

4 PlxnA2 plexin A2 4

mmu-miR-142a-5p − 91.1 -
mmu-miR-199a-5p − 95.5 −0.369
mmu-miR-214-3p − 82.4 -
mmu-miR-223-3p + - -

5 Acvr2a activin receptor IIA 3
mmu-miR-199a-3p − 98.6 −0.614
mmu-miR-199a-5p − - −0.306
mmu-miR-223-3p − 94.2 −0.436

6 Celf1 CUGBP, Elav-like family
member 1

3
mmu-miR-199a-3p − - −0.253
mmu-miR-214-3p − 81.0 -
mmu-miR-223-3p + - -

7 Dennd6a
DENN/MADD domain

containing 6A 3
mmu-miR-21a-3p − 94.6 -

mmu-miR-199a-5p − - −0.236
mmu-miR-223-3p + - -

8 Etv1 ets variant 1 3
mmu-miR-21a-3p − 99.5 -
mmu-miR-21a-5p − - −0.238

mmu-miR-142a-5p − 92.8 -

9 Fam199x
family with sequence

similarity 199, X-linked 3
mmu-miR-142a-5p − 84.4 -
mmu-miR-199a-3p − 96.0 −0.485
mmu-miR-223-3p − 93.5 -

10 Fgl2 fibrinogen-like protein 2 3
mmu-miR-21a-3p − 93.8 -

mmu-miR-199a-3p − - −0.208
mmu-miR-199a-5p + - -

11 Hlf hepatic leukemia factor 3
mmu-miR-21a-3p − 99.1 -

mmu-miR-199a-5p − - −0.299
mmu-miR-223-3p + - −0.584

12 Il6 interleukin 6 3
mmu-miR-142a-3p + - -
mmu-miR-146a-5p + - -
mmu-miR-223-3p + - -
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Table 4. Cont.

A Gene
Symbol

NCBI Gene
Description

miRNA
Target

Strength
Associated miRNAs miRTarBase

8.0

miRDB
v5.0

Score

TargetScan
Mouse 7.2

Context++ Score

13 Kras
Kirsten rat sarcoma viral

oncogene homolog 3
mmu-miR-142a-5p − 92.5 -
mmu-miR-146a-5p − 88.6 -
mmu-miR-223-3p + - -

14 Lrrc1
leucine rich repeat

containing 1 3
mmu-miR-142a-3p − 92.9 -
mmu-miR-199a-3p − - −0.272
mmu-miR-214-3p − 81.7 -

15 Luzp2 leucine zipper protein 2 3
mmu-miR-21a-3p − 97.1 -

mmu-miR-142a-5p − - −0.205
mmu-miR-223-3p + - -

16 Naa50
N(alpha)-

acetyltransferase 50,
NatE catalytic subunit

3
mmu-miR-21a-3p − 99.7 -
mmu-miR-214-3p − 94.6 -
mmu-miR-223-3p − 86.6 −0.284

17 Nfia nuclear factor I/A 3
mmu-miR-21a-5p − - −0.321

mmu-miR-199a-3p − - −0.268
mmu-miR-223-3p − - −0.296

18 Nufip2
nuclear fragile X mental

retardation protein
interacting protein 2

3
mmu-miR-21a-3p − 83.0 -

mmu-miR-199a-3p − 88.6 −0.330
mmu-miR-214-3p − 98.7 -

19 Pip5k1b
phosphatidylinositol-4-

phosphate 5-kinase,
type 1 beta

3
mmu-miR-142a-5p − - −0.202
mmu-miR-146a-5p − - −0.236
mmu-miR-199a-3p − 88.7 −0.319

20 Ptpn4
protein tyrosine

phosphatase,
non-receptor type 4

3
mmu-miR-142a-5p − 97.9 -
mmu-miR-199a-3p − - −0.274
mmu-miR-199a-5p − - −0.253

21 Qk quaking 3
mmu-miR-21a-3p − 84.5 -

mmu-miR-199a-3p + - -
mmu-miR-214-3p − 82.9 -

22 Rc3h1 RING CCCH (C3H)
domains 1

3
mmu-miR-21a-5p + - -

mmu-miR-146a-5p + - -
mmu-miR-214-3p − 86.3 -

23 Rimklb
ribosomal modification
protein rimK-like family

member B
3

mmu-miR-21a-3p − 98.7 -
mmu-miR-142a-3p − 85.7 -
mmu-miR-199a-3p − 95.1 -

24 Smarcd1

SWI/SNF related,
matrix associated, actin
dependent regulator of
chromatin, subfamily d,

member 1

3
mmu-miR-199a-5p − - −0.238

mmu-miR-214-3p − 99.1 -
mmu-miR-223-3p − - −0.258

25 Srsf6
serine and arginine-rich

splicing factor 6 3
mmu-miR-21a-3p − 83.4 −0.287

mmu-miR-142a-5p − 98.7 -
mmu-miR-146a-5p − 88.2 -

26 Stim2 stromal interaction
molecule 2

3
mmu-miR-199a-3p − - −0.288
mmu-miR-214-3p − 80.1 -
mmu-miR-223-3p − 95.0 -

27 Tm9sf3
transmembrane 9

superfamily member 3 3
mmu-miR-146a-5p − 85.4 -
mmu-miR-199a-5p − - −0.256
mmu-miR-223-3p + - -

28 Tmem170
transmembrane

protein 170 3
mmu-miR-21a-5p − - −0.492

mmu-miR-199a-3p − - −0.293
mmu-miR-223-3p − - −0.693
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Table 4. Cont.

B Gene
Symbol

NCBI Gene
Description

miRNA
Target

Strength
Associated miRNAs miRTarBase

8.0

miRDB
v5.0

Score

TargetScan
Mouse 7.2

Context++ Score

1 PlxnA2 plexin A2 4

mmu-miR-142a-5p − 91.1 -
mmu-miR-199a-5p − 95.5 −0.369
mmu-miR-214-3p − 82.4 -
mmu-miR-223-3p + - -

2 Acvr2a activin receptor IIA 3
mmu-miR-199a-3p − 98.6 −0.614
mmu-miR-199a-5p − - −0.306
mmu-miR-223-3p − 94.2 −0.436

3 CD2AP CD2-associated protein 3
mmu-miR-142a-3p + - -
mmu-miR-199a-3p − 94.5 −0.603
mmu-miR-223-3p − - −0.299

4 Cdk17 cyclin-dependent
kinase 17

3
mmu-miR-142a-5p − 93.2 -
mmu-miR-199a-3p − 88.3 −0.342
mmu-miR-223-3p − 98.8 −0.834

5 Celf1 CUGBP, Elav-like family
member 1

3
mmu-miR-199a-3p − - −0.253
mmu-miR-214-3p − 81.0 -
mmu-miR-223-3p + - -

6 Crebrf CREB3 regulatory factor 3
mmu-miR-199a-3p − - −0.220
mmu-miR-199a-5p − - −0.213
mmu-miR-223-3p − 80.4 -

7 Fam199x
family with sequence

similarity 199, X-linked 3
mmu-miR-142a-5p − 84.4 -
mmu-miR-199a-3p − 96.0 −0.485
mmu-miR-223-3p − 93.5 -

8 Il6 interleukin 6 3
mmu-miR-142a-3p + - -
mmu-miR-146a-5p + - -
mmu-miR-223-3p + - -

9 Kras
Kirsten rat sarcoma viral

oncogene homolog 3
mmu-miR-142a-5p − 92.5 -
mmu-miR-146a-5p − 88.6 -
mmu-miR-223-3p + - -

10 Lrrc1
leucine rich repeat

containing 1 3
mmu-miR-142a-3p − 92.9 -
mmu-miR-199a-3p − - −0.272
mmu-miR-214-3p − 81.7 -

11 Pip5k1b
phosphatidylinositol-4-

phosphate 5-kinase,
type 1 beta

3
mmu-miR-142a-5p − - −0.202
mmu-miR-146a-5p − - −0.236
mmu-miR-199a-3p − 88.7 −0.319

12 Ptpn4
protein tyrosine

phosphatase,
non-receptor type 4

3
mmu-miR-142a-5p − 97.9 -
mmu-miR-199a-3p − - −0.274
mmu-miR-199a-5p − - −0.253

13 Smarcd1

SWI/SNF related,
matrix associated, actin
dependent regulator of
chromatin, subfamily d,

member 1

3
mmu-miR-199a-5p − - −0.238

mmu-miR-214-3p − 99.1 -
mmu-miR-223-3p − - −0.258

14 Stim2 stromal interaction
molecule 2

3
mmu-miR-199a-3p − - −0.288
mmu-miR-214-3p − 80.1 -
mmu-miR-223-3p − 95.0 -

15 Tm9sf3
transmembrane 9

superfamily member 3 3
mmu-miR-146a-5p − 85.4 -
mmu-miR-199a-5p − - −0.256
mmu-miR-223-3p + - -
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(A) The effects of ischemia-reprefusion injury. The miRNA-target network was constructed for 
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Figure 3. Visual presentation of the miRNA-target network predicted by the miRNAtarget software. (A) The effects of
ischemia-reprefusion injury. The miRNA-target network was constructed for mmu-miR-21a-duplex, 142a-duplex, 146a-5p,
199a-duplex, 214-3p and 223-3p (red boxes). (B) The nephrectomy-target network was constructed for the same miRs,
except miR-21a-duplex, as miR-21a-duplex was not modified by nephrectomy. Predicted targets are presented in blue ovals.
The size of the hubs are proportional to the number of connections to miRNAs. Predicted associations are listed in Table 4.



Biomedicines 2021, 9, 815 13 of 19

Four genes (CD2-associated protein (CD2AP), cyclin-dependent kinase 17 (Cdk17),
CREB3 regulatory factor (Crebrf) and plexin A2 (PlxnA2)) were predicted targets of four
miRNAs, and 24 proteins could be associated with three miRNAs (Table 4A). MicroRNAs
involved in the regulation of these targets were: miR-21a-3p, miR-142a-duplex, miR-199a-
duplex, miR-214-3p and miR-223-3p.

The theoretical network analysis of successfully validated miRNAs that were reduced
after Nx revealed only PlxnA2 that was regulated by four miRNAs, and further 14 genes
were associated with three miRNAs. As, surprisingly, miR-21 was not influenced by
Nx, miR-21 was left out of the analysis. PlxnA2 is a predicted target of miR-142a-5p,
miR-199a-5p, miR-214-3p and miR-223-3p.

3.5. MicroRNA Target Verification

To verify the predicted functional relationship between miRNAs and their predicted
targets, we measured PlxnA2 and Cd2AP protein expression in the kidneys 10 days after
IR (Figure 4). Compared to sham left kidneys, PlxnA2 protein expression was significantly
elevated in the IR-S group but not in the IR-Nx group (Figure 4B). Cd2AP protein expres-
sion was unchanged in both the IR-S and IR-Nx groups compared to the sham kidneys
(Figure 4C).
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Figure 4. Plexin A2 and Cd2ap protein expression in the kidneys of mice relative to total protein amount 10 days after
IR. (A) Western blot images of Plexin A2 and Cd2ap. Optical density analysis of images, showing the target protein level
relative to total protein amount, (B) Plexin A2, (C) Cd2ap. Red: IR-S left kidney, green: IR-Nx left kidney, balck: sham left
kidneys. One-way ANOVA, *: p < 0.05.

4. Discussion

Unilateral renal ischemia-reperfusion (IR) without nephrectomy (Nx) led to severe
and rapidly progressing functional and morphological deterioration of the post-ischemic
kidney [8,9]. Nx significantly improved the function of the post-ischemic kidneys and
decelerated the progression of fibrosis in the long term, enabling the kidney to function up
to 20 weeks after IR [7,9]. The microRNA regulation of the Nx-induced functional recovery
is unknown. Therefore, we determined the changes in the expression pattern of miRNAs
in the IR-injured kidney after delayed Nx.

Microarray was performed 8 days after IR and 1 day after Nx. We found that IR
upregulated and downregulated the renal expression of 43 and 29 miRNAs at least 1.5-fold,
respectively. Several miRNAs were altered more than 2–3-fold. However, the Exiqon
microarray works with low stringent criteria for detection, potentially resulting in a high
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rate of false positives [51,52]. Furthermore, when a miRNA has high sequence similarity
to other RNA species, they may interfere with the microarray result. Not surprisingly,
we failed to validate the expression changes of miRNAs in a few cases (miR-762, miR-2861
and miR-3102-5p).

Our verified results are in line with previous data demonstrating that renal IR
upregulated miR-21a-5p [17,20,28], miR-146a [17,28,37], miR-199a-3p [17,28] and miR-
214 [17,28,44] for a longer period, from week 1 to week 4, in mice. MiR-142a-3p, miR-199a-
5p and miR-223 were shown to be upregulated 10 days after IR [28]. Our study revealed
that they were upregulated for a longer period, from day 7 to day 28. In addition, we found
that IR also upregulated miR-21a-3p and miR-142a-5p from day 7 to day 28.

We focused on the Nx-induced miRNome changes and, more importantly, aimed
to identify changes in the expression of those miRNAs which have a role in fibrosis
progression. Generally, Nx inhibited most miRNAs upregulated by IR. Although Tnf-α
and Tgf-β mRNA were already downregulated 1 day after Nx, the renal miRNome changes
started 3–7 days after Nx. Upregulation of the miR-142a duplex and miR-146a-5p was
already reversed 3 days after Nx, followed by a decrease in the expression of miR-199a
duplex, miR-214a-3p and miR-223-3p 7 days after Nx.

The most affected miRNA, miR-142a duplex, was markedly downregulated by Nx
from day 10 until day 28. Renal expression of miR-142a-5p was also upregulated 10 weeks
after the development of hyperglycemia in mice with diabetic nephropathy [53]. Oleanolic
acid decreased both fibrosis and miR-142a-5p expression [53]. The above findings support
that renal upregulation of miR-142a-5p is deleterious and can be associated with kidney
fibrosis. MiR-142a-3p has not yet been studied in renal IR injury. In human kidney
transplantation, miR-142-3p was upregulated during allograft rejection [54,55]. MiR-142-3p
was induced by TGF-β [56]. Thus, the Nx-induced suppression of the miR-142a duplex
might have a role in improved renal function and attenuated fibrogenesis [9].

Nx robustly decreased miR-146a-5p on days 10 and 14, although this effect vanished
on day 28. MiR-146a was upregulated from day 7 after unilateral IR [17], and the overex-
pression of miR-146a at the time of IR protected the kidneys from IR-induced damage [50].
Similarly, the IR-induced renal damage was more severe in miR-146a knockout than in
WT mice [37]. The overexpression of miR-146a also reduced the extent of fibrosis and
inflammation in the kidneys 6 days after UUO [38]. These results indicate that miR-146a
expression is renoprotective at the time of the ischemic insult but may not be advantageous
at later stages. In a mouse model of spontaneous chronic renal inflammation, miR-146a
expression was elevated especially around the interstitial lesions [57]. Thus, Nx-induced
downregulation of miR-146a may be one factor responsible for the developing fibrosis.

In our study, Nx diminished miR-199a-3p and miR-214-3p expression on days 14 and
28, while miR-199a-5p was downregulated only on day 28. MiR-199a-3p delivery to the
kidney inhibited the IR-induced apoptosis [58]. MiR-199a-3p was also upregulated after
5/6 nephrectomy [59]. MiR-199a-5p has been investigated more extensively. At the very
early stages, miR-199a-5p protected the kidneys against IR-induced damage by suppressing
endoplasmic reticular stress [60]. However, miR-199a-5p promoted fibrosis and inflam-
mation at the same time. MiR-199a-5p mediated the TGF-β-induced fibrogenesis [61,62],
and its expression correlated with elevated fibrosis markers (e.g., fibronectin) and immune
cell chemoattractant levels [63] and enhanced the activity of the TLR4/NF-kB signalling
pathway [63]. Considering the pro-fibrotic and pro-inflammatory functions of the miR-199a
duplex, lower miR-199a expression after Nx could be beneficial and probably contributed
to suppressing inflammation and slowing fibrosis progression in the IR-injured kidneys.

MiR-214 upregulation improved kidney function during the first 72 h after IR by
suppressing apoptosis, while miR-214 inhibition had the opposite effect [64]. On the other
hand, both knockout and knockdown of miR-214 attenuated UUO-induced renal fibrosis
7 and 14 days after surgery [65,66]. Proximal tubule-specific knockout of miR-214 also
decreased fibrosis after both UUO and IR [67]. These results indicate that while shortly
after IR, miR-214 limited the IR-induced renal damage, partial or total absence of miR-214
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reduced the extent of fibrosis 1–2 weeks post-injury. Thus, the Nx-induced suppression of
miR-214 may have contributed to slowing the rate of fibrosis in our study.

We have found that Nx suppressed the IR-induced upregulation of miR-223-3p on
day 14 only. The role of miR-223-3p in renal IR and fibrosis has not yet been thoroughly
investigated. MiR-223-3p contributed to the protective effects of mesenchymal stem cell
delivery against the IR-induced early renal damage [68,69] and suppressed the inflamma-
some in renal tubular epithelial cells [68]. On the other hand, miR-223-3p was found to
promote cardiac fibrosis [70,71]. Considering the pro-fibrotic characteristics of miR-223-3p,
its Nx-induced downregulation might have decreased the rate of fibrosis.

Surprisingly, the expression of miR-21a-3p or -5p was hardly influenced despite
the fact that they have well-documented pro-fibrotic properties in the kidney [28,33,34].
A possible explanation as to why miR-21 was not reduced by Nx is that upon induction
by Tgf-β, miR-21 upregulation is maintained through an autoregulatory feedback loop
in fibroblasts, driving the progression of fibrosis [28,29] independently from Tgf-β [34].
Our study demonstrated that Nx decreased renal TGF-β expression, but miR-21a-5p
remained upregulated. Therefore, elevated miR-21 expression was one of the driving forces
of fibrosis progression in our model.

The miRNA target network analysis of ischemia-regulated miRNAs revealed four
genes associated with four of the studied miRNAs. CD2AP has been studied the most in
renal pathophysiology and IR. CD2AP is expressed in the whole nephron (glomerulus,
proximal and distal tubules and collecting duct) and is a predicted target of fibromirs miRs-
21a-3p, -142a-3p, -199a-3p and -223-3p, which were upregulated by ischemia in our study.
CD2AP has a role in glomerular filtration by maintaining podocyte intercellular junctions,
and its deficiency leads to albumin excretion and nephrotic syndrome [72–74]. In a similar
study where Nx was performed 8 days after IR, both mRNA and protein expression of
CD2AP was downregulated in mouse kidneys on day 28 and also in podocytes 3 weeks
after Nx [75]. However, in our study, renal CD2AP protein expression was unchanged
10 days after IR and 3 days after Nx. Therefore, it can be hypothesized that CD2AP is
downregulated only at a later time point.

The only protein regulated by four miRNAs in the nephrectomy network (Nx-miRNAs)
was PlxnA2. Plexins are receptors for semaphorins [76] in podocytes and regulate the
expression of slit-diaphragm proteins and podocyte survival. Semaphorin-plexin signalling
has already been shown to be dysregulated in IR in mice, impairing the integrity of the slit
diaphragm [74,77]. Additionally, an RNA-Seq study demonstrated the downregulation
of KRAS and another isoform of plexin (PlxnB1) in the human kidney after IR injury [78].
Despite the upregulated miRNAs in our study, PlxnA2 was not suppressed 10 days after IR,
but it was upregulated. Additionally, following Nx, PlxnA2 showed a decreasing tendency
compared to the IR-S group along with the suppression of miRNAs. In a previous study,
mRNA expression of PlxnA2 was unchanged 24 h after bilateral IR [77]. Our study shows
that PlxnA2 expression is altered later after IR. However, these results are at variance with
those predicted. We hypothesize that PlxnA2 expression is more robustly regulated at
the promoter level and is only fine-tuned by miRNAs. Day 10 was chosen for Western
blot analysis because this is the time when glomerular filtration started to recover rapidly.
However, it can also be considered that the effects of miRNAs on protein expression of
PlxnA2 and Cd2AP could be demonstrated on days 14 or 28, which possibly warrants
further measurements to be performed later.

In conclusion, delayed Nx had a significant impact on the expression of several
miRNAs. The diminished expression of the miR-142a-duplex, miR-146a-5p, the miR-199a-
duplex, miR-214 and miR-223-3p after delayed nephrectomy could possibly contribute
to functional improvement and delayed progression of kidney fibrosis. Despite both
PlxnA2 and Cd2AP being predicted targets of several miRNAs, their regulation seems to be
dominated by transcriptional factors. However, miRNAs may play a role in the fine-tuning
of their expression during renal ischemia-induced fibrosis.
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