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Abstract: Cardioprotective medications are still unmet clinical needs. We have previously identified
several cardioprotective microRNAs (termed ProtectomiRs), the mRNA targets of which may reveal
new drug targets for cardioprotection. Here we aimed to identify key molecular targets of Protec-
tomiRs and confirm their association with cardioprotection in a translational pig model of acute
myocardial infarction (AMI). By using a network theoretical approach, we identified 882 potential
target genes of 18 previously identified protectomiRs. The Rictor gene was the most central and it
was ranked first in the protectomiR-target mRNA molecular network with the highest node degree
of 5. Therefore, Rictor and its targeting microRNAs were further validated in heart samples obtained
from a translational pig model of AMI and cardioprotection induced by pre- or postconditioning.
Three out of five Rictor-targeting pig homologue of rat ProtectomiRs showed significant upregulation
in postconditioned but not in preconditioned pig hearts. Rictor was downregulated at the mRNA
and protein level in ischemic postconditioning but not in ischemic preconditioning. This is the
first demonstration that Rictor is the central molecular target of ProtectomiRs and that decreased
Rictor expression may regulate ischemic postconditioning-, but not preconditioning-induced acute
cardioprotection. We conclude that Rictor is a potential novel drug target for acute cardioprotection.

Keywords: network theory; cardioprotection; vasculoprotection; microRNA; miRNA; Rictor

1. Introduction

Protection of the ischemic heart is an unmet clinical need, as cardiovascular morbidity
and mortality are exponentially increasing worldwide. There are several promising targets
for cardioprotection, which were successfully tested in preclinical in vitro and small animal
models. However, their translation to the clinical practice as treatment of acute myocardial
infarction (AMI) has failed so far [1,2]. Therefore, effective cardioprotective therapy is still
not available. For finding new cardioprotective targets, the application of unbiased search
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for players in cardioprotection, such as microRNAs and their target mRNAs using network
analysis, may lead to finding optimal targets and more effective translation.

The importance of microRNAs in cardiac pathologies and in cardioprotection suggests
their promising therapeutic potential [3,4]. We have previously identified several cardio-
protective candidate microRNAs termed ProtectomiRs by a systemic analysis of microRNA
expression pattern in cardioprotection induced by ischemic pre- and postconditioning as
compared to ischemia-reperfusion injury. Additionally, the cytoprotective effects of some
ProtectomiR candidates (miR-139-5p, miR-125b*, let-7b and miR-487b) were validated in
isolated cardiac myocytes [5]. Modulation of microRNA expression could be a feasible
therapeutic approach, both with microRNA inhibitors (antagomiRs) and microRNA mim-
ics [3,6]. MicroRNAs can regulate the expression of multiple genes and each gene can
be regulated by multiple microRNAs. The combination of additive or synergistic effects
of a multitarget therapy may provide optimal cardioprotection [7]. Target prediction by
microRNA-target interactome network analysis and experimental target validation is an
emerging unbiased approach to better understand the pathomechanisms and to identify
new potential molecular targets for therapy [3,8–11].

Target validation in large animals has high translational value, especially application
of porcine animal models of cardiovascular diseases, including AMI [1,12]. In porcine AMI
models, clinically relevant endpoints have been established [13], which allow correlation
of preclinical outcome with future clinical examinations [14,15]; moreover, tissue samples
can be used for cellular or molecular analysis [16].

In the present study, we aimed to identify key molecular targets of ProtectomiRs found
in a previous rat study and validate their targets using tissue samples from a clinically
relevant pig model of AMI and cardioprotection by ischemic pre- and postconditioning.

2. Results
2.1. microRNA Target Prediction and ProtectomiR microRNA-mRNA Target Interaction Network

Eighteen different protectomiRs identified in our previous rat myocardial infarction
and cardioprotection model (Figure 1) revealed 882 predicted target mRNAs by in silico
target prediction. The microRNA–mRNA interactions were visualized to highlight the
central hub of the mRNA targets (Figure 2). In this interaction network, 84 mRNAs had
interactions with more than one microRNA (Supplementary Table S1), and 15 mRNAs
interacted with at least three microRNAs.
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Figure 1. Experimental protocol.
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Figure 2. Predicted interaction network of ProtectomiR microRNAs (A) showing the network neighborhood of predicted
hub genes with at least three microRNA–mRNA target interactions (node degree) (B,C). Panel (C) shows the role of the
most central target hub Rictor. MicroRNAs upregulated and downregulated in pre- and/or postconditioning and target
mRNAs are indicated in green, red and blue, respectively. Dark blue nodes represent mRNAs with a node degree of at least
3. A high-resolution version of the network is available as Supplementary Figure S1.
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2.2. Selection of the Most Important Target Hub

The Rictor gene was identified as the most central target hub with the highest node
degree, interacting with five different microRNAs (miR-139-5p, miR-320, miR-212, miR-503,
miR-188-5p) out of the 18 investigated protectomiRs (Table 1 and Figure 3A).

Figure 3. Pig homologues of the Rictor targeting microRNAs (A) were identified based on rat–pig microRNA sequence
similarity. Four of the five rat microRNAs (miR-139-5p, miR-320, miR-212, miR-503) showed a 100% match and one
(rno-miR-188-5p vs miR-362) showed a 56% match between pig and rat microRNA homologues (B). Expression levels
of the five Rictor targeting ProtectomiR microRNA homologues were tested with qPCR in ischemic preconditioning and
postconditioning compared to ischemia-reperfusion (C). Black circle, triangle and square signs represent individual data
points. * p < 0.05 vs. Isch group, n = 4–6, one-way ANOVA followed by Dunnett post-hoc test.
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Table 1. Top listed predicted mRNA targets of ProtectomiR microRNAs revealed by interaction
network and microRNA–mRNA target prediction analysis. From the total number of mRNAs
regulated by up- or downregulated ProtectomiR microRNAs the listed 15 mRNAs had at least three
microRNA–mRNA target interactions (node degree). Rictor, the target hub, was ranked first, involved
in five microRNA–mRNA target interactions (degree 5). (Complete list of predicted target mRNAs is
available in the Supplementary Materials (Supplementary Table S1)).

Degree Symbol Gene Name

5 Rictor RPTOR independent companion of MTOR, complex 2
3 Arih1 Ariadne RBR E3 ubiquitin protein ligase 1
3 Cd244 CD244 molecule
3 Crisp1 Cysteine-rich secretory protein 1
3 Ctbs Chitobiase
3 E2f5 E2F transcription factor 5
3 Ehhadh Enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase
3 Ets1 ETS proto-oncogene 1, transcription factor
3 Hsd17b2 Hydroxysteroid (17-beta) dehydrogenase 2
3 Mapk6 Mitogen-activated protein kinase 6
3 Mier3 Mesoderm induction early response 1, family member 3
3 Pde12 Phosphodiesterase 12
3 Slc20a1 Solute carrier family 20 member 1
3 Srsf7 Serine and arginine rich splicing factor 7
3 Yod1 YOD1 deubiquitinase

2.3. Rat–Pig microRNA Homology Matching

We used left myocardial tissue samples from a clinically relevant porcine AMI model
to validate the central role of Rictor in ischemic pre- and postconditioning. Therefore, first
we identified the pig homologues of the Rictor-targeting microRNAs based on rat–pig
microRNA sequence similarity. Four of the five rat microRNAs (miR-139-5p, miR-320, miR-
212, miR-503) showed a total sequence match between rat and pig microRNA homologues.
In the case of rno-miR-188-5p rat microRNA we identified the scc-miR-362 with 50%
homology. MiR-362 is a member of miR-188 microRNA family and it has an identical seed
sequence to rno-miR-188-5p (Figure 3B).

2.4. Expression of Rictor-Targeting microRNAs in Myocardium of a Clinically Relevant Closed
Chest Porcine Model

We found up-regulation of three Rictor gene-targeting microRNAs out of five target-
ing microRNAs in the interaction network in the IPostC group. Two other microRNAs
showed a tendency but not a statistically significant change (Figure 3C). Interestingly, these
microRNAs did not show alteration in the myocardial samples of the IPreC group.

2.5. Rictor mRNA Expression

mRNA expression of the Rictor gene was investigated in both the ischemic and non-
ischemic zones of the porcine myocardium. We observed a statistically non-significant
downregulation of Rictor mRNA in the ischemic zone of the postconditioned group
(Figure 4A). There were no changes in Rictor mRNA expression in the IPreC group com-
pared to Isch, neither in the ischemic nor in the non-ischemic (remote) myocardium zones
(Figure 4A,B).

2.6. RICTOR Protein Expression

Protein expression of RICTOR was in line with the mRNA level expression changes.
We observed a significant downregulation of the RICTOR protein in the ischemic zone of
the IPostC group as compared to the Isch group (Figure 4C). No RICTOR protein expression
changes were found in the IPreC group compared to Isch neither in the ischemic nor the
non-ischemic (remote) myocardium zones (Figure 4C,D).
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Figure 4. Central target hub, Rictor mRNA expression was measured with qPCR in the ischemic zone (A) and in the
non-infarcted remote zone (B) of the porcine left ventricular myocardium. RICTOR protein expression was measured with
Western blot in the ischemic zone (C) and in the non-infarcted remote zone (D) of the porcine left ventricular myocardium
and normalized to total protein staining. Black circle, triangle and square signs represent individual data points. * p < 0.05
vs. Isch group, n = 4–6, one-way ANOVA followed by Dunnett post-hoc test.

2.7. Phosphorylation Level of mTORC2 Downstream Mediators and Expression of Heat Shock
Proteins in the Ischemic Zone of Myocardium

Neither the phosphorylation level of the protein kinase B (Akt), its downstream effector
glycogen synthase kinase-3 (GSK-3) nor the protein kinase C (PKC) were significantly
changed by either pre- or postconditioning. HSP70 or HSP90 also did not show a difference
between experimental groups (Supplementary Figure S3).

2.8. Gene Ontology Enrichment Analysis of the Interaction Network

To identify the most important biological processes mediated by target mRNAs of
ProtectomiR microRNAs, Gene Ontology (GO) enrichment analysis was performed with the
full list of predicted target mRNAs (882 predicted target genes) as an input (Supplementary
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Table S2). The top 25 significant hits of the GO analysis in the biological process category
revealed mainly processes involved in glucose homeostasis, skeletal muscle development,
angiogenesis and membrane transport (Figure 5).

Figure 5. Gene ontology enrichment analysis (biological processes) of all microRNA target mRNAs (n = 882) highlights the
effect of the ProtectomiR microRNAs on glucose homeostasis, skeletal muscle development, angiogenesis and membrane
transport. A total of 21 biological processes out of the 25 with the highest fold enrichment value are presented here.
* p < 0.05, vs. control (gene ontology enrichment analysis with Bonferroni correction).

3. Discussion

In the present study we analyzed a rat protectomiR mRNA molecular network in silico
and found that the Rictor gene is the center of the network with the highest node degree.
Furthermore, we experimentally validated the Rictor gene and its targeting microRNAs in
the myocardium of a translational pig model of acute myocardial infarction and cardiopro-
tection by pre- and postconditioning and found that the RICTOR protein was significantly
decreased by ischemic postconditioning but not by preconditioning. This is the first demon-
stration that Rictor is the central molecular target of ProtectomiRs and that decreased Rictor
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expression may regulate ischemic postconditioning-, but not preconditioning-induced
acute cardioprotection.

MicroRNAs, the small non-coding RNA molecules with inhibitory post-transcriptional
effect, are in focus for translational medicine [3,17]. microRNAs are evolutionally con-
served, which provides a great opportunity to identify their molecular targets (i.e., mRNAs)
with high translational value [18]. We have previously identified 18 microRNAs with
cardioprotective potential (termed protectomiRs) in a study of acute myocardial infarction
and cardioprotection induced by ischemic pre- and postconditioning in rats by a systematic,
unbiased microRNA expression pattern analysis [5]. In the present study, we predicted the
molecular mRNA targets of the 18 potential ProtectomiRs in silico and revealed 882 poten-
tial target mRNAs. Here we utilized unbiased target prediction and network visualization
for better understanding the mRNA targets regulated by the cardioprotection-associated
ProtectomiRs according to the recommendations of the European Society of Cardiology [3].
For further selection, we ranked the targets according to the highest number of interactions
and found 15 targets with at least three microRNA interactions. These targets represent the
hubs of the interaction network we constructed here. These multiple targeted hubs could
be classified into two subgroups. Ten of the hubs were organized around let-7b, let-7e and
let-7i microRNAs, representing a smaller isolated subnetwork (e.g., Arih1, Cd244, Crisp1,
Ctbs, Ehhadh, Hsd17b2, Mapk6, Pde12, Slc20a1 and Yod1). Meanwhile, the other five multiple
targeted hub genes (Rictor, E2f5, Ets1, Srsf7 and Mier3) are part of a larger component
of the network, which contains the majority of the predicted targets. Nevertheless, the
present microRNA–mRNA target interaction network analysis revealed the Rictor gene as
the highest degree hub with five interactions with protectomiRs. Therefore, in the present
study we focused on the highest degree of Rictor gene expression, and have not further
studied other high-degree mRNA targets.

The RICTOR protein is a key member of the mTORC2 protein complex, which regu-
lates cell survival, proliferation, migration and cytoskeletal remodeling [19]. The fundamen-
tal role of mTORC2 activation in cell survival, in cardiac adaptation and in cardioprotection
by ischemic preconditioning was shown in multiple previous publications [20,21]. We
identified here the Rictor gene with the highest node degree, interacting with the miR-320,
miR-188-5p, miR-139-5p, miR-212 and miR-503 protectomiRs that were upregulated in
ischemic pre- and/or postconditioning in our previous studies in a rat myocardium [5].
Based on the antagonistic microRNA–target interactions, we predicted the downregu-
lation of Rictor gene expression during cardioprotection by the upregulated targeting
ProtectomiRs, which we measured at the mRNA and protein level.

Based on the above mentioned in silico results, we next experimentally validated the
protectomiRs and their target Rictor in cardioprotection in a large animal model of cardio-
protection after we confirmed that rat protectomiRs can be translated to pigs based on
sequence homology. For experimental validation in the present study, we obtained cardiac
tissue samples from our previous study in a translational pig model of acute myocar-
dial infarction and cardioprotection by pre- and postconditioning where preconditioning
mainly protected against infarct size, while postconditioning protected the microvascula-
ture [13,22]. In the present study, three out of five mRNAs showed significant upregulation,
while two showed non-significant tendencies of upregulation in the postconditioned pig
myocardium, but none of the protectomiRs were changed in the preconditioned groups.
Similarly, RICTOR protein expression was downregulated in the postconditioned but not in
the preconditioned group. These results show that protectomiRs and their central target to
inhibit Rictor expression may contribute to cardioprotection by ischemic postconditioning
characterized mainly by microvascular protection as seen by decreased tissue edema and
microvascular obstruction in this pig model [13,22]. However, it cannot be excluded that
in contrast to preconditioning, where Rictor expression is intact, downregulation of the
RICTOR protein in postconditioning may contribute to the observation that postcondi-
tioning does not decrease infarct size but show protection only on the microvasculature.
The mechanism by which Rictor inhibition may contribute to microvascular protection
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in the ischemic heart is not known. Therefore, here we investigated two major signaling
pathways downstream of the mTORC2 complex, Akt-GSK-3 and PKC [23], as well as heat
shock proteins 70 and 90 that regulate the mTORC2 function [24]. Neither phosphorylation
of Akt-GSK-3 and PKC nor HSP70 or HSP90 were significantly changed by either pre-
or postconditioning. These results show that further studies are needed to clarify how
downregulation of Rictor contributes to microvascular protection.

Moreover, other ProtectomiR target genes may also contribute to cardioprotection.
Therefore, we identified the effects of the whole ProtectomiR–mRNA target network

on biological functions by Gene Ontology enrichment analysis. This showed that changes
in glucose homeostasis, muscle development, angiogenesis and membrane transport mech-
anism may be involved in cardioprotection. Interestingly, the Rictor gene was not annotated
in the altered GO terms; however, it has been shown in the literature that RICTOR and
mTORC2 play a role in glucose homeostasis [25] and angiogenesis [26], showing obvi-
ous limitation in GO analysis. Therefore, we conclude that on top of the most central
hub Rictor, the orchestra of the whole molecular network might be responsible for the
cardioprotective effects

4. Materials and Methods
4.1. In Silico Analysis of the ProtectomiR–mRNA Target Interaction Network

Potential mRNA targets of 18 different previously discovered and validated mimic
and antagomiR protectomiRs [5] were predicted by miRNAtarget™ software developed by
our team recently (www.mirnatarget.com; Pharmahungary, Szeged, Hungary; accessed
at several days in August, 2017). As in other studies [8–11], the protectomiR–mRNA tar-
get interaction network was created analyzing the Norway rat version of two predicted
(miRDB version 5.0; microRNA.org version released in 2010) and one experimentally vali-
dated, manually curated (miRTarBase 4.5) microRNA–target interaction databases [27–29].
As in the previous studies, the inclusion thresholds for miRDB and mirSVR scores were
>80.0 and <−1.2, respectively. In the constructed protectomiR–target interaction network
protectomiRs and predicted targets appear as nodes while edges between them represent
predicted microRNA–target interactions. To express the number of microRNAs interacting
with their predicted mRNA targets node degree (i.e., the number of the incoming edges)
was calculated for each mRNA target, and mRNA targets were sorted in the descending or-
der of the node degrees. Target nodes with the highest node degree values were considered
as microRNA target hubs and were selected for further validation.

The protectomiR–target interaction network was visualized by the EntOptLayout
plugin version 2.1 (https://apps.cytoscape.org/apps/EntOptLayout) for the Cytoscape
framework (version 3.7.2, Cytoscape Consortium, San Diego, CA, USA) [30]. For the
optimization of the network layout double consideration of the main diagonal of the
adjacency matrix was chosen and alternating position and width updates were performed.

4.2. Cross-Species Rat–Pig microRNA Similarity Matching

The NCBI RNA BLAST and miRBase [31] databases were used to identify pig microR-
NAs with sequence similarity to the selected rat microRNAs, which were targeting the
central mRNA hub of the interaction network.

4.3. Porcine Myocardial Tissue Samples

To validate rat Protectomirs and their central target experimentally, myocardial tissue
samples were obtained from a previously published, well characterized, clinically relevant,
closed-chest porcine model of reperfused acute myocardial infarction and cardioprotec-
tion [13]. In this model, ischemic preconditioning is considered as the gold standard
cardioprotective intervention regarding to the infarct size reducing effect. In postcondition-
ing, oedema and microvascular obstruction was reduced as signs of vascular protection
(for more details on the measured parameters, see reference [13]). Tissue samples of the
following groups were used in the present study for PCR and western blots:

www.mirnatarget.com
https://apps.cytoscape.org/apps/EntOptLayout
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• Ischemia-reperfusion group (Isch): 90 min myocardial ischemia was induced with the
balloon occlusion of the left anterior descending (LAD) coronary artery followed by
3 h of reperfusion (n = 6, except for ischemic zone western blot n = 4. Difference in
group size was due to availability of samples).

• Ischemic preconditioned group (IPreC): 3 × 5 min myocardial ischemia was applied
before the 90 min LAD occlusion followed by 3 h of reperfusion (n = 4, except for HSP
western blots n = 3, difference in group size was due to availability of samples).

• Ischemic postconditioned group (IPostC): 6 × 30 s myocardial ischemia was applied
after the 90 min LAD occlusion, at the start of the 3 h reperfusion (n = 6, except for
ischemic zone western blots n = 4. difference in group size was due to availability
of samples).

Animals were sacrificed and myocardial tissue samples were collected from both the
ischemic and non-ischemic remote regions of the left ventricle in each groups after a 3 h
reperfusion (for further details, see reference [13]). Samples were snap-frozen in liquid
nitrogen immediately and stored at −80 ◦C.

4.4. Total RNA Isolation

Total RNA was isolated from left ventricular samples (n = 4–6/group) with a Zymo
Direct-zol RNA Miniprep kit (Zymo Research, Irvine, CA, USA; Cat. No #R2050) following
the manufacturer instructions. DNase I (Thermo Fischer Scientific, Waltham, MA, USA;
Cat. No. #EN0521) treatment was applied after total RNA elution in RNase-free water.
RNA concentration was determined by spectrophotometry (NanoDrop, Thermo Fischer
Scientific, Waltham, MA, USA).

4.5. microRNA cDNA Synthesis, and qRT-PCR

cDNA was synthesized from 10 ng total RNA using a miRCURY LNA RT kit (Qiagen,
Hilden, Germany; Cat. No. #339340) according to the manufacturer’s protocol. cDNA
was further diluted 60× with RNase-free water. qRT-PCR reactions were performed on a
LightCycler® 480 II instrument (Roche, Penzberg, Germany) by using a miRCURY LNA
SYBR Green PCR kit (Qiagen, Hilden, Germany; Cat. No. #339345). Polymerase was
heat-activated for 2 min at 95 ◦C, and targets were amplified and quantified in 45 cycles
(denaturation: 10 s at 95 ◦C; combined annealing/synthesis: 60 s at 56 ◦C).

Forward and reverse primers for the ssc-miR-139-5p (Qiagen, Hilden, Germany; Cat.
No. YP00204037), ssc-miR-212 (Cat. No. YP00205401), ssc-miR-320 (Cat. No. YP02114214),
ssc-miR-362 (Cat. No. YP02113056) and ssc-miR-503-5p (Cat. No. YP00205094) were used
for analysis. U6 snRNA (Cat. No. YP00203907) was used as a housekeeping gene. Results
were calculated with the 2−∆∆Cp evaluation method.

4.6. mRNA cDNA Synthesis, and qRT-PCR

cDNA was synthesized from 1 µg total RNA using a Sensifast cDNA synthesis kit
(Bioline, London, UK; Cat. No. #BIO-65053) according to the manufacturer’s protocol.
cDNA was further diluted 20× with RNAse-free water. qRT-PCR reactions were performed
on a LightCycler® 480 II instrument (Roche, Penzberg, Germany) by using the SensiFAST
SYBR Green master mix (Bioline, London, UK; Cat No. #BIO-98005). Polymerase was
heat-activated for 2 min at 95 ◦C, and targets were amplified and quantified in 40 cycles
(denaturation: 5 s at 93 ◦C; annealing: 10 s at 60 ◦C; synthesis: 20 s at 72 ◦C).

Forward and reverse primers for the RPTOR independent companion of MTOR
complex 2 (Rictor) were used for analysis. Beta-actin (Actb) was used as a housekeeping
gene. Results were calculated with the 2−∆∆Cp evaluation method. Sequences of primers
are shown in Supplementary Figure S2.

4.7. Western Blots

Snap frozen heart samples were homogenized in radioimmunoprecipitation assay
buffer (Cell Signaling Technology, Danvers, MA, USA) containing protease inhibitor cock-
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tail (complete EDTA-free ULTRA Tablets, Roche, Germany; phenylmethylsulfonyl fluoride,
Sigma, St. Louis MO, USA). Protein concentration was measured with a bicinchoninic acid
assay (Thermo Fischer Scientific, Waltham, MA, USA). Equal amounts of protein were
mixed with Laemmli buffer, and were separated in 4–15% Mini-PROTEAN® TGX™ Gel
(Biorad, Hercules, CA, USA). Proteins were transferred onto a polyvinylidene difluoride
membrane (Biorad, Hercules, CA, USA). The membrane was stained for quantification
of total protein expression with Mem-Code (Thermo Fischer Scientific, Waltham, MA,
USA, Cat. No. #24580) total protein stain according to the manufacturer’s description.
The membrane was blocked with Blotting-Grade Blocker (Biorad, Hercules, CA, USA).
Membranes were incubated with primary antibodies (anti-RICTOR, Abcam, Cambridge,
UK; Cat. No. #ab105469, anti-GAPDH, Cell Signaling Technology, Danvers, MA, USA; Cat.
No. #5174, anti-ACTB, Cell Signaling Technology, Danvers, MA, USA; Cat. No. #12620,
anti-tubulin, Abcam, Cambridge, UK; Cat. No. #ab6046, anti-phospho PKC and total
PKC Cell Signaling, Danvers, MA, USA, Cat. No. #38938 and #2056, anti-phospho Akt
and total Akt, Cell Signaling, Danvers, MA, US, Cat. No. #9271, #9271, anti-phospho
GSK-3, Cell Signaling, Danvers, MA, USA, Cat. No.#9336 and #9315, anti-HSP70 Santa
Cruz Biotechnology, Dallas, TX, USA, Cat. No. sc-32239, HSP-90, Santa Cruz Biotechnology,
Dallas, TX, US, Cat. No. sc-13119, HSP data were normalized to anti-ACTB, Santa Cruz
Biotechnology, Dallas, TX, USA, Cat. No. sc-130657), and thereafter with correspond-
ing horseradish-peroxidase-conjugated secondary antibodies (Cell Signaling Technology,
Danvers, MA, USA or Santa Cruz Biotechnology, Dallas, TX, USA). After incubating the
membranes with a 3:7 ratio mix of Clarity Max and Clarity ECL Western Blotting Substrate
(Biorad, Hercules, CA, USA; Cat. No. #1705062S and #1705060), proteins of interest were
detected with ChemiDoc XRS+ System (Biorad, Hercules, CA, USA). Band densities were
analyzed with planimetry and compared to total protein staining. Expression pattern of
different control genes is presented in Supplementary Figure S4.

4.8. Gene Ontology Enrichment Analysis

An online PANTHER Overrepresentation test (geneontology.org, version released on
11 July 2019 [32]) was used to perform Gene Ontology (GO) biological process enrichment
analysis on the full list of 882 ProtectomiR target genes. To adjust for multiple hypothesis
testing, Bonferroni correction was applied. In this analysis the version of the GO Ontology
Database [33] released on 9 December 2019 was used as a source for Rattus norvegicus gene
annotations.

5. Conclusions

This is the first demonstration that Rictor is the central molecular target of ProtectomiRs
and that decreased Rictor expression may regulate ischemic postconditioning- but not
preconditioning-induced acute cardioprotection. We concluded that Rictor is a potential
drug target for acute cardioprotection.
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