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Kálmán K. Szabó
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The hadron resonance gas (HRG) model is often believed to correctly describe the confined phase
of QCD. This assumption is the basis of many phenomenological works on QCD thermodynamics
and of the analysis of hadron yields in relativistic heavy ion collisions. We use first principle lattice
simulations to calculate corrections to the ideal HRG. Namely, we determine the sub-leading fugacity
expansion coefficients of the grand canonical free energy, receiving contributions from processes like
kaon-kaon or baryon-baryon scattering. We achieve this goal by performing a two dimensional scan
on the imaginary baryon number chemical potential (µB) - strangeness chemical potential (µS) plane,
where the fugacity expansion coefficients become Fourier coefficients. We carry out a continuum
limit estimation of these coefficients by performing lattice simulations with temporal extents of
Nτ = 8, 10, 12 using the 4stout-improved staggered action. We then use the truncated fugacity
expansion to extrapolate ratios of baryon number and strangeness fluctuations and correlations to
finite chemical potentials. Evaluating the fugacity expansion along the crossover line, we reproduce
the trend seen in the experimental data on net-proton fluctuations by the STAR collaboration.

I. INTRODUCTION

The study of the QCD phase diagram has been a very
active area of research for the last few decades. While
much is known about the thermodynamics of QCD at
zero baryon number chemical potential, such as the tem-
perature of the crossover transition [1–4] and the equa-
tion of state [5–8], the properties of the theory at finite
baryon densities remain elusive. Effective models pre-
dict that the crossover transition turns into a real phase
transition at a critical endpoint [9–11]. However, confir-
mation of this feature is needed from a first principles
approach and/or experiment. The main goal of the cur-
rently ongoing experimental effort at the second Beam

∗ Corresponding author:apasztor@bodri.elte.hu

Energy Scan program at RHIC in 2019-2021 is locating
the supposed critical endpoint of QCD.

Direct first principle lattice simulations at finite chem-
ical potential are hampered by the infamous sign prob-
lem [12]. Methods to circumvent it include reweight-
ing [13–18], Taylor expansion around zero chemical po-
tential [19–30], and extrapolation from purely imaginary
chemical potential [31–46]. The first of these methods
has so far proved too expensive to apply on fine lattices.
Therefore, no continuum extrapolated results exist with
this approach so far. The latter two methods, on the
other hand, involve analytic continuation, which is an ill-
posed problem, regardless of whether the available data is
a number of Taylor coefficients at zero chemical potential
or the value of some observable at a number of points at
imaginary chemical potential. In such a case, it is impor-
tant to use physical insight to argue what the functional
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form of a given observable could be as a function of the
chemical potential.

The confined phase of QCD is often assumed to be
well described by the ideal hadron resonance gas (HRG)
model [47–51]. The HRG model is based on the assump-
tion that a gas of interacting hadrons can be described
as a gas of non-interacting hadrons and resonances. The
inclusion of the resonances as free particles is an approxi-
mate way of taking into account resonant interactions be-
tween the stable hadrons [49, 50]. The model describes
bulk thermodynamic observables - like the pressure or
the energy density - obtained from first principle lattice
calculations rather well at zero chemical potential [6, 52–
54]. However, when looking at observables probing finite
chemical potentials, namely Taylor expansion coefficients
in the chemical potentials µB , µS and µQ near zero or

in the respective fugacities eµB/T , eµS/T and eµQ/T near
1, some discrepancies start to emerge between the HRG
model and lattice calculations. Some of these discrepan-
cies can be traced back to the fact that some fugacity
expansion coefficients with baryon number zero and one
are underestimated by the HRG model. Though this is
not the only possibility, this type of discrepancy can be
interpreted within the bounds of the HRG model itself,
and has been used to try to infer the existence of as of
yet unobserved hadrons [41, 55–57]. The other possibil-
ity is that instead of more resonances, a better treat-
ment of resonances is needed, taking into account finite
widths and also non-resonant interactions [48–50, 58–60].
Of course, both statements can be true at the same time.
For a precise description of the thermodynamics, we most
likely need better knowledge of the mass spectrum at
higher energies, as well as a more accurate treatment of
resonances.

Other discrepancies between the ideal HRG and the
lattice are impossible to resolve by supposing the exis-
tence of more resonances. These discrepancies can be
traced back to the observation that even in the tempera-
ture range below the crossover, the HRG fails to describe
sub-leading fugacity expansion coefficients.

In principle, the hadron resonance gas can be sys-
tematically improved by the S-matrix formulation due
to Dashen, Bernstein and Ma [48–50], which allows for
the calculation of the fugacity expansion coefficients, if
enough information is known about the scattering ma-
trix of the hadrons. Applying the S-matrix formalism
can lead to a better description of QCD thermodynam-
ics. Ref. [60] shows that the baryon-electric charge corre-

lation χBQ11 is particularly sensitive to pion-nucleon scat-
tering phase shifts and that the inclusion of these phase
shifts into a hadron gas analysis leads to an improved
description of the lattice data. This observable is some-
what special though, in that if isospin symmetry is as-

sumed |S| = 1 hyperons do not contribute at all to χBQ11 ,
and therefore it is only pion-nucleon scattering that dom-
inates the non-resonant contributions.

For other observables more scattering data, e.g. in-
formation about baryon-baryon scattering would also be

needed. This is especially the case at finite baryon den-
sity. Unfortunately, information on these scattering pro-
cesses is only partially available. While the nucleon-
nucleon elastic scattering phase shifts are known exper-
imentally [61–63], the inelastic part of the S-matrix is
not known. Even less is known about scattering be-
tween hadrons other than nucleons. Hyperon-nucleon
and hyperon-hyperon interactions have been studied in
chiral effective theory [64, 65]. In the last few years, the
analysis of momentum space correlations for hadron pairs
measured in pp and p-Pb collisions has also been used
to infer properties of hadron-hadron interactions [66–68].
There are also some lattice results available for baryon-
baryon scattering [69–71], but not yet with a continuum
extrapolation. While these mentioned research directions
show a clear effort from the community to learn about
scattering between other hadrons, the preliminary nature
of these results makes the use of the S-matrix formalism
for the fugacity expansion impractical at the moment.

One simple way to nevertheless go beyond the ideal
hadron resonance gas is to use some kind of mean field
model for the short range repulsion and the long range
attraction between the baryons. Such models were com-
pared to lattice results in Refs [42, 72–74]. These works
in particular emphasized the importance of the hard
core repulsive interactions between hadrons when de-
scribing thermodynamics at finite baryon chemical po-
tential. This type of interaction is completely absent in
the ideal HRG and leads to a sizable negative contri-
bution to the fugacity expansion coefficients with baryon
number two. Such approaches, while interesting, are very
far from the first principle approach that the S-matrix
formulation could provide, were the necessary S-matrix
elements known. In fact, the flavour dependence of ex-
cluded volume parameters used in the literature so far
have been quite arbitrary, often assuming the same ex-
cluded volume for all hadrons. We believe the present
calculation of the fugacity expansion coefficients can lead
to the construction of more realistic models.

Going beyond equilibrium in the grand canonical en-
semble, versions of the hadron resonance gas model have
also been used to interpret hadron yields in heavy ion
collision experiments. This approach is colloquially re-
ferred to as thermal fits as they involve the estimation of
the temperature and chemical potential where the yields
of hadrons are frozen, the so-called chemical freeze-out
conditions. This approach was successful in describing
hadron yields [75–80], which is quite remarkable, consid-
ering that these yields at a single collision energy span
many orders of magnitude. Though an important under-
lying assumption here is the equilibration of the system
produced in heavy ion collisions [81–83], the fact that the
fits work also provides some evidence for this assump-
tion. In this context, it has been realized that including
the pion-proton phase shifts in the analysis changes the
predicted yields as compared to the ideal HRG at LHC
energies [84]. Of course, for consistency, one should ex-
tend such and S-matrix treatment to strange hadrons as
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well. In lack of the necessary scattering data, this ex-
tension to strangeness is not straightforward [85]. The
inclusion of these corrections is important to precisely
test the assumption of a single freeze-out temperature.
As a competitor to this assumption, in the context of
ideal HRG, it was shown [86] that different freeze-out
temperatures for light and strange hadrons, can signifi-
cantly improve the description of the experimental yields
at LHC and the highest RHIC energies.

Since comparisons with the available lattice data sug-
gest that the agreement between full QCD and the ideal
hadron resonance gas model gets worse at finite chemical
potential, we suspect that non-resonant scattering effects
will be even more important at the RHIC Beam Energy
Scan and future experiments at lower collision energies,
like FAIR and NICA.

In this work we calculate sub-leading fugacity expan-
sion coefficients with first principle lattice simulations.
To this end we perform simulations at imaginary chem-
ical potentials, where the fugacity expansion coefficients
turn into Fourier coefficients in the imaginary values of
the chemical potentials. This correspondence was al-
ready exploited in our earlier works. In Ref. [41] we
made a detailed analysis of the fugacity expansion co-
efficients already appearing in the Boltzmann approxi-
mation of the ideal HRG, to infer the existence of not
yet discovered strange hadrons. In Ref. [42], some of us
used the fugacity expansion to emphasize the importance
of repulsive baryonic interactions near the crossover re-
gion. In Ref. [87] we compared the fugacity expansion
with the Taylor expansion in the chemical potentials for
cross-correlators of conserved charges. Here we go be-
yond our earlier works by performing lattice simulations
on a 2 dimensional grid in the purely imaginary (µIB , µ

I
S)

plane. This allows us for the first time to separate the
scattering contributions to QCD thermodynamics by the
net strangeness quantum number of the participants. In
addition to giving insight on the origin of the discrep-
ancies between full QCD and the ideal HRG model, we
believe our results on the fugacity expansion coefficients
will also be useful to tune the parameters of the freeze-
out models in heavy ion phenomenology.

We also use the truncated fugacity expansion to ex-
trapolate experimentally measured ratios of baryon num-
ber and strangeness susceptibilities to finite baryon
chemical potentials on the phenomenologically relevant
strangeness neutral line. This provides an alternative
extrapolation procedure to the standard Taylor method.
When we extrapolate on the crossover line at strangeness
neutrality, these sub-leading coefficients approximately
reproduces the trend seen in the experimental data of
the STAR collaboration of net-proton fluctuations [88–
90].

The structure of the paper is as follows. In the next
section, we introduce the basic notation and observables
used in our study. In Sec. III we discuss our lattice setup.
In Sec. IV we discuss our fitting procedure for the sec-
tors and we present the fugacity expansion coefficients.

In Sec.V we calculate the fluctuation ratios using the fu-
gacity expansion and extrapolate to small finite density.
Finally in Sec. VI we give a brief summary and outlook
for future work.

II. QCD IN THE GRAND CANONICAL
ENSEMBLE

A. Susceptibilities and the Taylor expansion

There is a conserved charge corresponding to each
quark flavor of QCD. Working with three flavors, the
grand canonical partition function can be then written in
terms of three quark number chemical potentials µu, µd
and µs. The generalized susceptibilities are defined to
be derivatives of the grand potential (or pressure) with
respect to these chemical potentials:

χudsijk =
∂i+j+k(p/T 4)

∂µ̂iu∂µ̂
j
d∂µ̂

k
s

, (1)

with the dimensionless chemical potentials µ̂X = µX/T .
For the purpose of hadronic phenomenology it is more
convenient to work with the conserved charges B (baryon
number), Q (electric charge) and S (strangeness) instead,
with chemical potentials µB , µQ and µS , respectively.
The basis of µu, µd, µs can be transformed into a basis
of µB , µQ, µS with a simple linear transformation, whose
coefficients are given by the B, Q and S charges of the
individual quarks:

µu =
1

3
µB +

2

3
µQ , (2)

µd =
1

3
µB −

1

3
µQ , (3)

µs =
1

3
µB −

1

3
µQ − µS . (4)

Analogously to the case of the quark number chemical
potentials, the susceptibilities are then defined as

χBQSijk =
∂i+j+k

(
p/T 4

)
∂µ̂iB∂µ̂

j
Q∂µ̂

k
S

. (5)

It is straightforward to express the susceptibilities de-
fined in Eq. (5) in terms of the coefficients in Eq. (1)
[24, 91, 92]. The susceptibilities at µB = µS = µQ = 0
are (up to a trivial factorial factor) the Taylor expan-
sion coefficients of the pressure near that point. Due to
charge conjugation symmetry, only the even derivatives
contribute. In the present study, we always take µQ = 0
and only consider derivatives with respect to µB and µS .
The Taylor expansion therefore reads:

p

T 4
=

∞∑
i=0

∞∑
j=0

1

i!j!
χBSij µ̂

i
Bµ̂

j
S , (6)

where χBS00 is just the dimensionless pressure at zero
chemical potential.
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We note that the Taylor expansion is probably the
most natural expansion to work within the plasma phase
of QCD. As an exhibit of this, the pressure in the Stefan-
Boltzmann (or infinite temperature) limit reads:

p

T 4
=

8π2

45
+

7π2

60
Nf +

1

2

∑
f

(
µ2
f

T 2
+

µ4
f

2π2T 4

)
(7)

In this approximation, all derivatives above 4th order are
zero, and therefore the Taylor expansion is rapidly con-
vergent. Calculating corrections to this free gas behavior
in resummed perturbation theory leads to a non-zero, but
small, value for the sixth-order derivatives [93], leaving
the qualitative conclusion of the fast convergence of the
Taylor series in the plasma phase unchanged.

B. Fugacity expansion of the free energy

An alternative to the Taylor expansion discussed in the
previous subsection is a Laurent expansion in the fugacity
parameters eµ̂B and eµ̂S near 1. Due to charge conjuga-
tion symmetry, a combination emµ̂B+nµ̂S and its recip-
rocal have the same expansion coefficients, making the
Laurent expansion an expansion in hyperbolic cosines:

P (T, µ̂B , µ̂S) =
∑
j,k

PBSjk (T ) cosh(jµ̂B − kµ̂S) . (8)

The coefficients PBSjk are also called fugacity expansion
or sector coefficients, alluding to the fact that they get
contributions from the Hilbert subspace corresponding
to the fixed values of the conserved charges B = j
and S = k. In the ideal HRG model, the expansion
coefficients PBS00 , PBS01 , PBS10 , PBS11 , PBS12 , PBS13 all get siz-
able contributions from known hadrons and hadron res-
onances. In the Boltzmann approximation to the ideal
HRG, coefficients like PBS20 are zero, while in the full HRG
they are non-zero, but very small in magnitude and es-
sentially negligible.

At purely imaginary chemical potentials µq = iµIq ,
where the sign problem is absent and lattice simulations
can be performed, we have a Fourier expansion of the
form:

P (T, µ̂IB , µ̂
I
S) =

∑
j,k

PBSjk (T ) cos(jµ̂IB − kµ̂IS) . (9)

Differentiation with respect to the original chemical po-
tentials µB = iµIB and µS = iµIS gives:

ImχBS10 =
∑
j,k jP

BS
jk (T ) sin(jµ̂IB − kµ̂IS) (10)

ImχBS01 =
∑
j,k(−k)PBSjk (T ) sin(jµ̂IB − kµ̂IS) (11)

χBS20 =
∑
j,k j

2PBSjk (T ) cos(jµ̂IB − kµ̂IS) (12)

χBS11 =
∑
j,k(−jk)PBSjk (T ) cos(jµ̂IB − kµ̂IS) (13)

χBS02 =
∑
j,k k

2PBSjk (T ) cos(jµ̂IB − kµ̂IS) . (14)

These formulas and the higher order derivatives of these
will be used in our fitting procedure, to be described in
Section IV.

C. The hadron resonance gas and its extensions

In the ideal HRG model the free energy (or pressure)
is written as a sum of ideal gas contributions of all known
hadronic resonances H:

p

T 4
=

1

T 4

∑
H

pH =
1

V T 3

∑
H

lnZH(T, ~µ) , (15)

with:

lnZH = ηH
V dH

2π2T 3

∫ ∞
0

dp p2 log [1− ηHzH exp (−εH/T )] ,

(16)
where the subscript H indicates dependence on the spe-
cific hadron or hadron resonance in the sum. The rela-
tivistic energy is εH =

√
p2 +m2

H , where mH is the mass
of the given hadron. The fugacity is zH = exp (µH/T ),
where the chemical potential associated to H is µH =
µBBH + µQQH + µSSH , and the conserved charges BH ,
QH and SH are the baryon number, electric charge and
strangeness, respectively. dH is the spin degeneracy, and
the factor ηH is 1 for (anti)baryons (fermions) and −1
for mesons (bosons).

In the HRG model, the χBQSijk susceptibilities of Eq. (5)
can be expressed as:

χBQSijk (T, µ̂B , µ̂Q, µ̂S) =
∑
H

BiH Q
j
H S

k
H I

H
i+j+k , (17)

where the phase space integral at order i+ j + k reads:

IHl (T, µ̂B , µ̂Q, µ̂S) =
∂lpH/T

4

∂µ̂lH
. (18)

The fugacity expansion coefficients PBS00 , PBS01 , PBS10 ,
PBS11 , PBS12 and PBS13 can be obtained via the expansion
of equation (16) in terms of the modified Bessel functions
K2:

lnZH =
V Tm2

HdH
2π2

∞∑
n=1

(−ηH)n+1znH
n2

K2

(nmH

T

)
. (19)

The Boltzmann approximation consists of taking only the
n = 1 term in the above expansion, which accounts for
the lowest order in the fugacity parameters. In the Boltz-
mann approximation, the sectors read:

PBSjk =
∑
H

δBH ,jδSH ,k
dHm

2
H

2π2T 2
K2

(mH

T

)
. (20)

In the full ideal HRG, a hadron with BH = 1 and SH = 0
will also give contributions to the higher order sectors,
such as PBS20 and PBS30 , due to the terms n = 2 and n = 3
in Eq. (19), respectively. These are, however, exponen-
tially suppressed due to the behavior of the Bessel func-
tion K2(x) ∼

√
π
2xe
−x as x → ∞. These contributions

are orders of magnitude smaller than the full weight of
the respective sectors as obtained from the lattice.
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The HRG model is an approximation of the more gen-
eral formula by Dashen, Bernstein and Ma, which gives
the fugacity expansion coefficients in terms of the S-
matrix:

PBSjk =
1

π3T 3

∫ ∞
MBS

jk

dEE2K2

(
E

T

)
1

4i
TrB=j,S=k

(
S†
dS

dE
− dS†

dE
S

)
c

,

(21)

where MBS
jk is the mass threshold for the B = j, S = k

channel, the trace is taken over this Hilbert subspace,
and the subscript c signifies that only connected S-matrix
elements are to be taken. For the specific case of elastic
2→ 2 body scattering,

1

4i
TrB=j,S=k

(
S†
dS

dE
− dS†

dE
S

)
c

→

∑
J

(2J + 1)

(
dδJ,I=0

dE
+ 3

dδJ,I=1

dE

)
,

(22)

where the δJ,I are the scattering phase shifts for angu-
lar momentum J and isospin I and the isospin singlet
and triplet contributions have been written separately.
After integration by parts with respect to E, we get to
the conclusion that the contribution of elastic scatter-
ing is given by the integral of the phase shift with an
exponential weight. This leads to the expectation that
dominantly repulsive interactions will lead to a negative
sub-leading fugacity expansion coefficient. This fact was
exploited when constructing repulsive core HRG models
and comparing them with lattice data in Refs. [42, 74]. It
is also reasonable to expect, due to the exponential sup-
pression of the K2 Bessel functions, that in the hadronic
phase there will be a strong hierarchy of the fugacity ex-
pansion coefficients with increasing quantum numbers, so
e.g. PBS01 � PBS02 � PBS03 as well as PBS10 � PBS20 � PBS30

and PBS11 � PBS21 � PBS31 etc. It is thus a reasonable ex-
pectation that, in the hadronic phase, the fugacity expan-
sion will converge faster than the Taylor expansion. This
is the opposite situation as in the plasma phase, where
the Taylor expansion converges quickly, while the fugac-
ity expansion converges slowly. This makes the fugacity
expansion particularly useful for modelling the hadronic
phase, and therefore also for the study of chemical freeze-
out in heavy ion collisions.

Here we do not utilize any S-matrix formula or any
mean field approximation thereof, but rather calculate
the sub-leading sector coefficients PBS20 , PBS21 , PBS22 , PBS02

etc. directly from lattice simulations.

III. LATTICE SETUP

We use a staggered fermion action with 4 steps of stout
smearing [94] with the smearing parameter ρ = 0.125
and a tree-level Symanzik-improved gauge action. This

145 MeV 150 MeV 155 MeV 160 MeV

403 × 12 µI = 0 10348 10520 10345 11611
323 × 10 µI = 0 8518 8461 1695 9174
243 × 8 µI = 0 40247 39996 19953 20015

363 × 12 µI 6= 0 146968 154479 153513 144169
323 × 10 µI 6= 0 124915 81814 300779 264647
243 × 8 µI 6= 0 184896 171224 166034 161454

TABLE I. Number of evaluated configurations on the various
lattices and temperatures. The µI 6= 0 statistics is distributed
over 143 pairs of imaginary strange and baryon chemical po-
tentials.

combination was first used in Ref. [24], where information
about the line of constant physics can be found. For
the scale setting we use the pion decay constant fπ =
130.41MeV [95]. We use lattices of temporal extent Nτ =
8, 10 and 12 to perform an estimation of the continuum
value of our observables. The spatial extent of the lattice
is given by the aspect ratio LT ≈ 3. Due to technical
reasons, some lattices had slightly different values for this
ratio, as given in Table. I. Given the error bars on the
final results, we did not optimize this further.

For the continuum extrapolations, we assume a lin-
ear scaling in 1/N2

τ . Since taste breaking effects are still
rather large on these lattices, we only call our results
continuum estimates, as opposed to fully controlled con-
tinuum extrapolations, e.g. when Nτ = 16 is part of the
extrapolation.

For all values of Nτ , we use simulations at four dif-
ferent temperatures T = 145 MeV, 150 MeV, 155 MeV
and 160 MeV. At each temperature and each lattice
spacing, we perform a two-dimensional scan in the imag-
inary chemical potentials µIB and µIS , with the chem-
ical potentials taking the values (µIB , µ

I
S) = π

8 (i, j),
with i = 0, 1, . . . , 15 and j = 0, 1, . . . , 8, for a total of
9 × 16 = 144 simulation points. In each µi 6= 0 point,
we simulated one Rational Hybrid Monte Carlo stream
with several thousand trajectories, evaluating every fifth
configuration for the fluctuation observables as detailed
in Ref. [24]. Our statistics is summarized in Table I.

The statistical errors are calculated using the jackknife
method. The estimation of the systematic errors is a
more elaborate process. Ambiguities appear at various
points of the analysis, e.g. in the way the continuum
extrapolation is calculated, or how many fit parameters
we use for the extraction of the fugacity expansion coef-
ficients. We consider all combinations of the possibilities
and take the spread of the results as systematic error.

IV. FUGACITY EXPANSION COEFFICIENTS

The estimation of the coefficients PBSij proceeds
through a correlated fit. On the µB = µS = 0 ensem-
bles, the fluctuations χBS20 ,χBS11 ,χBS02 ,χBS40 , χBS31 ,χBS22 ,χBS13

and χBS04 are included, while for the other ensembles we
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FIG. 1. Left: The four panels refer to four temperatures, each showing the obtained coefficients of the fugacity expansion on a
logarithmic scale (negative values are shown in blue). Only the leftmost five are accounted for by ideal HRG. The next seven
appear in the next order, which we use later for phenomenology. For the next order (last four coefficients with B = 3) we see
no stable signal. There are two symbols per coefficient, triangles for the complete fit and circles for the case without the B = 3
part. The data refer to our finest lattice spacing. Right: Example for the combined continuum extrapolation of the extracted
coefficients.

use ImχBS10 and ImχBS01 . This leads to a block-diagonal
covariance matrix with one 8× 8 block corresponding to
the µ = 0 ensemble, and 143 blocks of size 2 × 2, cor-
responding to the ensembles with a non-zero value of at
least one of the chemical potentials. The covariance ma-
trix blocks are estimated by the jackknife method with 24
jackknife samples. The truncation of the fugacity expan-
sion is somewhat ambiguous, as there is no single small
parameter in which we actually perform this expansion.
To estimate systematic errors coming from the choice of
the ansatz, we therefore perform two fits for each en-
semble, for which we introduce the shorthand notations
Bmax = 2 and Bmax = 3. The sectors included in the

Bmax = 2 analysis are:

PBS01 , PBS10 , PBS11 , PBS12 ,

PBS13 , PBS1,−1, P
BS
20 , PBS21 ,

PBS22 , PBS23 , PBS02 , PBS03 .

(23)

The first five of these correspond to sectors that are al-
ready present in the ideal HRG in the Boltzmann ap-
proximation. They also set contributions from interac-
tions though, e.g. non-resonant pion-nucleon interactions
contribute to PBS10 , while K-Λ interactions contribute to
PBS12 . The PBS1,−1 sector gets no contributions in the Boltz-
mann approximation of the HRG from the usual hadron
states. It gets contributions for example from the valence
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quark content uudds̄ which can correspond to p+K0 scat-
tering. We will see that this coefficient is negative, which
points to the interactions contributing to be dominantly
repulsive, as was already discussed in the S-matrix based
study of Ref. [96]. The sectors PBS2i get contributions
from baryon-baryon scattering: PBS20 from N −N , PBS21

from N −Λ, PBS22 from N − Ξ or Λ−Λ and finally PBS23

from N −Ω or Λ−Ξ. In each case, Σ can replace Λ. The
coefficients PBS02 and PBS03 get contributions from two-
and three-kaon scattering, respectively. The inclusion of
the PBS03 sector with the omission of the PBS30 sector is
motivated by the lower mass threshold of 3 kaon scatter-
ing as compared to 3 baryon scattering. In addition to
these, we also performed an analysis where four sectors
with B = 3 were added:

PBS30 , PBS
31 , PBS

32 , PBS
33 . (24)

These get contributions from three-baryon scattering,
with various strangeness contents. Our data is not yet
sufficiently accurate to obtain a reliable estimate of the
sectors with B = 3, and the inclusion of these sectors
does not improve the χ2 of the fits. Whether we include
these, or not, the results for the B = 2 sectors remain
consistent, as we show in the left panel of Fig. 1, where
the sector coefficients from the two different fits on the
Nτ = 12 lattices are shown. This way we demonstrate
the stability of the sectors included in the Bmax = 2 set.
Only at the highest temperature T = 160MeV, and only
for one sector, PBS20 , is the systematic error coming from
including the B = 3 sectors comparable to the statistical
error of the fits.

The continuum limit estimation of the sectors proceeds
through a combined fit in temperature and lattice spacing
(or equivalently Nτ ) via the ansatz

f(T,Nτ ) =
(
a0 + a1T + a2T

2
)

+
(
b0 + b1T + b2T

2
) 1

N2
τ

.

(25)
For the systematic error we compare this ansatz with
and without the coefficient b2. The continuum extrapo-
lation of the beyond-ideal-HRG sectors for the case of the
Bmax = 2 fits at fixed T and Nτ and b2 kept as a free pa-
rameter, is shown in Fig. 1 (right). The other 3 fits look
quantitatively similar. All of the continuum fits have
acceptable fit quality, with Q values over 1%. As a con-
servative estimate of the systematics, we combine them
with uniform weights. As can be seen in the right panel
of Fig. 1, the slopes of the continuum extrapolations of
all beyond-ideal-HRG sectors appear to be mild, except
for the sector PBS02 , which corresponds to kaon-kaon scat-
tering, and changes its sign during the continuum extrap-
olation. As expected, this sector - being related to kaons
- suffers from relatively large taste-breaking effects.

The final results for the beyond-ideal-HRG sectors can
be seen in Fig. 2. Within the statistical precision of our
results, PBS20 is roughly the same as PBS21 , while PBS22 is
smaller than the previous two. As a comparison, the
ideal HRG model prediction for the sum

∑
k P

BS
2k at
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FIG. 2. Our continuum estimates of the beyond-ideal-HRG
sector coefficients. We show the results both from our com-
bined temperature and continuum fit (green bands) and of a
T -by-T continuum limit extrapolation (blue points). System-
atic errors are included, in the first case by varying Bmax = 2
vs 3 and b2 = 0 or b2 6= 0, and in the second case by varying
Bmax = 2 vs 3.

T = 155MeV is of the order 10−5, orders of magnitude
lower than what we see here. The two-kaon scattering
sector PBS02 goes slightly below zero at around 155MeV
within 1σ uncertainty. The three-kaon sector PBS03 is con-
sistent with zero in the entire temperature range and is
therefore not included in the plot. An upper limit on its
magnitude with 1σ uncertainty is 2 · 10−3. The PBS1,−1

sector is rather large, consistently with our earlier, sta-
tistically independent finding in Ref. [87] on Nτ = 12
lattices. We have already published the leading sector
coefficients for which the ideal HRG has a prediction in
the Boltzmann-approximation, namely PBS01 , PBS10 , PBS11 ,
PBS12 , PBS13 in Ref. [41]. We will not repeat the results for
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those sectors here.
Our lattice results confirm the order of magnitude es-

timates of the effect of repulsive interactions from more
phenomenological approaches. As an example, a repul-
sive mean field/excluded volume approach with the same
repulsive interactions for all baryons [42, 74] predicts P 2k

sectors roughly in agreement with ours: the PBS20 and
PBS21 agree within 1σ, while PBS22 agrees within 2σ for all
temperatures. As an other example, the approach based
on KN scattering phase shifts [96] predicts the magni-
tude of the PBS1,−1 sector to be in agreement within 1σ for
T = 150MeV, and a magnitude around 2σ smaller than
ours at T = 160MeV.

V. FLUCTUATION-RATIOS AT FINITE
BARYON DENSITY

Having the coefficients of the fugacity expansion, the
thermodynamics can be readily obtained. In this section
we calculate the baryon number and strangeness fluctu-
ations and their ratios in the studied temperature range.
There is no difficulty in evaluating Eq. (8) and its µB-
and µS-derivatives at any chemical potential.

Heavy ion collisions involving lead or gold atoms cor-

respond to the conditions χS1 = 0 and χB1 = 0.4χQ1 . For
the purposes of the present study, we impose strangeness
neutrality and leave the second conditions for future

work. In fact, we use the simplified form χB1 = 0.5χQ1 ,
which is realized at vanishing electric charge chemical
potential.

To show the magnitude of the cut-off effects, we start
with a pair of quantities at µB = 0. The fugacity expan-
sion, and more generally imaginary chemical potential
simulations offer an efficient way to calculate suscepti-
bilities at µB = 0. In Ref. [44] we calculated the ratios
χB3 /χ

B
1 and χB4 /χ

B
2 at a finite lattice spacing of Nτ = 12

with the same lattice action used here. Here we show
continuum estimates of the fluctuation ratios χB3 /χ

B
1 and

χB4 /χ
B
2 at µB = 0, together with the data at finite Nτ in

Fig. 3. In the ideal HRG model χB4 /χ
B
2 = 1 for all tem-

peratures, meaning that above T = 150MeV our results
show a clear deviation from the HRG prediction, due
to presence of the non-zero beyond-ideal-HRG sectors.
The difference between the two ratios χB4 /χ

B
2 − χB3 /χB1

is also shown. In the µS = 0 case the two ratios at
µB = 0 are identical. The difference between the two
ratios comes from imposing the strangeness neutrality
condition χS1 = 0. This difference also shows mild cut-off
effects.

After the sectors are obtained, we perform extrapo-
lations to real chemical potentials using the ansatz of
Eq. (8) truncated at the Bmax = 2 level. We extrapo-
late first at fixed T and Nτ . We consider the fluctua-
tion ratios χB1 /χ

B
2 , χB3 /χ

B
1 , χB4 /χ

B
2 and χBS11 /χ

S
2 on the

strangeness-neutral line χS1 = 0, which determines µS as
a function of µB . While the extrapolation always uses
the 12 sectors of the Bmax = 2 level, the values of these
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FIG. 3. Fluctuation-ratios χB3 /χ
B
1 and χB4 /χ

B
2 obtained from

the fugacity expansion truncated at the Bmax = 2 level at
µB = 0 on our Nτ = 8, 10 and 12 lattices and our continuum
estimates from these data. The points at finite lattice spacing
include a systematic error coming from whether we used the
12- or the 16-parameter fit to determine the Bmax = 2 sectors.
The continuum results include systematic error from 4 fits,
in addition for the 12 vs 16 parameter fits at fixed Nτ and
T we also include a 5- vs 6-parameter combined T and Nτ
continuum fit.

sectors are taken both from the Bmax = 2 and Bmax = 3
fits, to estimate the systematic errors. We then perform
a continuum estimation at fixed values of µB/T with the
same combined T and Nτ fit as in the case of the baryon
and strangeness sectors.

We had one sector, PBS02 , with a steep continuum ex-
trapolation. Should we expect additional systematic er-
rors coming from the non-trivial continuum scaling in the
phenomenology? The answer is no, as we demonstrate in
Fig. 4. The multi-kaon sectors do not contribute to the
baryon fluctuations. The only ratio with phenomeno-
logical relevance where the PBS02 may be important is
χBS11 /χ

S
2 . We calculated this ratio with and without the

multi-kaon sectors and compared the results in Fig. 4 at
T = 160MeV. Although at this temperature and this lat-
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FIG. 4. Multi-kaon interactions have a negligible impact on
the fluctuations ratios studied in this work. Here we show the
effect of dropping the multi-kaon sectors from the fugacity ex-
pansion, demonstrated on the Nτ = 8 data, at T = 160MeV,
where they are the largest in our temperature range. Note
also that, on the Nτ = 8 lattices, the magnitude of the multi-
kaon sectors is larger than our continuum estimate for them.

tice spacing we have the largest value for this difficult
sector, we see hardly any significant effect from it, espe-
cially not when compared to the statistical errors after
the continuum extrapolation step.

The final results for the fluctuation ratios χB1 /χ
B
2 ,

χB3 /χ
B
1 , χB4 /χ

B
2 , χBS11 /χ

S
2 on the strangeness neutral line

can be seen in Fig. 5. The first of these ratio is strongly
dependent on the chemical potential, but not on the tem-
perature, making it a proxy of the chemical potential,
at least for small values of µB . On has to remember
though that if the critical endpoint exists, the fluctua-
tion χB2 diverges there, leading to χB1 /χ

B
2 → 0 at the

critical point, and therefore making this quantity a non-
monotonic function of µB .

The other three are more strongly dependent on the
temperature and less strongly on the chemical potential,
therefore making them possible proxies for the temper-
ature. The ratios χB3 /χ

B
1 and χB4 /χ

B
2 can be regarded

as a baryon thermometer, while the ratio χBS11 /χ
S
2 as a

strangeness-related one. This latter ratio is of large phe-
nomenological interest, as experimental net-lambda and
net-kaon fluctuations can be used to construct the ra-
tio σ2

Λ/(σ
2
Λ + σ2

K). It was shown in Ref. [87] that this
is a good experimental proxy of χBS11 /χ

S
2 , not strongly

affected by experimental effects, which makes it a prime
target for comparison with experiments.

We show the fluctuation ratios in Fig. 5 as functions
of the dimensionless chemical potential µB/T at a few
values of the temperature, as well as on the crossover
line calculated to order µ2

B in Ref. [45]:

Tc(µB) ≈ T 0
c

(
1− κ2µ̂

2
B

)
, (26)

with T 0
c = (158.0 ± 0.6)MeV and κ2 = 0.0153 ± 0.0018.

The errors on these numbers are included in the er-
ror estimation, but are negligible. Note that, since the
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FIG. 5. Continuum estimates of the fluctuation ratios χB1 /χ
B
2 ,

χB3 /χ
B
1 , χB4 /χ

B
2 , χBS11 /χ

S
2 from a fugacity expansion truncated

at the Bmax = 2 level, shown as a function of the dimension-
less chemical potential µB/T for fixed temperatures, as well
as on the crossover line Tc(µB).

crossover temperature changes very little in the chem-
ical potential range of our study, the 1σ bands on the
Tc(µB) line always overlap with the 1σ bands for a fixed
T = T 0

c = 158MeV.

Our results on the ratios χB3 /χ
B
1 and χB4 /χ

B
2 are also

shown as a function of χB1 /χ
B
2 in Fig. 6. Within 1σ,

our results are consistent with recent lattice results on
the susceptibility ratios using the Taylor method [30].
In Fig. 6 we also compare to the data on net-proton
fluctuations from the STAR collaboration [88–90], the
net-proton skewness-to-mean ratio C3/C1 and the net-
proton kurtosis-to-variance ratio C4/C2, as functions of
the net-proton mean-to-variance ratio C1/C2 at chemi-
cal freeze-out. The advantage of using these variables in
the comparison is that is does not involve any modelling
of the freeze-out conditions, other than assuming that



10

0

0.2

0.4

0.6

0.8

1

1.2

0.25 0.50 0.75

0.25 0.50 0.75 1.00 1.25

√
sNN/GeV = 200 62.4 54.4 39 27

χ
B n
+
2
/
χ
B n

o
r
C
n
+
2
/
C
n

χB
1 /χ

B
2 or C1/C2

µB/T

Fugacity expansion, χB
3 /χ

B
1

Fugacity expansion, χB
4 /χ

B
2

STAR, C3/C1

STAR, C4/C2

FIG. 6. Our continuum estimates of the fluctuation ratios
χB3 /χ

B
1 and χB4 /χ

B
2 compared with STAR data on net-proton

fluctuations from Ref. [88]. Both the values of the fluctuations
and the trend as a function of baryon density are consistent.

chemical freeze-out happens close to the QCD crossover
on the phase diagram. Our results are consistent with
the experimental results. While such a direct compari-
son suffers from many caveats [87, 97–101], the similarity
in the trends supports the idea that experimentally ob-
served net-proton fluctuation ratios reflect with some ac-
curacy the thermal fluctuations in an equilibrated QCD
medium.

VI. SUMMARY AND OUTLOOK

We have calculated fugacity expansion coefficients of
the QCD pressure beyond the ideal HRG model, sep-
arating contributions to the QCD free energy coming
from Hilbert subspaces with different values of the baryon
number and strangeness quantum numbers. This allows
one to quantify the importance of processes like kaon-
kaon and baryon-baryon scattering, when modelling the
QCD medium in the hadronic phase, but close to the
crossover. We estimated the continuum value of these
coefficients with lattice simulations of temporal extent
Nτ = 8, 10 and 12 using the staggered discretization. We
observed large cut-off effects in the kaon and multi-kaon
sectors, only. To study these, and to make the continuum
extrapolation more robust, the inclusion of finer lattices
is desirable.

Note that our study was limited to an aspect ratio of
LT ≈ 3, future studies should also investigate finite vol-
ume effects in the baryon-strangeness sectors. However,
a strong volume dependence is more likely to be observed
in correspondence with the electric charge sectors. The
full picture of baryon interactions in the hadronic phase
will emerge from the three-dimensional mapping of the
µB−µS−µQ space. In this work we restricted the space
to µQ = 0. The sectors we obtained are sums of various

charge sectors, PBSij =
∑
k P

BSQ
ijk , and we cannot differ-

entiate between the terms, though it would be possible

in a more elaborate setup. Still, the level of separation
achieved in this work already provides plenty of new in-
formation for hadronic modelling of the QCD medium.

We also used the truncated fugacity expansion to cal-
culate phenomenologically relevant fluctuation ratios on
the strangeness neutral line both as a function of the
chemical potential and as a function of the baryon num-
ber mean-to-variance ratio, which can be regarded as a
proxy of the baryo-chemical potential. While a direct
comparison is by no means trivial, the fugacity expan-
sion coefficients appear to describe the trend in the STAR
data on net-proton fluctuations [88–90].

It has been pointed out in the literature, that the mod-
ifications of the ideal HRG model that include the effects
of global baryon number conservation lead to a reduc-
tion in higher order fluctuations and therefore describe
the experimental data better. For a recent study of these
effects see [100]. In a recent paper, it was also pointed out
that the decrease in the kurtosis with increasing chemical
potential observed in the data is likely not due to critical
point effects [102]. The corrections to ideal HRG studied
in this work have a similar magnitude as the experimen-
tal effects like canonical effects and volume fluctuations.
Since both baryon interactions and the global conserva-
tion laws appear to push the χB4 /χ

B
2 and χB3 /χ

B
1 ratios

down, it is important to have an estimate of the relative
size of these types of effects under realistic conditions.
Performing a study of this kind is an important task for
the near future, as it will guide the correct interpretation
of STAR data.
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Supercomputing Centre (JSC). Parts of the computa-
tions were performed on the QPACE3 system, funded

by the DFG. C.R. also acknowledges the support from
the Center of Advanced Computing and Data Systems
at the University of Houston.

[1] Y. Aoki, G. Endrodi, Z. Fodor, S. D. Katz, and K. K. Sz-
abo. The Order of the quantum chromodynamics transi-
tion predicted by the standard model of particle physics.
Nature, 443:675–678, 2006.

[2] Y. Aoki, Z. Fodor, S. D. Katz, and K. K. Szabo. The
QCD transition temperature: Results with physical
masses in the continuum limit. Phys. Lett. B, 643:46–54,
2006.

[3] Szabolcs Borsanyi, Zoltan Fodor, Christian Hoelbling,
Sandor D Katz, Stefan Krieg, Claudia Ratti, and
Kalman K. Szabo. Is there still any Tc mystery in lattice
QCD? Results with physical masses in the continuum
limit III. JHEP, 09:073, 2010.

[4] A. Bazavov et al. The chiral and deconfinement aspects
of the QCD transition. Phys. Rev. D, 85:054503, 2012.

[5] Szabolcs Borsanyi, Zoltan Fodor, Christian Hoelbling,
Sandor D. Katz, Stefan Krieg, and Kalman K. Szabo.
Full result for the QCD equation of state with 2+1 fla-
vors. Phys. Lett. B, 730:99–104, 2014.

[6] A. Bazavov et al. Equation of state in ( 2+1 )-flavor
QCD. Phys. Rev. D, 90:094503, 2014.

[7] Sz. Borsanyi et al. Calculation of the axion mass based
on high-temperature lattice quantum chromodynamics.
Nature, 539(7627):69–71, 2016.

[8] A. Bazavov et al. Update on the 2+1+1 Flavor QCD
Equation of State with HISQ. PoS, LATTICE2013:154,
2014.

[9] Kenji Fukushima and Chihiro Sasaki. The phase dia-
gram of nuclear and quark matter at high baryon den-
sity. Prog. Part. Nucl. Phys., 72:99–154, 2013.
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