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Hybrid star properties from an extended linear sigma model
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The equation of state provided by effective models of strongly interacting matter should comply
with the restrictions imposed by current astrophysical observations on compact stars. Using the
equation of state given by the (axial-)vector meson extended linear sigma model, we determine the
mass-radius relation and study whether these restrictions are satisfied under the assumption that
most of the star is filled with quark matter. We study the dependence of the mass-radius relation
on the parameters of the model.

I. INTRODUCTION

By the recent astrophysical observation of heavy neutron stars [1] and neutron star collisons [2] the interest for
studying dense strongly interacting matter increased substantially. In terrestial experiments ALICE at CERN, and
PHENIX and STAR at RHIC [3] explored the strongly interacting matter at low density and high temperature. In
this case, the situation is also satisfactory on the theoretical side since lattice calculations are applicable. At high
density the theoretical investigations are not at such a satisfactory level, therefore, effective models are needed in this
region where the existing experimental data (NA61 at CERN, BES/STAR at RHIC) are scarce and have rather bad
statistics. Soon to be finished experimental facilities (NICA at JINR and CBM at FAIR) are designed to explore this
region more precisely [4, 5].
Neutron stars are on the one side a challenge requiring to understand their properties i.e mass, radius, tidal

deformability, structure etc. On the other hand, they can provide information about the dense, strongly interacting
matter in a region of the phase diagram that is inaccessible to terrestrial experiments [6–8]. Since the Tolman-
Oppenheimer-Volkoff (TOV) equations [9, 10] provide a direct relation between the equation of state (EoS) of the
compact star matter and the mass-radius (M-R) relation of the compact star, these data can help to select those
effective models, used to describe the strongly interacting matter, whose predictions are consistent with compact star
observables. For example, the EoS must support the existence of a two-solar-mass neutron star with star radii in the
permitted radius window of 11-12.5km, cf. [11, 12].
Based on the above considerations, we investigate mass-radius sequences given by the EoS obtained for the quark

phase in [13] from the Nf = 2 + 1 flavor extended linear sigma model introduced in [14]. For the hadronic phase we
use for the outer crust the BPS EoS [15], for the inner crust the NV EoS [16] and for the outer core until the phase
transition we use the TNI2u [17] EoS. The model used here should be regarded as a rather crude approximation since
the hadron-quark phase transition is introduced in a very ad hoc way. The present work has to be considered only as
our first attempt to study the problem.
The paper is organized as follows. In Section II we present the model and discuss how its solution was obtained

in [13], which reproduced quite well some thermodynamic quantities measured on the lattice. It can be used in the
presence of a vector meson introduced here to realize the short-range repulsive interaction between quarks in the
simplest possible way. In Section III we compare our results for the EoS and the M-R relation (star sequences), for
various values of the unknown model parameters, such as the vector coupling gv, the quark-hadron crossover transition
density ρ̄. We draw the conclusions in Section IV and discuss possible ways to improve the treatment of the model.

II. METHODS

For the EoS of the hadronic phase we use models from nuclear physics. For very low density, (outer crust, ρ < 0.01ρ0)
we use the BPS EoS [15] that corresponds to a Coulomb lattice of different nuclei embedded in a gas of electrons and
that has a remarkable influence on the mass-radius relation of the star.
For the region of 0.01ρ0 ≤ ρ < ρ0 (inner crust) we use the NV EoS [16] and above this until the phase transition

we use the TNI2u or TNI3u [17, 18] EoS, which differ in their stiffness (K=250 MeV or K=300 MeV, respectively).
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These EoS’s even with their derivatives go over each other continuously, so there is no need of any treatment at the
connections and the exact density of the transitions are irrelevant. The model used in this paper for the quark phase
is an Nf = 2 + 1 flavor (axial)vector meson extended linear sigma model (eLSM). The Lagrangian and the detailed
description of this model, in which in addition to the full nonets of (pseudo)scalar mesons the nonets of (axial)vector
mesons are also included, can be found in [13, 14]. The model contains three flavors of constituent quarks, with kinetic
terms and Yukawa-type interactions with the (pseudo)scalar mesons. An explicit symmetry breaking of the mesonic
potentials is realized by external fields, which results in two scalar expectation values, φN and φS.
Compared to [13], the only modification to the model is that we include in the Lagrangian a Yukawa term

−gv
√
6Ψ̄γµV

µ
0 Ψ, which couples the quark field ΨT = (u, d, s) to the UV (1) symmetric vector field, that is

V µ
0 = 1√

6
diag(v0 + v8√

2
, v0 + v8√

2
, v0 −

√
2v8)

µ. The vector meson field is treated at the mean-field level as in the

Walecka model [19], but as a simplification we assign a nonzero expectation value only to v00 : v
µ
0 → v0δ

0µ and vµ8 → 0.
In this way the chemical potentials of all three quarks are shifted by the same amount, allowing us to use, as shown
below, the result obtained in [13]. With the parameters used in [13], the mass of the vector meson vµ0 turns out to be
mv = 871.9 MeV.
Since a compact star is relatively cold (T ≈ 0.1 keV), we work at T = 0 MeV. We have three background fields

φN, φS and v0, and the calculation of the grand potential, Ω, is performed using a mean-field approximation, in which
fermionic fluctuations are included at one-loop order, while the mesons are treated at tree-level. Hence, the grand
potential can be written in the following form:

Ω(µq; φN, φS, v0) = Umes(φN, φS)−
1

2
m2

vv
2
0

+Ω
(0)vac
qq̄ (φN, φS) + Ω

(0)matter
qq̄ (µ̃q;φN, φS) , (1)

where µ̃q = µq − gvv0 is the effective chemical potential of the quarks, while µq = µB/3 is the physical quark chemical
potential, with µB being the baryochemical potential. On the right hand side of the grand potential (1), the terms
are (from left to right): the tree-level potential of the scalar mesons, the tree-level contribution of the vector meson,
the vacuum and the matter part of the fermionic contribution at vanishing mesonic fluctuating fields. The fermionic
part is obtained by integrating out the quark fields in the partition function. The vacuum part was renormalized at
the scale M0 = 351 MeV. More details on the derivation can be found in [13].
The background fields φN, φS, and v0 are determined from the stationary conditions

∂Ω

∂φN

∣

∣

∣

∣

φN=φ̄N

=
∂Ω

∂φS

∣

∣

∣

∣

φS=φ̄S

= 0 and
∂Ω

∂v0

∣

∣

∣

∣

v0=v̄0

= 0 , (2)

where the solution is indicated with a bar. Since ∂/∂v0 = −gv∂/∂µ̃q, the stationary condition with respect to v0
reads

v̄0(φN, φS) =
gv
m2

v

ρq(µ̃q(v̄0);φN, φS) , (3)

where ρq(x;φN, φS) = −∂Ω
(0)matter
qq̄ (x;φN, φS)/∂x.

When solving the model, the value of gv does not effect the properties of the system at zero chemical potential,
therefore, we cannot fit it to the vacuum properties, so we leave it in the range of [0, 3) as a free parameter, while
for the remaining 14 parameters of the model Lagrangian we use the values given in Table IV of [13]. These values
were determined there by calculating constituent quark masses, (pseudo)scalar curvature masses and decay widths
at T = µq = 0 and comparing them to their experimental PDG values [20]. Parameter fitting was done using a
multiparametric χ2 minimization procedure [21]. In addition to the vacuum quantities, the pseudocritical temperature
Tpc at µq = 0 was also fitted to the corresponding lattice result [22, 23]. We mention that the model also contains
the Polyakov-loop degrees of freedom (see [13] for details), but to keep the presentation simple we omitted them from
(1), as at T = 0 they do not contribute to the EoS directly. Their influence is only through the value of the model
parameters taken from [13]: since they influence the value of Tpc used for parameterization.
The solution of the model at gv = 0, obtained in [13], can be used to construct the solution at gv 6= 0 (see e.g. Ch.

2.1 of [25]): one only has to interpret the solution at gv = 0 as a solution obtained at a given µ̃q and determine µq at
some gv 6= 0 using (3). To see that the solutions φ̄N,S for gv 6= 0 can be related to the solution obtained at gv = 0,
where v̄0 = 0, consider the grand potential at gv = 0. This potential, denoted as Ω0, is subject to the stationary
conditions (2) with solutions φ̄0

N,S(µq). It is then easy to see using (1), that the solution φ̄N,S(µq) of (2) satisfies

φ̄N,S(µq + gvv0) = φ̄0
N,S(µq) or, changing the variable µq to µ̃q the relation becomes

φ̄N,S(µ̃q + gvv0) = φ̄0
N,S(µ̃q). (4)
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FIG. 1: The equation of state (left) and the M-R curves (right) for different values of gv using ρ̄ = 4ρ0 and Γ = 1 with TNI2u
(K=250 MeV) nuclear force for different gv’s. The gv = 2.5 case is calculated with TNI3u (K=300 MeV), as well. In the
right figure the observational constraint set by observed pulsars for the permitted radius window of 11.0-12.5 km at 2 M⊙ (e.g.
[11, 12]) is represented by the horizontal line. The different shaded regions are excluded by causality R > 2.9GM/c2 and the
rotational constraint based on the 716 Hz pulsar J1748-2446ad, M/M⊙ > 4.6 · 10−4 (R/km)3 [24]

The value of the grand potential Ω at the extremum can be given in terms of the value of the grand potential with
gv = 0, that is Ω0, at its extremum. Using that the extrema of Ω0(µ̃q, φN, φS, v0 = 0) are φ̄0

N and φ̄0
S, one has

Ω(µq; φ̄N(µq), φ̄S(µq), v̄0)

= Ω0(µ̃q, φ
0
N(µ̃q), φ

0
S(µ̃q), v0 = 0)− 1

2
m2

vv̄
2
0 , (5)

where

v̄0 ≡ v̄0(φ̄N(µq), φ̄S(µq)) =
gv
m2

v

ρq(µ̃q; φ̄N(µq), φ̄S(µq))

=
gv
m2

v

ρq(µ̃q; φ̄
0
N(µ̃q), φ̄

0
S(µ̃q)) (6)

and µq = µ̃q + gvv̄0. The pressure p and the energy density ε are calculated from the grand potential. At v0 6= 0 they
can be expressed in terms of the pressure obtained at gv = 0:

p(µq) = Ω(µq = 0; φ̄N(0), φ̄S(0), v̄0(0))− Ω(µq; φ̄N, φ̄S, v̄0)

= Ω0(µ̃q = 0; φ̄0
N(0), φ̄

0
S(0), v0 = 0)

−Ω0(µ̃q; φ̄
0
N, φ̄

0
S, v0 = 0) +

1

2
m2

vv̄
2
0

= p(µ̃q)|gv=0 +
1

2
m2

vv̄
2
0 , (7)

where v̄0 = gv
m2

v

ρq(µ̃q; φ̄
0
N(µ̃q), φ̄

0
S(µ̃q)), and then ε = −p+ µqρq, where µq = µ̃q + gvv̄0.

To connect the nuclear phase (TNI2u) and the quark phase EoS we assume a hadron-quark crossover, and use the
P -interpolation [26]:

P (ρ) = PH(ρ)f−(ρ) + PQ(ρ)f+(ρ), (8)

f±(ρ) =
1

2

(

1± tanh

(

ρ− ρ̄

Γ

))

(9)
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FIG. 2: The equation of state (left) and the M-R curves (right) using ρ̄ = 4ρ0 and gv = 2.5 with TNI2u (K=250 MeV) nuclear
force for different Γ’s. The Γ = 1.0 case is calculated with TNI3u (K=300 MeV), as well. The shaded regions in the right figure
are explained in Fig.1.

ε(ρ) = εH(ρ)f−(ρ) + εQ(ρ)f+(ρ) + ∆ε (10)

∆ε = ρ

∫ ρ

ρ̄

(εH(ρ′)− εQ(ρ
′))

g(ρ′)

ρ′
dρ′

g(ρ′) =
1

2Γ
cosh−2

(

ρ′ − ρ̄

Γ

)

. (11)

where ρ̄ is the transition density and Γ is the width of the crossover transition. Note that neither the transition
density - ρ̄ - nor the order of the phase transition between the hadron and the quark phases are known, therefore, we
will investigate the dependence of the M-R curves on these parameters, as well.
By solving the TOV equation [9, 10] using a fourth-order Runge-Kutta differential equation integrator with adaptive

stepsize-control for a specific EoS, one can obtain the radial dependence of the energy density (and thus of the pressure)
for a certain central energy density, ε0. One can then determine the mass and radius of the compact star for that
central energy density. By changing ε0, one gets a sequence of compact star masses and radii parameterized by the
central energy density, as shown in Fig. 1 for various models. The sequence of stable compact stars ends when the
maximum compact star mass is reached with increasing central energy density.

III. RESULTS

As described above we use an equation of state (EoS) sewn together from 3 nuclear (BPS, NV and TNIu) and from
the EoS for the quark phase. We consider that the low density (below ρ < ρ0) nuclear EoS’s are safe, their ingredients
are based on well known and tested nuclear physics data, and their slight modifications change only the propeties of
the crust, and do not show up significantly in those neutron star properties which we study here. Here we investigate
the effect of the not very well determinable parameters ρ̄,Γ, gv on the M-r curves and on the tidal deformability. We
study moreover, what the effect of the stiffnes of the hadronic EoS is, so we compare results using TNI3u (K=300
MeV) and TNI2u (K=250 MeV) interactions.
Inclusion of the repulsive interaction between quarks in the eLSM renders the EoS stiffer compared to the gv = 0

case, as expected, and at lower densities one can observe the effect of the stiffnes of the hadronic phase. It is worth
noting that relatively small differences in the p(ǫ) lead to significant differences in the M-R curves, as we shall see in
Figs. 1, 2 and 3. It can also be seen that the maximum possible compact star mass is lower for models with less stiff
EoSs. The highest mass compact star has a mass of ∼ 1.5 M⊙ with gv = 0. The effect of hadronic compressibility is
rather large, and the higher stiffnes brings the M-R curve closer to the observed radius window.
The effect of the crossover width Γ is sizeable for either on the EoS or in the M-R sequence 2, however, it does not

effect the maximal neutron star mass and the corresponding radius. The EOS for Γ = 0.2 is acausal (cs > 1) around
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FIG. 3: The equation of state (left) and the M-R curves (right) for different values of ρ̄ using gv = 2.5 and Γ = 1 with TNI2u
(K=250 MeV) nuclear force for different ρ̄’s. The ρ̄ = 4ρ0 case is calculated with TNI3u (K=300 MeV), as well. The shaded
regions are explained in Fig.1.
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FIG. 4: Tidal deformability parameter, Λ as a function of the neutron star mass for various crossover densities with gv =
2.5,Γ = 1 (left), and various coupling strengths between the quarks and vector mesons, gvs with Γ = 1, ρ̄ = 4ρ0 (right). The
experimental point is from [2].

the transition point, so that solution is not physical.
As it could be expected the variation of transition density ρ̄ has a large effect on the EoS and on the M-R curve

(Fig. 3), too. Since the hadronic part of the EoS is softer than the quark one, the maximal neutron star mass is
higher for smaller ρ̄. With decreasing ρ̄ also the radius corresponding to the maximal mass neutron star is increasing.
So in this model the parameter set: gv = 2.5,Γ = 0−1, ρ̄ = 2ρ0−3ρ0 and the nuclear TNI2u interaction (with K=250
MeV compressibility) fulfills the M-R constraints of neutron star observations.
The tidal deformability parameter Λ as a function of the neutron star mass is shown for various parameter sets

in Fig. 4. Since the experimental constraint, 70 < Λ1.4M⊙
< 580 is not very conclusive it does not constrain our

parameterizing. However, more precise estimate of Λ could rule out models and parameter sets.
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IV. CONCLUSIONS

We employed the zero-temperature EoS to determine the mass-radius relation of compact stars. Including the
repulsive interaction in the eLSM model makes the EoS stiff enough to support in some narrow range of the Yukawa
coupling compact stars with masses larger than 2 M⊙ and in the permitted radius window of 11.0-12.5 km at
M = 2 M⊙.
In the future, we would like to go beyond the mean-field approximation, used for the mesons in the eLSM, in a

way that takes into account the effect of fermions in the mesonic fluctuations. At lowest order, this can be done by
expanding to quadratic order the fermionic determinant obtained after integrating out the quark fields in the partition
function and performing the Gaussian integral over the mesonic fields. In order to have a physically more reliable
description, we also plan to improve the treatment of the interaction between vector mesons and quarks employed
here. Furthermore, to reduce the uncertainty emerging from the artificially performed phase transition, we plan to
derive the phase transition parameters from the model itself.
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