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The renormalized contribution of fermions to the curvature masses of vector and axial-vector
mesons is derived with two different methods at leading order in the loop expansion applied to the
(2 + 1)-flavor constituent quark-meson model. The corresponding contribution to the curvature
masses of the scalar and pseudoscalar mesons, already known in the literature, is rederived in a
transparent way. The temperature dependence of the curvature mass of various (axial-)vector modes
obtained by decomposing the curvature mass tensor is investigated along with the (axial-)vector–
(pseudo)scalar mixing. All fermionic corrections are expressed as simple integrals that involve at
finite temperature only the Fermi-Dirac distribution function modified by the Polyakov-loop degrees
of freedom. The renormalization of the (axial-)vector curvature mass allows us to lift a redundancy
in the original Lagrangian of the globally symmetric extended linear sigma model, in which terms
already generated by the covariant derivative were reincluded with different coupling constants.

I. INTRODUCTION

The extension of the linear sigma model with vector
and axial-vector degrees of freedom has a long history
(see e.g. [1–3]). In recent years, much effort was in-
vested in the study of the phenomenological applicability
of various formulations of the model. It turned out, for
example, that the gauged version of the model cannot re-
produce the correct decay width of the ρ and a1 mesons
[4], and therefore the interest shifted toward versions of
the model which are based on the global chiral symmetry:
originally constructed for two flavors in [5] the extended
linear sigma model (ELσM) was formulated for three fla-
vors in [6].

The parametrization of the three-flavor ELσM in re-
lation with hadron vacuum spectroscopy was thoroughly
investigated in [6]. Constituent quarks were incorporated
in the ELσM in [7] and their effect on the parametriza-
tion, through the correction induced in the curvature
masses of the scalar and pseudoscalar mesons, was in-
vestigated along with the chiral phase transition at fi-
nite temperature and density. It is interesting to know
how the model parameters and the results obtained in [7]
are influenced by coupling the constituent quarks to the
(axial-)vector mesons. The effect of the (axial-)vector
mesons on the chiral transition was studied in [8] in the
gauged version of the purely mesonic linear sigma model
with chiral U(2)L × U(2)R symmetry, by using a rather
crude approximation for the Lorentz tensor structure of
the (axial-)vector curvature mass matrix, which was as-
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sumed to have the vacuum form even at finite tempera-
ture. Further investigations in the above-mentioned di-
rections require the calculation of the mesonic and/or
fermionic contribution to the (axial-)vector curvature
mass matrix and its proper mode decomposition, as was
done in many models dealing with the description of hot
and/or dense nuclear matter [9–11]. Such a calculation
within the linear sigma model would allow for a com-
parison with in-medium properties of the (axial-)vector
mesons obtained with functional renormalization group
(FRG) techniques in [12–15].

The curvature masses of the scalar and pseudoscalar
mesons were derived in the U(3)L × U(3)R symmetric
constituent quark model in [16]. The method used there
involved taking the second derivative with respect to the
fluctuating bosonic field of the ideal gas formula for the
partition function in which the quark masses depend
on these bosonic fields. The result was subsequently
used in a plethora of publications, even when it does
not apply, as was the case of Ref. [17], which seem-
ingly uses incorrectly the result of [16] to study the effect
of the temperature and chemical potential on the vec-
tor and axial-vector masses. The result derived in [16]
for (pseudo)scalar mesons cannot be directly applied for
(axial-)vector mesons, simply because it is not enough to
consider only the boson fluctuation-dependent fermion
masses: due to their Lorentz index the momentum and
(axial-)vector fields couple to form a Lorentz scalar in
the fermion determinant resulting from the fermionic
functional integral. Due to such terms, derivatives of
the fermionic functional determinant with respect to the
(axial-)vector fields give additional contributions, com-
pared to the bosonic case.

Although the calculation of the leading order fermionic
contribution to the (axial-)vector curvature mass matrix
can be done by taking the second field derivative of the
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functional determinant, it is much easier to take an equiv-
alent approach and compute the self-energy at vanishing
momentum with standard Feynman rules. The techni-
cal issues that need to be addressed are the mode de-
composition and renormalization of the self-energy and
the mixing between the (axial-)vector and (pseudo)scalar
mesons.

We also mention that while our focus here is on the
curvature mass, the pole mass and screening mass can
also be obtained from the analytic expression of the self-
energy calculated at nonzero momentum using the usual
definitions given in Eq. (6) of [18], where the relation
between the pole and curvature masses of the mesons
was investigated with FRG techniques within the two-
flavor quark-meson model. This difference depends on
the approximation used to solve the O(N) and quark-
meson models and it is typically larger for the sigma than
the pion [18–21].

The organization of the paper is as follows. In Sec. II
an approximation scheme is presented for a consistent
computation of the effective potential (pressure) in the
ELσM which is based on curvature masses that include
the fermionic correction at one-loop level. In Sec. III
we compute in the one-flavor case, Nf = 1, the cur-
vature mass matrix of the mesons, with both methods
mentioned above. This allows for the introduction of
the relevant integrals used also in Sec. IV, where the
self-energy of all the mesons is calculated at vanishing
momentum for Nf = 2 + 1 flavors. In this case a di-
rect calculation of the curvature masses from the func-
tional determinant, although completely straightforward,
is made cumbersome by the large number of fields and
the dimension of the matrix involved. This calculation is
relegated to Appendix D. Based on the mode decompo-
sition of the (axial-)vector self-energy, presented in de-
tail in Appendix E, the curvature masses of the phys-
ical modes are given in terms of simple integrals. We
also show in Sec. IV how to connect the expressions of
the (pseudo)scalar curvature masses derived here with
existing ones obtained with the alternative method of
Ref. [16]. In Sec. V we discuss the renormalization of
the (axial-)vector curvature masses in the isospin sym-
metric case. Dimensional regularization was used in or-
der to comply with the property of the vacuum vec-
tor self-energy observed for some flavor indices, which
is related to current conservation, as discussed in Ap-
pendix B. The renormalization process revealed that
the Lagrangian of the ELσM can be written more ju-
diciously compared to the form used in the literature,
such that each term allowed by the chiral symmetry
is included only once, in accordance with the gener-
ally accepted procedure. By looking from a new per-
spective at the wave-function renormalization factor re-
lated to the (axial-)vector–(pseudo)scalar mixing, we dis-
cuss in Sec. VI how the self-energy corrections modify
its tree-level expression. Section VII contains numeri-
cal results concerning the temperature evolution of the
meson masses obtained in a new vacuum parametriza-

tion of the model which takes into account the one-
loop fermionic correction in the curvature mass of all
the mesons. Section VIII is devoted to conclusions and
an outlook. The appendixes not mentioned here contain
some further technical aspects used in the calculations.

II. LOCALIZED GAUSSIAN APPROXIMATION
IN THE YUKAWA MODEL

In order to motivate our interest in the curvature mass,
we present an improved calculational scheme for the ef-
fective potential of the ELσM compared to that used in
[7]. This scheme, which we call the localized Gaussian
approximation, uses the curvature mass of the various
mesons. To keep the notation simple, we consider the
simplest chirally symmetric Yukawa model, defined by
the Lagrangian

LY =
1

2
∂µϕ∂

µϕ− Ucl(ϕ) + ψ̄
(
i/∂ − gSϕ)ψ, (1)

where ψ and ϕ are fermionic and bosonic fields and
Ucl(ϕ) = m2

0ϕ
2/2 +λϕ4/24 is the classical potential. We

use Minkowski metric gµν = diag(1,−1,−1,−1) and the
conventions of Ref. [22].

Integrating over the fermions in the partition function1

Z =

∫
DϕDψ̄Dψei

∫
x
LY =

∫
DϕeiA(ϕ), (2)

leads to the action (
∫
x
≡ d4x)

A(ϕ) =

∫
x

[
1

2
∂µϕ∂

µϕ− Ucl(ϕ)

]
− iTr log

(
iS−1(/∂;ϕ)

)
,

(3)
where Tr ≡ trD

∫
d4x denotes the functional trace, with

the subscript “D” referring to the Dirac space, and

iS−1(x, y) =
[
i/∂x − gSϕ(x)

]
δ(4)(x− y) (4)

is the inverse fermion propagator.
Shifting the field with an x-independent background

φ, ϕ(x) → φ + ϕ(x), the effective potential can be con-
structed along the lines of Ref. [23]. Several approxi-
mations of the effective potential are considered in the
literature.

a. Mean-field approximation The bosonic fluctuat-
ing field is neglected altogether, leading to

UMF(φ) = Ucl(φ) + i trD

∫
K

log
(
iS−1
f (K)

)
, (5)

where iS−1
f (K) = /K−mf is the tree-level fermion inverse

propagator with mass mf = gSφ. Here we introduced the

notation
∫
K
≡
∫

d4K
(2π)4 for the momentum integral with

4-momentum Kµ = (k0,k). The field equation used in
[7] was derived in this approximation.

1 In the LσM this step is motivated by the fact that ψ represents
the constituent quark, that is an effective degree of freedom not
necessarily corrected by the interaction with mesons.
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b. Ideal gas approximation The bosonic fluctuating
field is neglected in the fermion determinant (Tr log) ap-
pearing in Eq. (3) and kept only to quadratic order in
the terms coming from the expansion of Ucl(φ+ϕ). The
Gaussian functional integral over ϕ leads to

U IG
eff (φ) = UMF(φ)− i

2

∫
K

log
(
iD−1(K;φ)

)
, (6)

where iD−1(K;φ) = K2 − m̂2(φ) is the tree-level boson
propagator with m̂2(φ) = d2Ucl(φ)/dφ2 being the classi-
cal curvature mass. This approximation was used in a
nonsystematic way in [7] to include mesonic corrections
in the pressure.

c. Ring resummation or Gaussian approximation
The fermion determinant is expanded in powers of ϕ and
keeping in Eq. (3) the term quadratic in the fluctuat-
ing mesonic field, the Gaussian functional integral over
ϕ results in

UGA
eff (φ) = UMF(φ)− i

2

∫
K

log
(
iD−1(K;φ)−Π(K;φ)

)
,

(7)
where the boson self-energy

Π(K;φ) = ig2
S tr

∫
P

Sf (P )Sf (K − P ), (8)

represents the one-loop contribution of the fermions. Ex-
panding in Eq. (7) the logarithm one recognizes the in-
tegrals of the ring resummation.

The ring resummation is widely used in the Nambu–
Jona-Lasinio model, where it goes by the name of
random-phase approximation [24]. In that context the
integral in Eq. (7) requires no renormalization and was
evaluated using cutoff regularization in [25, 26]. To
spare the trouble of renormalizing this integral in a lin-
ear sigma model, one can approximate the self-energy
with its zero momentum limit. In this localized approx-
imation the dressed bosonic inverse propagator appear-
ing in Eq. (7) is of tree-level type, just that the tree-
level mass is replaced by the one-loop curvature mass
M̂2(φ) ≡ m̂2(φ) + Π(K = 0;φ). Since with a homo-
geneous scalar background the curvature mass does not
depend on the momentum, the renormalization of the in-
tegral becomes an easy task, as discussed in [27] (see also
Eq. (58) in Sec. V).

Note that one can define a curvature mass in each of
the above approximations, by taking the second deriva-
tive of the potential in Eq. (5), (6), or (7) with respect
to the field φ. The curvature mass we investigate in this
paper contains the fermionic contribution from the sec-
ond field derivative of the Tr log in Eq. (3). This repre-
sents the purely fermionic one-loop contribution to the
curvature mass which can be derived in principle in the
localized Gaussian approximation using the background
field method.

In order to compute the pressure, we need to evaluate
the effective potential at the minimum. In the localized

approximation the extremum, is determined as the solu-
tion of the field equation

m2
0φ+

λ

6
φ3 +

1

2

[
λφ+ 2g3

S trD

∫
P

S3
f (P )

]
×
∫
K

i

K2 − M̂2(φ)
− gS trD

∫
K

Sf (K) = 0. (9)

We mention that the second term in the square brackets
is nothing but the fermionic correction to the three-point
vertex function evaluated at vanishing momentum. This
vertex function is obtained by expanding the fermionic
determinant in powers of the bosonic field

Tr log
(
iS−1
f − gϕ

)
= Tr log

(
iS−1
f

)
−
∞∑
n=1

(−ig)n

n

× trD

[ n∏
i=1

∫
d4xi ϕ(xi)Sf (xi, xi+1)

]
xn+1=x1

. (10)

The expansion gives a series of one-loop diagrams in
which the nth term has n external fields (see e.g. [28]
or Ch. 9.5 of [22]). Using the background field method,
the expansion of such a fermionic functional determinant
was considered recently in [29, 30] in order to derive effec-
tive couplings between constituent quarks, (axial-)vector
mesons, and the photon.

The second field derivative of the functional determi-
nant, taken at vanishing mesonic field, is nothing but
the one-loop self-energy associated with the bosonic field
with respect to which the derivative is taken, as the con-
tribution of diagrams not having exactly two external
fields of this type vanishes. Based on this observation
one can obtain the lowest order fermionic correction to
the bosonic curvature mass by computing the one-loop
self-energy with standard Feynman rules.

III. CURVATURE MASS IN THE Nf = 1 CASE

We generalize now Eq. (1) and consider the chirally
symmetric Lagrangian2 in which a fermionic field ψ inter-
acts through a Yukawa term to scalar (S), pseudoscalar
(P ), vector (Vµ), and axial-vector (Aµ) fields

Lf = ψ̄
[
iγµ∂µ − gS(S − iγ5P )− gV γµ

(
Vµ + γ5Aµ

)]
ψ.

(11)
The mesonic part of the Lagrangian is of the form

Lm =
∑

X=S,P

[ (∂X)2

2
− m2

0

2
X2
]
− λ

4!

(
S2 + P 2

)2
+
∑

Y=V,A

[
− 1

4
FYµνF

µν
Y +

m2
0,V

2
Y µYµ

]
+ Lint

m (X,Yµ),(12)

2 The one-loop curvature mass formulas derived here can be easily
modified when, in the absence of chiral symmetry, P and A can
have different Yukawa couplings than S and V , respectively.
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with FYµν = ∂µYν − ∂νYµ. We shall return to the unspec-
ified interacting part in the Nf = 2 + 1 case in relation
to the renormalization of the one-loop curvature masses.

By integrating over the fermions in the partition func-
tion, done after the usual shifts S(x) → φ + S(x) (φ
is independent of x) introduced in order to deal with
the spontaneous symmetry breaking (SSB), one obtains
a correction to the classical mesonic action in the form
of a functional determinant. The expansion of the func-
tional determinant in powers of mesonic field derivatives,
the so-called derivative expansion [31, 32], leads to an
effective bosonic action of the form∫
d4xLeff(φ, ξ) =

∫
d4x
[
Lm(φ, ξ)−Uf (φ, ξ)+O((∂ξ)2)

]
,

(13)
with the leading order term of the expansion being the
one-loop fermionic effective potential

Uf (φ, ξ(x)) = iTr log
(
iS−1
f (/∂; ξ)

)
= i

∫
K

log detD

(
iS−1
f (K; ξ(x))

)
, (14)

which depends on all the fluctuating mesonic fields col-
lectively denoted by ξ(x). We introduced

iS−1
f (K; ξ) = /K−mf−gS

(
S−iγ5P

)
−gV

(
/V+ /Aγ5), (15)

for the inverse fermion propagator, in which mf = gSφ
is the tree-level (classical) fermion mass. Hereafter the x
dependence of the mesonic fields will not be indicated.

The second derivative of Uf (φ, ξ) with respect to the
mesonic fields gives an additive correction to the classical
mesonic curvature mass obtained from Lm. Since later
we will investigate the Nf = 2 + 1 case, where the fields
have flavor indices a = 0, . . . 8, we give the more general
formulas of these corrections

∆m̂
2,(X)
ab ≡ d2Uf (φ, ξ)

dXadXb

∣∣∣∣
ξ=0

, X = S, P,

∆m̂
2,(Y )
ab,µν ≡ −

d2Uf (φ, ξ)

dY µa dY νb

∣∣∣∣
ξ=0

, Y = V,A.

(16)

In this section the flavor indices should be disregarded.
The sign difference between the above definitions is

due to the different signs of the corresponding clas-
sical mass terms in Eq. (12). Accordingly, for the
(pseudo)scalar field one has an additive correction to

the classical mass squared m̂
2,(X)
ab ≡ − d2Lm

dXadXb

∣∣
ξ=0

,

while for the (axial-)vector field the second derivative
is a Lorentz tensor, and therefore the correction to

m̂
2,(Y )
ab ≡ gνµ

4
d2Lm

dY µa dY
ν
b

∣∣
ξ=0

depends on the tensor structure

of ∆m̂
2,(Y )
ab,µν and whether one works at zero or nonzero

temperature. For example, at T = 0, where ∆m̂
2,(Y )
ab,µν ∝

gµν , the fermionic correction to m̂
2,(Y )
ab is obtained by

taking the trace in Eq. (16):

∆m̂
2,(Y )
ab :=

1

4
∆m̂

2,(Y )µ
ab,µ . (17)

This is needed in a parametrization of the model that is
based on the one-loop curvature masses. For the curva-
ture mass at T 6= 0 one needs the mode decomposition

of the tensor ∆m̂
2,(Y )
µν . This will be discussed in Sec. IV

and Appendix E in relation to the Nf = 2 + 1 case.

A. Brute force calculation

The determinant D ≡ detD

(
iS−1
f (K; ξ)

)
appearing in

Eq. (14) evaluates to

D =
[
g2
S

(
(S + φ)2 + P 2

)
−K2

]2
+
(
K2 −m2

f + g2
V V

2 − 2gVK · V
)2

+
[(
g2
VA

2
)2

+ 2g2
V

[
(m2

f +K2)A2 − 2(K ·A)2
]]

+ 2g2
S

[
(S + φ)2 + P 2 − φ2

][
g2
V

(
A2 − V 2

)
+ 2gVK · V

]
−
(
K2 −m2

f

)2
. (18)

Writing the determinant in this form facilitates the
derivation of the curvature masses, as the contribution
to the scalar and the pseudoscalar comes only from the
first term, while only the second and the third terms
contribute in the case of the vector and the axial-vector,

respectively. Also, note that D(ξ = 0) =
(
K2 −m2

f

)2
.

The second derivative of the determinant with respect
to a particular field denoted by ϕ is calculated using

d2 logD

dϕdϕ

∣∣∣∣
ξ=0

=

[
1

D

d2D

dϕdϕ
− 1

D2

dD

dϕ

dD

dϕ

] ∣∣∣∣
ξ=0

. (19)

For ϕ ∈ {S, P, Vµ} this is applied writing D = D̃2 + R,

where D̃2 is either the first or the second term on the
right-hand side (rhs) of Eq. (18), while the remnant R
does not contribute in Eq. (19). Introducing the notation
Gf (K) = 1/(K2 −m2

f ) one obtains

d2 logD

dSdS

∣∣∣∣
ξ=0

= −4g2
S

[
Gf + 2m2

fG
2
f

]
, (20a)

d2 logD

dPdP

∣∣∣∣
ξ=0

= −4g2
SGf , (20b)

for the scalar and the pseudoscalar fields, and

d2 logD

dV µdV ν

∣∣∣∣
ξ=0

= 4g2
V

[
gµνGf − 2KµKνG

2
f

]
, (21a)

for the vector field.
For the axial-vector one applies Eq. (19) with D =

D̃+R, where D̃ is the third term on the rhs of Eq. (18),
to obtain

d2 logD

dAµdAν

∣∣∣∣
ξ=0

= 4g2
V

[
(m2

f +K2)gµν − 2KµKν

]
G2
f .(21b)

For scalar and vector fields there are contributions from
both the first and the second derivative of D̃, while in
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the case of the pseudoscalar and axial-vector fields only
the second derivative of D̃ contributes.

Using Eqs. (14), (16), (18), and (20) the fermion cor-
rections to the curvature masses of the scalar and pseu-
doscalar fields are obtained as

∆m̂2,(S) = −4g2
S

[
1 + 2m2

f

d

dm2
f

]
T (mf ), (22a)

∆m̂2,(P ) = −4g2
ST (mf ), (22b)

where the (vacuum) tadpole integral is

T (mf ) =

∫
K

i

K2 −m2
f

=

∫
K

iGf (K). (23)

In the case of the vector and the axial-vector fields, one
evaluates the trace in Eq. (17), using Eqs. (16) and (21)
together with g µ

µ = 4 and KµKνg
νµ = K2 = m2

f +G−1
f ,

to obtain

∆m̂2,(V ) = −2g2
V

[
1−m2

f

d

dm2
f

]
T (mf ), (24a)

∆m̂2,(A) = −2g2
V

[
1 + 3m2

f

d

dm2
f

]
T (mf ). (24b)

1. Integrals at finite temperature

The expressions in Eqs. (22) and (24a), which were
formally derived at vanishing temperature (T = 0), can
be easily generalized to T 6= 0, where the tadpole integral
consists of vacuum and matter parts:

T (mf ) = T (0)(mf ) + T (1)(mf ). (25)

The superscripts indicate the absence or the presence of
statistical factors in the respective integrands. In a co-
variant calculation the vacuum part T (0)(mf ) is the in-
tegral in Eq. (23), while in a noncovariant calculation it
is

T (0)(mf ) =

∫
d3k

(2π)3

1

2(k2 +m2
f )1/2

, (26)

as obtained with the usual conventions of the imaginary
time formalism [33], namely (µ is the chemical potential)

k0 → iνn + µ and

∫
K

→ iT
∑
n

∫
d3k

(2π)3
, (27)

after doing the summation over the fermionic Matsubara
frequencies νn = (2n+ 1)πT . The matter part is

T (1)(mf ) = − 1

4π2

∫ ∞
0

dk
k2

Ef (k)

[
f+
f (k) + f−f (k)

]
, (28)

where f±f (k) = 1/(exp((Ef (k)∓ µ)/T ) + 1) are the
Fermi-Dirac distribution functions for particles and an-
tiparticles and E2

f (k) = k2 +m2
f with k = |k|.

For the mass derivative of the matter part of the tad-
pole integral (Euclidean bubble integral at vanishing mo-
mentum) one uses d(f±f /Ef )/dm2

f = d(f±f /Ef )/dk2 and
an integration by parts to obtain

−B(1)(mf ) ≡ dT (1)(mf )

dm2
f

=
1

8π2

∫ ∞
0

dk
f+
f (k) + f−f (k)

Ef (k)
.

(29)
The fact that even at finite temperature the trace of

the second derivative appearing in Eq. (21a) is the only
relevant quantity determining the curvature mass of the
vector boson is due to current conservation. For the
axial-vector this is not the case and one needs the mode
decomposition of the tensor in Eq. (21b). This is dis-
cussed in Appendix E.

B. Curvature mass from the self-energy

As mentioned at the end of Sec. II, the one-loop cur-
vature mass can also be obtained by computing the cor-
responding zero momentum self-energy. For example, for
the self-energy of the vector field, the Feynman rules ap-
plied with the conventions of [22] give

iΠ(V )
µν (Q = 0) = −

(
− igV

)2
trD

∫
K

γµSf (K)γνSf (K).

(30)
Using Sf = i( /K +mf )Gf , the Dirac trace

trD

[
γµ( /K +mf )γν( /K +mf )

]
= 8KµKν − 4gµνG

−1
f (K),

(31)
results in

Π(V )
µν (Q = 0) = −4g2

V

[
gµνT (mf )− 2i

∫
K

KµKνG
2
f (K)

]
.

(32)
Comparing Eq. (32) with the expression obtained by us-

ing Eq. (21a) in Eq. (16) shows explicitly that ∆m̂
2,(V )
µν =

Π
(V )
µν (Q = 0). At zero temperature Π

(V )
µν (0) = 0 due to

the current conservation related to the U(1)V global sym-
metry, and therefore the one-loop curvature mass of the
vector boson is the classical one, m̂2,(V ).

In order to obtain the curvature mass of the physi-
cal modes at finite temperature, we need the standard
decomposition of the momentum-dependent self-energy
tensor reviewed in Appendix E. The self-energy is decom-
posed into vacuum and matter parts. The former is eval-
uated using a covariant calculation performed at T = 0 in
a regularization scheme compatible with the consequence
of current conservation, namely that the self-energy is 4-

transverse, QµΠ
(V )
µν (Q) = 0, and Π

(V )
µν,vac(Q = 0) = 0.

Therefore, only the matter part contributes to the self-
energy components determining the curvature masses of
the 3-longitudinal and 3-transverse vector modes

M̂
2,(V )
l/t = m̂2,(V ) + Π

(V )
l/t . (33)
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The components are obtained as (see Ch. 1.8 of [34])

Π
(V )
l = − lim

q→0
lim
q0→0

Q2

q2
Π(V ),00(Q) = Π

(V ),00
mat (0,0),

Π
(V )
t =

1

2
lim
q→0

lim
q0→0

(
Π(V ),µ
µ (Q)−Πl(Q)

)
= −3

2
Π

(V ),11
mat (0,0).

(34)

For the axial-vector, which does not couple to a conserved
current, the tensor structure of the self-energy is more
complicated and it is discussed in Appendix E.

The interested reader can find in Appendix A a discus-
sion on the matter part of the self-energy components.
For the vacuum part see the discussion in Sec. V and the
calculation presented in Appendix C.

IV. CURVATURE MASS FOR Nf = 2 + 1

The fermionic part of the chiral-invariant Lagrangian
of the extended linear sigma model, whose mesonic part
can be found in [7], has the form given in Eq. (11),
only that the fermionic field is the triplet of constituent
quarks, ψ ≡ (u, d, s)T, while the mesonic fields are
nonets. For the scalars S = SaTa = Saλa/2, a = 0, . . . , 8
and similarly for the other mesons (λa 6=0 are the Gell-

Mann matrices and λ0 =
√

2
31).

The integration over the fermionic field in the partition
function results in a functional determinant involving a
N ×N matrix, where N = 3× 4×Nc with Nc being the
number of colors. This matrix structure makes tedious a
brute force calculation of the curvature mass similar to
the one shown in Sec. III A, even in the case of a trivial
color dependence (see Eq. (D1)). Therefore, we proceed
as in Sec. III B by calculating the self-energy at vanishing
momentum and relegate to Appendix D the sketch of a
direct calculation.

A. Curvature mass from the self-energy

For simplicity, we consider the case when only the
scalar fields, namely S0, S3 and S8, have expectation val-
ues, denoted by φ0, φ3, and φ8. It proves convenient to
work in the N− S (nonstrange–strange) basis, which for
a generic quantity Q is related to the (0, 8) basis by(
QN

QS

)
= R

(
Q0

Q8

)
, R = R−1 =

1√
3

(√
2 1

1 −
√

2

)
. (35)

Applying the above relation to the matrices λ0 and λ8,
one obtains λN = diag(1, 1, 0) and λS =

√
2 diag(0, 0, 1),

which give the antisymmetric structure constants f45N =
f67N = 1/2 and f45S = f67S = −1/

√
2. With the shift

Si → φi + Si, i = N, 3,S, one obtains, using also λ3 =
diag(1,−1, 0), the tree-level inverse fermion propagator
matrix in flavor space as iS̄−1

0 = diag(iS−1
u , iS−1

d , iS−1
s ),

TABLE I. Dirac matrices and couplings to be used in the
self-energy formula (37).

X, cX ,ΓX S,−igS , 1 P,−gS , γ5 V,−igV , γµ A,−igV , γµγ5

with components iS−1
f (K) = /K − mf , where the tree-

level fermion masses are

mu,d = gS(φN ± φ3)/2, ms = gSφS/
√

2. (36)

The one-loop self-energy of a generic field Xa, with a
being a flavor index, can be written as

Π
(X)
ab (Q) = iNcsXc

2
X

∫
K

tr
[
ΓX

λa
2
S̄0(K)Γ′X

λb
2
S̄0(L)

]
,

(37)
where Nc is the number of colors, L = K − Q, sX = 1
for X = V,A and sX = −1 for X = S, P. The prop-
agator matrix S̄0 = diag(Su,Sd,Ss) has as elements the
tree-level propagators of the constituent quarks. Further-
more, ΓX contains Dirac matrices that carries a Lorentz
index when X ∈ {V,A}, in which case the prime on Γ′X
indicates that its Lorentz index is different from that of
ΓX . The matrices are explicitly given in Table I, along
with the constant cX proportional to the Yukawa cou-
pling. The trace is to be taken in Dirac and flavor spaces.
We assumed a trivial color dependence and we postpone
to Sec. IV B the discussion of a more complicated one.

The flavor space trace in Eq. (37) can be easily per-
formed. Since in the N − S basis the λa matrices have,
with the exceptions of a = S, two nonzero matrix ele-
ments, one generally obtains two terms which can cancel
each other for some flavor combinations. The nonzero
contributions are listed in Table II. In the case of the
first three entries, the factor of 2 is the consequence of
the identity

trD

[
ΓXSf (K)Γ′Y Sf ′(R)

]
= rXrY trD

[
ΓXSf ′(−R)Γ′Y Sf (−K)

]
, (38)

which is applied inside the integral in Eq. (37) with Y =
X, followed by the shift K → −K. This identity can be
proven using the cyclicity of the trace and that, given the
charge conjugation operator C = iγ2γ0, the matrices ΓX
of Table I satisfy CΓXC

−1 = rXΓT
X , where rX = 1 for

X ∈ {S, P,A} and rX = −1 for X = V.
We see from Table II that after the trace in flavor space

is performed, depending on the indices ab, the self-energy
(37) can be expressed either in terms of integrals involv-
ing two different propagators

IX(Q;mf ,mf ′) =
−i
4

∫
K

trD

[
ΓXSf (K)Γ′XSf ′(K −Q)

]
,

(39)
or using integrals of the types already encountered in the
one-flavor case (see Eq. (30)), obtained from Eq. (39) as

IX(Q;mf ) = lim
mf′→mf

IX(Q;mf ,mf ′). (40)
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TABLE II. Nonvanishing contributions to the self-energy (37)
from the flavor space trace, tr

[
λaS̄0λbS̄0

]
, for φ3 6= 0 and

their reduction in the isospin symmetric case, where l denotes
the light quarks with equal masses ml ≡ mu = md.

ab φ3 6= 0 φ3 = 0
11,22 2SuSd 2SlSl
44,55 2SuSs 2SlSs
66,77 2SdSs 2SlSs

SS 2SsSs 2SsSs
33,NN SuSu + SdSd 2SlSl
3N, N3 SuSu − SdSd 0

Being interested in the curvature mass, we evaluate

the zero momentum self-energy, Π
(X)
ab ≡ Π

(X)
ab (Q = 0),

expressing it in terms of the integrals

IX(m1,m2) ≡ IX(Q = 0;m1,m2),

IX(m) ≡ IX(Q = 0;m).
(41)

These are calculated in Appendix C, where, using partial
fractioning and simple algebraic manipulations, they are
reduced to a combination of simple integrals.

In the case of (pseudo)scalars the result is summarized
in Table III, where we indicate the quark masses, labeled
by f and f ′, to be used in the formula of the one-loop
self-energy for a given choice of the flavor indices a and b.

The correction to the tree-level curvature mass m̂
2,(S/P )
ab

is of the form

M̂
2,(S/P )
ab = m̂

2,(S/P )
ab + ∆m̂

2,(S/P )
ab + δm̂

2,(S/P )
ab ,

∆m̂
2,(S/P )
ab ≡ Π

(S/P )
ab,vac, δm̂

2,(S/P )
ab ≡ Π

(S/P )
ab,mat,

(42)

where the vacuum part needs renormalization and the

matter part is finite and determined by T (1)
f (and its

mass derivative, for some flavor indices). In some flavor
cases Eq. (42) does not represent the physical curvature
mass of the (pseudo)scalars, due to their mixing with
(axial-)vectors. This issue is addressed in Sec. VI, where
we will see that the mixing affects all the pseudoscalars,
but only the scalars with flavor indices 4− 7.

In the case of the (axial-)vectors, the evaluation of the
self-energy requires some care. The self-energy is split
into vacuum and matter parts, as indicated in Table III.
For some flavor indices, namely a = 3,N,S for φ3 6= 0 and
additionally a = 1, 2 for φ3 = 0, the vacuum part of the
vector self-energy requires as in the Nf = 1 case, a co-
variant calculation in a regularization scheme that com-

plies with the requirement Π
(V ),µν
vac (Q = 0) = 0, which

is familiar from QED. This requirement is investigated
in Appendix B, where we relate it to a symmetry of the
classical Lagrangian, which is manifest for a specific field
background.

For simplicity, we use dimensional regularization to
calculate the (axial-)vector self-energy, irrespective of
the flavor index. The vacuum integral determining

the self-energy can be reduced to tadpole integrals (see
Eq. (C12)). Its finite and divergent pieces are given in
Eqs. (C9) and (C10). For the matter part we only need
to consider purely temporal (00) and spatial (ij) com-
ponents, as mixed (0i) components vanish due to sym-
metric integration. The matter part of the relevant in-
tegrals, given in Eqs. (C16) and (C17), contains also an
integral whose mass derivative is proportional to the tad-

pole,
dU(1)
f

dm2
f

= − 3
2T

(1)
f (see Eq. (A5)). In the equal mass

limit this relation considerably simplifies the result.
A further complication with the (axial-)vectors is re-

lated to the fact that one needs to consider the mode
decomposition of the dressed propagator. This is done
in Appendix E, using the usual set of tensors that in-
cludes three- and four-dimensional projectors. As shown
there, each mode has its own one-loop curvature mass,
determined by the Lorentz components of the self-energy
tensor in the Q→ 0 limit.

Using the form of the self-energy given in Table III
in the expression (E11) that gives the contribution to a
given mode p ∈ {t, l,L}, one sees that the curvature mass
has the structure

M̂
2,(V/A)
i,p = m̂

2,(V/A)
i + ∆m̂

2,(V/A)
i + δpm̂

2,(V/A)
i , (43)

where i refers either to flavor indices (e.g. ab = 44) or
to the particle (e.g. K1). ∆m̂2

i is the contribution of

the vacuum part ∝ I
V/A
vac , which in view of Eq. (E11)

is the same for all modes. δpm̂
2
i is the mode-dependent

contribution of the matter part, and it is determined by

∝ I
V/A,00
mat for the ‘l’ mode and ∝ I

V/A,11
mat for the ‘t’ and

‘L’ modes, as discussed around Eqs. (E17) and (E19).
The ‘t’ and ‘l’ modes are, respectively, 3-transverse and

3-longitudinal, while the ‘L’ mode is 4-longitudinal. We
will see in Sec. VI that the ‘L’ mode (43) influences the
physical curvature mass of the (pseudo)scalars.

For the flavor indices appearing in the last three rows
of Table III (and also for ab = 11, 22 for φ3 = 0, when
mu = md) one has only a matter fermionic contribution
to the vector curvature mass and only in the case of the
’l’ mode. This is because the single mass integral is such

that IVvac(mf ) = IV,11
mat (mf ) = 0, as shown in Appendix C.

In the isospin symmetric case the matter contributions to
the curvature mass of the modes are (note that due to
the absence of mixing ωN ≡ ω(782) and ωS ≡ φ(1020))

δtm̂
2
i = δLm̂

2
i = 0, i = ρ, ωN, ωS,

δlm̂
2
ρ/ωN

= CV I
V,00
mat (ml), δlm̂

2
ωS

= CV I
V,00
mat (ms),

δt,Lm̂
2
K? = −Π

(V ),11
44,mat = −CV IV,11

mat (ml,ms),

δlm̂
2
K? = Π

(V ),00
44,mat = CV I

V,00
mat (ml,ms) (44)

for the vectors and

δt,Lm̂
2
a1/f1N

= −Π
(A),11
11,mat = −CV IA,11

mat (ml),

δlm̂
2
a1/f1N

= Π
(A),00
11,mat = CV I

A,00
mat (ml),

δt,Lm̂
2
K1

= −Π
(A),11
44,mat = −CV IA,11

mat (ml,ms),
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TABLE III. Fermionic contribution to the zero momentum one-loop self-energy of the scalar (S), pseudoscalar (P ), vector (V )
and axial-vector (A) fields in the φ3 6= 0 case. We indicate by f and f ′ the quark type whose mass has to be taken into account
in the formula of the self-energy having flavor indices ab. The matter part of the tadpole integral T (m) is given in Eq. (28) and

the finite piece of the vacuum part in Eq. (56). The vacuum integral I
V/A
vac is given in Appendix C, together with the 00 and

11 components of the matter integral I
V/A,µν
mat . The constants are CS/V = 2Ncg

2
S/V , tS = 1, tP = 0, and su/d = ±1.

ab f f’ −Π
(S/P )
ab /CS Π

(V/A),µν
ab /CV

11, 22 d u
mfT (mf )∓mf ′T (mf ′)

mf ∓mf ′
gµνIV/Avac (mf ,mf ′) + I

V/A,µν
mat (mf ,mf ′)44, 55 s u

66, 77 d s

SS s -

(
1 + 2tS/Pm

2
f

d

dm2
f

)
T (mf ) gµνIV/Avac (mf ) + I

V/A,µν
mat (mf )

33, NN u d
1

2

∑
i=f,f ′

(
1 + 2tS/Pm

2
i
d

dm2
i

)
T (mi)

1

2

∑
i=f,f ′

(
gµνIV/Avac (mi) + I

V/A,µν
mat (mi)

)
3N, N3 u d

1

2

∑
i=f,f ′

si

(
1 + 2tS/Pm

2
i
d

dm2
i

)
T (mi)

1

2

∑
i=f,f ′

si
(
gµνIV/Avac (mi) + I

V/A,µν
mat (mi)

)

δlm̂
2
K1

= Π
(A),00
44,mat = CV I

A,00
mat (ml,ms), (45)

for the axial-vectors, where CV = 2Ncg
2
V and for the f1S

meson the contributions are as for f1N with ml replaced
by ms. The integrals are explicitly given in Appendix C.

The vacuum contributions need renormalization and
their finite part is given for φ3 = 0 in Eqs. (67) and (68).

B. Connection to previous calculations

The fermionic correction to the (pseudo)scalar curva-
ture masses was calculated first in Ref. [16] in the isospin
symmetric case (φ3 = 0). The Polyakov-loop degrees
of freedom were incorporated in Ref. [35]. Bringing the
expression in Eq. (B12) of [16] and in Eq. (25) of [35]
in a form containing the tadpole and the bubble inte-
gral at vanishing momentum is not mandatory, but it
reveals the structure behind the obtained result for the
curvature mass. Also, integration by parts shows that
the result can be given in terms of a single function: the
Fermi-Dirac distribution or the modified Fermi-Dirac dis-
tribution (48), when Polyakov-loop degrees of freedom Φ
and Φ̄ are included. This simple observation makes su-
perfluous the introduction of B±f and C±f , used also in

[7] following [35], and allows for a slight simplification of
the formulas used so far in the literature.

Using the method of Ref. [16] we show below how to
obtain the expressions of the (pseudo)scalar curvature
masses given in Table III. The method assumes that
in the ideal gas contribution of the three quarks to the
grand potential we can use quark masses that depend
on the fluctuating mesonic fields, as in Eq. (14) of the
Nf = 1 case. The method works because for gV = 0 and
K = 0 the eigenvalues of the mass matrix in Eq. (D1)
correspond to the u, d, and s quark sectors. In case of
the (axial-)vectors, it is not enough to concentrate on the

mass matrix, as explained in Sec. I. Taking (axial-)vector
field derivatives of the eigenvalues of the mass matrix, as
in Ref. [17], results in a curvature mass tensor which
breaks Lorentz covariance, as it is not proportional to
gµν at T = 0.

Concentrating on the matter part of the grand poten-
tial, we start from its expression given in the ideal gas
approximation in Eq. (27) of [7]

Ω
(0)T
q̄q (T, µq) = −2T

∑
f=u,d,s

∫
d3p

(2π)3

[
ln g+

f (p)+ln g−f (p)
]
,

(46)
where

g±f (p) = 1+3
(

Φ± + Φ∓e−βE
±
f (p)

)
e−βE

±
f (p) +e−3βE±f (p),

(47)
with Φ+ = Φ̄,Φ− = Φ, E±f (p) = Ef (p) ∓ µf and

E2
f (p) = p2 + M2

f . Here Mf are the eigenvalues of the

matrix in Eq. (D1), which depend not only on the scalar
background, but also on the fluctuating (pseudo)scalar
fields, generically denoted by ϕa, with a being the flavor
index. After taking the second derivative with respect
to ϕa, the fluctuating field is set to zero, in which case
Mf (ϕa = 0) = mf .

The modified Fermi-Dirac distribution functions

F±f (p) =
Φ±e−βE

±
f (p) + 2Φ∓e−2βE±f (p) + e−3βE±f (p)

g±f (p)

(48)
are introduced by an integration by parts

T

∫
d3p

(2π)3
ln g±f (p) =

1

2π2

∫ ∞
0

dpp4
F±f (p)

Ef (p)
. (49)

Then one uses that the dependence on ϕa is through
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M2
f , which only appears in the combination p2 +M2

f ,

∂

∂ϕa

F±f (p)

Ef (p)
=

1

2p

∂

∂p

(
F±f (p)

Ef (p)

)
∂M2

f

∂ϕa
. (50)

The above relation and integration by parts results in

∂2Ω
(0)T
q̄q (T, µq)

∂ϕa∂ϕb

∣∣∣∣
ϕ=0

= −6
∑
f

[
∂2M2

f

∂ϕa∂ϕb
T (1)
f

−
∂M2

f

∂ϕa

∂M2
f

∂ϕb
B(1)
f

]
ϕ=0

, (51)

where the integral T (1)
f ≡ T (1)(mf ) and its mass deriva-

tive, defined in Eqs. (28) and (29), now contain the mod-
ified Fermi-Dirac distribution functions (48).

Using Table III of [16] for the derivatives of the masses
(Table II of [7] to also get the wave-function renormaliza-
tion factors due to the shift of the (axial-)vector fields)
one recovers the result obtained in [7] in the isospin sym-
metric case, where one has mu,d = ml = gSφN/2. For
example, in the ab = 11 scalar sector, which is not af-
fected by the mixing, one has (Ms does not contribute)

∑
f=u,d

∂2M2
f

∂S1∂S1

∣∣∣∣
ϕ=0

= g2
S ,

∑
f=u,d

∂M2
f

∂S1

∂M2
f

∂S1

∣∣∣∣
ϕ=0

= 2g2
Sm

2
l ,

(52)
so that the matter contribution of the fermions to the
curvature mass obtained from Eq. (51) has the form

δm2
a0 = −6g2

S

[
T (1)
l − 2m2

lB
(1)
l

]
, (53)

in accordance with Table III in view of (29).
The above simple calculation shows that in the pres-

ence of Polyakov degrees of freedom the fermionic contri-
bution to the curvature mass can be given in terms of the
modified Fermi-Dirac distribution functions (48). Based
on this, one can safely replace in our previous matter
integrals f±f (p) with F±f (p).

V. RENORMALIZATION OF THE CURVATURE
MASS

For simplicity, we discuss the renormalization of the
fermionic correction to the curvature masses only in the
isospin symmetric case (φ3 = 0) where ml ≡ mu = md.
Then, according to Table II, the contribution in the last
row of Table III vanishes, while for 1−3, N flavor indices
one has to use the equal mass formula of the a = S case
with the replacement ms → ml.

Since the renormalization of the (pseudo)scalar cur-
vature masses poses no problem and was already done
in the literature, using dimensional regularization [36–
38] or cutoff regularization [7], we will only sketch an
alternative method, which can be used in a localized ap-
proximation, that is when the self-energy is evaluated at
vanishing momentum.

The divergence(s) of a vacuum integral can be sepa-
rated by expanding a localized propagator around the
auxiliary function G0(K) = 1/(K2 − M2

0 ), where M0

plays the role of a renormalization scale. For the tadpole
integral, iterating once the identity Gf = G0 + (m2

f −
M2

0 )G0Gf , one obtains upon integration

T (0)(mf ) = D2 +m2
fD0 + T (0)

F (mf ), (54)

where the first and second terms are the overall diver-
gence and the subdivergence given in terms of

D2 = T (0)(M0)−M2
0D0, D0 =

dT (0)(M0)

dM2
0

, (55)

and the last term in Eq. (54) is finite,

T (0)
F (mf ) = i(m2

f −M2
0 )2

∫
K

G2
0(K)Gf (K)

=
1

16π2

(
M2

0 −m2
f +m2

f ln
m2
f

M2
0

)
. (56)

With the above renormalization procedure the finite
part of the tadpole is independent of whether covariant
or noncovariant calculation, cutoff or dimensional regu-
larization is used (provided the cutoff is sent to infinity
in Eq. (56)). In a noncovariant calculation, Eq. (56) is
obtained from Eq. (26) by writing Ef (k) = (k2 + M2

0 +

∆m2
f )1/2, with ∆m2

f = m2
f −M2

0 , and subtracting from
the vacuum piece of the tadpole the first two terms ob-
tained by expanding 1/Ef (k) in powers of ∆m2

f . Sub-

tracting also the O
(
(∆m2

f )2
)

term when renormalizing
the integral

L(0)(mf ) =

∫
d3k

(2π)3
Ef (k), (57)

which determines the one-loop fermionic contribution to
the effective potential in Eq. (5) (and, with the replace-

ment m2
f → M̂2, also the contribution of the ring inte-

grals with localized self-energy in Eq. (7)), results in the
following finite vacuum part

L(0)
F (mf ) = − 1

64π2

[
∆m2

f

(
2m2

f + ∆m2
f

)
− 2m4

f ln
m2
f

M2
0

]
,

(58)

which satisfies dL(0)
F (mf )/dm2

f = T (0)
F (mf ), that is, the

relation also holding between the unrenormalized inte-
grals (57) and (26).

Now we turn our attention to the renormalization of
the (axial-)vector curvature masses (43). The relevant
terms of the ELσM Lagrangian introduced in Eq. (2) of
Ref. [6] are those proportional to the coupling hi, i =
1, 2, 3 and the term containing the covariant derivative.
In dimensional regularization, used here with d = 4− 2ε,
no overall divergence is encountered, and thus the mass
term of the (axial-)vectors ∝ m2

1 is not needed. The tree-
level mass squared of the vector and axial-vector fields de-
pend on the strange and nonstrange scalar condensates
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φN and φS , as a result of the coupling of these fields to
the scalars, which acquire an expectation value. We have
to ensure that the subdivergence of the vacuum contri-
bution to the curvature mass in Eq. (43) is removed by
the environment-dependent terms (that is, proportional
with φN and φS) present in the tree-level mass formulas.

Using Eqs. (C9) and (C10) in the expressions of Ta-
ble III with mu,d = ml, we see that the vacuum piece
of the vector curvature mass is divergent only for flavor
indices 4− 7, corresponding to the K? meson,

∆m̂2
K?,div = g2

VNc
(ms −ml)

2

16π2ε
, (59)

while for the axial-vectors divergence is present in all the
flavor sectors

∆m̂2
a1,div = ∆m̂

2,(A)
NN, div = g2

VNc
4m2

l

16π2ε
,

∆m̂
2,(A)
SS, div = g2

VNc
4m2

s

16π2ε
,

∆m̂2
K1.div = g2

VNc
(ms +ml)

2

16π2ε
, (60)

where the a1 (K1) meson correspond to the 1− 3 (4− 7)
flavor indices.

The above subdivergence structure means that in the
tree-level mass formulas given in [6] in Eqs. (27)-(34),
we have to look for terms which are only present for
K? and the axial-vectors. There is indeed such a term,
the one proportional with g2

1 , and by using the mass
formulas (36) of the quarks and also (ml ± ms)

2 =

g2
S

(
φ2
N

4 ±
φNφS√

2
+

φ2
S

2

)
, we see that the environment-

dependent part in the tree-level mass formulas matches
the form of the subdivergence, which therefore can be re-
moved. The only problem is that, since g1 is squared,
absorbing the subdivergence in the counterterm of g1

would result in an awkward renormalization, as the term
quadratic in the counterterm should be dropped.

A close inspection of the structure of the terms in
Eqs. (27)-(34) of [6] shows that one can achieve renormal-
ization by assigning counterterms to the couplings hi, i =
1, 2, 3 instead of g1. Namely, splitting the bare coupling
into renormalized one and counterterms, hi = hiR + δhi,
one sees that the subdivergences can be eliminated with
the counterterms:

δh1 = 0 and δh2 = −δh3 = −Ncg
2
Sg

2
V

16π2ε
.

The fact that renormalization can be achieved without
referring to the counterterm of g1 raises the question of
why g2

1 is present at all in the tree-level mass formulas.
A closer look into the origin of the terms proportional
to h2, h3, and g2

1 in the mass formulas reveals that some
terms included in the Lagrangian through the terms pro-
portional to h2 and h3 are also generated by the covariant
derivative term which contains g2

1 . Namely, using the co-
variant derivative of [6],

DµM = ∂µM − ig1(LµM −MRµ)− ieAµe [T3,M ], (61)

where M = S + iP as in [7], the coefficient of the O(g2
1)

term in Tr
[
(DµM)†

(
DµM)] is

Tr
(
L · LMM† +R ·RM†M

)
− Tr

[
2LµMRµM†

]
. (62)

The above two traces were added to the Lagrangian with
coefficients h2 and h3, respectively. Therefore, using

L†µ = Lµ and the shorthand |LµM |2 ≡
(
LµM

)†(
LµM

)
,

the Lagrangian used in [6] is in fact

δLh̃2,3
= h̃2 Tr

(
|LµM |2 + |RµM |2

)
+2h̃3 Tr

[
LµMRµM†

]
,

(63)
where the relations between the parameters are

h2 = h̃2 − g2
1 and h3 = h̃3 + g2

1 , (64)

from which h2 + h3 = h̃2 + h̃3. Applying these relations,
g2

1 can be eliminated from the tree-level mass formulas of

the (axial-)vectors in which h2,3 is replaced by h̃2,3.
To avoid duplication of terms in the Lagrangian, it is

a better practice to use a covariant derivative containing
only the electromagnetic field,

D̄µM = ∂µM − ieAµe [T3,M ], (65)

and write the Lagrangian that contains the mass terms
of the (axial-)vectors and their interaction with the
(pseudo)scalars in the form

δL = Tr
[
(D̄µM)†

(
D̄µM)]

+
1

2

[
m2

1 + h1 tr
(
M†M

)]
tr
(
L · L+R ·R

)
+ δLh̃2,3

+ g1 Tr
[
i(M†Lµ −RµM†)(D̄µM) + h.c.

]
, (66)

although this form is less compact than the one in [6].
After all these considerations, we give for complete-

ness the vacuum curvature masses containing the renor-
malized one-loop level contribution of the fermions. The
vector curvature masses are

M̂2
ρ,vac = M̂2

ωN,vac = m̂2
ρ = m̂2

ωN,

M̂2
ωS,vac = m̂2

ωS,

M̂2
K?,vac = m̂2

K? + 2Ncg
2
V I

V
vac,F(ml,ms),

(67)

while the axial-vectors ones are

M̂2
a1/f1N,vac = m̂2

a1/f1N
+ 2Ncg

2
V I

A
vac,F(ml),

M̂2
f1S,vac = m̂2

f1S + 2Ncg
2
V I

A
vac,F(ms),

M̂2
K1,vac = m̂2

K1
+ 2Ncg

2
V I

A
vac,F(ml,ms),

(68)

where the classical curvature masses

m̂2
ρ/a1

= m2
1 +

H±
2
φ2

N +
h1R

2
φ2

S,

m̂2
K?/K1

= m2
1 +

H1

4
φ2

N ±
h3R√

2
φNφS +

H2

2
φ2

S,

m̂2
ωS/f1S

= m2
1 +

h1R

2
φ2

N + H̄±φ
2
S

(69)

are written, omitting the symmetry breaking terms con-
sidered in [6], using the constants H± = h1R +h2R±hR3,
H1 = 2h1R + h2R, H2 = h1R + h2R, and H̄± = ±h3R +
h2R + h1R/2.
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VI. S − V AND P −A MIXING

These types of mixings come from the last line of
Eq. (66) after performing the trace and shifting the scalar
fields with their background values. Doing also a sym-
metrization using integration by parts in the classical ac-
tion, one obtains, in Fourier space and at quadratic order
in the fluctuating fields, the last four mixing (crossed)
terms in Eq. (9) of [6] (up to an unnecessary factor of i
in the V −S mixing terms and the wrong sign of the last
two terms):

δLquad
g1 = −g1

2
iKµ

[
dijk

(
Ãµi P̄j − P̃iĀj

)
+ fijk

(
Ṽ µi S̄j + S̃iV̄

µ
j

)]
φk, i, j, k = 0, . . . , 8,(70)

where X̃ ≡ X̃(K) and X̄ ≡ X̃(−K).

Due to the values of fijk, the S − V mixing occurs
only in the 4 − 5 and 6 − 7 flavor sectors and is of the
form Sa/b − Vb/a with ab = 45 and ab = 67, respectively.
The P −A mixing occurs in all flavor sectors and has the
form Pa − Aa for a 6= 3, N, S. The P − A mixing in the
3−N−S flavor sectors simplifies in the isospin symmetric
case (φ3 = 0), but, nevertheless, it involves an additional
N− S mixing in the pseudoscalar sector.

At the classical level, the usual way to eliminate
the mixing term is by shifting (in direct space) the
(axial-)vector field by the derivative of the (pseudo)scalar
field with an appropriately chosen wave-function renor-
malization constant as prefactor [1, 2, 6].

Here we adopt a different strategy and show that
the wave-function renormalization constant is recovered
when one identifies the contribution of the physical
modes to the partition function evaluated in the ideal
gas approximation, discussed in Sec. II. In this ap-
proximation the bosonic fluctuations are neglected in
the fermionic determinant obtained by integrating out
the fermions in the partition function and, keeping only
quadratic terms in the mesonic Lagrangian, the Gaus-
sian functional integral is done over the (axial-)vector
and (pseudo)scalar fields. Then, we apply the same
method at finite T in the Gaussian approximation, that
is when the quadratic part of the mesonic Lagrangians is
corrected by the field expansion of the fermionic deter-
minant. Considering self-energies at vanishing momen-
tum, we find that the form of the wave-function renor-
malization constant, resulting from the mixing of the
(pseudo)scalar with the nonpropagating 4-longitudinal
(axial-)vector mode, is unchanged at T 6= 0, only that
it involves one-loop curvature masses instead of the tree-
level ones that appear in the ideal gas approximation.

A. Classical level mixing

1. S − V mixing

We start with the mixing in the 4 − 5 flavor sectors.
Using Eq. (70) and Eq. (9) of Ref. [6] one obtains

δLSV45 =
1

2

[
(S̃4, Ṽ

µ
5 )M45

µν

(
S̄4

V̄ ν5

)
+ (S̃5, Ṽ

µ
4 )M45∗

µν

(
S̄5

V̄ ν4

)]
,

(71)
where the 5× 5 matrix is

M45
µν =

(
iD−1

4 (K) −ic45Kν

ic45Kµ iD−1
µν,5(K)

)
, (72)

with c45 = g1f45kφk = g1(φ3 + φN −
√

2φS)/2. The tree-

level inverse propagators are (m̂2
K?± ≡ m̂2,(V )

44 )

iD−1
4 (K) ≡ iD−1

5 (K) = K2 − m̂2,(S)
44 , (73)

iD−1
µν,4(K) ≡ iD−1

µν,5(K) = m̂2
K?±PL

µν +
(
m̂2
K?± −K2

)
PT
µν ,

where we used the usual 4-longitudinal and 4-transverse

projectors P
L/T
µν (see Eq. (E2)) and that m̂

2,(S/V )
44 =

m̂
2,(S/V )
55 .
Doing in the partition function the Gaussian integral

over the fields appearing in Eq. (71) one obtains

lnZ
(2)
V S,45 = −1

2

∫
K

ln detM45
µν −

1

2

∫
K

ln detM45∗
µν . (74)

The calculation is simplified by the identity

det

(
A B
C D

)
= det(A) det

(
D − CA−1B

)
, (75)

which gives in the present case

detM45
µν = detM45∗

µν = iD−1
4 (K)

× det
(
iD−1

µν,4(K) + ic245D4(K)K2 PL
µν

)
. (76)

Using Eq. (73) we have the projector decomposition of
the remaining 4 × 4 matrix, hence computing its deter-
minant is an easy task. Given that PµTµ = 3PµLµ = 3, one
obtains

detM45
µν = C2

45

(
K2 − m̂2

K?±
0

) (
K2 − m̂2

K?±

)3
, (77)

where C2
45 = m̂2

K?± − c245. The physical mass squared

m̂2
K?±

0
= Z2

K?±
0
m̂

2,(S)
44 with Z2

K?±
0

=
m̂2
K?±

C2
45

,(78)

of the scalar mode arises as a result of its mixing with
the nonpropagating 4-longitudinal vector mode. ZK?±

0
is

the wave-function renormalization constant.
The momentum-independent prefactor C2

45 in
Eq. (77) reflects the existence of the nonpropagating
4-longitudinal vector mode. When dimensional regu-
larization is used to perform the momentum integral
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in Eq. (74), the logarithm of the partition function
receives contributions only from the propagating modes,
represented by the two brackets in Eq. (77), i.e. there
is no contribution from lnC2

45, which depends on the
scalar backgrounds.

A similar calculation in the 6− 7 flavor sector gives

detM67
µν = C2

67

(
K2 − m̂2

K?0
0

) (
K2 − m̂2

K?0

)3
, (79)

where C2
67 = m̂2

K?0 − c267, with m̂2
K?0 ≡ m̂2,(V )

66 and c67 =

g1f67kφk = g1(−φ3 + φN −
√

2φS)/2. The physical scalar
mass squared is

m̂2
K?0

0
= Z2

K?0
0
m̂

2,(S)
66 , Z2

K?0
0

= m̂2
K?0/C2

67. (80)

We mention that in the isospin symmetric case, φ3 = 0,
one has C2

67 = C2
45 and m̂2

K?0 = m̂2
K?± , hence ZK?±

0
=

ZK?0
0
≡ ZK?

0
, as given in [6] in the last line of Eq. (14).

2. P −A mixing

We start with the Pa −Aa, a = 1, 2 mixing, given by

δLPA1&2 =
1

2

[
(P̃1, Ã

µ
1 )N11

µν

(
P̄1

Āν1

)
+ (P̃2, Ã

µ
2 )N22

µν

(
P̄2

Āν2

)]
,

where the 5× 5 matrices are

N11
µν = N22

µν =

(
iD−1

1 (K) ic11Kν

−ic11Kµ iD−1
µν,1(K)

)
, (81)

with c11 = g1(
√

2φ0 + φ8)/
√

3 = g1φN and inverse
propagators of the form given in Eq. (73), with masses

m̂
2,(P )
11 = m̂

2,(P )
22 and m̂2

a±1
≡ m̂

2,(A)
11 = m̂

2,(A)
22 , respec-

tively.
The functional integral over Aa, Pa, a = 1, 2 and steps

paralleling those leading to Eq. (77) give (C2
11 = m̂2

a±1
−

c211):

detN11
µν = C2

11

(
K2 − m̂2

π±

) (
K2 − m̂2

a±1

)3
, (82)

with the physical mass of the pseudoscalar mode and the
associated wave-function renormalization constant:

m̂2
π± = Z2

π±m̂
2,(P )
11 and Z2

π± = m̂2
a±1
/C2

11. (83)

A similar calculation involving fields with flavor indices
a = 4, 5 and a = 6, 7 gives a determinant as in Eq. (82),
with some obvious replacements:

C2
44 = m̂2

K±1
− c244, m̂

2
K± = Z2

K±m̂
2,(P )
44 , Z2

K± =
m̂2
K±1

C2
44

,

C2
66 = m̂2

K0
1
− c266, m̂2

K0 = Z2
K0m̂

2,(P )
66 , Z2

K0 =
m̂2
K0

1

C2
66

,

(84)

where c44/66 = g1(±φ3+φN+
√

2φS)/2. Again, for φ3 = 0,
one has a single wave-function renormalization constant,
ZK , given in Eq. (13) of [6].

Now we turn our attention to the mixing in the 3−N−S
sectors, given by ([P,Aµ]ab = P̃aĀ

µ
b − Ã

µ
b P̄a)

δLPA3NS =
i

2
Kµ

[
c11[P,Aµ]33 + g1φ3

(
[P,Aµ]3N + [P,Aµ]N3

)
+cNN[P,Aµ]NN + cSS[P,Aµ]SS

]
, (85)

where cNN = c11 = g1φN and cSS = g1

√
2φS.

For φ3 6= 0 the complete quadratic Lagrangian involves
a 15 × 15 matrix. In this case, the appearance of the
wave-function renormalization constant is nontrivial and
will be presented elsewhere [39]. Here we consider the
isospin symmetric case (φ3 = 0), in which the (P3, A

µ
3 )

fields decouple. Their treatment is completely analogous
to that of the (P1, A

µ
1 ) sector, giving

detN33
µν = C2

33

(
K2 − m̂2

π0

) (
K2 − m̂2

a01

)3
, (86)

where m̂2
a01
≡ m̂2,(A)

33 and

C2
33 = m̂2

a01
− c211, m̂2

π0 = Z2
π0m̂

2,(P )
33 , Z2

π0 =
m̂2
a01

C2
33

, (87)

with m̂
2,(P/A)
33 = m̂

2,(P/A)
11 when φ3 = 0, and thus Zπ0 =

Zπ± .
The remaining P − A mixing in the N − S sectors is

described by the 10× 10 matrix

NNS
µν =

(
NNN
µν M

M NSS
µν

)
, M =

(
m

2,(P )
NS 0
0 0

)
, (88)

where NNN
µν and NSS

µν are 5×5 matrices of the form given
in Eq. (81), but with appropriate masses in the diagonal
elements and constants cNN/SS in the off-diagonal ones.

The functional integral over the strange and non-
strange fields present in (85) results in

detNNSµν = C2
NNC

2
SS(K2 − m̂2

f1N)3(K2 − m̂2
f1S)3

×
[
(K2)2 − (m̂2

ηN + m̂2
ηS)K2 + m̂2

ηNm̂
2
ηS − (m̂2

ηNS)2
]
, (89)

where m̂2
f1a

= m̂
2,(A)
aa and C2

aa = m̂2
f1a
− c2aa, a =

N,S. The classical pseudoscalar curvature masses used in
Eq. (89) contain the wave-function renormalization con-
stants:

m̂2
ηN = Z2

Nm̂
2,(P )
NN , Z2

N = m̂2
f1N/C

2
NN,

m̂2
ηS = Z2

Sm̂
2,(P )
SS , Z2

S = m̂2
f1S/C

2
SS,

m̂2
ηNS = ZNZSm̂

2,(P )
NS .

(90)

In the second line of Eq. (89), one recognizes the elements
of the mass squared matrix of the mixing PN − PS sec-
tor. In terms of the physical eigenvalues of this matrix,
namely

m̂2
η′/η =

1

2

[
m̂2
ηN + m̂2

ηS ±
√

(m̂2
ηN − m̂2

ηS)2 − 4(m̂2
ηNS)2

]
,

(91)
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one obtains the final result,

detNNSµν =
∏
a=N,S

C2
aa(K2− m̂2

f1a)3(K2− m̂2
η)(K2− m̂2

η′).

(92)
This contains the contribution of the propagating 4-
transverse vector and physical pseudoscalar modes.

B. Mixing in the Gaussian approximation

We consider only the isospin symmetric case, φ3 = 0,
in the localized approximation, in which the self-energies
have vanishing momentum. In this case there is no cor-
rection to the off-diagonal elements of the 5× 5 matrices
(also having Lorentz indices) considered in the previous
subsection, while the diagonal elements are replaced by
iD−1(K)→ iG−1

loc (K) = K2−M̂2, with M̂2 = m̂2 +Π(0)

and iD−1
µν (K)→ iG−1

µν,loc(K) = iD−1
µν (K) + Πµν(0).

For the flavor indices involved in the mixing, vector
and axial-vector self-energies have the same decompo-
sition, given in Eq. (E10). Basically what happens at
T 6= 0 is that in the inverse propagator the 4-transverse
part encountered previously splits into 3-transverse and
3-longitudinal parts, with projectors Pt

µν and Pl
µν , so

that

iG−1
µν,loc(K) = M̂2

LPL
µν(K) +

∑
p=l,t

(
M̂2

p −K2
)
Pp
µν(K),

(93)

where M̂2
l/t/L = m̂2 + Πl/t/L(0). The components

Πl/t/L(0) are given in terms of the Lorentz components
of the self-energy Πµν(0) in Appendix E, where details
on the tensor decomposition can also be found.

Comparing Eq. (93) to Eq. (73) and using that
det(LPL + lPl + tPt) = −Llt2 one immediately sees
how to modify our previous results, obtained in the
ideal gas approximation: instead of three 4-transverse
(axial-)vector modes one has the contribution of two 3-
transverse modes and one 3-longitudinal mode with one-
loop curvature masses M̂2

l,t, while the mixing between the

4-longitudinal (axial-)vector mode and the scalar mode

involves the respective one-loop curvature masses M̂2
L

and M̂2, all with appropriate flavor indices.
Taking as an example the V4/5−S5/4 mixing, one starts

from Eq. (77), writes the classical curvature masses with
flavor indices, instead of physical meson indices, and cor-
rects them with the appropriate self-energy. In terms of
physical modes, one has

detM45
µν = C2

45

(
K2 − M̂

2,(S)
44

) ∏
p=l,t

(
K2 − M̂2,(V )

55,p

)dp
, (94)

where dt = 2dl = 2, C2
45 = M̂

2,(V )
55,L − c245 and

M̂
2,(S)
44 = Z2

S,44M̂
2,(S)
44 with Z2

S,44 =
M̂

2,(V )
55,L

C2
45

, (95)

with M̂
2,(S)
44 = m̂

2,(S)
44 + Π

(S)
44 (0) and M̂

2,(V )
55,p = m

2,(V )
55 +

Π
(V ),55
p (0),p=L,t,l.
All our previous formulas can be modified similarly:

m̂
2,(S/P )
aa → M̂

2,(S/P )
aa , while m̂

2,(V/A)
aa → M̂

2,(V/A)
aa,L in the

C2
ab/aa and Z2 constants, and m̂

2,(V/A)
aa → M̂

2,(V/A)
aa,l/t in

the former contribution of the propagating (axial-)vector

modes. At T = 0 one has M̂
2,(V/A)
aa,t/l/L = M̂

2,(V/A)
aa,vac .

VII. NUMERICAL RESULTS

In this section we put to work the formulas derived so
far and present in the isospin symmetric case (φ3 = 0)
the temperature dependence of the one-loop curvature
masses obtained for nonvanishing (axial-)vector Yukawa
coupling. In order to achieve this, we minimally extend
the parametrization used in Ref. [7] and solve the model
using the field equations derived there in the mean-field
approximation (see Eq. (40) there). In that article the
model parameters were determined based on one-loop
curvature masses for (pseudo)scalar mesons and tree-
level ones for (axial-)vector mesons. A parametrization
and solution of the model in the proposed localized Gaus-
sian approximation will be presented elsewhere.

Including the Yukawa coupling gV among the fitting
parameters, we determined the ELσM parameters us-
ing the χ2 minimization described in Ref. [7]. We used
the same physical quantities as in that article, but re-
placed the tree-level (axial-)vector curvature mass formu-
las with the vacuum one-loop level ones. The renormal-
ization scale was fixed to the value used in Ref. [7], while
for the Polyakov-loop potential we used the parameters
given in Table IV and Fig. 1 of that article. The param-
eters corresponding to the lowest χ2 value were found
from a fit started in 105 random initial points of the 15-
dimensional parameter space, representing the parame-
ters of the ELσM Lagrangian. Their values are given in
Table IV and can be compared to those appearing in Ta-

TABLE IV. Parameter values in the ELσM for our best
fit characterized by χ2/Nd.o.f. = 12.96/15 ≈ 0.87, where
Nd.o.f. = 15 is the number of degrees of freedom. The cor-
responding pseudocritical temperature determined from the
inflection point of φN is Tc ≈ 175 MeV. h1, h2, and h3 are the
parameters of the Lagrangian given in Eq. (2) of Ref. [6]. κ̃ is
the renormalization scale in the MS scheme which appears in
Eqs. (C9) and (C10), while M0 is the scale used in Ref. [7].

Parameter Value Parameter Value
φN [GeV] 0.1427 g1 5.9252
φS [GeV] 0.1405 g2 2.0483
m2

0 [GeV2] −1.0874E−2 h1 35.5174
m2

1 [GeV2] 1.5428E−3 h2 −12.0902
λ1 −2.0423 h3 4.2493
λ2 24.22 gS 4.5726

c1 [GeV] 1.1607 gV 5.2818
δS [GeV2] 0.2399 κ̃ = M0 [GeV] 0.3511
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FIG. 1. Temperature dependence of the (pseudo)scalar one-
loop curvature masses obtained in the isospin symmetric case
with a parametrization of the model that includes fermionic
corrections also in the (axial-)vector masses (solid lines), com-
pared to the case when the parametrization uses tree-level
(axial-)vector masses (dashed curves, taken from Ref. [7]).
The underlying field equations are in both cases the mean-

field ones given in Eq. (40) of Ref. [7]. f
H/L
0 denotes the eigen-

states of the scalar mixing sector with higher/lower mass,
respectively. The inset shows the T dependence of the wave-
function renormalziation constants.

ble IV of Ref. [7]. Both parameter sets are compatible
with the constraints among m2

0, λ1, and λ2 required by
the spontaneous symmetry breaking, which were derived
in Ch. 44.13 of Ref. [40] from the classical potential.

In Fig. 1 we compare the T dependence of the
(pseudo)scalar masses obtained with a parametrization
that takes into account the one-loop contribution of the
quarks in the vacuum masses of all the mesons (gV 6= 0)
to the previous result of Ref. [7] (gV = 0). In the in-
set we plot the wave-function renormalization constants
that correspond to the two cases and are computed with
the formulas of Secs. VI B and VI A, respectively. Given
that the field equations are the same in both cases and
that the parameter values are not much different, we see
similar behaviors as the temperature increases. The tem-
perature evolution of the scalar condensates and of the
Polyakov-loop expectation values is almost identical to
that shown in Fig. 1 of Ref. [7], as can be explicitly seen
here in Fig. 2.

The mass of the pseudoscalars is more affected by
the change in the parametrization than the mass of the
scalars, especially around the pseudocritical tempera-
ture Tc and above it. This is expected because all the
pseudoscalar mesons mixes with an axial-vector meson
with matching quantum numbers, while from the vec-
tor mesons only the mass of K? is directly affected by
the mixing with the scalar meson K?

0 . Interestingly,
the decrease of the η and η′ masses around Tc is more
prominent for the parametrization with gV 6= 0. For both
parametrizations the a0 meson becomes degenerate with

 0
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FIG. 2. Temperature dependence of the scalar condensates
and their derivatives and of the Polyakov-loop expectation
values compared to the case shown also in Fig. 1 of [7], where
the vector Yukawa coupling is zero, gV = 0. The values of the
normalization constants used for the sake of presentations are
cN = −0.028 and cS = −0.18, while the position of the global
maximum of φ̇N = dφN/dT gives Tc = 175.238 MeV and Tc =
174.566 MeV for the solid and dashed curves, respectively.

the η meson at large T . Such a pattern was observed
also within the FRG formalism, but only when one goes
beyond the local potential approximation [41]. We also
mention that if the model is solved at nonzero tempera-
tures with unchanged parameter values but with all the
Z factors set to 1, then a0 degenerates with η′.

The drop of the η′ mass around Tc seen in Fig. 1, which
is observed experimentally in [42], is accompanied in our
case by a drop of the η mass. This behavior is related
only to the decrease of the φN,S condensates, as in [41],
and not to the restoration of the U(1)A symmetry, which
in our case would require a temperature-dependent ’t
Hooft coupling c1. The effect of such a coefficient that de-
creases exponentially with T 2 was studied in [43] within
the (2 + 1)-flavor Polyakov-loop quark–meson model. In
[44] mesonic fluctuations were incorporated into the ax-
ial anomaly in the Nf = 2 + 1 flavor linear sigma model
using the FRG method in the local potential approxi-
mation. The chiral-condensate-dependent anomaly co-
efficient is subject to its own flow equation, and it was
shown that under certain circumstances the thermal evo-
lution of the condensate could induce a reduction of the
axial anomaly. However, a careful parametrization of
the model done later in [45] showed that the anomaly
actually increases around Tc. While in that paper mη

increases monotonically with the temperature, mη′ has
a nonmonotonic thermal evolution, showing a slight de-
crease above Tc, before becoming equal with ma0 at high
T . A direct link between the restoration of U(1)A sym-
metry and the drop in the mη′(T ), without a drop in
mη(T ), was reported in [46]. A recent model-independent
analysis done in [47] suggests that the axial symmetry is
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FIG. 3. Temperature dependence of the (axial-)vector one-
loop curvature mass of the 4-longitudinal, 3-transverse/3-
longitudinal modes (solid and dashed lines) compared to the
tree-level ones (dotted lines). The masses of the 3-transverse
and the 4-longitudinal modes are the same, and for the ρ and
ωN,S vector mesons they also coincide with the tree-level mass
(not shown in these cases).

restored when the chiral partners become degenerate.
In Fig. 3 we show the temperature dependence of the

one-loop curvature mass of various (axial-)vector modes.
In the case of ρ and ω vector mesons only the mass of
the 3-longitudinal mode acquires fermionic correction,
and the mass of the other modes remains the tree-level
one. In the case of all (axial-)vector mesons this is the
mode whose mass increases with increasing temperature
deep in the symmetric phase, similarly to the mass of the
(pseudo)scalar mesons. Compared to the Nf = 2 version
of the model studied with FRG techniques in [12, 14, 15],
where all the chiral partners degenerate basically at the
same temperature, the light vector and axial-vector chi-
ral partners ρ and a1 degenerate at slightly higher tem-
peratures than the (pseudo)scalar ones, fL

0 and π. The
chiral partners K? and K1 having both light and strange
quark content degenerates at a higher temperature than
those containing only light quarks, as the strange con-
densate is still large around the temperature where the
nonstrange condensate φN melts (see Fig. 2). The purely
strange chiral partners ωS and f1S degenerate at even
higher temperatures, where φS also melts. The degener-
acy of the chiral partners is displayed also by the masses
of 4-longitudinal and 3-transverse modes. The mass gap
between the 3-longitudinal and 3-transverse modes in-
creases with T as a result of the violation of the Lorentz
symmetry.

VIII. CONCLUSIONS AND OUTLOOK

We investigated the one-loop fermionic contribution to
the curvature masses of (pseudo)scalar and (axial-)vector

mesons in the framework of a U(3)L × U(3)R linear
sigma model with a Yukawa type interaction between
mesons and constituent quarks. These corrections were
calculated by evaluating the self-energy of the mesons at
zero external momentum. It was showed explicitly that
this is equivalent to the direct calculation of the second
field derivative of the fermionic functional determinant.
The one-loop curvature masses of the (pseudo)scalars
agree with those derived in Ref. [16] with an alternative
method that uses fluctuation-dependent quark masses.
We pointed out that this alternative method cannot be
used for the (axial-)vector mesons due to the presence
of the momentum-dependent Lorentz scalars V µQµ and
AµQµ in the fermion determinant.

The renormalization of the curvature masses was dis-
cussed in detail. The divergencelessness of the vector
current, which occurs on a specific scalar background for
certain flavor indices (e.g. for a 6= 4 − 7 in the isospin
symmetric case), has the consequence that the corre-
sponding vector self-energy is 4-transverse and vanishes
at zero momentum. To comply with this property a suit-
able regularization scheme is needed. To keep the discus-
sion uniform, dimensional regularization was used in the
renormalization of both the vector and the (axial-)vector
self-energies for all flavor indices. Additionally, the renor-
malization revealed that a chiral-invariant term appeared
twice in the ELσM Lagrangian [5, 6]. This can be cured
with the appropriate redefinition of some couplings.

The occurrence of the S−V and P −A mixing already
showed the importance of the mode decomposition of the
(axial-)vector self-energy, which was investigated in de-
tail at both T = 0 and T 6= 0, as the 4-longitudinal mode
of the (axial-)vectors mixes with the (pseudo)scalars. As
a result, in the case of the Gaussian approximation, the
one-loop curvature mass of the (pseudo)scalar mesons is
modified by a wave-function renormalization constant de-
termined in terms of the one-loop curvature mass of the
4-longitudinal (axial-)vector mode. In a simpler approxi-
mation we recovered the already known versions of these
constants appearing in [6].

The vacuum parametrization of the model was re-
done based on curvature masses that include one-loop
fermionic contributions for all the mesons. The temper-
ature dependence of all these masses was investigated.
The (axial-)vector tensor splits up into 3-transverse
modes (which turns out to have the same contribution as
the 4-longitudinal one) and a 3-longitudinal mode. In the
isospin symmetric case the mass of 3-transverse modes
of the vector mesons ρ, ω (or ωN) and φ (or ωS) coin-
cides with the corresponding tree-level mass, while for
the other particles the mass of the 3-transverse modes
is slightly different from the tree-level mass. For all
(axial-)vector particles the mass of the 3-longitudinal
mode significantly deviates from the tree-level one. It
increases with increasing temperature, similarly to the
(pseudo)scalar curvature mass, while the mass of the 3-
transverse components decreases with increasing temper-
ature. The particle masses of the two modes become de-
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generate separately as the chiral symmetry restores with
increasing temperature and the mass gap increases be-
tween them as a reflection of Lorentz symmetry viola-
tion.

As a side benefit of the new parametrization of the
model, the value of the vector meson Yukawa coupling
gV was determined. This value influences the equation
of state used to describe properties of the compact star,
where it has a prominent role in determining the maximal
value of the compact star mass of the M -R curves (see
e.g. Ref. [48]).

The curvature masses of the various (axial-)vector
modes determined here can be used not only in the lo-
calized Gaussian approximation proposed in Sec. II, but
also in the localized version of the two-particle irreducible
formalism in which in [8] the gauged version of the purely
mesonic model was solved at two-loop level for Nf = 2.
In the latter context the mode decomposition of self-
energy presented here would allow for an improved ap-
proximation, as there the complexity of the numerical
problem was reduced by using even at finite tempera-
ture a curvature mass tensor of a vacuum form, that is,
proportional to gµν .
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Appendix A: The components of Π
(V ),µν
mat for Nf = 1

It is instructive to examine the matter part of the vec-
tor self-energy at vanishing momentum (32). The 0i ma-
trix element vanishes by symmetric integration, while the
temporal and spatial components are different due to the
breaking of the Lorentz symmetry by the heat bath.

Using k2
0 = k2 +m2

f +G−1
f for the 00 component and∫

d3k kikjf(k2) =
δij
3

∫
d3k k2f(k2) (A1)

for the ij component, one obtains (T (1)
f ≡ T (1)(mf ))

Π
(V ),00
mat = 4g2

V

[
T (1)
f + 2m2

f

dT (1)
f

dm2
f

+ 2
dU (1)(mf )

dm2
f

]
, (A2)

Π
(V ),ij
mat = 4g2

V δ
ij

[
T (1)
f +

2

3

dU (1)(mf )

dm2
f

]
. (A3)

Here we used the matter part of the integral U(mf ) =
i
∫
K
k2Gf (K), which – having only an extra factor of

k2 ≡ k2 compared to the tadpole defined in Eq. (23) – is
given (see Eqs. (27) and (28)) by

U (1)(mf ) = − 1

4π2

∫ ∞
0

dk
k4

Ef (k)

[
f+
f (k) + f−f (k)

]
. (A4)

With a partial integration, as in Eq. (29), one obtains

dU (1)(mf )

dm2
f

= −3

2
T (1)(mf ). (A5)

As a result of Eq. (A5) we see from Eq. (A3) that

Π
(V ),11
mat = 0, and therefore trL Π

(V )
mat = Π

(V ),00
mat −

3Π
(V ),11
mat = Π

(V ),00
mat , and thus from Eq. (A2) one obtains

trL Π
(V )
mat = Π

(V ),00
mat = −8g2

V

[
1−m2

f

d

dm2
f

]
T (1)
f . (A6)

This expression agrees (up to a convention related sign)
to that obtained from Eq. (5.51) of Ref. [33] by taking
there k→ 0 at k0 = 0 (the limits do not commute).

Appendix B: Vacuum property of Π
(V )µν
ab (Q) for

certain flavor indices

The vector fields V aµ , a = 0, . . . , 8 couple in the Nf =

2+1 version of the Lagrangian (11) to the vector current3

J
(V )µ
a = ψ̄γµTaψ, where Ta = λa/2. Using the Euler-

Lagrange equations one finds

∂µJ
(V )µ
a = iψ̄[M,Ta]ψ, (B1)

where

M =
[
gS(Sa − iγ5P

a) + gV γ
µ
(
V aµ + γ5A

a
µ

)]
Ta. (B2)

The divergence of the current (B1) has the same form as
in QCD [49], where M is the current quark matrix.

Interestingly, when evaluated on the background of the
mesonic fields, that is, with

M̄ =
gS
2

∑
b=0,3,8

φbλb =
gS
2

∑
b=3,N,S

φbλb, (B3)

the divergence of the vector current vanishes for certain
flavor indices, namely

∂µJ
(V )µ
a |M̄ =

{
0, for a = 3,N,S when φ3 6= 0,

0, for a = 1, 2, 3,N,S when φ3 = 0,

(B4)

3 Note that we call J
(V )µ
a the vector current by abuse of terminol-

ogy and by analogy with QCD, as in the context of the linear
sigma model the true vector current also contains mesonic fields.
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as one can check using the values of the antisymmetric
structure constant.

We show below that at quantum level the divergence-
lessness of the current has the consequence that the vac-
uum part of the one-loop self-energy defined in Eq. (37)
satisfies

QµΠ
(V )µν
ab,vac(Q) = 0 =⇒ Π

(V )µν
ab,vac(Q = 0) = 0, (B5)

in the cases listed in Eq. (B4), where from Table II we
know that the self-energy is nonzero only when b = a (for
the implication above see p. 233 of Ref. [50]).

Considering the meson fields as classical external fields,
we start by relating the expectation value of the current
and its divergence with the fermion propagator matrix
(see p. 66 in [51])〈

J (V )µ
a (x)

〉
= − lim

y→x
tr
(
γµTaS̄(x, y)

)
, (B6a)〈

∂µJ
(V )µ
a (x)

〉
= − lim

y→x
tr
(
[M(x), Ta]S̄(x, y)

)
. (B6b)

The trace in Eq. (B6a) is to be taken in color, flavor, and
Dirac spaces. In the SSB case, when the fields are shifted
with their expectation values, the full propagator obeys(

i/∂x − M̄ −M(x)
)
S̄(x, y) = iδ(4)(x− y), (B7)

with M(x) given in Eq. (B2) and M̄ in Eq. (B3).
Next, we expand the full propagator about the tree-

level propagator introduced in Sec. IV, which obeys(
i/∂x − M̄

)
S̄0(x, y) = iδ(4)(x − y). To do so, we write

the formal solution of Eq. (B7) as S̄ = i/(A−M), where
A = iS̄−1

0 , and use

1

A−M
=

1

A
(A−M +M)

1

A−M
=

1

A
+

1

A
M

1

A−M

=
1

A
+

1

A
M

1

A
+ . . . . (B8)

This gives at one-loop level

S̄(x, y) ' S̄0(x, y)− i
∫
z

S̄0(x, z)M(z)S̄0(z, y). (B9)

Taking the derivative of Eq. (B6a) and using Eq. (B9)
we obtain

∂µ
〈
J (V )µ
a (x)

〉
' i∂µx tr

∫
y

γµ
λa
2
S̄0(x, y)M(y)S̄0(y, x),

(B10)
where the contribution of S̄0(x, y) from Eq. (B9) vanishes
due to translational invariance.

It would be tempting to say that the left-hand side
of Eq. (B10) vanishes as result of Eq. (B4), but the
usual proof using the invariance of the functional inte-
gral with respect to the vector U(3)V transformation
does not go through because we neglected the mesonic
fields in Eq. (B1) and the current vanishes only on a spe-
cific scalar background. What is easy to prove however,
is that Eq. (B6b) vanishes at linear order in M(x), i.e.

the order at which Eq. (B10) was derived. Indeed, using
the first term in Eq. (B9), one has in the cases listed in
Eq. (B4)

∂µ
〈
J (V )µ
a (x)

〉
=
〈
∂µJ

(V )µ
a (x)

〉
' − tr

(
[M(x), Ta]S̄0(x, x)

)
= 0,(B11)

because S̄0 = ucλc, c = 0, 3, 8, with u3 = 0 for
φ3 = 0, and the structure constant is such that
trF([λb, λa]λc)uc = 4ifbacuc = 0 for c = 0, 3, 8, b =
0, . . . , 8 and a taking the values given in Eq. (B4) (in-
stead of N and S one can use 0 and 8).

Since for the flavor indices4 of Eq. (B4) only the vector
term in M(x) contributes in Eq. (B10), we obtain using
Eq. (B11)

0 = igV ∂
µ
x

∫
y

tr
[
γµ
λa
2
S̄0(x, y)γν

λb
2
S̄0(y, x)

]
V νb (y).

(B12)
Going to momentum space and using the definition (37)
of the self-energy, one easily obtains Eq. (B5), which
holds in the cases listed in Eq. (B4).

Appendix C: Integrals determining the self-energy
for Nf = 2 + 1

Here we calculate the integrals (41) relevant for the
expression of the curvature mass.

In the case of a (pseudo)scalar field one has ΓS = 1
(ΓP = γ5) and the Dirac trace gives (G−1

f (K) = K2−m2
f )

trD

[
ΓXSfΓXSf ′

]
= −4(mfmf ′ ±K2)GfGf ′ , (C1)

with a plus sign for the scalar. One adds and subtracts in
the numerators produced by partial fraction decomposi-
tion the mass squared of the corresponding denominators
to obtain

IS/P (mf ,mf ′) = ±
mfT (mf )∓mf ′T (m′f )

mf ∓mf ′
. (C2)

For equal masses the limit in Eq. (40) gives (Tf ≡ T (mf ))

IS(mf ) =

(
1 + 2m2

f

d

dm2
f

)
Tf , IP (mf ) = −Tf , (C3)

Using Eqs. (37) and (39) and Tables I and II one obtains,

for example, Π
(S/P )
11 (Q = 0) = ∓2Ncg

2
SI

S/P (mu,md).
For (axial-)vector fields we start with the momentum-

dependent integral in Eq. (39), as this is needed in some
relations derived in Appendix F. Using ΓV = γµ and
ΓA = γµγ5, the Dirac trace gives (P = K −Q)

IV/A,µν(Q;mf ,mf ′) = i

∫
K

Gf (K)Gf ′(P )

×
[
(±mfmf ′ −K · P )gµν +KµP ν +KνPµ

]
, (C4)

with the upper sign for the vector. Next we consider sep-
arately the vacuum and the matter parts of this integral.

4 For other flavor indices the scalar term can also contribute.
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a. Vacuum part In a covariant calculation at T = 0,
Feynman parametrization and dimensional regulariza-
tion give (d = 4− 2ε)

IV/A,µνvac (Q;mf ,mf ′) =
Γ(2− d

2 )

(4π)d/2
κ4−d

∫ 1

0

dx∆
d
2−2

×
[
(M2(x)∓mfmf ′)g

µν + 2x(1− x)Q2PµνT (Q)
]
.(C5)

Here κ is the renormalization scale, PµνT (Q) is the 4-
transverse projector (E2), and ∆ = M2(x)− x(1− x)Q2

with M2(x) = (1− x)m2
f + xm2

f ′ . We see that

lim
mf′→mf

(M2(x)∓mfmf ′) =

{
0, for V (−)

2m2
f , for A (+)

, (C6)

and therefore

QµI
V,µν
vac (Q;mf ) = 0 and IV,µνvac (mf ) = 0. (C7)

At vanishing momentum, where

IV/A,µνvac (Q = 0;m1,m2) = gµνIV/Avac (m1,m2), (C8)

we split the integral into divergent and finite parts:

IV/Avac (m1,m2) = I
V/A
vac,D(m1,m2) + I

V/A
vac,F(m1,m2),

I
V/A
vac,D(m1,m2) =

1

32π2ε
(m1 ∓m2)2 ,

I
V/A
vac,F(m1,m2) =

1

64π2

[
m2

1 +m2
2 ∓ 4m1m2

− 4
f∓(m1,m2)− f∓(m2,m1)

m2
1 −m2

2

]
,

(C9)

where f∓(x, y) = x3(x ∓ 2y) ln(x/κ̃) and the divergence
was given in the MS scheme (κ̃2 = 4πe−γκ2). To obtain
the finite part, the x integral in Eq. (C5) was evaluated
to O(ε), as the prefactor contains 1/ε.

For equal masses one has, in accordance with Eq. (C7),

IVvac,F(m) = IVvac,D(m) = 0.

IAvac,F(m) = −m
2

8π2
ln
m2

κ̃2
, IAvac,D(m) =

m2

8π2ε
. (C10)

It is easy to see that I
V/A
vac (m1,m2) can be given in

terms of tadpole integrals. Indeed, setting Q = 0 in
Eq. (C4) one uses the identity∫

ddKKµKνf(K2) =
gµν
d

∫
ddKK2f(K2) (C11)

and partial fractioning to obtain

IV/Avac (m1,m2) =
1

d

m1T (0)
ε (m1)∓m2T (0)

ε (m2)

m1 ∓m2

−d− 1

d

m1T (0)
ε (m1)±m2T (0)

ε (m2)

m1 ±m2
, (C12)

and for equal masses

IV/Avac (m) = −d− 2

d

[
1 +

2zV/A

d− 2
m2 d

dm2

]
T (0)
ε (m), (C13)

with zV = −1 and zA = d− 1. Here we defined

T (0)
ε (m) = κ4−d

∫
ddK

(2π)d
i

K2 −m2
=

Γ(2− d
2 )

(4π)d/2
κ4−d

(m2)1− d2
,

(C14)
which can be split into divergent and finite parts as

T (0)
ε (m) = T (0)

ε,D (m) + T (0)
ε,F (m), (C15)

T (0)
ε,D (m) =

m2

16π2

[
1

ε
− 1

]
, T (0)

ε,F (m) =
m2

16π2
ln
m2

κ̃2
.

Using Eq. (C14) or (C15) in Eqs. (C12) and (C13), one
recovers Eqs. (C9) and (C10).

b. Matter part We evaluate the integral in Eq. (C4)
for Q = 0. The 0i component of the integral vanishes,
while for the 00 component we use k2

0 = K2 +k2 to write

I
V/A,00
mat (mf ,mf ′) = i

∫
K

K2 + 2k2 ±mfmf ′

(K2 −m2
f )(K2 −m2

f ′)

∣∣∣∣
mat

=
mfT (1)

f ∓mf ′T (1)
f ′

mf ∓mf ′
+ 2
U (1)
f − U (1)

f ′

m2
f −m2

f ′
. (C16)

Here we used partial fractioning, as described below
Eq. (C1), and then Eq. (27) to write the result in terms
of the integrals given in Eqs. (28) and (A4).

The ij component of the integral is proportional with
δij , and thus it is enough to give the 11 component. Set-
ting Q = 0 in Eq. (C4), we use Eq. (A1), followed by
partial fractioning, as in Eq. (C16), to obtain

I
V/A,11
mat (mf ,mf ′) =

mfT (1)
f ±mf ′T (1)

f ′

mf ±mf ′
+

2

3

U (1)
f − U (1)

f ′

m2
f −m2

f ′
.

(C17)
Using Eq. (A5), the equal mass limit of Eqs. (C16) and
(C17) is

IV,00
mat (mf ) = −2

[
T (1)
f +m2

fB
(1)
f

]
, IV,11

mat (mf ) = 0,

IA,00
mat (mf ) = −2T (1)

f , IA,11
mat (mf ) = −2m2

fB
(1)
f , (C18)

with B(1)
f = B(1)(mf ) being the matter part of the

Euclidian bubble integral at zero momentum given in
Eq. (29).

Appendix D: Brute force calculation of the
curvature mass in the Nf = 2 + 1 case

After shifting the scalar fields with their expectation
values, the integration over the fermionic fields in the
Euclidean partition function gives (see Ch. 2.5 of [33])
the expression on the right-hand side of Eq. (14) with

S−1
E,f (K; ξ) = −diag(k0

u, k
0
d, k

0
s)⊗ 14×4 + 13×3 ⊗ γ0~γ · ~k

+diag(mu,md,ms)⊗ γ0 + gS
[
S ⊗ γ0 − iP ⊗ γ0γ5

]
+gV

[
V ⊗ γ0γµ +A⊗ γ0γµγ5

]
, (D1)
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where ξ = {Sa, Pa, V µa , Aµa |a = 1, . . . , 7,N,S} denotes the
set of fields contained in the nonets, ⊗ is the Kronecker
product, mf , f = u, d, s, is the constituent quark mass
given in Eq. (36), while k0

f = iνn + µf , with νn the Mat-
subara frequency and µf the chemical potential.

We calculate the determinant of S−1
E,f (K; ξ) with

the symbolic program MAPLE keeping only those
(pseudo)scalar or (axial-)vector fields which are used for
differentiation in Eq. (16) and setting to zero the remain-
ing set of fields, denoted as ξ′ = ξ \{Xa}. This simplified
determinant is evaluated in Dirac and flavor spaces and
denoted as D(Xa) := det

[
S−1

E,f (K; ξ)
]
|ξ′=0. We found

that it can have two forms: for the mixing sector involv-
ing the fields X3, XN, and XS the three quark sectors
completely factorize, while for fields with other flavor in-
dices there is a mixing between two quark sectors.

The contribution of the scalar (X = S) and pseu-
doscalar (X = P ) mixing sectors can be written with

X± = (XN ±X3)/
√

2 in the following factorized form

D(XN,S,3) =
∏
i=±,S

[
g2
S

2
X2
i + c(X)gSmiXi −G−1

i (K)

]2

,

(D2)

where c(S) =
√

2, c(P ) = 0 and G−1
i = K2 − m2

i with
m+ = mu, m− = md and mS = ms. Inside the square
brackets there is no summation over i.

For the V µ± = (V µN ± V
µ
3 )/
√

2 vector fields one has

D(VN,S,3) =
∏
i=±,S

[
g2
V

2
V 2
i +
√

2gV Vi ·K +G−1
i (K)

]2

,

(D3)
where V 2

i = Vi · Vi = V µi Vi,µ, while for the axial-vectors

Aµ± = (AµN ±A
µ
3 )/
√

2 the factorized form is

D(AN,S,3) =
∏
i=±,S

[
g4
V

4

(
A2
i

)2
+G−2

i (K)

+ g2
V

(
A2
i

(
K2 +m2

i

)
− 2(Ai ·K)2

)]
. (D4)

When there is no complete factorization of quark sec-
tors, the contribution for scalar (X = S, upper sign) and
pseudoscalar (X = P , lower sign) is

D(Xa) =

[
g4
S

16
X4
a −

g2
S

2
X2
a

(
K2 ±mfmf ′

)
+G−1

f (K)G−1
f ′ (K)

]2

G−2
f ′′ (K), (D5)

while for vector (X = V, upper sign) and axial-vector
(X = A, lower sign)

D(Xa) =

[
g4
V

16

(
X2
a

)2
+G−1

f (K)G−1
f ′ (K) (D6)

+
g2
V

2

(
X2
a

(
K2 ∓mfmf ′

)
− 2(Xa ·K)2

)]2

G−2
f ′′ (K),

where (f, f ′, f ′′) = (u, d, s) for a = 1, 2, (f, f ′, f ′′) =
(u, s, d) for a = 4, 5, and (f, f ′, f ′′) = (d, s, u) for a = 6, 7.

Now, one just has to use the expressions (D2)-(D6) of
the determinant in the effective potential (14) to obtain
the fermionic contribution to the curvature mass, accord-
ing to its definition (16). Simple derivation with respect
to the remaining fields leads to the Q = 0 limit of the
integral (39), evaluated in Appendix (C). For example,
the determinant D(Xa) given in Eq. (D6) leads through

Eq. (19) to ∆m
2,(X)µν
ab = 2Ncg

2
V I

X,µν(mf ,mf ′), in ac-
cordance with the formula given in Table III for the first
three flavor indices. We multiplied by the number of col-
ors, Nc, as the determinant was calculated only in Dirac
and flavor spaces.

Appendix E: Decomposition of the self-energy
tensor

In this appendix we consider at zero and finite temper-
ature the decomposition into physical modes of the one-
loop fermionic contribution to the momentum-dependent
self-energy tensor of massive vector and axial-vector
bosons, generically denoted by Πµν(Q). Special interest
is devoted to the curvature mass of the modes, obtained
from the self-energy in the limit Q→ 0, which at T 6= 0
represents the limit q0 → 0, followed by q → 0.

a. T = 0 case. The vacuum self-energy Πµν
vac(Q) can

be decomposed as

Πµν
vac(Q) = Πvac,L(Q)PµνL (Q) + Πvac,T(Q)PµνT (Q), (E1)

with the 4-longitudinal and 4-transverse projectors

PµνL (Q) =
QµQν

Q2
and PµνT (Q) = gµν−PµνL (Q), (E2)

satisfying

PL/T ·PL/T = PL/T, PT/L ·PL/T = 0, PµTµ = 3PµLµ = 3.

(E3)
Writing the tree-level inverse propagator as iD−1

µν (Q) =

m̂2PL
µν + (m̂2 − Q2)PT

µν , where m̂2 is the tree-level
curvature mass, one obtains from the Dyson equation
iG−1
µν (Q) = iD−1

µν (Q) + Πvac
µν (Q) the propagator

Gµν(Q) =
iPµνT

−Q2 + m̂2 + Πvac,T(Q)
+

iPµνL

m̂2 + Πvac,L(Q)
.

(E4)
It is evident that the curvature masses of the propagating
(T) and nonpropagating (L) modes are:

M̂2
vac,L/T = m̂2 + Πvac,L/T(0). (E5)

In the Nf = 1 case, due to the fermion number (cur-
rent) conservation, the vector boson self-energy not only
is transverse, that is, QµΠµν(Q) = 0, but also satisfies
Πµν(Q = 0) ≡ 0, and therefore Πvac,L/T(0) ≡ 0, just
like in the case of the photon polarization tensor in the
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QED. In the Nf = 2+1 case the above relations hold due
to Eq. (B12) for the vector boson self-energy with flavor
indices listed in Eq. (B4). These indices correspond to
the last three entries of Table II (also for the first entry
in the φ3 = 0 case), when the integrals involve fermion
propagators with identical masses. For the first three en-
tries of the table (except for the first one in the φ3 = 0
case) the vector polarization tensor is alike the axial-
vector one, that is, QµΠµν(Q) 6= 0 and Πµν(Q = 0) 6= 0,
so that, using Πµ

µ,vac(Q) = 3Πvac,T(Q) + Πvac,L(Q) and
Πµν

vac(Q = 0) ∝ gµν , one obtains

Πvac,T(0) = Πvac,L(0) = Π00
vac(0) = −Π11

vac(0). (E6)

Therefore, one can write unambiguously

M̂2
vac = m̂2 + Πvac(0), with Πvac(0) =

1

4
Πµ
µ,vac(0).

(E7)
b. T 6= 0 case. In a Lorentz-covariant formulation

one has to take into account besides Q2 a second Lorentz-
invariant quantity, ω := Q·u, where uµ is the 4-velocity of
the thermal bath, which satisfies u2 = 1. The self-energy
depends on two scalars, ω and q := ((Q · u)2 − Q2)1/2,
which are interpreted as the Lorentz-invariant energy and
modulus of the 3-momentum [52]. In the rest frame of
the thermal bath, also used here in what follows, one has
uµ = (1,0), and therefore ω = q0 and q = |q|.

A basis for the decomposition of self-energy has to
be constructed from the four rank-2 tensors gµν , QµQν ,
uµuν , and Qµuν + Qνuµ. The physically motivated ba-
sis [53] consists of PµνL , given in Eq. (E2), and the three
tensors

Pµνl =
uµTu

ν
T

u2
T

= −Q
2

q2
uµTu

ν
T,

Pµνt = gµν − PµνL − Pµνl = −gµi
(
δij −

qiqj
q2

)
gjν ,

Cµν =
QµuνT +QνuµT√

(Q · u)2 −Q2
,

(E8)

where uT
µ = uµ−(Q·u)Qµ/Q

2. Pt/l are three-dimensional
transverse/longitudinal projectors (they are both four-
dimensional transverse, Pl + Pt = PT), while Cµν is not
a projector. Further relations of interest, in addition to
those in Eq. (E3), are

Pl/t · Pl/t = Pl/t, Pl/t · Pt/l = 0,

Pt/L · PL/t = Pl/L · PL/l = Pt · C = C · Pt = 0,

Pl · C · Pl = PL · C · PL = 0, C2 = −PL − Pl,

C · PL = Pl · C, PL · C = C · Pl,

C · PL + PL · C = Pl · C + C · Pl = C,

dl := Pµlµ = 1, dt := Pµtµ = 2, Cµµ = 0.

(E9)

In the above basis the general self-energy tensor reads

Πµν(Q) =
∑

p=t,l,L

Πp(Q)Pµνp (Q) + ΠC(Q)Cµν(Q), (E10)

with tensor components given by (dt = 2dl/L = 2)

Πp =
1

dp
tr(Π · Pp), ΠC = −1

2
tr(Π · C). (E11)

The expression of the dressed propagator Gµν can
be obtained with the method described in Ch. 5.2.2 of
Ref. [54]. Using a similar decomposition for Gµν as in
Eq. (E10) and the Dyson equation iG−1

µν (Q) = iD−1
µν (Q)+

Πµν(Q) in the identity G−1
µν Gνα = gαµ , one obtains by ex-

ploiting Eqs. (E3) and (E9)

Gµν(Q) =
iPµνt

−Q2 + m̂2 + Πt(Q)
+
iPµνl

(
m̂2 + ΠL(Q)

)
δ(Q)

+
i
(
−Q2 + m̂2 + ΠL(Q)

)
PµνL

δ(Q)
− iΠC(Q)Cµν

δ(Q)
, (E12)

with δ(Q) =
(
m̂2+ΠL(Q)

)(
−Q2+m̂2+Πl(Q)

)
+Π2

C. We
will see below that ΠC(0,0) ≡ 0, and hence the squared
curvature masses of the remaining modes simplify to

M̂2
l/t/L = m̂2 + Πl/t/L(0,0), (E13)

where m̂2 is the classical curvature mass squared and

Πp(0,0) = Πvac(0) + Πmat
p (0,0), p = l, t,L, (E14)

with the vacuum part Πvac(0) defined in Eq. (E7) and
Πmat

p being the matter part.

The tensor components Πmat
l/t/L/C(Q) can be given in

terms of the Lorentz components of the self-energy ten-
sor. Specifically for q0 = 0, using the explicit expression
of the projectors, one obtains from Eq. (E10)

Πmat
l (0, q) = Πmat

00 (0, q), Πmat
L (0, q) = −qiqj

q2
Πmat
ij (0, q),

Πmat
C (0, q) =

qi
|q|

Πmat
0i (0, q), (E15)

while taking the trace in Eq. (E10) gives

Πmat
t (Q) =

1

2

[
Πµ
µ,mat(Q)−Πmat

l (Q)−Πmat
L (Q)

]
. (E16)

The vector boson self-energy is 4-transverse
(QµΠµν(Q) = 0) in the Nf = 1 case and also in
the Nf = 2+1 case, for those flavor indices for which the
bubble integral involves propagators of equal masses (for
φ3 6= 0, the last three lines of Table II). In these cases
ΠL(Q) = ΠC(Q) ≡ 0 and the 00 component of Eq. (E10)

gives Πmat
00 (Q) = − q2

Q2 Πmat
l (Q). From this relation or

the first entry of Eq. (E15) and from Eq. (E16) one has

Πmat
l (0,0) = Πmat

00 (0,0), Πmat
t (0,0) = −3

2
Πmat

11 (0,0).

(E17)
For the axial-vector bosons and, in the Nf = 2 + 1

case, for the vector boson self-energy involving bubble
integrals with different fermion masses (for φ3 6= 0, the
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first three lines of Table II), the direct calculation pre-
sented in Appendix F shows that

Πmat
0i (0, q) ≡ 0, (E18a)

lim
q→0

qiqj
q2

Πmat
ij (0, q) = Πmat

11 (0,0). (E18b)

As a result Πmat
C (0, q) = 0 and, therefore,

Πmat
t/L (0,0) = −Πmat

11 (0,0), Πmat
l (0,0) = Πmat

00 (0,0).

(E19)

Appendix F: Proof of some properties of Πmat
µν (Q)

The one-loop (axial-)vector boson self-energy (37) can
be given (see Table II) in terms of the integral defined
in Eq. (39), containing different fermion masses mf and
mf ′ , or (a linear combination of) its equal mass limit
(40). In order to prove Eq. (E18), it is enough to con-
sider the integral in Eq. (C4), obtained from Eq. (39) by
doing the Dirac trace. The following calculation refers to
the matter part, as indicated by the separation of the k0

integral, which becomes a Matsubara sum in the imagi-
nary time formalism.

a. Proof of (E18a) Setting q0 = 0 in (C4), one has

IV/A,0i(0, q;mf ,mf ′) = i

∫ ∞
−∞

dk0

∫
k

k0(2ki − qi)Gf (K)

k2
0 − E2

k−q,f ′
,

(F1)

with Ek,f = (k2 + m2
f )1/2 and G−1

f = K2 − m2
f . The

integral is obviously zero, as the integrand is odd in k0.
b. Proof of (E18b) On the one hand, it follows

again from Eq. (C4) by q0 = 0 substitution that

qiqj
q2

IV/A,ij(0, q;mf ,mf ′)

= −i
∫ ∞
−∞

dk0

∫
k

±mfmf ′ −K2 + k · q − 2(k · q)2/q2

(k2
0 − E2

k,f )(k2
0 − E2

k−q,f ′)
.

(F2)

Changing to spherical coordinates in the k integral, and
using k ·q = kq cosϑ ≡ kqx the q → 0 limit gives −2k2x2

in the numerator. Doing the angular integral leads to

lim
q→0

qiqj
q2

IV/A,ij(0, q;mf ,mf ′) =

4iπ

∫ ∞
−∞

dk0

∫ ∞
0

dk
∓mfmf ′ +K2 + k2/3

(k2
0 − E2

k,f )(k2
0 − E2

k,f ′)
. (F3)

On the other hand, using the identity (A1) in Eq. (C4)
gives

IV/A,11(0,0;mf ,mf ′) = i

∫
K

∓mfmf ′ +K2 + k2/3

(k2
0 − E2

k,f )(k2
0 − E2

k,f ′)
.

(F4)
Changing to spherical coordinates in the k integral, the
angular integral readily gives 4π, as the integrand is in-
dependent of the angles. The resulting formula agrees
with the rhs of Eq. (F3), from which Eq. (E18b) follows.
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