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Abstract: Soil organic carbon (SOC) is a mandatory pool in national inventory reports on greenhouse
gas (GHG) emissions and removals to the UNFCCC. Hence, its accurate assessment is important.
Modelling SOC changes for national GHG reports is encouraged, but the uncertainty related to this
pool still presents a significant challenge; thus, verifying modelling results with field observations is
essential. We used the process-based model Biome-BGCMuSo and assessed its suitability for use in
Croatia’s GHG reporting. We modelled SOC stocks in the top 30 cm of the mineral soil layer (SOC30)
for four different land-use (LU) categories (Deciduous/Coniferous Forest, Grassland and Annual
Cropland) distributed in three biogeographical regions (Alpine, Continental and Mediterranean)
and compared them with results of a national soil survey. A total of 573 plot level simulations
were undertaken and results were evaluated at three stratification levels (LU, LU × biogeographical
region, and plot). The model reproduced the overall country mean of SOC30 with no overall bias, and
showed good performance at the LU level with no significant (p < 0.05) difference for all LUs except
Deciduous Forest (11% overestimation). At finer stratifications, the model performance considerably
worsened. Further model calibration, improvement and testing, as well as repeated soil survey are
needed in order to assess the changes in SOC30 and to evaluate the potential of the Biome-BGCMuSo
model for use in GHG reporting.

Keywords: biogeochemical modelling; spatial modelling; soil national inventory; national inventory
report; forests; croplands; grasslands

1. Introduction

Soil organic carbon (SOC) is one of five mandatory pools in national reports on
greenhouse gas (GHG) emissions and removals that must be submitted pursuant to the
United Nations Framework Convention on Climate Change (UNFCCC) and accounted for
under the Kyoto Protocol (KP) [1] and Paris Agreement (PA) [2]. Carbon (C) emissions and
removals within the SOC pool are included in the land use, land-use change and forestry
(LULUCF) sector of the National Inventory Reports (NIR) of the Parties to the UNFCCC.
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LULUCF is the only sector that accounts for C removal; therefore, in some regions, it has
been identified as essential in reaching the goal of climate neutrality (The European Green
Deal) [3]. Considering that SOC is the largest terrestrial C pool [4,5] and that warmer
climate can stimulate SOC losses [6,7], with the possibility of forming a positive feedback
loop between the carbon cycle and climate warming [8], it is important to make an accurate
assessment of SOC stocks and changes.

The uncertainties in the LULUCF sector estimates are currently being emphasised [9].
According to principles required by International Panel on Climate Change, national reports
need to be transparent, complete, consistent, comparable and accurate [10]. This means that
each party needs to deliver a fully documented report in which accurate estimates are given
for all relevant categories (i.e., land uses and pools) of GHG sources and sinks, throughout
the time series. Of all the mandatory pools, namely aboveground and belowground live
biomass, deadwood, litter and soil organic matter, reporting on net C change in soil under
different land uses (LU) over time is often most challenging.

The simplest approach of assessment (Tier 1) in mineral SOC stocks assumes no
change, whereas the use of higher tiers requires integration of field measurements and
modelling. Soil C modelling is cost effective and is already in use for national reporting
where soil models such as RothC [11,12], Yasso07 [13–16] or CENTURY [17] have been
used. Nevertheless, field measurements of soil C stocks, although expensive and time
consuming, are necessary for model calibration and validation [18–20]. In order to address
uncertainty in reporting related to the SOC pool, there is an increased interest in verifying
the results of process-based models with the results from field observations [20].

There is an extensive literature on SOC modelling [21–23]. Most often, SOC is mod-
elled with soil C models (e.g., Yasso), in which processes in predefined soil pools are
modelled, whereas organic C inputs to the soil pool are user-defined or estimated through
various allometric functions [24]. SOC can also be modelled with ecosystem models
that simulate processes throughout the entire soil–plant–atmosphere continuum, making
all ecosystem pools (aboveground and belowground) sensitive to changes in climate or
land management.

Due to the great variability in SOC under different LU types, LU change is a strong
driver of SOC change [25,26]. Furthermore, management activities are found to have a
strong effect on SOC [27], and there is also evidence that sustainable management practices
can contribute to maintaining soil C sinks and stocks [28,29]. Studies suggest that projected
changes in climate, e.g., increasing temperature and prolonged droughts, may promote soil
respiration and facilitate a decrease in SOC [30–32]. With respect to the ongoing changes in
environmental conditions, ecosystem models which consider both the vegetation and the
soil are useful for predicting future SOC stocks.

Biome-BGCMuSo is a terrestrial ecosystem model that simulates the storage and flux
of water, carbon and nitrogen in the soil–plant–atmosphere system. It is a new variant of the
well-known Biome-BGC model [33], with a variety of new adjustments and features [34].
The main improvement is a multilayer soil sub-model (therefore its name MuSo—Multilayer
Soil) that allows a more accurate representation of soil profiles regarding soil texture and
bulk density, which can contribute to the improvement of simulation of C and water
fluxes. Another important feature is the implementation of several management options
that make the model suitable for modelling ecosystems under different management
practices. Considering a long history of the Biome-BGC model [33], with numerous
improvements [35–38], calibrations and validations [39–42], and global use [36,42–44], the
recent improvements in Biome-BGCMuSo [34] provide a valuable tool for simulating SOC
stocks and changes under various LU, management and climate scenarios.

The main challenges in using process-based models are the collection of input data
(meteorological, ecophysiological and site variables) at the adequate temporal and spatial
resolution, and the complex task of model calibration and validation, which has high
computing requirements [45]. Therefore, such models are often calibrated and validated
using well-equipped research sites (e.g., eddy-covariance or long-term monitoring sites)
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which are representative of specific biomes [46,47], and subsequently used for simula-
tions and/or predictions at various temporal and spatial scales [18,43,48]. To account
for spatial variability within a specific ecosystem, multi-site calibration and validation
are recommended [49,50]. As a relatively small country in Europe, but with very high
biogeographical diversity, Croatia is an ideal area for testing the model performance for
specific ecosystems in different biogeographical regions.

Although C stock changes are more important than current C stocks for GHG account-
ing, in order to obtain reliable estimates of C stock changes it is important to first be able
to properly estimate current C stocks. Therefore, the aim of this research was to test the
suitability of the Biome-BGCMuSo terrestrial ecosystem model for modelling SOC stocks
in the top 30 cm of the soil mineral layer, at the national scale, under different land uses,
through comparison with field data from a national soil survey.

2. Materials and Methods
2.1. Study Area

The research focused on the total area of Croatia, which is distributed among three bio-
geographical regions: Continental, Alpine and Mediterranean (Figure 1) [51].
The Continental region covers the northern and central parts of Croatia, and is bounded to
the south by the Dinarides mountains. It is mainly an area of lowlands and low hills at
200–500 m a.s.l., with Pannonian Mountains reaching 1059 m (Mt Ivanščica) in the north.
It is characterised by a temperate rainy climate with warm summers and cold winters,
and two precipitation maxima classified as Cfwbx” according to the Köppen classifica-
tion [52]. The mean annual temperature (Tair) is around 10 ◦C and annual precipitation
(P) ranges from approximately 600 to 1200 mm following an east–west gradient [53].
The soil parent material is mainly alluvial deposits (lowlands) and silicate rocks (hills and
mountains) [54,55]. The geological background consists of magmatic, clastic and meta-
morphic rocks [56,57]. The Alpine region of Croatia is situated between the Continental
and Mediterranean regions, and covers the central belt of the Dinarides (i.e., high Dinaric
Alps) at elevations mainly above 500 m and with the highest mountain peak at 1831 m
a.s.l (Mt Dinara). The climate of the Alpine region is characterised by relatively short and
cool summers and long winters with abundant snowfall (Cfsbx”) [52]. According to the
Zalesina meteorological station, situated at 750 m a.s.l., Tair is 6.6 ◦C and P is 2021 mm,
whereas above 1200 m a.s.l. a harsher climate prevails (Dfsbx” according to the Köppen
classification) [52] with Tair of 3.6 ◦C and P of 1892 mm (Zavižan meteorological station at
1594 m a.s.l., for the period 1961–1990) [53]. The soil parent material is mainly limestone
and dolomite [54,55], developed on the geological background consisting dominantly of
carbonate Mesozoic rocks [56,57]. The Mediterranean region in Croatia covers coastal
areas and islands in the Adriatic Sea. It is diverse in orography, with an elevation range of
0–1000 m a.s.l. The climate is warm with hot summers and mild winters, and classified
as Csa according to Köppen [52], with Tair of 13.1 and 15.5 ◦C, and P of 1177 and 936
mm, respectively. The soil parent material is mainly carbonate. Both the Alpine and
Mediterranean regions of Croatia feature karst landforms (e.g., sinkholes and caves) and
disappearing streams.

The main LU categories in Croatia are Forest land (40.9%), followed by Cropland
(26.3%) and Grassland (19.4%) (Table 1). The majority of forests are deciduous and the
main tree species are common beech (37.2%), pedunculate oak (11.6%), sessile oak (9.4%),
and common hornbeam (8.4%) [58]. Crops are predominantly annual (maize, wheat
and potato).
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Table 1. Area of land-use categories in Republic of Croatia in 2016 according to HR NIR 2020 [59].

LU Category National Inventory
Report Categories Area in 2016 (kha) Share (%)

Forest land
Deciduous forests 1618.3 28.6%
Coniferous forests 209.4 3.7%
Forests out of yield 484.7 8.6%

Cropland Annual cropland 1386.0 24.5%
Perennial cropland 105.1 1.9%

Grassland Grassland 1096.6 19.4%
Wetlands Wetlands 74.1 1.3%

Settlements Settlements 203.6 3.6%
Other land Other land 238.2 4.2%

Land-use change Land-use change 243.3 4.3%

TOTAL 5659.4 100.0%

Figure 1. Biogeographical regions according to the European Environmental Agency [51] and national soil survey field
plots distributed between land-use categories in Croatia in 2016 according to HR NIR 2020 [59].
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2.2. Field Measurements and Laboratory Analysis

Soil survey in Croatia was conducted in line with the IPCC guidelines [10], during
2015 and 2016, at 725 plots distributed among different LU categories (Figure 1). At each
plot within the Forest land category, 5 m from the plot centre, mineral soil was sampled at
6–8 positions in the directions N, NE, E, SE, S, SW, W and NW. Soil cores were taken with a
split tube sampler (Eijkelkamp) to the total depth of 30 cm and divided into 10 cm deep
layers. In the case where the use of a sampler was not possible due to the high content
of rocks at the site, soil samples were collected from one soil pit sampled in three layers
(0–10, 10–20 and 20–30 cm). In cases when the soil was less than 30 cm deep, the soil depth
was recorded. At plots within LU categories other than FL, the soil was sampled similarly,
but only at 4 positions per plot due to lower heterogeneity in comparison with the forest
soils. An additional difference was the sampling within the Annual Cropland LU category,
where soil samples were collected from two layers (0–20 and 20–30 cm). Soil sampling in
two separate layers (0–10 and 10–20 cm) at plots within AC LU was not justifiable due to
soil tilling and mixing of the topsoil layer.

At all non-rocky sites, soil bulk density was estimated by taking three soil samples
per layer using Kopecky cylinders. At rocky sites, soil bulk density was estimated from
the soil pit using inert quartz sand for estimating the volume of the soil pit according to
the ISO standard (ISO 11272:1998). Soil samples were sieved, oven-dried and weighed.
For every plot, soil samples from a given layer were then pooled together, homogenised
and analysed for soil texture and carbon content. Soil organic carbon (SOC) of soil samples
was determined using a Thermo Scientific FLASH 2000 Soil Nitrogen and Carbon analyser.
This method allows direct measurements of the total carbon (TC). Carbonates were removed
by treating soil samples with 4 M HCl, and heating in a centrifuge tube sitting in a hot
block for 2 h. The insoluble residue was washed with Milli-Q water and centrifuged (2×),
freeze dried and weighed. The carbon content of the insoluble residue after HCl treatment
is the soil organic carbon (SOC).

2.3. The Biome-BGCMuSo Model—Parameterisation and Input Data Collection

In this research we used a model Biome-BGCMuSo 4.0., a biogeochemical model that
simulates the storage and flux of water, carbon and nitrogen in the soil–plant–atmosphere
system [34]. Although newer model versions are also available, version 4.0 has been ex-
tensively evaluated [34]. The main improvement of the Biome-BGCMuSo in comparison
to the original Biome-BGC model is a multilayer soil sub-model that has 7 layers (i.e.,
0–10, 10–30, 30–60, 60–100, 100–200, 200–300 and 300–1000 cm). The Biome-BGCMuSo
simulates soil temperature, soil water content, root mass proportion, soil organic C and
mineral N, soil moisture stress index with accompanying senescence, and maintenance
root respiration flux in each of the layers. The decomposition process is represented as a
converging cascade scheme in which organic material, initially passed from plant pools to
litter and coarse woody debris pools, decomposes and passes through a cascade of different
pools with specific turnover times [60]. It should be noted that the decomposition scheme
of Biome-BGCMuSo corresponds to the decomposition scheme, together with specific
decomposition constants, used in the CLM-CN model [60]. In each step, organic material is
partially respired following the decay rates described by the first-order kinetics [11,23,61].
Another major feature of Biome-BGCMuSo v.4.0 is the implementation of several man-
agement options, i.e., harvest, ploughing, fertilisation, planting, thinning and irrigation.
The model is freely available online with the source code and full documentation at
http://nimbus.elte.hu/bbgc/index.html (accessed on 23 July 2021).

Three main datasets are needed as model inputs: daily meteorological data, site-
specific data and ecophysiological parameters. Optionally, the user can provide yearly
atmospheric CO2 concentration, yearly atmospheric N deposition and management data.
Meteorological data needed as model drivers are daily maximum and minimum air tem-
perature, daily precipitation amount, daylight mean global radiation, vapour pressure
deficit and geographical coordinates used by the model for the calculation of the daylength.

http://nimbus.elte.hu/bbgc/index.html
http://nimbus.elte.hu/bbgc/index.html
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Spatially explicit data that fully match these requirements are available for Central Europe
within the FORESEE database [62]. FORESEE v3.1 is an open-access gridded meteorologi-
cal database with a spatial resolution of 1/6◦ × 1/6◦, spanning between 10◦55′–28◦05′ E
and 42◦35′–51◦05′ N, and covering the 1951–2100 period with observations and climate
model-based projections.

Site-specific data include soil texture, maximum rooting depth, long-term mean air
temperature and air temperature range, elevation, latitude and shortwave albedo. These
data were estimated from field observations (soil texture, and maximum rooting depth),
from the processing of FORESEE database (air temperature) and its ancillary data (elevation
and latitude) and based on expert judgment (albedo). Lists of ecophysiological constants
or parameters (EPC list) are biome specific or species specific. Lists of ecophysiological
parameters used in this research are provided in Table A1. We used EPC lists for Grassland,
Cropland and Deciduous forest published in Hidy et al. (2016) [34], and adjusted a number
of parameters according to Dalrymple and Dwyer (1967) [63], Barbosa et al. (2016) [64],
Cleveland et al. (1999) [65] and Butler et al. (2001) [66] (Table A1). For consistency with
LULUCF categories used in the National Inventory Report [59] we made a distinction
between deciduous forests and coniferous forests based on White et al. (2000) [39], Bond-
Lamberty et al. (2005) [36] and Thornton et al. (2005) [67] (Table A1). For some LU (Forests
out of yield, Perennial cropland, Wetlands, Settlement, Other Land; Table 1) it was not
possible to obtain lists of ecophysiological parameters due to the large heterogeneity of
those LU categories.

Of the optional input data, we used yearly atmospheric CO2 concentration data from
Mauna Loa Observatory [68] and ice cores [69], and yearly atmospheric N deposition data
were estimated from the literature [70]. LU category-specific data on average management
practices were estimated based on national regulations (Forest land), statistical yearbooks,
through consultations with local experts and authors’ experience (Cropland and Grassland)
(Table A2).

2.4. Soil Organic Carbon (SOC) Modelling

We performed spatial modelling of SOC down to 30 cm (SOC30) for four different LU
categories, i.e., Deciduous forests (DF), Coniferous forests (CF), Annual cropland (AC) and
Grassland (GL). By modelling within the selected four LU categories, we accounted for
4310.4 kha or 76.2% of Croatia’s land territory (Table 1).

The model simulation had three phases: spin-up, transient and normal run. Spin-up
(self-initialisation or equilibrium run) is a widely used method for the estimation of the
initial conditions of biogeochemical models [71]. Using this method, long-term simulations
are initiated starting from zero SOC and reusing the meteorological data that drives the
simulations. The aim of the spin-up simulation is to reach equilibrium with the current
climate using predefined N deposition and atmospheric CO2 concentration values. It was
simulated for 6000 years, using: repeating meteorology from 1951–1999, fixed atmospheric
CO2 concentration of 290 ppm, fixed atmospheric N deposition of 0.0002 kg N m−2 yr−1

and annual fire-mortality rate of 0.002 (personal assessment). The transient run was
simulated for 100 years from 1900 to 1999, using the same meteorology as in spin-up,
estimates (1900–1957) [69] and records (1958–1999) [68] of atmospheric CO2 concentration,
estimates of the atmospheric N deposition [70], and LU-specific management activities
(Table A2). The purpose of the transient run is to alleviate undesired ecosystem behaviour
caused by a sharp change in atmospheric CO2 concentration and atmospheric N deposition
between the spin-up and normal simulation. The normal run was performed for the
period 1990–2016 using meteorology data from the FORESEE database [62], atmospheric
CO2 concentration from Mauna Loa [68], atmospheric N deposition [70] and LU-specific
management activities (Table A2).

Meteorological data, site-specific data and ecophysiological parameters were all spa-
tially explicit and their intersection at each sample plot resulted in a table that contained
all the specific attributes needed for the model run. Of 725 sample plots within the soil
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survey, 629 plots were under four LU categories of interest, for which we performed model
simulation. One plot was excluded from further analysis as a probable outlier due to the
unrealistically high measured value of SOC30 (>350 t C ha−1). Of 628 field plots for which
we performed a model run, 55 model runs resulted in unsuccessful simulations (zero live
biomass at some point during the simulation). A possible reason for this may be the model
sensitivity to N that may result in an unsuccessful growth (and death) of vegetation during
the spin-up phase due to high N demand of vegetation and low N availability at specific
locations. For more details on the technical components of the model and simulation, see
the User’s Guide [72]. Finally, we achieved a total of 573 successful plot level simulations
for use in the model-data comparison (dataset is available in the Supplementary Materials).

2.5. Model Evaluation

Biome-BGCMuSo was previously evaluated with flux and biometric data for C3
grassland, C4 maize and pedunculate oak forest [34], in addition to tree-rings data for oak
forests [73]. In this research, validation of the model was performed through comparison
of modelled and measured SOC30 data at three different levels: land use (regardless of the
biogeographical region), land use × biogeographical region and plot.

For each LU category, and for the LU × biogeographical region level, the difference
between the modelled and the measured SOC30 stocks was assessed with a Student’s
t-test. The differences in SOC30 stocks between LU categories were tested with the Kruskal–
Wallis H test, separately for the modelled and the measured SOC30 stocks. Furthermore,
evaluation of model results was performed using quantitative measures, namely coefficient
of determination (R2) of the linear regression, mean absolute error (MAE), root mean square
error (RMSE) and Nash–Sutcliffe model efficiency (NSE). Finally, analysis of residuals,
estimated as the difference between measured and modelled SOC30 data, was performed
at the plot level.

Uncertainty analysis at the plot level was not included because it exceeds the scope of
this study.

3. Results

To test the suitability of the model for reporting within the National GHG Inventory,
we aggregated our model results according to different LU categories and found a strong
correlation between measured and modelled SOC30 stocks (Figure 2).

We observed that modelled and measured SOC30 stocks significantly differ (p < 0.01)
for DF only, with the model overestimating the soil carbon stocks (Figure 2). The magnitude
of overestimation (mean difference) was 7.38 tC ha−1 (11.0%). For all other LU categories,
there was no statistically significant (p < 0.05) difference between the measured and the
modelled SOC30 stocks.

Furthermore, the SOC30 stocks in the AC significantly (p < 0.01) differ from SOC30
stocks in all other LU categories for both the modelled results and the measured data.
Measured SOC30 in DF is significantly (p < 0.05) lower than the measured SOC30 in
GL, whereas modelled SOC30 in GL significantly (p < 0.01) differs from both DF and
CF categories.

For every LU category, the measured SOC30 showed greater variation in comparison
to the modelled one, with the measured SOC30 in CF having the highest and the modelled
SOC30 in AC having the lowest coefficient of variation (CV) (Table 2). Moreover, measured
variability within different LU was similar (CV of 39% to 45%), whereas the variability in
the modelled SOC30 stock was larger for DF and CF LU categories (CV of 28% and 29%,
respectively) than for GL (22%) and AC (19%).
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Figure 2. Comparison of measured and modelled mineral soil organic carbon stocks down to 30 cm
at the level of land-use category. Average ± 1.96 SE. The dashed line is a 1:1 line.

Table 2. Variability in measured and modelled soil organic carbon down to 30 cm regarding different
land-use categories (average ± standard error).

LU Category N
Measured SOC30 Modelled SOC30

t C ha−1 CV (%) t C ha−1 CV (%)

Deciduous
forests (DF) 241 67.04 ± 1.78 41 74.42 ± 1.32 28

Coniferous
forests (CF) 51 74.05 ± 4.71 45 71.86 ± 2.90 29

Annual
croplands

(AC)
161 52.44 ± 1.74 42 51.41 ± 0.75 19

Grasslands
(GL) 120 75.77 ± 2.70 39 81.14 ± 1.66 22

Total 573 65.39 ± 1.19 44 69.13 ± 0.88 30

In preparation of the country’s NIR with mandatory land stratification according to
the LU, the IPCC GPG considers additional land stratification, with respect to climate, soil
types, etc., to be good practice [10]. Although the model showed good performance at the
LU level, disaggregation of the results by the biogeographical regions revealed a significant
mismatch between measured and modelled data (Figures 3 and A1).
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Figure 3. Comparison of measured and modelled soil organic carbon stocks down to 30 cm at the
land use × biogeographical region level. Average ± 1.96 SE. The dashed line is a 1:1 line.

For all LU categories within the Mediterranean region, a significant underestimation
of the modelled SOC30 was observed. In contrast, an overestimation of the model was
observed for DF and GL LU in the Continental region, and for the DF and CF LU categories
in the Alpine region. For the AC in the Alpine region only, the modelled SOC30 was
underestimated. However, because there were only two data points in this category, the
confidence interval for this estimate is unknown and an estimate of model accuracy is
unfeasible.

No statistically significant (p < 0.05) difference was observed between the measured
and the modelled SOC30 stocks in Alpine GL, Continental CF and AC, and Mediterranean
DF land-use categories.

The results also revealed an apparent gradient in modelled SOC30 with respect to
biogeographical regions, namely Alpine > Continental > Mediterranean. No such gradient
was observed in the measured data (Table 3, Figure A1). Furthermore, observed gradients
in modelled data were present in all LU categories (Table 3, Figure A1).

Table 3. Variability in measured and modelled soil organic carbon down to 30 cm regarding different
land-use categories and biogeographical regions (average ± standard error).

LU
Category
in NIR

Biogeographical
Region N

Measured SOC0–30 cm Modelled SOC0–30 cm

AV ± SE CV (%) AV ± SE CV (%)

Deciduous
forest
(DF)

Alpine 33 72.86 ± 5.53 44 103.86 ± 3.81 21
Continental 178 64.66 ± 1.95 40 72.00 ± 1.03 19
Mediterranean 30 74.75 ± 5.69 42 56.36 ± 3.92 38

Coniferous
forest
(CF)

Alpine 24 73.02 ± 6.04 41 90.38 ± 1.21 7
Continental 4 66.26 ± 9.07 27 75.05 ± 5.27 14
Mediterranean 23 76.49 ± 8.33 52 51.99 ± 2.43 22

Annual
cropland

(AC)

Alpine 2 97.79 73.90
Continental 147 50.89 ± 1.77 42 52.79 ± 0.60 14
Mediterranean 12 63.82 ± 5.99 33 30.74 ± 1.71 19

Grassland
(GL)

Alpine 17 89.60 ± 9.09 42 102.97 ± 3.65 15
Continental 63 71.40 ± 3.25 36 87.69 ± 0.92 8
Mediterranean 40 76.78 ± 4.82 40 61.56 ± 2.02 21
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Further disaggregation of model results and comparison at the plot level revealed a
very poor correlation between the measured and the modelled SOC30 stocks (Figure 4).

Figure 4. Comparison of measured and modelled soil organic carbon down to 30 cm at a plot level
for different land-use categories.

Residual analysis (Figure A2) showed that the smaller values of the modelled SOC30
stocks are more likely underestimating the true values (positive residuals), whereas the
large model values are likely overestimating the true values. The largest bias was observed
for Deciduous forests (R2 = 0.308, p < 0.001), and the lowest bias was observed for Annual
cropland (R2 = 0.116, p < 0.001).

Summary results of the model evaluation at different levels of stratification are shown
in Table 4. Although at the land-use level model performance is very good, when disaggre-
gating results to lower scales, significant discrepancies between measured and modelled
SOC30 data can be observed.

Table 4. Summary of model evaluation regarding different levels.

Stratification
Level N R2 MAE RMSE NSE

Land use 4 0.877 3.993 4.721 0.736
Land use ×

Biogeograph-
ical

region

11 0.240 17.021 19.319 −3.086

Plot 573 0.042 24.930 31.991 −0.254

4. Discussion

During a long history of model development [34,36,38,74] and due to a variety of cali-
bration/validation studies [40,75,76], Biome-BGC evolved and became increasingly more
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suitable for simulations across various terrestrial ecosystems [77,78] and environmental
gradients [42]. The results of our simulation with the new model variant (Biome-BGCMuSo)
indicate its suitability for modelling the average mineral SOC down to 30 cm, for Croatia
at the national level, for four different land-use categories, namely Deciduous forests (DF),
Coniferous forests (CF), Annual croplands (AC) and Grasslands (GL). For some of the
more heterogeneous land-use categories, the model could not be initialised due to difficul-
ties in defining adequate ecophysiological parameters. In particular, land-use categories
Forests out of yield (i.e., maquis and shrubs), and Perennial croplands represent mixtures
of several different types of ecosystems. For example, Forests out of yield include Mediter-
ranean maquis and continental shrubs, whereas Perennial croplands include vineyards,
olive groves and orchards. By comparison, the LU category Settlements encompasses a
mosaic of sealed land, grass, parks, trees, water bodies, etc., making the selection of the
appropriate EPC extremely difficult; in addition, the representativeness of the measured
data is frequently questionable. The use of the unique list of ecophysiological parameters
for modelling strata encompassing such diverse groups cannot be justified and would
require a finer stratification of LU categories [79]. In addition, with a finer stratification
(e.g., to vineyards, maquis, etc.) the number of plots for testing the modelling results would
become prohibitively small. The lack of completeness at the national level represents a key
issue if the model would be used for national GHG reporting, and would require the use
of different tiers for different strata [10]. This may not be an issue, provided that in the
country’s NIR it has been demonstrated that only the modelled strata are Key categories [10];
that is, the contribution of the non-modelled strata to the overall GHG emissions and
removals must be comparatively small, so that these can be safely estimated by some other,
simpler, robust, albeit less precise, method.

At the LU category level, we observed a strong correlation between the mean modelled
and the mean measured SOC30 stocks (Figure 2). However, this is due to SOC30 stocks in
AC, which are generally lower than those in grassland or forest land [79]. The variability
in the measured SOC30 stocks for all LU is consistently larger than the variability in
modelled SOC30 (Table 2). Considering the high spatial heterogeneity of soil in Croatia [54],
high variability in measured SOC30 stocks is expected. On the other hand, the use of
the “average” management practices in simulations, due to the lack of management data,
contributes to lower variability in modelled SOC30 compared to the measured value, which
reflects diverse management practices.

Disaggregation of the results to the level of land use within a specific biogeographical
region, or to a plot level, shows worsening of the agreement between the modelled results
and field measurements (Figures 3 and 4, and Figure A1). Variability in the measured
SOC30 did not change significantly with stratification. The exceptions are CF and AC in
the Mediterranean biogeographical region, which showed considerably larger (52%) and
smaller (33%) variability than the overall means for CF and AC, respectively (compare
Tables 2 and 3). This is most likely due to the high variability in the soil depth. SOC30 stocks,
apart from the carbon content, strongly depend on the soil depth. In the Mediterranean
part of Croatia, the karst landforms dominate and the variability in soil depth is very high,
with many areas having less than 30 cm of soil [54]. Therefore, the greater variability in
SOC30 is expected in forest LU categories, but not in croplands, because agriculture targets
locations with more (i.e., deeper) soil [80].

High variability in the modelled SOC30 stocks in CF between biogeographical regions,
with low variability within each, is most likely the result of the use of the single EPC list.
Considering that for the Biome-BGCMuSo model there is only one published EPC list
for the forest, namely, for pedunculate oak forests [34], to model SOC30 in CF we had to
adjust some parameters (Table A1). Although we used a single EPC list for CF, we are
aware that, for example, fir, spruce and pine differ significantly in their ecophysiology [81],
which should be reflected in the EPC lists. Unfortunately, such species-specific EPC lists
for Biome-BGCMuSo are currently lacking. Although we modelled each LU with a unique
EPC list, we accounted for site-specific soil parameters, i.e., soil texture and maximum
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rooting depth, which are assumed to affect SOC processes [82,83]. Evidently, this is not
sufficient and, for all LU categories, the modelled SOC30 stocks show gradients Alpine >
Continental > Mediterranean, which is not observed in the measured data.

Overestimation of the SOC30 stocks in the Alpine biogeographical region (for DF
and CF) and in the Continental region (for DF and GL), and underestimation in the
Mediterranean region (all LU categories; Figure A1), is a strong indicator that a single
EPC parameter list per LU used for all biogeographical regions is not adequate. Finer
calibration, or at least adjustment of some of the model parameters, is needed at the level
of LU within each biogeographic region. For example, parameters C/N of different plant
organs and/or C allocation parameters are found to be key parameters in the original
Biome-BGC model, in which model results were very sensitive to even a slight change in
these parameters [39,84]. C/N is mainly species specific, whereas C allocation is strongly
dependent on tree species, and also environmental (i.e., site and climate) conditions [85]. Of
several C allocation parameters used in the model (Table A1), the ratio of fine root-to-leaf C
(FRC/LC) can be considered to be the most important for modelling of SOC30 stocks [86,87].
In dry soil conditions, as is frequently the case in the Mediterranean region, plants tend
to allocate more C into roots to reach soil water reservoirs and meet the plant’s water
demands [88]. By using a single LU-specific EPC list, with a unique FRC/LC ratio in all
biogeographical regions, it is likely that for wetter and richer sites the ratio will be too high
(resulting in an overestimation of SOC stocks), whereas for dryer and poorer sites, it is
likely that the ratio will be too low (resulting in underestimation of SOC stocks). Our results
(Figure 3) indicate that this may be one of the causes behind the model overestimation
(Alpine and Continental) and underestimation (Mediterranean region) of SOC30 stocks
in some LU. If so, it is likely that for the Alpine and the Continental region the FRC/LC
parameter was, on average, probably too high, whereas for the Mediterranean region it was
probably too low. Here it is also important to note that although the model shows good
efficiency at the national LU level (Table 4), this apparent agreement may only be a fortunate
compensation of two opposing biases, i.e., underestimation of SOC30 at the Mediterranean
sites and overestimation of SOC30 at the Continental and the Alpine sites. This issue is still
being investigated and the results will be presented in our future publications.

The strong bias of the model regarding different biogeographical regions is also re-
flected in the negative Nash–Sutcliff model efficacy (Table 4), which provides evidence
against the use of the model on LUs stratified according to biogeographical regions. This
confirms the need for improved model parameterisation, which will reflect not only species-
specific differences, but also differences in ecophysiological traits that could be characteris-
tic at the level of the biogeographical region.

At the plot level, the Biome-BGCMuSo model was not able to account for spatial
variation in SOC30 stocks that originate from site-specific conditions, although the soil
sub-model has been substantially improved regarding new processes and parameters
for different soil layers [34]. Disagreement between measured and modelled soil carbon
stocks at the plot level was previously observed in the original version of Biome-BGC [89].
For modelling at the plot level, reliable, long-term data on site management, disturbance
and land-use changes are needed for improvement of the model performance at fine spatial
variability. Because an accurate and comprehensive site history for each specific plot
is difficult (or even impossible) to obtain, the issue of proper model initialisation [71]
still hinders accurate reconstruction of SOC. A potential way forward is to explore the
possibility of using a data assimilation method [90] to improve SOC estimates. Another
issue is the limitation of the soils sampling. In addition to financial and other constraints
that limit the number of soil samples that can be taken within a survey, soil sampling has,
by its nature, a point-in-space characteristic, and although it is (if undertaken properly)
representative of the area of the site, it probably does not equal the true mean of the SOC30
stock for the wider area of the site.

Uncertainty analysis implies estimating the model result uncertainty originating from
different model inputs and/or different model parameters [91]. Estimating the uncertainty
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originating from model inputs for Biome-BGCMuSo would assume possessing more than
one climate and soil database covering the entire area of the investigation (i.e., the whole
national territory) [92]. Currently it is not the case in our study; therefore, it was not
performed. Nevertheless, a recent study with Biome-BGCMuSo showed that the spatial
variation in the SOC change rate is much larger than the variance in the SOC change rate
originating from changes in model inputs (e.g., climate and soil data), for all investigated
land uses (i.e., croplands, grasslands and forests) [92]. Accordingly, we can assume that
the introduction of input data-related uncertainty at the plot level would not provide us
with more information than we already obtained. Furthermore, estimating the uncertainty
originating from model parameters is essential in modelling studies [93,94]; however, for
the Biome-BGCMuSo model it would be an extensive task due to the high number of
model parameters (i.e., 107). Nevertheless, sensitivity analysis is planned as part of the
future work on Biome-BGCMuSo model calibration and validation. Finally, our results
also indicate that the Biome-BGCMuSo model is still dominantly driven by meteorology,
as is the case with the original Biome-BGC model [95]. Among various soil properties
that cause spatial heterogeneity of SOC stocks, e.g., soil texture, bulk density, and soil
aggregates, recent research shows that SOC is also strongly driven by mycorrhiza [96],
microbial biomass [97] and soil fauna [98]. These processes are currently not considered
within the Biome-BGCMuSo model. Therefore, in addition to model parameterisation,
improvement of the model logic regarding specific processes and geological conditions
should also be addressed in the future.

5. Conclusions

In this study, we focused on the estimation of SOC30 for Croatia using a process-based
biogeochemical model. The study also introduced a new national soil survey dataset,
which is consistent with the IPCC guidelines, and served as a reference for the first Biome-
BGCMuSo model verification study of SOC30 at a large spatial scale in Central Europe.
We demonstrated that the Biome-BGCMuSo model can reproduce the overall country
mean of SOC30, but with considerable spatial variability. Although biases were present in
different biogeographical regions that eventually compensated for each other, the study also
highlighted that the overall, country-scale results of the equilibrium run were consistent
with the observed means. Thus, no overall bias was found for the country means, which is
a promising finding.

The results of the simulation of SOC30 in four different land-use categories (Deciduous
forests, Coniferous forests, Annual croplands and Grasslands) at the national scale in
Croatia indicate that additional calibration/adjustment regarding specific land uses is
required, given that the spatial variability in SOC30 was not well reproduced. This can be
partly attributed to the simplistic method that is used for the initialisation of the model, as
the spin-up approach entirely ignores the site history. Note that, for the present modelling
exercise, information on the past management was not available; thus, future studies
should address this issue. From the perspective of the observations, there are also issues
with the point-sampling method of the SOC30, where the effects of high spatial variability
in soil become pronounced. These issues are very difficult to overcome at the national
scale.

Model testing through model-data comparisons at different scales, such as the one
presented in this work, highlights the main model issues and may serve as a guideline
for improvement of model parameters or the internal model logic. A repeated soil survey
is needed in order to assess the changes in SOC30 and to evaluate the potential of the
Biome-BGCMuSo model for use in GHG reporting.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/land10090968/s1, Supplementary File 1: Database on measured and modelled soil organic
carbon down to 30 cm at 573 plots in Croatia.

https://www.mdpi.com/article/10.3390/land10090968/s1
https://www.mdpi.com/article/10.3390/land10090968/s1
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Appendix A

Table A1. List of ecophysiological parameters for the Biome-BGCMuSo v4.0 model used in this study. Values for Grassland,
Cropland and Deciduous forest are from Hidy et al. (2016) [34], with some parameters adjusted according to specified
references or proposed for the purpose of this study. Parameters for Coniferous forests are based on parameters for
Deciduous forests and adjusted according to specified references. Superscripts in the Reference column refer to the
vegetation type (1 Grassland, 2 Cropland, 3 Deciduous forest, 4 Coniferous forest).

Parameter Name
Parameter Values

References/Remarks
Grassland (1) Cropland (2) Deciduous f. (3) Coniferous f. (4)

transfer growth
period as fraction
of growing season

1 1 0.3 0.3

litterfall as fraction
of growing season 1 1 0.3 0.3

base temperature 5 8 5 5 proposed value
(this study) 1

growing degree
day for start of
yield allocation

N/A 825 1000 1000

growing degree
day of start
genetically

programmed
senescence

N/A 1680 2350 2350

annual leaf and
fine root turnover

fract.
1 1 1 0.25 [67] 4

annual live wood
turnover fraction N/A N/A 0.7 0.7
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Table A1. Cont.

Parameter Name
Parameter Values

References/Remarks
Grassland (1) Cropland (2) Deciduous f. (3) Coniferous f. (4)

annual
whole-plant

mortality fraction
0.05 0.02 0.02 0.005 [39] 4

annual fire
mortality fraction 0 0 0 0

new fine root C:
new leaf C 2.5 1.02 0.95 1 adjusted according

to [63] 1, [37] 4

new fruit C: new
leaf C 0 0.56 0.14 0 proposed value

(this study) 4

new softstem C:
new leaf C 0.5 2.05 N/A N/A

new woody stem
C: new leaf C N/A N/A 1.42 2.2 [39] 4

new live wood C:
new total wood C N/A N/A 0.16 0.1 [36] 4

new coarse root C:
new stem C N/A N/A 0.26 0.3 [36] 4

current growth
proportion 0.5 1 0.5 0.5 proposed value

(this study) 1

C:N of leaves 25 38 24.5 42 adjusted according
to [64] 2, [39] 4

C:N of leaf litter 45 65 47.5 93 [39] 4

C:N of fine roots 50 42 43 58 [39] 4

C:N of fruit 25 50 33 0 proposed value
(this study) 4

C:N of softstem 25 85 N/A N/A
C:N of live wood N/A N/A 73.5 50 [39] 4

C:N of dead wood N/A N/A 451 729 [67] 4

leaf litter labile
proportion 0.68 0.68 0.2 0.32 [36] 4

leaf litter cellulose
proportion 0.23 0.23 0.56 0.44 [36] 4

fine root litter
labile proportion 0.34 0.34 0.34 0.30 [36] 4

fine root litter
cellulose

proportion
0.44 0.44 0.44 0.45 [36] 4

fruit litter labile
proportion N/A 0.68 0.3 0 proposed value

(this study) 4

fruit litter cellulose
proportion N/A 0.23 0.29 0 proposed value

(this study) 4

softstem litter
labile proportion 0.68 0.68 N/A N/A

softstem litter
cellulose

proportion
0.23 0.23 N/A N/A

dead wood
cellulose

proportion
N/A N/A 0.75 0.76 [36] 4
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Table A1. Cont.

Parameter Name
Parameter Values

References/Remarks
Grassland (1) Cropland (2) Deciduous f. (3) Coniferous f. (4)

canopy water
interception
coefficient

0.01 0.01 0.038 0.041 [67] 4

canopy light
extinction
coefficient

0.5 0.6 0.54 0.5 proposed value
(this study) 1, [67] 4

all-sided to
projected leaf area

ratio
2 2 2 2.6 [39] 4

canopy average
specific leaf area 49 43.3 34.5 12 [67] 4

ratio of shaded
specific leaf

area:sunlit specific
leaf area

2 2 2 2

fraction of leaf N
in Rubisco 0.2 0.39 0.088 0.04

proposed value
(this study) 1,2, [67]

4

fraction of leaf N
in PeP carboxylase N/A 0.03 N/A N/A

maximum
stomatal

conductance
0.004 0.012 0.0024 0.003 proposed value

(this study) 1, [36] 4

cuticular
conductance 0.00006 0.00006 0.00006 0.00001 [36] 4

boundary layer
conductance 0.04 0.04 0.005 0.08 [36] 4

relative soil water
content limitation1
(proportion to field

capacity value)

1 1 1 1 proposed value
(this study) 3,4

relative soil water
content limitation
2 (proportion to

saturation capacity
value)

0.99 0.99 1 1 proposed value
(this study) 3,4

vapour pressure
deficit: start of
conductance

reduction

1000 1000 200 930 [67] 4

vapour pressure
deficit: complete

conductance
reduction

5000 5000 2550 4100 proposed value
(this study) 1, [67] 4

senescence
mortality

coefficient of
aboveground plant

material

0.05 0.05 0.01 0 proposed value
(this study) 4

senescence
mortality

coefficient of
belowground plant

material

0.01 0.01 0.01 0 proposed value
(this study) 4
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Table A1. Cont.

Parameter Name
Parameter Values

References/Remarks
Grassland (1) Cropland (2) Deciduous f. (3) Coniferous f. (4)

genetically
programmed

senescence
mortality

coefficient of leaf

0 0.1 0.025 0 proposed value
(this study) 4

turnover rate of
wilted standing
biomass to litter

0.01 0.001 0.01 0.01 proposed value
(this study) 1

turnover rate of
cut-down

non-woody
biomass to litter

0.05 0.01 0.05 0.05 proposed value
(this study) 1

N denitrification
proportion 0.01 0.01 0.01 0.01

bulk N
denitrification

proportion, wet
case

0.005 0.005 0.02 0.02 proposed value
(this study) 1,2

bulk N
denitrification

proportion, dry
case

0.001 0.001 0.01 0.01 proposed value
(this study) 1,2

mobile N
proportion
(leaching)

0.1 0.1 0.1 0.1

symbiotic+asymbiotic
fixation of N 0.003 0.0005 0.0036 0.0016 adjusted according

to [65,66] 1, [65] 4

ratio of storage
and actual pool
mortality due to

management

0.1 0.1 0.9 0.9

critical value of
soilstress

coefficient
0.3 0.4 0.5 0.3 proposed value

(this study) 1,4

critical number of
stress days 60 60 90 90

maximum depth of
rooting zone 0.1–0.63 0.1–0.63 0.1–0.63 0.1–0.63 plot-specific

root distribution
parameter 3.67 3.67 3.67 3.67

maturity
coefficient 0.5 0.5 0.5 0.5

growth respiration
per unit of C

grown
0.3 0.3 0.3 0.3

maintenance
respiration in

kgC/day per kg of
tissue N

0.218 0.218 0.4 0.4
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Table A2. Description of management activities for different land-use categories simulated with the Biome-BGCMuSo model.

Land-Use Category Management Activity DOY Description

Deciduous forests
Coniferous forests Thinning * 30 2.1% y−1

3% y−1

Grassland
fertilising 100, 190 30 + 30 kg N ha−1 y−1

animal manure (2% N, 40% C)

Mowing 150, 200 75% plant material

Annual cropland

Planting 105 25 kg ha−1

fertilising 91, 145, 288

60 + 40 + 50 kg N ha−1 y−1

70% chemical fertiliser (47%
N, 5% C)

30% animal manure

Harvesting 273 50% plant material

Ploughing 300 down to 30 cm

* Deciduous forests in Croatia are even-aged managed, with thinnings of 15% performed every 10 years and with regeneration cuts
(2–3 cuts) performed during the last 10 years of the rotation period. In order to perform spatial modelling, we needed thinnings and
regeneration cuts distributed among different locations. In the absence of this information, we estimated average annual thinning intensity
to ensure evenly distributed thinning at the spatial scale. If we assume a rotation period of 140 years (i.e., prescribed rotation for pedunculate
oak), annual thinning intensity should account for 1.5% thinning rate during a 130 year period and 100% regeneration cut during whole
rotation period, which sums to 2.1%. Coniferous forests are uneven-aged managed with thinning of 30% performed every 10 years, i.e.,
average annual thinning intensity is 3%.

Figure A1. Comparison of measured and modelled soil organic carbon stocks down to 30 cm in different land-use categories
with respect to biogeographical regions. Asterisk indicates statistically significant difference (p < 0.01) between measured
and modelled data at the land use × biogeographical region level.
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Figure A2. Residual analysis for different land-use categories.

References
1. UN (United Nations). Kyoto Protocol to the United Nations Framework Convention on Climate Change; United Nations: Kyoto, Japan,

1997; pp. 1–21. Available online: https://unfccc.int/resource/docs/cop3/07a01.pdf (accessed on 23 July 2021).
2. UN (United Nations). Paris Agreement; United Nations: Paris, France, 2015; pp. 1–27. Available online: https://undocs.org/en/

FCCC/CP/2015/10/Add.1 (accessed on 23 July 2021).
3. EC (European Commission). Communication from the Commission to the European Parliament, the European Council, the Council, the

European Economic and Social Committee and the Committee of the Regions-The European Green Deal; European Commission: Brussels,
Belgium, 2019; pp. 1–24.

4. Batjes, N.H. Total C and N in soils of the world. Eur. J. Soil Sci. 1996, 47, 151–163. [CrossRef]
5. Scharlemann, J.P.W.; Tanner, E.V.J.; Hiederer, R.; Kapos, V. Global soil carbon: Understanding and managing the largest terrestrial

carbon pool. Carbon Manag. 2014, 5, 81–91. [CrossRef]
6. Crowther, T.W.; Todd-Brown, K.E.O.; Rowe, C.W.; Wieder, W.R.; Carey, J.C.; Machmuller, M.B.; Snoek, B.L.; Fang, S.; Zhou, G.;

Allison, S.D.; et al. Quantifying global soil carbon losses in response to warming. Nature 2016, 540, 104–108. [CrossRef] [PubMed]
7. Rustad, L.E.; Campbell, J.L.; Marion, G.M.; Norby, R.J.; Mitchell, M.J.; Hartley, A.E.; Cornelissen, J.H.C.; Gurevitch, J. Gcte-News.

A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental
ecosystem warming. Oecologia 2001, 126, 543–562. [CrossRef] [PubMed]

8. Melillo, J.M.; Steudler, P.A.; Aber, J.D.; Newkirk, K.; Lux, H.; Bowles, F.P.; Catricala, C.; Magill, A.; Ahrens, T.; Morrisseau, S. Soil
warming and carbon-cycle feedbacks to the climate system. Science 2002, 298, 2173–2176. [CrossRef] [PubMed]

9. Fyson, C.L.; Jeffery, M.L. Ambiguity in the land use component of mitigation contributions toward the Paris agreement goals.
Earths Future 2019, 7, 873–891. [CrossRef]

https://unfccc.int/resource/docs/cop3/07a01.pdf
https://undocs.org/en/FCCC/CP/2015/10/Add.1
https://undocs.org/en/FCCC/CP/2015/10/Add.1
http://doi.org/10.1111/j.1365-2389.1996.tb01386.x
http://doi.org/10.4155/cmt.13.77
http://doi.org/10.1038/nature20150
http://www.ncbi.nlm.nih.gov/pubmed/27905442
http://doi.org/10.1007/s004420000544
http://www.ncbi.nlm.nih.gov/pubmed/28547240
http://doi.org/10.1126/science.1074153
http://www.ncbi.nlm.nih.gov/pubmed/12481133
http://doi.org/10.1029/2019EF001190


Land 2021, 10, 968 20 of 23

10. IPCC GPG (The Intergovernmental Panel on Climate Change Good Practice Guidelines). Guidelines for National Greenhouse Gas
Inventories; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; National Greenhouse Gas Inventories Programme,
IGES: Kanagawa, Japan, 2006.

11. Jenkinson, D.S.; Coleman, K. The turnover of organic carbon in subsoils. Part 2. Modelling carbon turnover. Eur. J. Soil Sci. 2008,
59, 400–413. [CrossRef]

12. UK NIR. United Kingdom National Inventory Report 2020. Available online: https://unfccc.int/documents/225987 (accessed on
23 July 2021).

13. Liski, J.; Palosuo, T.; Peltoniemi, M.; Sievanen, R. Carbon and decomposition model Yasso for forest soils. Ecol. Modell. 2005,
189, 168–182. [CrossRef]

14. Alvaro-Fuentes, J.; Easter, M.; Cantero-Martinez, C.; Paustian, K. Modelling soil organic carbon stocks and their changes in the
northeast of Spain. Eur. J. Soil Sci. 2011, 62, 685–695. [CrossRef]

15. CH NIR. Swiss National Inventory Report 2020. Available online: https://unfccc.int/documents/224855 (accessed on 23
July 2021).

16. FI NIR. Finnish National Inventory Report 2020. Available online: https://unfccc.int/documents/219060 (accessed on
23 July 2021).

17. Parton, J.W. The century model. In Evaluation of Soil Organic Matter Models; Powlson, D.S., Smith, P., Smith, J.U., Eds.; Springer:
Berlin/Heidelberg, Germany, 1996; pp. 283–291.

18. Falloon, P.; Smith, P. Accounting for changes in soil carbon under the Kyoto Protocol: Need for improved long-term data sets to
reduce uncertainty in model projections. Soil Use Manag. 2003, 19, 265–269. [CrossRef]

19. Hararuk, O.; Xia, J.Y.; Luo, Y.Q. Evaluation and improvement of a global land model against soil carbon data using a Bayesian
Markov chain Monte Carlo method. J. Geophys. Res. Biogeosci. 2014, 119, 403–417. [CrossRef]

20. Tupek, B.; Launiainen, S.; Peltoniemi, M.; Sievanen, R.; Perttunen, J.; Kulmala, L.; Penttila, T.; Lindroos, A.J.; Hashimoto, S.;
Lehtonen, A. Evaluating CENTURY and Yasso soil carbon models for CO2 emissions and organic carbon stocks of boreal forest
soil with Bayesian multi-model inference. Eur. J. Soil Sci. 2019, 70, 847–858.

21. Luo, Y.; Zhou, X. Soil Respiration and the Environment; Elsevier: Amsterdam, The Netherlands, 2006; p. 316.
22. Campbell, E.E.; Paustian, K. Current developments in soil organic matter modelling and the expansion of model applications:

A review. Environ. Res. Lett. 2015, 10, 123004. [CrossRef]
23. Parton, W.; Del Grosso, S.J.; Plante, A.F.; Adair, E.C.; Lutz, S.M. Modelling the dynamics of soil organic matter and nutrient

cycling. In Soil Microbiology, Ecology, and Biochemistry, 4th ed.; Paul, E.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2015;
pp. 505–537.

24. Keel, S.G.; Leifeld, J.; Mayer, J.; Taghizadeh-Toosi, A.; Olesen, J.E. Large uncertainty in soil carbon modelling related to method of
calculation of plant carbon input in agricultural systems. Eur. J. Soil Sci. 2017, 68, 953–963. [CrossRef]

25. Ostle, N.J.; Levy, P.E.; Evans, C.D.; Smith, P. UK land use and soil carbon sequestration. Land Use Policy 2009, 26, S274–S283.
[CrossRef]

26. Poeplau, C.; Don, A.; Vesterdal, L.; Leifeld, J.; Van Wesemael, B.; Schumacher, J.; Gensior, A. Temporal dynamics of soil organic
carbon after land-use change in the temperate zone-carbon response functions as a model approach. Glob. Change Biol. 2011,
17, 2415–2427. [CrossRef]

27. Johnson, D.W.; Curtis, P.S. Effects of forest management on soil C and N storage: Meta analysis. For. Ecol Manag. 2001, 140,
227–238. [CrossRef]

28. Chen, L.C.; Wang, S.L.; Wang, Q.K. Ecosystem carbon stocks in a forest chronosequence in Hunan Province, South China. Plant
Soil 2016, 409, 217–228. [CrossRef]
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56. Velić, I.; Vlahović, I. Explanatory Notes of the Geological Map of the Republic of Croatia in 1:300,000 Scale; Croatian Geological Survey:
Zagreb, Croatia, 2009; p. 147.

57. Halamić, J.; Miko, S. Geochemical Atlas of the Republic of Croatia; Croatian Geological Survey: Zagreb, Croatia, 2009; p. 87.
58. Croatian Forests Ltd. Forest Management Area Plan for the Republic of Croatia for the Period 2016–2025; Croatian Forests Ltd: Zagreb,

Croatia, 2016; Available online: https://poljoprivreda.gov.hr/istaknute-teme/sume-112/sumarstvo/sumskogospodarska-
osnova-2016-2025/250 (accessed on 23 July 2021).

59. HR NIR. Croatian National Inventory Report 2020. Available online: https://unfccc.int/documents/223243 (accessed on
23 July 2021).

60. Koven, C.D.; Riley, W.J.; Subin, Z.M.; Tang, J.Y.; Torn, M.S.; Collins, W.D.; Bonan, G.B.; Lawrence, D.M.; Swenson, S.C. The effect
of vertically resolved soil biogeochemistry and alternate soil C and N models on C dynamics of CLM4. Biogeosciences 2013,
10, 7109–7131. [CrossRef]

61. Falloon, P.D.; Smith, P. Modelling refractory soil organic matter. Biol. Fertil. Soils 2000, 30, 388–398.
62. Dobor, L.; Barcza, Z.; Hlasny, T.; Havasi, A.; Horvath, F.; Ittzes, P.; Bartholy, J. Bridging the gap between climate models and

impact studies: The FORESEE Database. Geosci. Data J. 2014, 2, 1–11. [CrossRef] [PubMed]
63. Dalrymple, R.L.; Dwyer, D.D. Root and shoot growth of five range grasses. J. Range Manag. 1967, 20, 141–145. [CrossRef]
64. Barbosa, J.Z.; Ferreira, C.F.; dos Santos, N.Z.; Motta, A.C.V.; Prior, S.; Gabardo, J. Production, carbon and nitrogen in stover

fractions of corn (Zea mays L.) in response to cultivar development. Cienc. Agrotecnologia 2016, 40, 665–675. [CrossRef]

http://doi.org/10.1093/treephys/25.4.413
http://www.ncbi.nlm.nih.gov/pubmed/15687090
http://doi.org/10.1016/j.foreco.2006.09.086
http://doi.org/10.1016/j.ecolmodel.2011.11.008
http://doi.org/10.1175/1087-3562(2000)004&lt;0003:PASAOT&gt;2.0.CO;2
http://doi.org/10.1016/j.foreco.2005.02.046
http://doi.org/10.1093/jpe/rtw076
http://doi.org/10.3354/cr01024
http://doi.org/10.1016/j.agrformet.2015.10.007
http://doi.org/10.1111/j.1365-2699.2012.02745.x
http://doi.org/10.1046/j.1365-2486.2003.00569.x
http://doi.org/10.5194/gmd-13-5311-2020
https://unfccc.int/documents/226418
http://doi.org/10.1007/s11707-017-0656-x
http://doi.org/10.1007/s10342-021-01370-3
https://www.eea.europa.eu/data-and-maps/figures/biogeographical-regions-in-europe-2
https://hrcak.srce.hr/147226
https://poljoprivreda.gov.hr/istaknute-teme/sume-112/sumarstvo/sumskogospodarska-osnova-2016-2025/250
https://poljoprivreda.gov.hr/istaknute-teme/sume-112/sumarstvo/sumskogospodarska-osnova-2016-2025/250
https://unfccc.int/documents/223243
http://doi.org/10.5194/bg-10-7109-2013
http://doi.org/10.1002/gdj3.22
http://www.ncbi.nlm.nih.gov/pubmed/28616227
http://doi.org/10.2307/3895793
http://doi.org/10.1590/1413-70542016406020316


Land 2021, 10, 968 22 of 23

65. Cleveland, C.C.; Townsend, A.R.; Schimel, D.S.; Fisher, H.; Howarth, R.W.; Hedin, L.O.; Perakis, S.S.; Latty, E.F.; Von Fischer, J.C.;
Elseroad, A.; et al. Global patterns of terrestrial biological nitrogen (N-2) fixation in natural ecosystems. Glob. Biogeochem. Cycles
1999, 13, 623–645. [CrossRef]

66. Butler, G.J.; Christian, T.; Schwenke, G.D.; Herridge, D.F. Nitrogen fixation inputs from lucerne-dominated pastures in the
Central-East of NSW. In Farming Systems, Proceedings of the 10th Agronomy Conference, Hobart, TAS, Australia, 21 January–1 February
2001; Rowe, B., Donaghy, D., Mendham, N., Eds.; Agronomy Australia Proceedings: Toowoomba, Australia, 2001; Available
online: http://www.agronomyaustraliaproceedings.org/images/sampledata/2001/p/1/butler.pdf (accessed on 23 July 2021).

67. Thornton, P.E.; Running, S.W.; Hunt, E.R. Biome-BGC: Terrestrial Ecosystem Process Model, Version 4.1.1; ORNL DAAC: Oak Ridge,
TN, USA, 2005; Available online: https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=805 (accessed on 23 July 2021).

68. Mauna Loa Observatory. Available online: http://www.esrl.noaa.gov/gmd/obop/mlo/ (accessed on 23 July 2021).
69. Etheridge, D.M.; Steele, L.P.; Langenfelds, R.L.; Francey, R.J.; Barnola, J.M.; Morgan, V.I. Natural and anthropogenic changes

in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J. Geophys. Res. Atmos. 1996, 101, 4115–4128.
[CrossRef]

70. Churkina, G.; Brovkin, V.; von Bloh, W.; Trusilova, K.; Jung, M.; Dentener, F. Synergy of rising nitrogen depositions and
atmospheric CO2 on land carbon uptake moderately offsets global warming. Glob. Biogeochem. Cycles 2009, 23, GB4027. [CrossRef]

71. Thornton, P.E.; Rosenbloom, N.A. Ecosystem model spin-up: Estimating steady state conditions in a coupled terrestrial carbon
and nitrogen cycle model. Ecol. Model 2005, 189, 25–48. [CrossRef]

72. Hidy, D.; Barcza, Z.; Thornton, P.; Running, S. User’s Guide for Biome-BGC MuSo 4.0. 2016. Available online: http://nimbus.elte.
hu/bbgc/files/Manual_BBGC_MuSo_v4.0.pdf (accessed on 23 July 2021).
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