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A B S T R A C T   

An efficient numerical integration scheme is proposed for the uniaxial loading of the two-layer viscoplastic 
(TLVP) model, which is a built-in material model in the commercial finite element software Abaqus. The 
particular version of the TLVP model under investigation is governed by linear isotropic plastic hardening rule 
with time-hardening nonlinear creep law. The new integration scheme can be easily implemented in any pro-
gramming environment leading to a fast and robust tool to obtain the stress response in uniaxial loading for a 
given input strain history. The accuracy of the proposed algorithm is demonstrated and validated by comparing 
the results obtained with it to those calculated by Abaqus. A new calibration software with a graphical user 
interface is developed, which can fit the material parameters to the experimental data with arbitrary strain 
history in a uniaxial loading case. The new software is freely available to download from the webpage of the 
authors, and it is free to use for research purposes. The excellent performance of the new program is demon-
strated by fitting the material parameters to three distinct experimental data sets.   

1. Introduction 

Constitutive modelling of polymer materials usually involves elas-
ticity, plasticity and creep in the formulation of the mechanical 
behavior. There are many more additional features that can also be 
considered, but from the mechanical point of view, the above three 
pillars are the essential ingredients when we develop a constitutive 
model. It is important to emphasize that polymer materials often un-
dergo finite deformations during applications. Therefore the finite strain 
formulation has to be adopted from continuum mechanics. The classical 
linearized theory of deformation can be used only for simple problems, 
where both the strains and displacement are small, therefore the dif-
ference between the reference and deformed configuration can be 
neglected. We can use numerous theories and models to characterize the 
elastic, plastic, and creep behaviors of materials. There exist elementary 
models to describe the creep behavior, but highly non-linear models are 
also available. Furthermore, we have several strategies (series connec-
tion, parallel connection, mixed connection) how to combine the elastic, 
plastic (or permanent), and creep behaviors in the formulation of the 
constitutive equation. The researchers continuously propose novel spe-
cific models to characterize the mechanical behavior of their materials 
under investigation. This implies that we have an increasing number of 
viscoelastic-viscoplastic models available in the literature. These models 
are usually self-coded, and they are not available in commercial finite 

element software. We have no general uniform model we can use for any 
kind of materials showing viscoelastic-viscoplastic characteristics. 
However, it would be beneficial for the users in the industrial and 
research areas if they could use a non-linear viscoelastic-viscoplastic 
model, which is available in a commercial finite element software. The 
two-layer viscoplastic model (TLVP) available in Abaqus is an excellent 
candidate for this purpose [1]. The model consists of an elastic-plastic 
network that is in parallel with an elastic-viscous network. Any of the 
available creep models in Abaqus/Standard can be used for the dashpot 
element located in the elastic-viscous network. Furthermore, isotropic, 
kinematic, and even mixed non-linear plastic hardening rules can be 
specified for the elastic-plastic branch. Consequently, the TLVP model 
can be considered as a model class in which we can specify the actual 
behavior of the viscous and plastic elements. 

The two-layer viscoplastic model proposed by Kichenin was origi-
nally developed for polyethylene materials [2,3]. However, the model is 
also used to predict material responses of other materials than poly-
ethylene. Kang et al. combined the TLVP model with indentation tests in 
order to obtain the material properties of the investigated materials 
(high nickel–chromium material and P91 steel) [4]. Figiel and Günther 
used the model to characterize the mechanical behavior of a metal 
matrix composite (SiC/Ti-6242) [5]. It is important to note they also 
investigated the model accuracy at elevated temperatures as well. They 
have found that the model is able to describe the material behavior at 
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different temperatures and strain rates. Charkaluk et al. performed 3D 
thermomechanical finite element simulations on cast-iron exhaust 
manifolds using the two-layer viscoplastic model in addition to the 
unified viscoplastic model [6]. Leen et al. have chosen the 
temperature-dependent TLVP model with a combined hardening rule for 
the material modelling of a high nickel-chromium material (XN40F) [7]. 
Their conclusion is the applied model provides excellent agreement with 
the cyclic stress-strain data of the material across a range of tempera-
tures; additionally, it successfully captured the effect of different 
strain-rate values. Saber et al. presented a numerical study using the 
TLVP model to demonstrate the impact of crack location on creep crack 
growth in a P91 weldment [8]. Their particular model utilizes Norton’s 
creep law. Furthermore, they combined the material model with a 
damage model in order to predict the failure in the specimens. Farragher 
et al. employed the TLVP model in transient finite element calculations 
in order to predict the stress-strain-temperature cycles and the associ-
ated strain-rates for P91 steel used for high temperature, 
steam-pressurized pipes [9]. Their results revealed that the model can 
describe the combined cyclic elastic-plastic and creep deformations 
involving non-linear kinematic hardening/softening. In a latter work, 
the authors used the TLVP material model to characterize the mechan-
ical behavior of the same material governed by non-linear isotropic 
softening [10]. The modified version of the two-layer viscoplastic model 
proposed by An et al. employs a strain-rate dependent plastic contri-
bution in the constitutive equation [11]. The modified model is used to 
predict the mechanical behavior of ABS material. The modified formu-
lation was adopted by Doh et al. for a modified polyphenylene oxide 
(MPPO) material [12]. Adel et al. used the TLVP model to characterize 
the mechanical behavior of a poly-methyl methacrylate (PMMA) mate-
rial at a wide range of temperatures below glass transition [13]. They 
have found the TLVP model provided better agreement with the 
experimental data compared to the elasto-plastic material model they 
also investigated. Solasi et al. performed a series of uniaxial tensile tests 
on a perfluorosulfonic acid (PFSA) membrane material for different 
hydrations at room temperature [14]. They used the TLVP model to 
simulate the material behavior and they have found that the model 
performs very well in predicting the overstresses and relaxation times at 
different hydrations for different strain-rates. In addition, they underline 
a major advantage of the two-layer viscoplastic model, namely, it is 
available in Abaqus and there is no need to develop a user material 
subroutine. A recent paper demonstrates the applicability of the TLVP 
model in predicting the mechanical response of a microcellular 
polyethylene-terephthalate foam material at a wide range of tempera-
tures [15]. The new results are based on the authors’ earlier work [16]. 
The authors performed a detailed analysis of the sensitivity of the pa-
rameters on the final results. In addition, they also investigated the 
performance of different optimization strategies in the parameter-fitting 
procedure. The calibrated parameters they found were used in an 
axisymmetric analysis of a thermoforming punch test to predict the 
variation of the thickness in the specimen [17]. In another recent study, 
the uniaxial behavior of small length-scale bone samples is reproduced 
using the TLVP model [18]. The paper concludes the model can repro-
duce the stress response of single trabeculae subjected to uniaxial cyclic 
loading. 

The calibration procedure for the parameters of the TLVP model is 
not a straightforward task. The resulting constitutive equation is highly 
non-linear even in uniaxial loading case and closed-form solutions for 
the time-strain-stress relations do not exist. A possible solution to fit the 
material parameters is to use a third-party optimization package, which 
involves Abaqus to calculate the stress response at every iteration step of 
the parameter fitting procedure. This task can be accomplished using 
Dassualt Systemes Isight software [19] for instance. The application of 
the software in parameter fitting of the TLVP model is demonstrated in 
Ref. [15] or in Ref. [13] for example. The main drawback of this method 
is the optimization is relatively slow as Abaqus has to be used for the 
calculations. A complete finite element calculation has to be performed 

even when we use only one single element to simulate the uniaxial 
behavior. This paper aims to overcome this problem by presenting a 
robust numerical integration scheme to calculate the stress response, in 
uniaxial loading cases, of the TLVP model with linear isotropic hard-
ening and time-hardening creep law. In addition, a freely available 
calibration software is developed with a graphical user interface to fit 
the material parameters. A major advantage of the parameter fitting 
approach compared to the series of experiments described by Abaqus, is 
the ability to obtain the material parameters from a single measurement. 
Increasing the number of measurements will improve the accuracy of 
this method as well. However, in some cases the availability of the 
material samples can be limited. In these cases the parameter fitting 
approach is especially useful. 

This paper is organized as follows. Section 2 presents the particular 
form of the TLVP model under investigation. The constitutive relations 
of the components are also presented in this section. The numerical 
integration scheme is summarized in Section 3, where the main contri-
bution is the implicit midpoint integration scheme applied on the 
elastic-viscous network. Section 4 demonstrates the proposed scheme’s 
accuracy and performance by comparing the results with those obtained 
using the Abaqus built-in material model. The Python implementation of 
the calibration software is summarized in Section 5. Section 6 demon-
strates the excellent performance of our new calibration software. 
Parameter-fitting of the material constants is presented for three 
different loading cases with three different materials. 

2. Two-layer viscoplastic model 

2.1. Introduction 

The one-dimensional schematic of the particular two-layer visco-
plastic model under investigation is depicted in Fig. 1. The upper branch 
represents a classical elastic-plastic material model with linear hard-
ening, whereas the lower branch is a Maxwell-type viscoelastic model 
with a non-linear dashpot component. The two networks are connected 
in parallel manner. The constitutive parameters associated with the 
members are visualized in the figure. In addition, the particular strain 
values are also shown. Upper index “” refers to the elastic-plastic 
network, whereas upper index “ve” corresponds to the viscoelastic 
branch. 

The total stress and strain of the model are related to the stresses and 
strains in each network as follows: 

σ = σve + σep, ε = εve = εep. (1) 

Furthermore, the stresses and strains in each network can be 

Fig. 1. One-dimensional idealization of the TLVP model.  
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decomposed based on the series-type connections as 

σep = σe = σp, εep = εe + εp, (2)  

σve = σc = σv, εve = εc + εv. (3) 

It is noted here that the elastic component in the viscoelastic network 
is labeled with upper index „v” in order to distinguish it from the elastic 
member present in the elastic-plastic branch. 

2.2. Constitutive relations 

The constitutive equation of the model is derived for the strain- 
driven case, where the strain history ε(t)is given as input, and we are 
interested in the resulting stress response σ(t). This type of representa-
tion is more useful for parameter fitting strategies as the experimental 
tests usually performed using displacement-controlled setups. The 
following sub-sections present the constitutive equations for each 
network. 

2.2.1. Elastic-plastic branch 
The constitutive relation for the one-dimensional elastic-plastic solid 

with linear isotropic hardening governed by associative flow rule and 
Mises yield criterion is discussed in many textbooks [20,21]. The me-
chanical behavior of the elastic component is characterized by the 
Hooke’s law: 

σe =Eeεe → ε̇e
=

1
Eeσ̇

e, (4)  

where E is the corresponding Young’s modulus. The yield function of the 
plastic component is expressed as 

F(σp, Y)= |σp| − Y, (5)  

where Y denotes the current yield stress of the material. The yield cri-
terion is formulated as: 

F < 0 → ε̇p
= 0, F = 0 →

{
ε̇p

= 0 elastic  loading
ε̇p ∕= 0 elastic − plastic  loading (6) 

The evolutionary equation for the yield stress in the case of linear 
isotropic hardening can be written in the following form: 

Y =Y0 + Hγ, (7)  

where Y0 denotes the initial yield stress value. The internal variable γ is 
calculated as the integral of the absolute value of the plastic strain-rate; 
thus it can be considered as the accumulated plastic strain: 

γ =
∫t

0

|ε̇p
|dt → γ̇ = |ε̇p

| (8) 

The associative plastic flow rule in the one-dimensional case has the 
form: 

ε̇p
= γ̇⋅sgn[σp]. (9) 

Imposing the consistency condition Ḟ = 0, one can eliminate γ̇ and 
the relation for elastic-plastic loading can be easily derived. Whether the 
strain input yields elastic or elastic-plastic loading, we can summarize 
the overall constitutive behavior as 

σ̇ep =

⎧
⎨

⎩

Eeε̇ elastic  loading
EeH

Ee + H
ε̇ elastic − plastic  loading

(10) 

The resulting differential equation can be reduced to an algebraic 
equation, thus a closed-form solution can be easily obtained even for 
plastic loading. However, this statement is not valid for 3D case [22]. 

2.2.2. Viscoelastic branch 
The constitutive relation for the elastic component in the viscoelastic 

branch is simply expressed using the Hooke’s law. However, in order to 
distinguish the Young’s modulus associated with this element from the 
other one located in the elastic-plastic branch, we use the index ˝v˝ to 
denote the elastic modulus of this component. Therefore, the stress and 
the strain-rate acting on this element can be written as 

σv =Evεv → ε̇v
=

1
Evσ̇v. (11) 

The creep component is modelled with the time-hardening creep 
law. It is important to note that other non-linear creep models are 
available in Abaqus, but the time-hardening law is an excellent candi-
date to model the non-linear creep characteristics. The general formula 
(valid for positive and negative stresses) for the strain-rate acting on this 
component is written as 

ε̇c
=A⋅sgn[σc]⋅|σc|

n⋅tm, (12)  

where the sign and absolute value functions are needed because 
parameter n is generally non-integer. Three parameters are associated 
with the creep component, namely A, n and m. 

The overall strain-rate can express the overall mechanical behavior 
of the viscoelastic branch: 

ε̇ve
= ε̇v

+ ε̇c
=

1
Evσ̇

v + A⋅sgn[σc]⋅|σc|
n⋅tm. (13) 

Rearranging the terms, one can obtain the expression for the stress- 
rate as 

σ̇ve =Evε̇ − Ev⋅A⋅sgn[σve]⋅|σve|
n⋅tm. (14) 

Closed-form solution for σve(ε(t)) does not exist even not for linear 
strain path due to the highly nonlinear nature of the second term in the 
differential equation. 

2.2.3. Overall constitutive equation 
The overall one-dimensional constitutive model of the two-layer 

viscoplastic model under investigation for strain-driven case is simply 
obtained by summing the constitutive relations (14) and (10). Closed- 
from solution for the resulting differential equation cannot be ob-
tained due to the highly non-linear nature of the viscoelastic component. 
However, the two branches can be treated separately as the input strain 
history is the same for both networks due to the parallel connection. 
Consequently, one can find the solution for the elastic-plastic part using 
the analytical solution, whereas the solution for the viscoelastic part can 
be obtained using a numerical integration scheme. The total stress in the 
model is obtained by adding the stresses in the two networks. 

The Mises yield criterion used in the three-dimensional representa-
tion of the model is a pressure-independent yield criterion. This can be 
considered as a limitation in cases where the yield stress of the material 
shows significant pressure-dependency. There exist yield criteria 
(Drucker-Prager’s yield criterion, for instance), including the pressure 
part of the stress in the definition of the yield function, but the current 
version of the two-layer viscoplastic model implemented in Abaqus al-
lows us to use the classical Mises-type yield criterion or the anisotropic 
Hill’s criterion. 

2.2.4. Formulations in finite strain theory 
The formulations above were derived in small-strain theory utilizing 

the engineering strain measure. But the constitutive equations can be 
extended to finite strain theory as well. To distinguish the true (or log-
arithmic) and engineering (or nominal) strains we adopt the following 
notations is the followings: The engineering strain will be denoted by e, 
whereas the true strain will be ε. The relations between these measures 
are 

ε= ln(e+ 1), e= exp[ε] − 1, (15) 
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whereas the rates are expressed by 

ε̇= ė
1 + e

, ė = exp[ε]⋅ε̇. (16) 

If we use the true strain in constitutive relations (14) and (10), then 
the resulting stress will be the Cauchy stress in finite strain theory. In 
finite strain problems, the engineering stress (or nominal stress) will be 
denoted by P. 

3. Numerical integration scheme 

Our goal in the numerical integration scheme is to derive an 
approximate solution in discretized form for the constitutive equation. 
In this analysis the engineering strain is given as input and we are 
seeking the resulting stress (either engineering or true) solution. 
Subscript n indicates the particular value of a quantity at the beginning 
of the increment, whereas subscript n + 1 refers to its value at the end of 
the increment. Subscript n + 1/2 denotes the value in the middle of the 
increment. The time increment and the time value in the middle of the 
increment are 

Δt = tn+1 − tn, tn+1/2 =
tn+1 + tn

2
. (17) 

Since the variation of the engineering strain through the increment is 
considered to be linear, its expression can be written as 

e(t)= en + ė(t − tn) (18)  

with the engineering strain-rate definition 

ė=
Δe
Δt

=
en+1 − en

Δt
= ėn = ėn+1 = ėn+1/2. (19) 

In finite strain case, the true strain-rate in the middle of the incre-
ment can be expressed using (16) as 

ε̇n+1/2 =
ė

1 + en+1/2
=

Δe/Δt
1 + en+1/2

. (20)  

3.1. Elastic-plastic branch 

For the discretized solution of the elastic-plastic network, the stan-
dard radial return algorithm is utilized. Since it is a widely used algo-
rithm, only the final expressions are summarized below, more details 
can be found is textbooks [20,21]. 

First, the trial state is calculated: 

σep
trial = σep

n + Ee⋅Δε. (21) 

Then, the trial yield function is determined as 

Ftrial =F(σep
trial,Yn)= |σep

trial| − Yn. (22) 

Depending on the value of Ftrial two scenarios are possible. If Ftrial ≤ 0, 
then the increment does not involve plastic deformation and therefore, 
the entire behavior is pure elastic. It follows that the stress and the yield 
stress at the end of the increment are simply obtained as 

σep
n+1 = σep

trial, Yn+1 = Yn. (23) 

In contrast, if Ftrial > 0 then plastic deformation occurs. The incre-
ment of the plastic multiplier is calculated as Δγ = Ftrial/ (E + H), 
whereas the stress and yield stress solutions at the end of the increment 
are expressed as: 

σep
n+1 = σep

trial − EeΔγ⋅sgn[σep
trial], Yn+1 = Yn + HΔγ. (24) 

It is noted here, the implicit integration scheme adopted for the 
elastic-plastic network is unconditionally stable. 

3.2. Viscoelastic branch 

For the numerical solution of (14) the implicit midpoint integration 
is used. Therefore the resulting algebraic equation becomes 

σve
n+1 − σve

n

Δt
=Evε̇n+1/2 − Ev⋅A⋅sgn

[σve
n+1 + σve

n

2

]

⋅
⃒
⃒
⃒
⃒
σve

n+1 + σve
n

2

⃒
⃒
⃒
⃒

n

⋅tm
n+1/2 (25) 

In order to simplify the presentation here, we introduce the new 
notation x = σve

n+1/2. The equation above then can be rearranged to have 
the form 

R(x)= a + b⋅sgn[x]⋅|x|n − x (26)  

with the following constants: 

a= σve
n +

1
2

ΔtEvε̇n+1/2, b = −
1
2

ΔtEvAtm
n+1/2. (27) 

During the numerical solution, the equation R(x) = 0 has to be 
solved. Since a closed-form solution does not exist, a local Newton- 
Raphson iteration can be applied to find x. The corresponding deriva-
tive needed during the iteration is expressed as 

R′

(x)=
dR
dx

= − 1 + bn|x|n− 1
. (28) 

Once x = σve
n+1/2 is obtained one can easily determine the stress at the 

end of the increment as σve
n+1 = 2σve

n+1/2 − σve
n . The implicit midpoint 

integration scheme used for the viscoelastic network is also uncondi-
tionally stable. 

4. Validation of the proposed algorithm 

The stress results obtained by the numerical algorithm presented 
above were compared to those calculated using Abaqus for different 
loading cases involving wide ranges for the parameters and wide range 
for the strain-rate. It was found that the presented numerical scheme 
yields the same results for all test examples we investigated. However, it 
is important to emphasize two major differences:  

a) The computational speed of the proposed algorithm is much higher 
(with several orders) than the corresponding Abaqus calculation.  

b) The new numerical scheme is stable. The Abaqus calculations were 
terminated frequently if the step increment size was too large or if 
the viscoelastic strain error tolerance (parameter cetol in the input 
file) was not properly defined. 

The first remark can be explained by the fact that for the Abaqus 
results, a complete finite element problem has to be solved using one 
single finite element. It requires additional computation resources. For 
problems involving creep Abaqus determines the suitable integration 
scheme. It uses either an explicit or an implicit integration scheme or 
switches from explicit to implicit in the same step as described in the 
theory manual. However, in a VISCO step needed to solve the corre-
sponding problem, we can choose between the following two options: 
explicit/implicit or explicit. For automatic increment size control in the 
step module, we can specify the value of the viscoelastic strain error 
tolerance (parameter cetol in the input file) which is needed for Abaqus 
to determine when to switch to the backward difference operator instead 
of using an explicit scheme. Using the fixed time increment setting, we 
do not have this option, and the software certainly employs the implicit 
scheme. We have found the simulations were terminated frequently for 
fixed time increments. Switching to automatic time increment helps to 
avoid this convergence issue, however, if the viscoelastic strain error 
tolerance is not properly selected, we face another convergence issue. 

In order to demonstrate the phenomena described above, we present 
the results for one particular uniaxial loading history, which consists of 
linear segments defined by the following time – engineering strain 
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values: {{0,0}, {2,1}, {10,1}, {16, − 0.2}, {50, − 0.2}}. The loading 
history is visualized in Fig. 2. 

The material parameters used for the comparison are listed in 
Table 1. These are artificially chosen values, however, they are in the 
range which might correspond to the real materials. 

It is important to note Abaqus requires parameters E > 0 and 0 < f <
1, which are related to elastic moduli in the networks as 

Ev = f ⋅ E, Ee =(1 − f )E, E=Ee + Ev. (29) 

Note E represents the instantaneous elastic modulus (obtained using 
“infintite” strain-rate loading), whereas the long-term elastic modulus 
(obtained using “zero” strain-rate loading) equals to Ee. The numerical 
results using the proposed algorithm were obtained using a Wolfram 
Mathematica notebook. The code used for the calculation is provided in 
the Appendix. The Abaqus calculation was performed using one single 
eight-node linear brick element. Since the prescribed deformation is 
homogeneous in the element, reduced integration is used. Hybrid 
formulation is adopted as the Poisson’s ratio was set to 0.5 in the 
analysis. The boundary conditions were defined according to the strain 
history above. The input file and the description of the model are pro-
vided in the Appendix. 

The maximum time increment was set to 0.1 s. Therefore at least 500 
data points are calculated during the computations. It is essential to 
emphasize the proposed algorithm was stable in the entire domain, 
however using fixed time increment in Abaqus always led to conver-
gence issues even at the beginning of the calculation. Therefore, auto-
matic increment control had to be used to let Abaqus reduce the 
increment size from 0.1 to a smaller value. The calculated stress values 
are reported in Fig. 3 and Fig. 4, where the former one shows the results 
along the time, while the second Figure is a plot in the true strain – true 
stress coordinate system. 

One can conclude the excellent agreement between the two calcu-
lations, which indicates the proposed scheme can be used to determine 
the stress values. The viscoelastic strain error tolerance was 10− 6 in the 
calculation above. 

We investigated the effect of the value of the viscoelastic strain error 
tolerance in the Abaqus results. The detailed analysis is provided in the 
Appendix. 

For the parameter-fitting procedure, it is required to reduce the 
corresponding computation time in order to speed up the global opti-
mization procedure. The Mathematica code used for the proposed 
scheme solves the entire problem in a fraction of a second, namely about 
0.05 s on the same computer (Intel Xeon CPU E5-2623 v3 @ 3.00 GHz, 
128 GB RAM), which is more than 600 times faster than the Abaqus 
calculation with the largest cetol value having no convergence issue. In 
addition, it is important to emphasize the Mathematica code used for the 
calculation is not optimized for speed. Furthermore, it is well-known 
that other programming environments (Python, C++, Julia, etc.) 
might provide significantly faster computations, but in this 

demonstration, the primary goal was to validate our algorithm, not the 
optimization of the corresponding program code. 

5. Python implementation 

5.1. Introduction 

One of the primary goals in the parameter fitting procedure was to 
create a graphical interface, which can be easily used to calibrate the 
material parameters efficiently. We chose Python as our programming 
language as its open-source, cross-platform, and enables easier software 
development than some other tools. We utilized some of the commonly 
used modules (e.g. NumPy and SciPy) as well. The graphical user 
interface (GUI) was developed using the PyQt5 package. A screenshot 
about the program’s current version is shown in Fig. 5 where a particular 
fitting process is also visible. 

5.2. Parameter-fitting problem 

During the parameter-fitting process, the experimental values of the 
time, strain, and stress are given. The number of data points available is 
denoted with N. It should be noted that the experimental true stress 
values can be calculated if we can measure precisely the contraction of 
the specimen, which is usually a complicated task needing additional 
equipment. It should be emphasized that the adopted associative flow 
rule results in volume-preserving plastic deformation. In addition, for 

Fig. 2. Prescribed engineering strain history.  

Table 1 
Material parameters used for the comparison.  

E [MPa] f [− ] σY0 [MPa]  H [MPa] A [MPa− ns− m− 1]  n [− ] m [− ] 

1000 0.5 50 20 10− 7  3 − 0.5   

Fig. 3. Calculated true stress values versus time.  

Fig. 4. Calculated true stress values versus true strain.  
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polymer materials, the Poisson’s ratio of the material is close to 0.5 
therefore, the overall volume-preserving deformation is a good 
approximation. Thus, assuming constant volume, one can determine the 
true stress from the engineering stress as 

σ =(1+ e)P. (30) 

For steels, the Poisson’s ratio is about 0.3, but as the plastic defor-
mation evolves, the overall Poisson’s ratio converges to 0.5. 

There are different recommendations for measuring the quality of 
the fitting, or more precisely, the difference between the experimental 
data and the model prediction. One widely used quality function is the 
square root of the mean of the squares of the deviations: 

Q=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1

(
Pexp

i − Psim
i

)2

√
√
√
√ , (31)  

where Pexp
i is the experimental value for the engineering stress at the ith 

data point, whereas Psim
i denotes the simulated model response at the 

same data point (see Fig. 6). In our analysis we employ this quality 
function for the optimization. 

The current material model has 7 parameters, which needed to be 
calibrated during the optimization routine. This value might be 
considered as a large number of material parameters, leading to un-
certainty and ambiguous solutions during the parameter-fitting process. 
However, it should be emphasized the different material parameters 
represent different physical phenomena. In general, one cannot repre-
sent the same material characteristics with a different set of material 
parameters in this case. The primary goal within the optimization task is 
to find the global minimum for Q. It is evident there is no guarantee we 
can find this minimum. However, the properly chosen initial values and 
bounds for the parameters can significantly foster finding the global 
minimum. 

In addition, it is possible to fit the pure elastic-plastic material 
response to the experimental data using a loading history with a very 
low strain-rate. In this case, the viscoelastic contribution can be 

eliminated from the constitutive response. After fitting the elastic-plastic 
response, one can focus on the viscoelastic parameters’ calibration using 
new experimental tests with different applied strain-rates. Abaqus also 
recommends this strategy. 

The proposed method can be easily adapted for the case when 
multiple experimental tests are available. It is a straightforward task to 
construct a quality function, which includes the errors resulting from 
each experiment. One can improve the accuracy of the fitting by 
including more than one experimental test in the construction of the 
quality function. 

5.3. Functionality and code structure 

The user can load measurement data and set up the optimization on 
the interface. Among others, the setup includes the initial guess for the 
parameters, fixing the value of some parameters, and changing the 
optimization algorithm or quality function. Additionally, the user can 
calculate the material behavior for fixed parameters and for specified 
time-strain history. This is a useful feature for making performance 
comparisons or analyzing the effect of each parameter. The horizontal 
axis of the plot can be changed between displaying time or engineering 

Fig. 5. Graphical interface of the calibration software.  

Fig. 6. Illustration of the error between the experimental data and the simu-
lation result. 
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strain. 
The effect of each setting and the usage of the software is not dis-

cussed in detail in this paper. The software will be free to download for 
researchers with a complete user guide and tutorial. 

The source code is structured in a modular fashion, making new 
additions easier. New material models or new numerical methods for the 
existing models can be defined, and they will automatically appear and 
work on the interface. The modular structure also helps with main-
tainability, as the code is split into smaller sections. 

5.4. Parameter handling 

As described earlier, our TLVP model contains 7 material parame-
ters, which can differ significantly in orders of magnitude. This is quite 
detrimental for the optimization algorithms. 

Two alternative parameter handling modes were implemented to 
mitigate this issue. These are discussed below. 

Scaling Method: In this mode, each parameter is scaled by a unique 
factor. These factors are given via the initial guess values for the opti-
mizer. By estimating the orders of magnitudes correctly, the values 
“seen” by the optimizer remain much closer to each other. It is not 
required to specify parameter boundaries in this mode. Our tests indi-
cated that this way of handling the parameters is superior to using the 
“raw” values in almost every test case. Usually, using the scaling mode 
significantly reduced the number of iterations and function evaluations 
needed to find the optimum, and in case of some algorithms, it consid-
erably decreased the chance of not finding the optimum. 

Normalization Method: Our second approach was to use a linear 
transformation to convert the parameters into the interval [0, 1] based 
on their boundaries. The lower boundary is transformed to 0, the upper 
boundary to 1. Naturally, it is necessary to specify the parameter 
boundaries for this method to work properly. This method also per-
formed much better in our tests than the “raw” values. It varied between 
test cases if the scaling or normalization method performed better. As 
their results were overall similar, it cannot be determined which 
approach is “better”. 

5.5. Algorithms 

Our software supports several optimization algorithms provided by 
SciPy. They will not be discussed in detail in this paper, but some ob-
servations made during our tests are noted here. 

The constraints for the parameters are the following based on their 
physical or mathematical meaning: E > 0, 1 > f > 0, A > 0, n > 0, 0 >

m > − 1, Y0 > 0, H > 0. Not all algorithms can accept constraints for 
the parameter values. This is detrimental for two reasons. Firstly, the 
user cannot focus the optimization on the expected parameter ranges. 
Secondly, crossing the limits mentioned above leads to physically non- 
admissible behavior. The numerical solution at these values may take 
considerably longer – even 10–50 times longer – than normal. To 
“guide” these algorithms into the bounded zone, we penalize the quality 
function’s value outside the allowed range based on how many pa-
rameters are out of bounds. 

The Sequential Least Squares Programming (SLSQP) algorithm was 
our main tool, as generally it was the fastest – if it was set up correctly. 
Using one of the described alternative parameter handling modes is 
quite important for this algorithm, as it often failed to converge using 
the “raw” values. The Limited-memory Broyden–-
Fletcher–Goldfarb–Shanno algorithm with bound constraints (L-BFGS- 
B) was usually slower but was more reliable in some tests. Both methods 
accept boundaries for the parameters. 

The Powell algorithm was slower than the previously mentioned 
methods, but it performed well if the order of magnitude of the pa-
rameters was unknown. Unfortunately, it cannot handle parameter 
boundaries. The Nelder-Mead algorithm usually yielded good solutions, 
but it was considerably slower than the other algorithms. The Conjugate 

Gradient (CG) algorithm was not the best in any test, but it might be 
viable in other cases, thus it is included in the program. 

It is important to note, that this brief section does not aim to 
generally compare or rate these algorithms. It only records some ob-
servations made during our tests. 

6. Demonstration of applicability 

To show the usefulness of the developed software, we have chosen 
some uniaxial measurement datasets from the literature. 

6.1. Example 1 – MC-PET 

This dataset was chosen based on the author’s previous work and the 
availability of the original measurement data. In a series of experiments, 
microcellular polyethylene-terephthalate (MC-PET) polymer foam 
specimen were investigated at various temperatures [15]. We have 
chosen the uniaxial test at 21 ◦C for this demonstration. The dataset 
consists of approximately 1500 points, all of them are used for the 
fitting. The fitted material parameters are listed in Table 2, whereas the 
comparison of the experimental data and the model response is depicted 
in Fig. 7 and Fig. 8. One can observe the excellent accuracy of the fitted 

Table 2 
The calibrated material parameters for the MC-PET material.  

E 
[MPa] 

f[− ] Y0[MPa]  H [MPa] A [MPa− ns− m− 1]  n [− ] m [− ] 

708 0.804 5.02 31.2 0.000466 3.56 − 0.913  

Fig. 7. Comparison of the experimental data and the model prediction for the 
MC-PET material in Time Vs. Engineering Stress coordinate system. 

Fig. 8. Comparison of the experimental data and the model prediction for the 
MC-PET material in Engineering Strain Vs. Engineering Stress coordi-
nate system. 

Table 3 
The calibrated material parameters for the PFSA material.  

E 
[MPa] 

f[− ] Y0[MPa]  H [MPa] A [MPa− ns− m− 1]  n [− ] m [− ] 

160 0.926 0.619 85.9 3.87e-08 5.20 − 0.523  
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model. 

6.2. Example 2 – PFSA 

In this measurement, perfluorosulfonic acid (PFSA) membranes were 
tested at various temperature and humidity levels [14]. The effect of the 
strain rate was also investigated. We have chosen the data measured at 
26 ◦C, 50% relative humidity and 2.6 × 10− 5 1/s initial strain rate. The 
dataset consists of approximately 160 data points. The material pa-
rameters we calibrated are listed in Table 3, whereas the comparison of 
the experimental data and the model response is depicted in Fig. 9 and 
Fig. 10. The fitted model gives excellent agreement with the experi-
mental data. 

6.3. Example 3 – P91 steel 

In this measurement, the mechanical behavior of P91 steel specimen 
is investigated at elevated temperatures and different strain fluctuation 
amplitudes [23]. One of the reasons for including this dataset in our 
work is to test the software for a different type of material (metal, 
instead of polymer). We used the measurement performed at 400 ◦C and 
1% strain fluctuation (first cycle). The dataset consists of about 330 
measurement points. The material parameters we have found using our 
software are given in Table 4. Fig. 11 and Fig. 12 show the comparison 
between the experimental data and the model predictions. 

Based on the comparison above, one can conclude the measured 
initial apparent modulus is slightly higher than the fitted value for the 
instantaneous elastic modulus. The initial slope is around 210 GPa, but 
the fitted value is 180 GPa. This discrepancy can be resolved if one fixes 
the elastic modulus at the beginning of the optimization task. However, 
in that case, the overall quality of the fitting will be lower as we have no 
option to modify the elastic modulus to find a more accurate fit. If the 

accurate representation of the elastic part is more important than the 
accurate characterization of the plastic part, then this method is advised. 

6.4. Performance 

We measured the performance of our software based on the elapsed 
wallclock time during the optimization. Naturally, this depends on the 
used hardware, the bottleneck being the single-core CPU performance 
due to the structure of the program. In most cases, the optimization was 
completed within 1–5 min. Noticeable improvements were rarely made 
after this timeframe. Sometimes switching algorithms could improve the 
fitting accuracy, but these improvements were usually minor. The 
parameter handling mode was set to “Scaling” during these tests. The 
initial guess can have a major impact on the performance of the algo-
rithms. Appendix D contains a brief analysis of the performance of 
different optimization methods we investigated. 

7. Conclusions 

We have proposed an implicit time integration scheme for the two- 
layer viscoplastic model in one-dimensional uniaxial extension. The 
particular form of the material model consists of an elastic-plastic 
network governed by linear isotropic hardening rule, whereas the 
elastic-viscous branch in the model is equipped with a nonlinear time- 
hardening creep law. The one-dimensional representation of the 

Fig. 9. Comparison of the experimental data and the model prediction for the 
PFSA material in Time Vs. Engineering Stress coordinate system. 

Fig. 10. Comparison of the experimental data and the model prediction for the 
PFSA material in Engineering Strain Vs. Engineering Stress coordinate system. 

Table 4 
The calibrated material parameters for the P91 steel material.  

E 
[GPa] 

f[− ] Y0[MPa]  H [GPa] A [MPa− ns− m− 1]  n [− ] m [− ] 

180 0.712 189 7.28 7.7e-26 8.99 − 0.0469  

Fig. 11. Comparison of the experimental data and the model prediction for the 
P91 steel material in Time Vs. Engineering Stress coordinate system. 

Fig. 12. Comparison of the experimental data and the model prediction for the 
P91 steel material in Engineering Strain Vs. Engineering Stress coordi-
nate system. 
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model contains 7 material parameters, 4 among them corresponds to the 
elastic-viscous network. It was demonstrated that the proposed scheme 
produces the same result as the built-in material model in Abaqus. 
However, our scheme is more stable, and we have not experienced any 
numerical difficulties during the time integration of a particular prob-
lem. The proposed algorithm was implemented in Python. A stand-alone 
calibration software was developed with a graphical user interface. The 
new program we constructed is freely available to download from the 
authors’ webpage. The performance of our calibration software was 
demonstrated by fitting the material parameters to three distinct 
experimental data sets from the literature. The fitted models revealed 
the excellent accuracy of the TLVP model in characterizing the me-
chanical behavior of the investigated materials. Due to the modular 
structure of the corresponding Python code, the software can be easily 
extended for more complex versions of the TLVP model (non-linear 
mixed hardening, for instance). The new calibration software may serve 
as a useful tool for researchers and engineers who want to fit the TLVP 
model to their experimental data. 

It should be emphasized the demonstration examples we presented 
in the paper cannot be considered as a complete validation for the ma-
terial model. For the validation task, it is crucial to fit the material model 
to different strain histories simultaneously, which can be easily achieved 
by modifying the quality function. One has to be sure the fitted pa-
rameters serve accurate material responses in other loading modes too. 
Appendix E demonstrates a validation procedure for the MC-PET ma-
terial. The performance of the fitted TLVP model is presented for a 
complex non-homogeneous loading case involving non-homogeneous 
strain-rate history in the material. 
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Appendix A. Wolfram Mathematica Notebook 

The Wolfram Mathematica module TLVP calculates the stress response for the uniaxial loading of a material characterized by the two-layer 
viscoplastic model. The input parameters are the prescribed engineering strain history and the material constants. The module calls two additional 
sub-modules, namely VE and ELPL, calculating the stress values in each network. Descriptions of the arguments in module TLVP are the followings: 

Data: Tabular input for the strain history. The first column is the time value, whereas the second column is the engineering strain value. 
EE, ff, AA, nn, mm, Y0, HH: These are the material parameters associated with the model, namely: E, f , A, n, m, Y0, H. 
The code (see Fig. 13) uses fixed time increments defined by the input data. The output of the TLVP module is tabular data with the following 

columns: time, true strain, true stress.

Fig. 13. Wolfram Mathematica code for the two-layer viscoplastic model.  

Appendix B. Abaqus input file 

The plain Abaqus input file (Fig. 14) used for the uniaxial loading example in the validation section is given here. The finite element model consists 
of only one 8-node 3D linear brick element, as illustrated in Fig. 15. The coordinates and the prescribed displacement boundary conditions of the nodes 
are listed in the corresponding table. The displacement function u(t) in [mm] unit is equivalent to the history given in Fig. 2. A reduced integration 
scheme with one Gauss integration point is used because the resulting displacement field is homogeneous in the element. 
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Fig. 14. Abaqus input file for the validation example.  

Fig. 15. Illustration of the FE model.  

Appendix C. Analysis on parameter “cetol” 

The following eight values were tested: 10− k, where k = 1, 2,3, 4,5, 6,7, 8. The largest value for which the simulation was not terminated due to 
the convergence problem was 10− 4. However, it is interesting to remark the calculations were terminated if we used the smaller value 10− 5. For even 
smaller values, the simulations had no convergence issues. The software had to reduce the original time increment of 0.1 s significantly in order to be 
able to solve the problem. Fig. 16 shows the variation of the applied time increment size along the time for the four cases when the simulations were 
not terminated. It can be seen Abaqus was able to solve the problem with the maximum time increment of 0.1 s in a large domain when cetol = 10− 4 

was used. However, for smaller tolerance values, the time increment was reduced significantly.

Fig. 16. Applied time increment size for different values of the viscoelastic strain error tolerance.  

The average increment size, the total number of increments and the corresponding computation times are reported in Table 5 
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Table 5 
Effect of the cetol value on the increment size and on the computation time.  

cetol value Mean value of the time increments [s] Total number of increments Computation time [s] 

10− 4  0.05086 983 31 
10− 6  0.01091 4584 124 
10− 7  0.003578 13973 355 
10− 8  0.001160 43096 1375  

Appendix D. Performance 

The performance of the algorithms was compared for each example we investigated. For illustration purposes, the result for Example 1 is shown in 
Fig. 17, where empty circles indicate the end of a particular fitting procedure. Algorithms BFGS, L-BFGS-B and CG converged to the same parameter set 
with the same quality function, whereas the Nelder-Mead algorithm terminated at a quality function slightly above the previous value. The remaining 
two methods found local minima with a higher value of the quality function.

Fig. 17. Number of function evaluations over time. Variation of the quality function for different algorithms.  

It is hard to determine general trends based on results. The efficiency of each algorithm can depend on the problem and on the initial guess values, 
for instance. However, it can be clearly concluded that different algorithms may serve different fitted values and, therefore, a different quality function 
value. 

It is interesting to note that a significant proportion of the total time needed for the optimization process is not spent on evaluating the material 
behavior. Instead, it is consumed by the internal calculations of the optimizer algorithms itself. The shorter the material evaluation time, the more 
pronounced this effect gets. An illustration can be seen in Fig. 18. for Example 1. Note that the function evaluation rate does not correlate with the final 
quality of the fitting.

Fig. 18. Number of function evaluations over time MCPET.  

We can also investigate the behavior of the algorithms with regard to the variation of the parameters during the minimization procedure. This is 
illustrated in Fig. 19 for Example 2 using the Nelder-Mead method. The parameter values are normalized on the plot, so their maximum value is 1 and 
minimum values is 0.

Fig. 19. Variation of the normalized material parameters during the calibration for Example 2 using the Nelder-Mead algorithm. 
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Appendix E. Validation of the fitted model for the MC-PET material 

The TLVP model fitted for the MC-PET material shows excellent accuracy in the uniaxial test used for the calibration process. However, there is no 
guarantee the fitted model provides accurate characterization of the material in other loading cases. In order to validate the fitted model, we per-
formed a complex loading experiment and compared the simulation result to the experimental data. A circular specimen was fixed along its perimeter, 
and a spherical steel head was used to deform the material with a prescribed vertical loading history u(t) containing loading, relaxation and unloading 
segments (see Fig. 20). This setup ensures a non-homogeneous deformation in the material with a non-homogeneous strain-rate distribution. Besides, 
it is important to emphasize the stress state is more likely biaxial rather than uniaxial. Consequently, the conditions for this test is very different than 
the uniaxial experiment used for the model calibration.

Fig. 20. Experimental setup for the punch test.  

The FE simulation was performed using 8-node biquadratic axisymmetric quadrilateral elements with full integration scheme. Mesh dependency 
analysis was carried out to find a proper mesh density for the calculation. The final element size was 0.094 mm. The steel head was modelled using an 
analytical rigid surface as the head’s stiffness is significantly higher than the stiffness of the specimen. The friction coefficient between the head and 
the material was set to 0.15 but it should be noted it has negligible effect on the reaction force as the main contribution in the loading force is the force 
needed to deform the specimen. The material parameters for the TLVP model are listed in Table 2. The reaction force acting on the head is chosen for 
the comparison as it encapsulates the specimen’s overall mechanical behavior. Fig. 21 shows the experimental and the simulation results. One can 
conclude the material model used for the simulation can accurately represent the investigated material’s characteristics in this complex loading case. 
This comparison demonstrates the applicability of the fitted model in other loading cases. The accuracy can be improved by fitting the material model 
to multiple experiments simultaneously as discussed in the conlucison section.

Fig. 21. Comparison of the experimental and simulation results for the force history.  

The “cross-section” of the specimen’s deformed configuration after complete unloading is depicted in Fig. 22. The deformed shape has excellent 
agreement with the experimental observation as illustrated in Ref. [17] in a similar test using slightly different geometries.

Fig. 22. Deformed configuration after unloading. The straight segments correspond to the fixed region.  
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