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Abstract

For an integer k ≥ 2, an ordered k-uniform hypergraph H = (H,<) is a k-uniform
hypergraph H together with a fixed linear ordering < of its vertex set. The ordered Ramsey
number R(H,G) of two ordered k-uniform hypergraphs H and G is the smallest N ∈ N
such that every red-blue coloring of the hyperedges of the ordered complete k-uniform
hypergraph K(k)

N on N vertices contains a blue copy of H or a red copy of G.
The ordered Ramsey numbers are quite extensively studied for ordered graphs, but

little is known about ordered hypergraphs of higher uniformity. We provide some of the
first nontrivial estimates on ordered Ramsey numbers of ordered 3-uniform hypergraphs.
In particular, we prove that for all d, n ∈ N and for every ordered 3-uniform hypergraph
H on n vertices with maximum degree d and with interval chromatic number 3 there is an
ε = ε(d) > 0 such that

R(H,H) ≤ 2O(n2−ε).

In fact, we prove this upper bound for the number R(G,K(3)
3 (n)), where G is an ordered

3-uniform hypergraph with n vertices and maximum degree d and K(3)
3 (n) is the ordered

complete tripartite hypergraph with consecutive color classes of size n. We show that
this bound is not far from the truth by proving R(H,K(3)

3 (n)) ≥ 2Ω(n log n) for some fixed
ordered 3-uniform hypergraph H.
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1 Introduction
For an integer k ≥ 2 and a k-uniform hypergraph H, the Ramsey number R(H) is the minimum
N ∈ N such that every 2-coloring of the hyperedges of the complete k-uniform hypergraph K(k)

N

on N vertices contains a monochromatic subhypergraph isomorphic to H. Estimating Ramsey
numbers is a notoriously difficult problem. Despite many efforts in the last 70 years, no tight
bounds are known even for the complete graph Kn on n vertices. Apart from some smaller
term improvements, essentially the best known bounds are 2n/2 ≤ R(Kn) ≤ 22n by Erdős [17]
and by Erdős and Szekeres [14]. The Ramsey numbers R(K(k)

n ) are even less understood for
k ≥ 3. For example, it is only known that

2Ω(n2) ≤ R(K(3)
n ) ≤ 22O(n)

, (1)

as shown by Erdős, Hajnal, and Rado [16]. A famous conjecture of Erdős, for whose proof
Erdős offered $500 reward, states that there is a constant c > 0 such that R(K(3)

n ) ≥ 22cn .
Recently, a variant of Ramsey numbers for hypergraphs with a fixed order on their vertex

sets has been introduced [2, 6]. For an integer k ≥ 2, an ordered k-uniform hypergraph H is
a pair (H,<) consisting of a k-uniform hypergraph H and a linear ordering < of its vertex
set. An ordered k-uniform hypergraph H1 = (H1, <1) is an ordered subhypergraph of another
ordered k-uniform hypergraph H2 = (H2, <2), written H1 ⊆ H2, if H1 is a subhypergraph of
H2 and <1 is a suborder of <2. Two ordered hypergraphs H1 and H2 are isomorphic if there
is an isomorphism between their underlying hypergraphs that preserves the vertex orderings
of H1 and H2. Note that, up to isomorphism, there is a unique ordered complete k-uniform
hypergraph K(k)

n on n vertices.
The ordered Ramsey number R(H,G) of two ordered k-uniform hypergraphs H and G

is the smallest N ∈ N such that every coloring of the hyperedges of K(k)
N by colors red and

blue contains a blue ordered subhypergraph isomorphic to H or a red ordered subhypergraph
isomorphic to G. In the diagonal case H = G, we just write R(G) instead of R(G,G).

The ordered Ramsey numbers are known to be finite and it is easy to see that they grow
at least as fast as the standard Ramsey numbers. Studying ordered Ramsey numbers has
attracted a lot of attention lately (see the survey by Conlon, Fox, and Sudakov [11]), as there
are various motivations coming from the field of discrete geometry. It is known that ordered
Ramsey numbers can behave quite differently than the standard Ramsey numbers, especially
for sparse ordered graphs [2, 3, 6]. However, so far, the ordered Ramsey numbers have been
studied mostly for ordered graphs only and very little is known about ordered Ramsey numbers
of ordered k-uniform hypergraphs with k ≥ 3.

In this paper, we focus on 3-uniform hypergraphs and we prove some new bounds on the
ordered Ramsey numbers of ordered tripartite 3-uniform hypergraphs. We also pose several
new open problems in Section 6.

1.1 Preliminaries

For an ordered k-uniform hypergraph H = (H,<) and two subsets U and V of vertices of H,
we say that U and V are consecutive if all vertices from U precede all vertices of V in <.
An interval in H is a subset I of vertices of H such that for all vertices u, v, w of H with
u < v < w and u,w ∈ I we have v ∈ I.
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For integers k ≥ 2 and χ ≥ k, we use K(k)
χ (n) to denote the complete k-uniform χ-partite

hypergraph, that is, the vertex set of K(k)
χ (n) is partitioned into χ sets of size n and every

k-tuple with at most one vertex in each of these parts forms a hyperedge. The ordering
of K(k)

χ (n), in which the color classes form consecutive intervals, is denoted by K(k)
χ (n). We

sometimes use Kn,n to denote K(2)
2 (n).

The degree of a vertex v in a hypergraph H is the number of hyperedges of H that contain v.
For d ∈ N, a k-uniform hypergraph H is d-degenerate if there is an ordering v1 ≺ · · · ≺ vt
of vertices of H such that each vi is contained in at most d hyperedges of H that contain a
vertex from v1, . . . , vi−1.

For a positive integer n, we use [n] to denote the set {1, . . . , n}. We omit floor and ceiling
sign whenever they are not crucial and we use log and ln to denote base 2 logarithm and the
natural logarithm, respectively.

1.2 Previous results

The ordered Ramsey numbers of k-uniform ordered hypergraphs with k ≥ 3 remain quite
unexplored. Only the ordered Ramsey numbers of so-called monotone hyperpaths are well
understood due to their close connections to the famous Erdős–Szekeres Theorem [17]; see [1,
19, 22]. A monotone hyperpath P(k)

n on n vertices is an ordered k-uniform hypergraph where
the hyperedges are formed by k-tuples of consecutive vertices. Note that the maximum degree
of a k-uniform monotone hyperpath is at most k. Moshkovitz and Shapira [22] showed that
R(P(k)

n ) = towk−1((2− o(1))n) for k ≥ 3, where towh is the tower function of height h defined
as tow1(x) = x and towh(x) = 2towh−1(x) for h ≥ 2.

Thus even for 3-uniform hypergraphs H with bounded maximum degree the numbers R(H)
can grow very fast. We get an exponential lower bound on R(H) even for 3-uniform ordered
hypergraphs H with maximum degree 3. A similar result is known for ordered graphs, as
for arbitrarily large values of n there are ordered graphsMn with n vertices and maximum
degree 1 such that R(Mn) ≥ nΩ(logn/ log logn) [2, 6]. This superpolynomial growth rate is in
sharp contrast with the situation for unordered hypergraphs, where the Ramsey number R(H)
of every k-uniform hypergraph H with bounded k and with bounded maximum degree is at
most linear in the number of vertices of H [5, 7, 12, 13, 20, 23].

Therefore, in order to obtain smaller upper bounds on the ordered Ramsey numbers, it
is necessary to bound other parameter besides the maximum degree. A natural choice is
so-called interval chromatic number, which can be understood as an analogue of the chromatic
number for ordered graphs due to a variant of the Erdős–Stone–Simonovits theorem for ordered
graphs proved by Pach and Tardos [25]. The interval chromatic number χ<(H) of an ordered
k-uniform hypergraph H is the minimum number of intervals the vertex set of H can be
partitioned into so that each hyperedge of H has at most one vertex in each of the intervals.

For ordered graphs, bounding both parameters indeed helps, as the ordered Ramsey
number R(G) of every ordered graph G with bounded maximum degree d and bounded interval
chromatic number χ is at most polynomial in the number of vertices [2, 6]. Since G ⊆ K(2)

χ (n),
this result follows from the following stronger estimate proved by Conlon, Fox, Lee, and
Sudakov [6]: for all d, χ ∈ N, every d-degenerate ordered graph G on n vertices with interval
chromatic number χ satisfies

R(G,K(2)
χ (n)) ≤ n32d logχ. (2)

A natural question is whether we can also get some good upper bounds on ordered Ramsey
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numbers of similarly restricted classes of ordered hypergraphs. If the interval chromatic
number is bounded, then we can use a result of Conlon, Fox, and Sudakov [9], who showed
that, for all positive integers χ ≥ 3 and n,

R(K(3)
χ (n)) ≤ 222Rn2

,

where R = R(Kχ−1). Since every ordering of K(3)
χ (χn) contains an ordered subhypergraph

isomorphic to K(3)
χ (n) and every ordered 3-uniform hypergraph on n vertices with interval

chromatic number χ is an ordered subhypergraph of K(3)
χ (n), we obtain the following bound.

Corollary 1. For all positive integers χ ≥ 3 and n, every ordered 3-uniform hypergraph H
on n vertices with interval chromatic number χ satisfies

R(H) ≤ 222Rχ2n2
,

where R = R(Kχ−1). In particular, if the interval chromatic number χ of H is fixed, we have

R(H) ≤ 2O(n2).

Note that the last bound is asymptotically tight for dense ordered hypergraphs, as a
standard probabilistic argument shows that R(H) ≥ 2Ω(n2) for every ordered 3-uniform
hypergraph H on n vertices with Ω(n3) hyperedges. In particular, we get R(K(3)

3 (n)) ≥ 2Ω(n2).

2 Our results
Since the bounds on the ordered Ramsey numbers from Corollary 1 are asymptotically tight
for dense ordered hypergraphs with bounded interval chromatic number, we consider the
sparse case with bounded maximum degree and interval chromatic number. The situation
for ordered hypergraphs seems to be more difficult than for ordered graphs, so we focus on
the first nontrivial case, which is for ordered 3-uniform hypergraphs with interval chromatic
number 3.

Assuming the maximum degree of an ordered hypergraph H with χ<(H) = 3 is sufficiently
small, we obtain a better upper bound on R(H) than the estimate 2O(n2) we would get from
Corollary 1. We can prove an estimate with a subquadratic exponent even in the more general
setting R(H,K(3)

3 (n)), where, additionally, the interval chromatic number of H is arbitrary.

Theorem 2. Let H be an ordered 3-uniform hypergraph on t vertices with maximum degree d
and let s be a positive integer. Then there are constants C = C(d) and c > 0 such that

R(H,K(3)
3 (s)) ≤ t · 2C(s2−1/(1+cd2)).

In particular, for s = t = n and bounded d, we get the estimate

R(H,K(3)
3 (n)) ≤ 2O(n2−1/(1+cd2)). (3)

The main idea of the proof of Theorem 2 is based on an embedding lemma from [10],
where the authors study Erdős–Hajnal-type theorems for 3-uniform tripartite hypergraphs.
We prove a variant of this lemma, which works for ordered hypergraphs, does not consider
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induced copies, and uses the assumption that the maximum degree of H is bounded instead of
assuming that the number of vertices of H is fixed.

Since every ordered 3-uniform hypergraph H on n vertices with χ<(H) = 3 is an ordered
subhypergraph of K(3)

3 (n), we immediately obtain the following corollary.

Corollary 3. Let H be an ordered 3-uniform hypergraph on n vertices with maximum degree
d and with interval chromatic number 3. Then there exists an ε = ε(d) > 0 such that

R(H) ≤ 2O(n2−ε).

It might seem wasteful to use Theorem 2 in order to obtain Corollary 3, as the ordered
hypergraph H is much sparser than K(3)

3 (n). However, as noted in [6], this intuition is wrong
already for ordered graphs, as there are ordered matchingsM on n vertices with χ<(M) = 2
and ordered graphs G on N = 2nc vertices for some constant c > 0 such that G has edge
density at least 1− n−c and does not containM as an ordered subgraph. In fact, the best
known upper bounds on R(G) for n-vertex ordered graphs G with bounded maximum degree
and χ<(G) = χ are derived from the bound (2) on R(G,K(2)

χ (n)).
The upper bound (3) is quite close to the truth, as even when H is fixed we get a

superexponential lower bound on R(H,K(3)
3 (n)). We note that since the first version of this

preprint we learned that independently Fox and He (Theorem 1.3 in [18]) proved the same
lower bound for the unordered Ramsey number and that implies the result of Theorem 4.
However we leave this result here as our proof is much simpler.

Theorem 4. For every t ≥ 3 and every positive integer n, we have

R(K(3)
t+1,K

(3)
3 (n)) ≥ 2Ω(n logn).

We do not have any nontrivial lower bound in the diagonal case R(H) for H with bounded
maximum degree and χ<(H) = 3. We note that even for ordered graphs G with bounded
maximum degree d and χ<(G) = 2 the best known lower bound on R(G) (and also on R(H))
is only of order Ω((n/ logn)2) [3], while the upper bound on R(G) is of order nO(d) [2, 6].

Concerning k-uniform hypergraphs with k > 3, the following result is based on a modifica-
tion of the proof from [8, Proposition 6.3] and gives an estimate on ordered Ramsey numbers
of ordered k-uniform hypergraphs with bounded interval chromatic number. In particular, this
estimate shows that we do not have a tower-type growth rate for R(H) once the uniformity
and the interval chromatic number of H are bounded.

Proposition 5. Let χ, k be integers with χ ≥ k ≥ 2 and let H be an ordered k-uniform
hypergraph on n vertices with interval chromatic number χ. Then there is a constant c such
that

R(H) ≤ 2Rχ(χ−1)(cχn)χ−1
,

where R = R(K(k)
χ ). In particular, if the uniformity k and the interval chromatic number χ

of H are fixed, we have
R(H) ≤ 2O(nχ−1).

Our understanding of the ordered Ramsey numbers of ordered hypergraphs is still very
limited. Many interesting open problem arose during our study and we would like to draw
attention to some of them in Section 6.
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3 Proof of Theorem 2
Here we prove Theorem 2 by giving an upper bound on the ordered Ramsey numbers of
ordered 3-uniform hypergraphs with bounded maximum degree versus K(3)

3 (n). We prove the
following slightly stronger result.

Theorem 6. Let H be an ordered 3-uniform hypergraph on t vertices with maximum degree d,
let s be a positive integer and ρ ∈ (0, 1/8) be a real number. Then there is a constant C ′ such
that

R(H,K(3)
3 (s)) ≤ t · 2C

′(s3/2·ρ−30d2 ·d6+s2 log ( 1
1−4ρ ))

.

First, we show that Theorem 6 implies Theorem 2.

Proof of Theorem 2. We can assume that s > 82+60d2 by choosing the constant C = C(d)
from the statement of Theorem 2 sufficiently large. We then choose ρ = s−1/(2+60d2), which
gives ρ < 1/8 by our assumption on s. Since 1− z ≥ e−2z for every z with 0 ≤ z ≤ 1/2, we
obtain (1− 4ρ)−s2 ≤ e8ρs2 and thus s2 log ( 1

1−4ρ)) ≤ 8s2ρ. By our choice of ρ, we then get

s3/2ρ−30d2 = s2ρ = s2−1/(2+60d2).

Therefore we can rewrite the upper bound from Theorem 6 as

R(H,K(3)
3 (s)) ≤ t · 2C′(d6+8)s2ρ ≤ 2Cs2−1/(2+60d2)

for sufficiently large C = C(d), which concludes the proof.

In the rest of the section, we prove Theorem 6, but we first state some definitions. For a
graph G and two disjoint subsets X and Y of vertices of G, we use d(X,Y ) to denote the edge
density between X and Y , that is, d(X,Y ) = e(X,Y )

|X||Y | , where e(X,Y ) denotes the number of
edges with one vertex in X and with the other one in Y .

For positive real numbers ε1, ε2, and ρ, we say that an ordered bipartite graph G with
consecutive color classes U and V is bi-(ε1, ε2, ρ)-dense between U and V , if for all sets X ⊆ U
and Y ⊆ V with |X| ≥ ε1|U | and |Y | ≥ ε2|V | we have d(X,Y ) ≥ ρ.

For positive real numbers ε and ρ and a positive integerm, an ordered 3-uniform hypergraph
H is tri-(ε, ρ,m)-dense, if for all consecutive subsets V1, V2, V3 of vertices of H, each of size at
most m, and for all bipartite graphs G1,2, G1,3, G2,3, each Gi,j between Vi and Vj , for which
there are at least εm3 triangles with one edge in each Gi,j , at least ρ-proportion of these
triangles forms hyperedges in H.

The following embedding lemma is based on a similar result from [10].

Lemma 7. Let H be an ordered 3-uniform hypergraph on t vertices with maximum degree d.
Let ε > 0 and ρ ∈ (0, 1) be two real numbers with ε ≤ 2−6 · ρ15d2 · d−3. If G is a tri-(ε, ρ, n/t)-
dense ordered 3-uniform hypergraph on n ≥ t/ε vertices, then H is an ordered subhypergraph
of G.

Proof. Let v1 ≺ · · · ≺ vt be the vertices of H = (H,≺). For a vertex vj of H with j > i, we use
deg�iH (j) to denote the number

∑
e∈E(H):vj∈e |e∩ {v1, . . . , vi}|. Similarly, for vertices vj and vk

of H and i < j, k, we use deg�iH (j, k) to denote the number of hyperedges of H containing vj ,
vk, and a vertex from {v1, . . . , vi}. Observe that deg�iH (j) ≤ 2d and deg�iH (j, k) ≤ d for all j
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and k with i < j, k, as the maximum degree of H is d and each hyperedge is multiplied by at
most 2.

We partition the vertex set of G into consecutive intervals U1, . . . , Ut, each of size n/t. We
embed a copy f(H) of H in G one vertex at time, embedding each vertex f(vi) of f(H) to Ui.
We proceed by induction on i = 0, 1, . . . , t− 1. Assuming that the vertices v1, . . . , vi have been
embedded as f(v1), . . . , f(vi), we show that there are sets U ii+1, . . . , U

i
t and graphs Gij,k with

i < j < k ≤ t such that the following three conditions are satisfied:

(i) |U ij | ≥ Cij · n/t, where Cij = ρd·deg�iH (j),

(ii) Gij,k is a bipartite graph between U ij and U ik, which is bi-(εij , εik, ρij,k)-dense between U ij
and U ik with εij = ρ4d2−d·deg�iH (j)/(4d), εik = ρ4d2−d·deg�iH (k)/(4d), and ρij,k = ρdeg�iH (j,k),
and

(iii) for every h ≤ i, every edge of Gij,k forms a hyperedge of G with f(vh) if {vh, vj , vk} is
a hyperedge of H. Also, for all h1 and h2 with h1 < h2 ≤ i, every vertex u ∈ U ij with
i < j forms a hyperedge {f(vh1), f(vh2), u} of G if {vh1 , vh2 , vj} is a hyperedge of H.

For the induction base, assume i = 0 and set U0
j = Uj for every j ∈ {1, . . . , t}. For all j

and k with 1 ≤ j < k ≤ t, we let Gij,k be the complete bipartite graph between U0
j and U0

k .
Then the three conditions are trivially satisfied.

For the induction step, assume that the vertices v1, . . . , vi have been embedded for some
i ≥ 0 while maintaining conditions (i), (ii), and (iii). We show how to embed the vertex vi+1.

We let Wi+1 be the set of vertices w from U ii+1 such that the neighborhood U ij(w) of w
in Gii+1,j has size at least ρii+1,j |U ij | for every j ∈ {i + 2, . . . , t} such that vi+1 and vj are
contained in a hyperedge of H. Since the graph Gii+1,j is bi-(εii+1, ε

i
j , ρ

i
i+1,j)-dense, there are

at most εii+1|U ii+1| ≤ εii+1n/t vertices in Ui+1 that have less than ρii+1,j |U ij | neighbors in |U ij |.
Using condition (i) and the fact that the maximum degree of H is d, we see that the size
of Wi+1 satisfies

|Wi+1| ≥ |U ii+1| − 2dεii+1|U ii+1| ≥ |U ii+1| − 2dεii+1n/t ≥ Cii+1n/t− 2dεii+1n/t ≥ Cii+1n/(2t),

where the last inequality follows from εii+1 ≤ Cii+1/(4d), as deg�iH (i+ 1) ≤ 2d.
For a vertex w ∈Wi+1 and indices j and k such that i+1 < j < k and {vi+1, vj , vk} ∈ E(H),

we define the graph Hj,k(w) as a subgraph of Gij,k between U ij(w) and U ik(w) consisting of
edges {x, y} such that {w, x, y} ∈ E(G). We also let W i+1

j,k be the set of vertices w ∈ Wi+1

such that the graph Hj,k(w) is not bi-(εi+1
j , εi+1

k , ρi+1
j,k )-dense between U ij(w) and U ik(w).

By the definition of bi-(εi+1
j , εi+1

k , ρi+1
j,k )-density, for every w ∈W i+1

j,k , there are sets Yj(w) ⊆
U ij(w) and Yk(w) ⊆ U ik(w) such that |Yj(w)| ≥ εi+1

j |U ij(w)|, |Yk(w)| ≥ εi+1
k |U ik(w)|, and

d(Yj(w), Yk(w)) < ρi+1
j,k in Hj,k(w). Since w ∈Wi+1, we have

|Yj(w)| ≥ εi+1
j |U

i
j(w)| ≥ εi+1

j · ρii+1,j |U ij | ≥ εij |U ij |,

where the last inequality follows from εi+1
j · ρii+1,j ≥ εij , as, since {vi+1, vj , vk} ∈ E(H), we

have deg�i+1
H (j) > deg�iH (j) and deg�iH (i+ 1, j) ≤ d. Analogously, we obtain |Yk(w)| ≥ εik|U ik|.

We let Ji+1,j be the graph connecting each w ∈ W i+1
j,k to vertices from Yj(w) and we

analogously define the graph Ji+1,k. The graph Gij,k is bi-(εij , εik, ρij,k)-dense between U ij and
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U ik by condition (ii). Thus, since |Yj(w)| ≥ εij |U ij | and |Yk(w)| ≥ εik|U ik|, the number of triangles
in the tripartite graph between W i+1

j,k , U ij , and U ik formed by Ji+1,j , Ji+1,k, and Gij,k is at least
ρij,k

∑
w∈W i+1

j,k
|Yj(w)||Yk(w)|.

Suppose for contradiction that |W i+1
j,k | ≥ |Wi+1|/(2d) for some j and k with i+ 1 < j < k

and {vi+1, vj , vk} ∈ E(H). Then, since |Yj(w)| ≥ εij |U ij | and |Yk(w)| ≥ εik|U ik| for every
w ∈W i+1

j,k ,

ρij,k
∑

w∈W i+1
j,k

|Yj(w)||Yk(w)| ≥ ρij,kεijεik|W i+1
j,k ||U

i
j ||U ik| ≥ ρij,kεijεikCijCik|W i+1

j,k |(n/t)
2,

where the last inequality follows from condition (i). Using the assumption |W i+1
j,k | ≥ |Wi+1|/(2d)

and the fact |Wi+1| ≥ Cii+1n/(2t), we can estimate the above expression from below by

ρij,kε
i
jε
i
kC

i
jC

i
kC

i
i+1n

3/(4dt3)

Our choice of parameters then gives ρij,kεijεikCijCikCii+1/(4dt3) ≥ ε/t3. Altogether, there are at
least

ρij,k
∑

w∈W i+1
j,k

|Yj(w)||Yk(w)| ≥ ε(n/t)3

triangles in the tripartite graph between W i+1
j,k , U ij , and U ik formed by Ji+1,j , Ji+1,k, and Gij,k.

Thus, since the ordered hypergraph G is tri-(ε, ρ, n/t)-dense, at least ρ-proportion of these
triangles forms hyperedges in G. Therefore there are at least ρ · ρij,k

∑
w∈W i+1

j,k
|Yj(w)||Yk(w)|

hyperedges of G between W i+1
j,k , U ij , and U ik.

On the other hand, the number of hyperedges of G containing a vertex w ∈ W i+1
j,k and

having an edge in each of the graphs Ji+1,j , Ji+1,k, and Gij,k is the number of edges of Hj,k(w)
between Yj(w) and Yk(w). This number of edges is less than ρi+1

j,k |Yj(w)||Yk(w)|, as we know
that d(Yj(w), Yk(w)) < ρi+1

j,k in Hj,k(w). Thus the number of the hyperedges of G is less than

ρi+1
j,k

∑
w∈W i+1

j,k

|Yj(w)||Yk(w)| ≤ ρ · ρij,k
∑

w∈W i+1
j,k

|Yj(w)||Yk(w)|,

where the least inequality follows from ρi+1
j,k ≤ ρ · ρij,k, as {vi+1, vj , vk} ∈ E(H) and thus

we have deg�i+1
H (j, k) > deg�iH (j, k). This contradicts the fact that there are at least

ρ · ρij,k
∑
w∈W i+1

j,k
|Yj(w)||Yk(w)| such hyperedges of G.

Thus |W i+1
j,k | < |Wi+1|/(2d). In particular, the number of vertices w ∈Wi+1 that do not

lie in any set W i+1
j,k such that i+ 1 < j < k ≤ t and {vi+1, vj , vk} ∈ E(H) is at least

|Wi+1| −
∑

j<k:{vi+1,vj ,vk}∈E(H)
|W i+1

j,k | > |Wi+1| −
d|Wi+1|

2d = |Wi+1|
2 ,

as we are summing over at most d pairs (j, k), because the maximum degree of H is d.
Since |Wi+1| ≥ Cii+1n/(2t), we have at least Cii+1n/(4t) such vertices and we let f(vi+1)
be any of them. Since n ≥ t/ε > 4t/Cii+1, at least one such vertex indeed exists. For
every j ∈ {i + 2, . . . , t} such that vi+1 and vj are contained in a hyperedge of H, we let
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U i+1
j = U ij(f(vi+1)). We keep U i+1

j = U ij for all other values j. Let j and k be indices such
that i + 1 < j < k ≤ t. If {vi+1, vj , vk} ∈ E(H), we set Gi+1

j,k = Hj,k(f(vi+1)). For all other
values of j and k, we let Gi+1

j,k be the subgraph of Gij,k induced by U i+1
j and U i+1

k . In particular,
if none of the vertices vj and vk lies in a hyperedge of H with vi+1, we have Gi+1

j,k = Gij,k.
To finish the induction step, it remains to verify conditions (i), (ii), and (iii). To verify

condition (i), first observe that if, for j ∈ {i+ 2, . . . , k}, the vertex vj is not in a hyperedge
of G with vi+1, then, by the choice of Cij and Ci+1

j , |U i+1
j | = |U ij | ≥ Cijn/t = Ci+1

j n/t, as
deg�iH (j) = deg�i+1

H (j). Otherwise |U i+1
j | = |U ij(f(vi+1))|. Since f(vi+1) ∈ Wi+1, we have

|U ij(f(vi+1))| ≥ ρii+1,j |U ij |. Since deg�iH (j) < deg�i+1
H (j) and deg�iH (i + 1, j) ≤ d, we have

ρii+1,jC
i
j ≥ C

i+1
j . So we obtain |U i+1

j | ≥ Ci+1
j n/t. Thus condition (i) is satisfied.

For condition (ii), let j and k be indices such that i+ 1 < j < k ≤ t. Consider first the
case when {vi+1, vj , vk} ∈ E(H). Then Gi+1

j,k = Hj,k(f(vi+1)). Since f(vi+1) does not lie in
any set W i+1

j,k such that i+ 1 < j < k and {vi+1, vj , vk} ∈ E(H), the graph Hj,k(f(vi+1)) is
bi-(εi+1

j , εi+1
k , ρi+1

j,k )-dense between U ij(f(vi+1)) and U ik(f(vi+1)). Thus Gi+1
j,k = Hj,k(f(vi+1)) is

bi-(εi+1
j , εi+1

k , ρi+1
j,k )-dense between U i+1

j = U ij(f(vi+1)) and U i+1
k = U ik(f(vi+1)), which verifies

condition (ii) in this case. Now, assume {vi+1, vj , vk} /∈ E(H). If none of the two vertices vj and
vk is in a hyperedge of H with vi+1, then deg�i+1

H (j) = deg�iH (j), deg�i+1
H (k) = deg�iH (k), and

deg�i+1
H (j, k) = deg�iH (j, k). In particular, εij = εi+1

j , εij = εi+1
j , and ρi+1

j,k = ρij,k. Since U
i+1
j =

U ij , U i+1
k = U ik, and G

i+1
j,k = Gij,k is bi-(εij , εik, ρij,k)-dense between U ij and U ik, we see that G

i+1
j,k is

bi-(εi+1
j , εi+1

k , ρi+1
j,k )-dense between U i+1

j and U i+1
k , which again verifies condition (ii). It remains

to consider the case when exactly one of the vertices vj and vk is in a hyperedge of H with vi+1.
By symmetry, we can assume without loss of generality that vj and vi+1 are in a hyperedge
of H. Then deg�i+1

H (j) > deg�iH (j), deg�i+1
H (k) = deg�iH (k), and deg�i+1

H (j, k) = deg�iH (j, k).
In particular, εij > εi+1

j , εik = εi+1
k , and ρi+1

j,k = ρij,k. By definition, we have U i+1
j = U ij(f(vi+1))

and U i+1
k = U ik. Let X be a subset of U i+1

j of size at least εi+1
j |U

i+1
j | and let Y be a subset

of U i+1
k of size at least εi+1

k |U
i+1
k | = εik|U ik|. We want to show that d(X,Y ) ≥ ρi+1

j,k in Gi+1
j,k .

The subset X has size at least εij |U ij |, as |U i+1
j | = |U ij(f(vi+1))| ≥ ρii+1,j |U ij | and our choice

of εi+1
j together with the fact deg�iH (i+ 1, j) ≤ d gives εi+1

j |U
i+1
j | ≥ εij |U ij |. Thus, since Gij,k

is bi-(εij , εik, ρij,k)-dense between U ij ⊇ U i+1
j and U ik ⊇ U

i+1
k , the density between X and Y is

at least ρij,k = ρi+1
j,k in Gij,k. Since G

i+1
j,k is an induced subgraph of Gij,k, the density between

X and Y is also at least ρij,k = ρi+1
j,k in Gi+1

j,k . Thus Gi+1
j,k is bi-(εi+1

j , εi+1
k , ρi+1

j,k )-dense between
U i+1
j and U i+1

k , which verifies condition (ii).
We show that Condition (iii) is satisfied as well. Let j and k be indices such that

i + 2 < j < k ≤ t. If {vh, vj , vk} is a hyperedge of H for some h ≤ i + 1, then {f(vh), x, y}
is a hyperedge of G for every edge {x, y} of Gi+1

j,k . This is true for h ≤ i by the induction
assumption, as Gi+1

j,k ⊆ Gij,k. For h = i+ 1 we have Gi+1
j,k = Hj,k(f(vi+1)) and the claim holds

by the definition of Hj,k(f(vi+1)). Similarly, for all h1 and h2 with h1 < h2 ≤ i + 1, every
vertex u ∈ U i+1

j with i + 1 < j forms a hyperedge {f(vh1), f(vh2), u} of G if {vh1 , vh2 , vj}
is a hyperedge of H. This is because if h2 ≤ i, then the claim follows from the induction
assumption and the fact U i+1

j ⊆ U ij . For h2 = i+1, the triple {f(vh1), f(vh2), x} is a hyperedge
of G for every x ∈ U i+1

j = U ij(f(vh2)) by the inductive assumption.
Finally, after we find all vertices f(v1), . . . , f(vt), condition (iii) ensures that they determine

a copy of H as an ordered subhypergraph of G.
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We use the following result proved by Conlon, Fox, and Sudakov [10]. It says that if a
graph G contains many triangles, a 3-uniform hypergraph whose hyperedges form a dense
subset of the set of triangles in G contains a large copy of K(3)

3 (n).

Lemma 8 ([10]). Let V1, V2, V3 be pairwise disjoint sets of vertices, each of size at most m,
and let Gi,j be a bipartite graph between Vi and Vj for all i and j with 1 ≤ i < j ≤ 3. Assume
there are at least δm3 triangles in the tripartite graph formed by G1,2, G1,3, and G2,3. Let G be
a 3-uniform hypergraph containing at least (1− η)-proportion of the triangles in the tripartite
graph, where 0 < η < 1/8. Then G contains a copy of K(3)

3 (s) provided that

e210δ−2s3/2(1− 4η)−4s2
(
δ

16

)4s
≤ m.

We note that, although it is not explicitly stated in the above lemma, the copy of K(3)
3 (s)

has Vi as the ith color class. Thus if the set V1∪V2∪V3 is ordered and V1, V2, V3 are consecutive
in this ordering, we actually get a copy of the ordered hypergraph K(3)

3 (s).
We now proceed with the proof of Theorem 6, which implies Theorem 2.

Proof of Theorem 6. Let H be an ordered 3-uniform hypergraph on t vertices with maximum
degree d, let s be a positive integer and ρ ∈ (0, 1/8) be a real number. We choose ε =
2−6 · ρ15d2 · d−3 and we let N be an integer such that

N ≥ t · 2228·s3/2·ρ−30d2 ·d6+12s2 log ( 1
1−4ρ )

.

Note that N ≥ t/ε. Consider a red-blue coloring χ of the hyperedges of K(3)
N . We use G to

denote the ordered 3-uniform hypergraph on N vertices formed by the hyperedges of K(3)
N that

are blue in χ. Similarly, we let G be the hypergraph determined by red hyperedges of K(3)
N

in χ.
If G is tri-(ε, ρ,N/t)-dense, then, since N ≥ t/ε, Lemma 7 implies that there is a blue

copy of H in χ and we are done. Thus we assume that G is not tri-(ε, ρ,N/t)-dense. That is,
there are three consecutive subsets V1, V2, V3 of vertices of G, each of size at most N/t, and
three bipartite graphs G1,2, G1,3, G2,3, each Gi,j between Vi and Vj , for which there are at
least ε(N/t)3 triangles with one edge in each Gi,j and less than ρ-proportion of these triangles
forms hyperedges in G. By the choice of G, at least (1− ρ)-proportion of these triangles forms
hyperedges in G.

We show that
e210ε−2s3/2 · (1− 4ρ)−4s2 ·

(16
ε

)4s
≤ N/t. (4)

Then, by Lemma 8 applied with δ = ε, η = ρ, and m = N/t, the ordered hypergraph G
contains a copy of K(3)

3 (s) as an ordered subhypergraph. By the definition of G, all hyperedges
of such copy are red in χ, which then finishes the proof.

To estimate (4), we estimate each of the three terms in the above expression separately by
N1/3. The exponent in the first term in (4) is

log (e)210ε−2s3/2 ≤ 223 · ρ−30d2 · d6 · s3/2 ≤ log (N/t)
3 .

10



The second term can be estimated by

(1− 4ρ)−4s2 = 2−4s2 log (1−4ρ) ≤ (N/t)1/3.

Finally, the the third term satisfies(16
ε

)4s
=
(
210 · ρ−15d2 · d3

)4s
< 226·s·ρ−15d2 ·d3 ≤ (N/t)1/3,

as (210x)4 < 226x for x ≥ 2. Altogether, both inequalities in (4) are satisfied.

4 Proof of Theorem 4
Here we prove a superexponential lower bound on R(K(3)

t ,K(3)
3 (n)) for any t ≥ 4. First, we

prove the following result, which gives superexponential lower bounds on ordered Ramsey
numbers of 3-uniform hypergraphs K(3)

t+1 and K(3)
3 (n) provided that we have a superlinear

lower bound on the ordered Ramsey number R(Kt,Km,m) in m. The proof is inspired by the
approach from [8].

Lemma 9. For t ∈ N, if for m = dn/4e we have 2n < R(K(3)
t ,Km,m)α for some α ∈ (0, 1],

then, for each sufficiently large n,

R(K(3)
t+1,K

(3)
3 (n)) ≥

(
(R(Kt,Km,m)− 1)1−α

e4

)(n+2)/6

.

Proof. We set m = dn/4e and ` = dn/2e. Let R denote the number R(Kt,Km,m)− 1 and let
N = (R1−α/e4)(n+2)/6. Using a probabilistic argument, we find a red-blue coloring χ of the
hyperedges of K(3)

N = (K(3)
N , <) that does not contain a blue copy of K(3)

t+1 and with positive
probability does not contain a red copy of K(3)

3 (n).
We use the following two auxiliary colorings. Let χ1 be a red-blue coloring of the edges

of KR that does not contain a blue copy of Kt nor a red copy of Km,m. Such a coloring exists
by the choice of R. Let χ2 be a coloring of the edges of KN with colors 1, . . . , R, where the
color of each edge is chosen uniformly independently at random from [R]. For three vertices
u < v < w of K(3)

N , we then set χ(u, v, w) = χ1(χ2(u, v), χ2(u,w)) if χ2(u, v) 6= χ2(u,w) and
we let χ(u, v, w) be red otherwise.

Suppose for contradiction that χ contains a blue copy of K(3)
t+1 on some vertices v0, . . . , vt

of K(3)
N . Since all hyperedges of the copy of K(3)

t+1 are blue, our choice of χ gives distinct
colors χ2(v0, v1), . . . , χ2(v0, vt) and each edge {χ2(v0, vi), χ2(v0, vj)} such that {v0, vi, vj} is a
hyperedge of the blue copy of K(3)

t+1 is blue in χ1. These blue edges determine a blue copy
of Kt in χ1, which contradicts our choice of χ1.

We now show that with positive probability there is no red copy of K(3)
3 (n) in χ by

estimating the expected number of such copies. Consider 3n vertices v1 < · · · < v3n of K(3)
N

and suppose that these vertices induce a red copy of K(3)
3 (n) in χ. We fix i ∈ [n]. Then there

cannot be 2` distinct colors with ` of them among the colors χ2(vi, vj) for n < j ≤ 2n and
with the remaining ` of them among χ2(vi, vk) for 2n < k ≤ 3n. Otherwise such colors form a
red copy of some ordering of K`,` in χ1 and every such ordering contains a copy of Km,m, as

11



` ≥ 2m− 1. Thus either all the colors χ2(vi, vj) with n < j ≤ 2n are contained in the union
of the set {χ2(vi, vk) : 2n < k ≤ 3n} together with a set of at most ` − 1 additional colors
or, similarly, all the colors χ2(vi, vk) with 2n < k ≤ 3n are contained in the union of the set
{χ2(vi, vj) : n < j ≤ 2n} together with a set of at most `− 1 additional colors.

In the first case, all colors χ2(vi, vj) with n < j ≤ 2n are contained in the union of the set
{χ2(vi, vk) : 2n < k ≤ 3n} together with a set of at most `− 1 additional colors. In particular,
the colors χ2(vi, vj) with n < j ≤ 2n and χ2(vi, vk) with 2n < k ≤ 3n are all contained in a
set of n + ` − 1 colors from [R], as |{χ2(vi, vk) : 2n < k ≤ 3n}| ≤ n. There are

( R
n+`−1

)
sets

for the possible colors. The probability that each of the colors χ2(vi, vj) with n < j ≤ 2n
and χ2(vi, vk) with 2n < k ≤ 3n is contained in a fixed set of n + ` − 1 colors from [R] is(
n+`−1
R

)2n
. The other case is symmetric. Considering this for every i ∈ [n], we see that the

expected number of red copies of K(3)
3 (n) in χ is at most(

N

3n

)(
2
(

R

n+ `− 1

)n (
n+ `− 1

R

)2n2)

≤ N3n
(

2
(

eR

n+ `− 1

)n(n+`−1) (n+ `− 1
R

)2n2)

≤
(
N3

(
2en+`−1

(
n+ `− 1

R

)n−`+1))n
<

(
N3e2n

(
Rα−1

)n−`+1
)n

≤
(
N3

(
e4Rα−1

)n/2+1
)n

= 1,

where we used n+ `− 1 ≤ 2n ≤ Rα and our choice of ` and N . Since the expected number of
red copies of K(3)

3 (n) is less than 1, there is a red-blue coloring χ that does not contain a blue
copy of K(3)

t+1 nor a red copy of K(3)
3 (n).

We also use the following bounds on Ramsey numbers of complete graphs and complete
bipartite graphs proved by Li and Zang [21].

Theorem 10 ([21]). For every fixed integer t ≥ 3 and every integer m ≥ 2, there is a constant
c > 0 such that

R(Kt,Km,m) ≥ c
(

m

logm

)(t+1)/2
.

To finish the proof, we now combine all the auxiliary results.

Proof of Theorem 4. It suffices to consider K(3)
4 , as ordered Ramsey numbers do not decrease

by adding vertices. Let n be a sufficiently large integer and let m = dn/4e. By Theorem 10,
we have R(K3,Km,m) ≥ Ω

((
m

logm

)2
)
. In particular, 2n < R(K3,Km,m)α for some fixed α < 1

and a sufficiently large n. Lemma 9 thus implies that

R(K(3)
4 ,K(3)

3 (n)) ≥
(

m

logm

)Ω(n)
≥ 2Ω(n logn),

which finishes the proof.
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5 Proof of Proposition 5
For integers χ and k with χ ≥ k ≥ 2 and an ordered k-uniform hypergraph H on n vertices
with interval chromatic number χ, we show that there is a constant c such that

R(H) ≤ 2Rχ(χ−1)(cχn)χ−1
,

where R = R(K(k)
χ ).

Let N = 2Rχ(χ−1)(4χn)χ−1 and consider a red-blue coloring of the hyperedges of K(k)
N on [N ].

Since the interval chromatic number of H is χ, we have H ⊆ K(k)
χ (n) and thus it suffices to

show that there is a monochromatic copy of K(k)
χ (n) in our coloring.

Since R = R(K(k)
χ ), every ordered subhypergraph of K(k)

N induced by an R-tuple of vertices
contains a monochromatic copy of K(k)

χ in our coloring. Each such copy is contained in
(N−χ
R−χ

)
R-tuples of vertices of K(k)

N and thus there are at least(N
R

)(N−χ
R−χ

) =
(
R

χ

)−1(
N

χ

)

monochromatic copies of K(k)
χ . Without loss of generality, we can assume that at least half of

these copies has all hyperedges red.
Let G be the ordered χ-uniform hypergraph with the vertex set [N ], where a χ-tuple of

vertices forms a hyperedge if and only if it induces a red copy of K(k)
χ in our coloring. We

know that G has at least 1
2
(R
χ

)−1(N
χ

)
≥ εNχ

χ! hyperedges, where ε = 1
4
(R
χ

)−1. It is well-known
(see [15, 24], for example) that every χ-uniform hypergraph on N vertices with at least εNχ

χ!

hyperedges, where (lnN)−1/(χ−1) ≤ ε ≤ χ−3, contains a copy of K(χ)
χ (bε(lnN)1/(χ−1)c). Since

bε(lnN)1/(χ−1)c =

4Rχχn
4
(R
χ

)
 ≥ χn,

we have a copy of K(χ)
χ (χn) in G in some ordering. Note that every ordering of K(χ)

χ (χn)
contains a copy of K(χ)

χ (n) and thus G also contains a copy of K(χ)
χ (n). By the definition of G,

the vertices of this copy induce a red copy of K(k)
χ (n) in the coloring of K(k)

N , which finishes
the proof.

6 Open problems
There is a plenty of open questions about ordered Ramsey numbers for ordered hypergraphs,
as this area is still vastly unexplored. Here we offer some of the open problems that we
considered during our study.

We proved estimates on the ordered Ramsey numbers of ordered 3-uniform hypergraphs
with bounded maximum degree and with interval chromatic number 3. However, our bounds
are not tight. Recall that it follows from Theorem 2 and Theorem 4 that there are positive
constants c1, c2, and ε, all depending on d, such that every ordered 3-uniform hypergraph H
on n vertices with maximum degree d satisfies

R(H,K(3)
3 (n)) ≤ 2c1n2−ε

,
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while there is a fixed G such that

R(G,K(3)
3 (n)) ≥ 2c2n logn.

Thus although the exponents in the bounds are reasonably close in this non-diagonal case,
there is still a gap between them and it would be interesting to close it.

Problem 11. Let d be a fixed positive integer and let H be an ordered 3-uniform hypergraph
on n vertices with maximum degree d. Close the gap between the lower and upper bounds on
R(H,K(3)

3 (n)).

Another interesting problem is to extend the upper bound from Corollary 3 to ordered
3-uniform hypergraphs with bounded maximum degree and fixed interval chromatic number
that is larger than 3. We recall that their ordered Ramsey numbers are bounded from above
by 2O(n2) by Corollary 1. In particular, one can ask if the exponent is still subquadratic in the
number of vertices.

Problem 12. Let d and χ be fixed positive integers. Is there an ε = ε(d, χ) > 0 such that, for
every ordered 3-uniform hypergraph H on n vertices with maximum degree d and with interval
chromatic number χ, we have

R(H) ≤ 2O(n2−ε)?

As we discussed in Subsection 1.2, the monotone hyperpaths are examples of ordered
3-uniform hypergraphs with maximum degree 3 and with an arbitrarily large interval chromatic
number such that their ordered Ramsey numbers grow exponentially. To our knowledge, this
is the best lower bound on ordered Ramsey numbers of ordered 3-uniform hypergraphs with
bounded maximum degrees. Can we obtain better lower bounds?

Problem 13. For a fixed d, is there an example of a family {Hn} of ordered 3-uniform
hypergraphs Hn on n vertices with maximum degree d such that the numbers R(Hn) grow
superexponentially in n?

We note that even for K(3)
n the best known lower bound on R(K(3)

n ) is of order 2Ω(n2);
see (1).

The growth rate of Ramsey numbers of unordered 3-uniform hypergraphs with bounded
maximum degree is only linear in the number of vertices; see [7]. The situation is completely
different for ordered 3-uniform hypergraphs with bounded maximum degree, as we can, for
example, see from the bounds for monotone hyperpaths. In general, we are not aware of any
nontrivial upper bounds on these ordered Ramsey numbers.

Problem 14. What is the upper bound on ordered Ramsey numbers of ordered 3-uniform
hypergraphs with bounded maximum degree?

Finally, we proved all our upper bounds under the assumption that the maximum degree is
bounded. However, the corresponding bounds for ordered graphs such as (2) hold for bounded
degeneracy, which is a less restrictive assumption. Thus one can also try to strengthen our
results, in particular Theorem 2 and Corollary 3, to ordered hypergraphs with bounded
degeneracy instead of the maximum degree.
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