
applied  
sciences

Article

A Fully Automatic Procedure for Brain Tumor Segmentation
from Multi-Spectral MRI Records Using Ensemble Learning
and Atlas-Based Data Enhancement
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Abstract: The accurate and reliable segmentation of gliomas from magnetic resonance image (MRI)
data has an important role in diagnosis, intervention planning, and monitoring the tumor’s evolution
during and after therapy. Segmentation has serious anatomical obstacles like the great variety
of the tumor’s location, size, shape, and appearance and the modified position of normal tissues.
Other phenomena like intensity inhomogeneity and the lack of standard intensity scale in MRI
data represent further difficulties. This paper proposes a fully automatic brain tumor segmentation
procedure that attempts to handle all the above problems. Having its foundations on the MRI data
provided by the MICCAI Brain Tumor Segmentation (BraTS) Challenges, the procedure consists
of three main phases. The first pre-processing phase prepares the MRI data to be suitable for
supervised classification, by attempting to fix missing data, suppressing the intensity inhomogeneity,
normalizing the histogram of observed data channels, generating additional morphological, gradient-
based, and Gabor-wavelet features, and optionally applying atlas-based data enhancement. The
second phase accomplishes the main classification process using ensembles of binary decision trees
and provides an initial, intermediary labeling for each pixel of test records. The last phase reevaluates
these intermediary labels using a random forest classifier, then deploys a spatial region growing-
based structural validation of suspected tumors, thus achieving a high-quality final segmentation
result. The accuracy of the procedure is evaluated using the multi-spectral MRI records of the BraTS
2015 and BraTS 2019 training data sets. The procedure achieves high-quality segmentation results,
characterized by average Dice similarity scores of up to 86%.

Keywords: ensemble learning; binary decision trees; image segmentation; multi-atlas methods;
magnetic resonance imaging

1. Introduction

Cancers of the brain and the central nervous system cause the death of over two
hundred thousand people every year [1]. Life expectancy after the diagnosis depends on
several factors like: being a primary tumor or a metastatic one; being an aggressive form of
tumor (also called high-grade glioma (HGG)) or a less aggressive one (low-grade glioma
(LGG)); and of course, a key factor is how early the tumor is diagnosed [2]. Patients with
HGG live fifteen months on average after diagnosis. With an LGG, it is possible to live
for several years, as this form of the tumor does not always require aggressive treatment
immediately after the diagnosis.

Magnetic resonance imaging (MRI) is the technology that has become the most fre-
quently utilized in the diagnosis of gliomas. MRI is preferred because it is much less
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invasive than other imaging modalities, like positron emission tomography (PET) or com-
puted tomography (CT). With its high contrast and good resolution, it can provide accurate
data about the structure of the tumor. Multi-modal or multi-spectral MRI, through its
T1-weighted (with or without contrast improvement) and T2-weighted (with or without
fluid attenuated inversion recovery) data channels, can significantly contribute to the better
visibility of intracranial structures [3].

The quick development of computerized medical devices and the economic rise of
several underdeveloped countries both contribute to the fast spreading of MRI equipment
in hospitals worldwide. These MRI devices produce more and more image data. Training
enough human experts to process these records would be very costly, if possible at all. This
is why there is a strong need for automatic algorithms that can reliably process the acquired
image data and select those records that need to be inspected by the human experts, who
have the final word in establishing the diagnosis. Although such algorithms are never
perfect, they may contribute to cost reduction and allow for screening large masses of the
population, leading to several early detected tumors.

The brain tumor segmentation problem is a difficult task in medical image processing,
having major obstacles like: (1) the large variety of the locations, shapes, and appearances
of the tumor; (2) displacement and distortion of normal tissues caused by the focal lesion;
(3) the variety of imaging modalities and weighting schemes applied in MRI, which provide
different types of biological information; (4) multi-channel data are not perfectly registered
together; (5) numerical values produced by MRI do not directly reflect the observed tissues;
they need to be interpreted in their context; (6) intensity inhomogeneity may be present in
MRI measurements due to the turbulence of the magnetic field.

The history of automatic brain tumor segmentation from MRI records can be divided
into two eras: the pre-BraTS and the BraTS era, where BraTS refers to the Brain Tumor
Segmentation Challenges [3,4] organized every year since 2012 by the MICCAI society,
which had an enormous impact with the introduction of a multi-spectral MRI data set
that can be used as a standard in the evaluation of segmentation methods. Earlier solu-
tions were usually developed for single data channels and even for 2D data (or reduced
number of distant slices) and mostly validated with private collections of MRI records
that do not allow for objective comparison. A remarkable review on early segmentation
methods, including manual, semi-automatic, and fully automatic solutions, was provided
by Gordillo et al. [5]. Methods developed in the BraTS era are usually fully automatic and
employ either one or a combination of: (1) advanced general-purpose image segmentation
techniques (mostly unsupervised); (2) classical machine learning algorithms (both super-
vised and unsupervised); or (3) deep learning convolutional neural networks (supervised
learning methods).

All methods developed and published in the pre-BraTS era belong to the first two
groups or their combination. They dominate the first years of the BraTS era as well, and they
are still holding significant research interest. Unsupervised methods have the advantages
that they do not require large amounts of training data and provide segmentation results in
a relatively short time. They organize the input data into several clusters, each consisting
of highly similar data. However, they either have difficulty with correctly labeling the
clusters or they require manual interaction. Unsupervised methods involving active
contours or region growing strongly depend on initialization as well. Sachdeva et al. [6]
proposed a content-based active contour model that utilized both intensity and texture
information to evolve the contour towards the tumor boundary. Njeh et al. [7] proposed
a quick unsupervised graph-cut algorithm that performed distribution matching and
identified tumor boundaries from a single data channel. Li et al. [8] combined the fuzzy
c-means (FCM) clustering algorithm with spatial region growing to segment the tumors,
while Szilágyi et al. [9] proposed a cascade of FCM clustering steps placed into a semi-
supervised framework.

Supervised learning methods deployed for tumor segmentation first construct a de-
cision model using image-based handcrafted features and use this for prediction in the
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testing phase. These methods mainly differ from each other in the employed classification
technique, the features involved, and the extra processing steps that apply constraints to the
intermediary segmentation outcome. Islam et al. [10] extracted so-called multi-fractional
Brownian motion features to characterize the tumor texture and compared its performance
with Gabor wavelet features, using a modified AdaBoost classifier. Tustison et al. [11] built
a supervised segmentation procedure by cascading two random forest (RF) classifiers and
trained them using first order statistical, geometrical, and asymmetry-based features. They
used a Markov random field (MRF)-based segmentation to refine the probability maps
provided by the random forests. Pinto et al. [12] deployed extremely randomized trees
(ERTs) and trained them with features extracted from local intensities and neighborhood
context, to perform a hierarchical segmentation of the brain tumor. Soltaninejad et al. [13]
reformulated the simple linear iterative clustering (SLIC) [14] for the extraction of 3D
superpixels, extracted statistical and texton feature from these, and fed them to an RF clas-
sifier to distinguish superpixels belonging to tumors and normal tissues. Imtiaz et al. [15]
classified the pixels of MRI records with ERTs, using superpixel features from three orthog-
onal planes. Kalaiselvi et al. [16] proposed a brain tumor segmentation procedure that
combined clustering techniques, region growing, and support vector machine (SVM)-based
classification. Supervised learning methods usually provide better segmentation accuracy
than unsupervised ones and require a longer processing time.

In recent years, convolutional neural networks (CNNs) and deep learning have been
attempting to conquer a wide range of application fields in pattern recognition [17]. Fea-
tures are no longer handcrafted, as these architectures automatically build a hierarchy of
increasingly complex features based on the learning data [18]. There are several success-
ful applications in medical image processing, e.g., detection of kidney abnormalities [19],
prostate cancer [20], lesions caused by diabetic retinopathy [21] and melanoma [22], and the
segmentation of liver [23], cardiac structures [24], colon [25], renal artery [26], mandible [27],
and bones [28]. The brain tumor segmentation problem is no exception. In this order,
Pereira et al. [29] proposed a CNN architecture with small 3× 3 sized kernels and accom-
plished a thorough analysis of data augmentation techniques for glioma segmentation
attempting to compensate the imbalance of classes. Zhao et al. [30] applied conditional
random fields (CRF) to process the segmentation output produced by a fully convolutional
neural network (FCNN) and assure the spatial and appearance consistency. Wu et al. [31]
proposed a so-called multi-feature refinement and aggregation scheme for convolutional
neural networks that allows for a more effective combination of features and leads to
more accurate segmentation. Kamnitsas et al. [32] proposed a deep CNN architecture
with 3D convolutional kernels and a double pathway learning, which exploits a dense
inference technique applied to image segments, thus reducing the computational burden.
Ding et al. [33] successfully combined the deep residual networks with the dilated convo-
lution, achieving fine segmentation results. Xue et al. [34] proposed a solution inspired by
the concept of generative adversarial networks (GANs). They set up a CNN to produce
pixel level labeling, complemented it with an adversarial critic network, and trained them
to learn local and global features that were able to capture both short and long distance
relationships among pixels. Chen et al. [35] proposed a dual force-based learning strategy,
employed the DeepMedic (Version 0.7.0, Biomedical Image Analysis Group, Imperial Col-
lege London, London, UK, 2018) and U-Net architectures (Version 1.0, Computer Science
Department, University of Freiburg, Freiburg, Germany, 2015) for glioma segmentation,
and refined the output of deep networks using a multi-layer perceptron (MLP). In general,
CNN architectures and deep learning can lead to slightly better accuracy than well de-
signed classical machine learning techniques in the brain tumor detection problem, at the
cost of a much higher computational burden in all processing phases, especially at training.

The goal of this paper is to propose a solution to the brain tumor segmentation problem
that produces a high-quality result with a reduced amount of computation, without needing
special hardware that might not be available in underdeveloped countries, employing
classification via ensemble learning assisted by several image processing tasks designed
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for MRI records that may contain focal lesions. Further, the proposed procedure only
employs machine learning methods that fully comply with the explainable decision making
paradigm, which is soon going to be required by law in the European Union [36]. Multiple
pre-processing steps are utilized for bias field reduction, histogram normalization, and atlas-
based data enhancement. A twofold post-processing is employed to improve the spatial
consistency of the initial segmentation produced by the decision ensemble.

Ensemble learning generally combines several classifiers and aggregates their pre-
dictions into a final one, thus allowing for more accurate decisions than the individual
classifiers are capable of [37,38]. The ensembles deployed in this study consist of binary
decision trees (BDTs) [39]. BDTs are preferred because of their ability to learn any complex
patterns that contain no contradiction. Further, with our own implementation of the BDT
model, we have full control of its functional parameters.

In image segmentation problems, atlases and multiple atlases are generally employed
to provide shape or texture priors and to guide the segmentation toward a regularized
solution via label fusion [40–42]. Our solution uses multiple atlases in a different manner:
before proceeding to ensemble learning and testing, atlases are trained to characterize the
local appearance of normal tissues and applied to transform all feature values to emphasize
their deviation from normal.

The main contributions consist of: (1) the way the multiple atlases are involved in
the pre-processing, to prepare the feature data for segmentation via ensemble learning;
(2) the ensemble model built from binary decision trees with unconstrained depth; (3) the
two-stage post-processing scheme that discards a large number of false positives.

Some components of the procedure proposed here, together with their preliminary
results, were presented in previous works. For example, we can mention some part of
the feature generation and the classification with ensembles of binary decision trees [43]
or the multi-atlas assisted data enhancement of the MRI data [44]. However, the procedure
proposed here puts them all together and proposes additional components like the post-
processing steps, and a thorough evaluation process is performed using the BraTS training
data sets for the years 2015 and 2019. The evaluation process demonstrates that the
proposed brain tumor segmentation procedure is in competition with state-of-the-art
methods both in terms of accuracy and efficiency.

The rest of this paper is structured as follows: Section 2 presents the proposed brain
tumor segmentation procedure, with all its steps starting from histogram normalization
and feature generation, followed by initial decision making via an ensemble learning
technique, and a twofold post-processing that produces the final segmentation. Section 3
evaluates the proposed segmentation procedure using recent standard data sets of the
BraTS challenge. Section 4 compares the performance of the proposed method with several
state-of-the-art algorithms, from the point of view of both accuracy and efficiency. Section 5
concludes this study.

2. Materials and Methods
2.1. Overview

The steps of the proposed method are exhibited in Figure 1. All MRI data volumes
involved in this study go through a multi-step pre-processing, whose main goal is to pro-
vide uniform histograms to all data channels of the involved MRI records and to generate
further features to all pixels. After separating training data records from evaluation (test)
data records, the former are fed to the ensemble learning step. Trained ensembles are
used to provide an initial prediction for the pixels of the test data records. A twofold post-
processing is employed to regularize the shape of the estimated tumor. Finally, statistical
markers are used to evaluate the accuracy of the whole proposed procedure.
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Figure 1. The input DICOM files are transformed into two variants of preprocessed data (P1 and P2).
The intermediary segmentation results produced by the ensemble of binary decision trees (S1 and S2)
are fine tuned in two post-processing steps to achieve high-quality final segmentation (S′′1 and S′′2 ).

The records in each set have the same format. Records are multi-spectral, which means that every174

pixel in the volumes has four different observed intensity values (named T1, T2, T1C, and FLAIR after175

the weighting scheme used by the MRI device) recorded independently of each other and registered176

together afterwards with an automatic algorithm. Each volume contains 155 square shaped slices of177

240× 240 pixels. Pixels are isovolumetric as each of them represents brain tissues from a 1 mm3 sized178

cubic region. Pixels were annotated by human experts using a semi-automatic algorithm, so they have179

a label that can be used as ground truth for supervised learning. Figure 2 shows two arbitrary slices,180

with all four observed data channels, and the ground truth for the whole tumor, without distinguishing181

tumor parts. Since the adult human brain has a volume of approximately 1500 cm3, records contain182

around 1.5 million pixels. Each record contains gliomas of total size between 7 and 360 cm3. The skull183

is removed from all volumes so that the researchers can concentrate on classifying brain tissues only,184

but some of the records intentionally have missing or altered intensity values, in the amount of up to185

one third of the pixels, in one of the four data channels. An overview of these cases is also reported in186

Table 1.187

Intensity non-uniformity (INU) is a low-frequency noise with possibly high magnitude [45,46].188

In the early years of BraTS challenges, INU was filtered from the train and test data provided by the189

organizers. However, in later data sets, this facility is not granted. This is why we employed the190

method of Tustison et al. [47] to check the presence of INU and to eliminate it when necessary.191

There are several non-brain pixels in the volume of any record, fact indicated by zero intensity on192

all four data channels. Furthermore, there are some brain pixels in most volumes, for which not all193

four nonzero intensity values exist, some of them are missing. Our first option to fill missing values is194

to replace them with the average computed from the 3× 3× 3 cubic neighborhood of the pixel, if there195

Figure 1. The input DICOM files are transformed into two variants of pre-processed data (P1 and P2).
The intermediary segmentation results produced by the ensemble of binary decision trees (S1 and S2)
are fine tuned in two post-processing steps to achieve high-quality final segmentation (S′′1 and S′′2 ).

2.2. Data

This study uses the MICCAI BraTS training data sets, both low- and high-grade glioma
volumes for the years 2015 and 2019. Some main attributes of these data sets are exhibited
in Table 1. Only one out of these four data sets is used at a time, so in any scenario, the total
number nρ of involved records varies between 54 and 259, as indicated in the first row of
the table.

The records in each set have the same format. Records are multi-spectral, which
means that every pixel in the volumes has four different observed intensity values (named
T1, T2, T1C, and FLAIR after the weighting scheme used by the MRI device) recorded
independently of each other and registered together afterwards with an automatic algo-
rithm. Each volume contains 155 square shaped slices of 240 × 240 pixels. Pixels are
isovolumetric as each of them represents brain tissues from a 1 mm3 sized cubic region.
Pixels were annotated by human experts using a semi-automatic algorithm, so they have
a label that can be used as the ground truth for supervised learning. Figure 2 shows two
arbitrary slices, with all four observed data channels, and the ground truth for the whole
tumor, without distinguishing tumor parts. Since the adult human brain has a volume of
approximately 1500 cm3, records contain around 1.5 million pixels. Each record contains
gliomas of a total size between 7 and 360 cm3. The skull was removed from all volumes
so that the researchers can concentrate on classifying brain tissues only, but some of the
records intentionally had missing or altered intensity values, in the amount of up to one
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third of the pixels, in one of the four data channels. An overview of these cases is also
reported in Table 1.

Table 1. The main properties of the MRI data sets involved in this study.

Property BraTS 2015 Data BraTS 2019 Data

LGG HGG LGG HGG

Number of records 54 220 76 259
Average size of whole tumor (cm3) 101.1 110.6 111.5 95.1
Minimum size of whole tumor (cm3) 18.9 8.5 17.1 7.3
Maximum size of whole tumor (cm3) 256.3 318.3 361.8 256.9

Total number of negative pixels 71.4 M 308.6 M 101.6 M 351.5 M
Total number of positive pixels 5.46 M 24.3 M 8.48 M 24.6 M

Pixels with missing data 2.375% 9.855% 1.679% 0.426%
Pixels with more than 1 value missing 0.225% 4.838% 0.163% 0.092%
Records with missing data at >1% of pixels 9 112 9 18
Records with missing data at >10% of pixels 3 99 3 1

Figure 2. Input data after pre-processing (T1 , T1C , T2, FLAIR) and the human expert made ground
truth (GT) for the whole tumor segmentation problem.

Intensity non-uniformity (INU) is a low-frequency noise with possibly high magni-
tude [45,46]. In the early years of the BraTS challenges, INU was filtered from the training
and test data provided by the organizers. However, in later data sets, this facility is not
granted. This is why we employed the method of Tustison et al. [47] to check the presence
of INU and to eliminate it when necessary.

There are several non-brain pixels in the volume of any record, a fact indicated by
zero intensity on all four data channels. Furthermore, there are some brain pixels in most
volumes for which not all four nonzero intensity values exist; some of them are missing.
Our first option to fill missing values is to replace them with the average computed from the
3× 3× 3 cubic neighborhood of the pixel, if there are any pixels in the neighborhood with
valid nonzero intensity. Otherwise, the missing value becomes γ0.5 after pre-processing,
which is the middle value of the target intensity interval; see the definition in Section 2.3.

2.3. Histogram Normalization

Although very popular among medical imaging devices due to its high contrast and
relatively good resolution, MRI has a serious drawback: the numerical values it produces
do not directly reflect the observed tissues. The correct interpretation of the MRI data
requires adapting the numerical values to the context, which is usually accomplished via a
histogram normalization or standardization. Figure 3 gives a convincing example why the
normalization of histograms is necessary. This is what we get if we represent on the same
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scale the observed intensities from twenty different MRI records, extracted from the same
data channel (T1). In some cases, the spectra of intensities from two different records do
not even overlap. There is no classification method that could deal with such intensities
without transforming the input data before classification.

Figure 3. Slice Number 100 from the T1 volume of twenty MRI records from the BraTS 2015 LGG
data, without histogram normalization. These pixel intensities are obviously not suitable for any
supervised classification.

Several algorithms exist in the literature for this purpose (e.g., [48–50]), more and
more sophisticated histogram matching techniques, which unfortunately are not designed
for records containing focal lesions. These lesions may grow to 20–30% of the brain
volume, which strongly distorts the histogram in MRI channels of any weighting. The
most popular histogram normalization method proposed by Nyúl et al. [48] works in
batch mode, registering the histogram of each record to the same template. Modifying all
histograms to look similar, no matter whether they contain tumor or not, is likely to obstruct
the accurate segmentation. The method of Nyúl et al. uses some predefined landmark
points (percentiles) to accomplish a two-step transformation of intensities. Many recent
works [51–55] reported using this method, omitting any information on the employed
landmark points. Pinto et al. [12] and Soltaninejad et al. [13] used 10 and 12 landmark
points, respectively. Alternately, Tustison et al. [11] deployed a simple linear transformation
of intensities, because it gives slightly better accuracy, but they did not specify any details.
This finding was confirmed later in a comparative study by Győrfi et al. [56], which also
showed that if we stick to the above-mentioned popular method of Nyúl et al., it provides
better segmentation of focal lesions when used with a smaller number (no more than five)
of landmark points, or in other words, with less restrictions.

Our histogram normalization method relies on a context dependent linear transform.
The main goal of this transform is to map the pixel intensities from each data channel of a
volume independently of each other onto a target interval [α, β] in such a way that target
intensities satisfy some not very restrictive criteria. The inner values of the target interval
can be written as γλ = α(1− λ) + βλ, with 0 ≤ λ ≤ 1. Obviously, α = γ0 and β = γ1.
To compute the two coefficients of the linear transform applied to the intensities from a
certain data channel of any record, first we identify the 25th-percentile and 75th-percentile
value of the original intensities and denote them by p25 and p75, respectively. Then, we
define the I → aI + b transform of the intensities in such a way that p25 is mapped onto
γ0.4 and p75 becomes γ0.6. This assumption leads to the coefficients:

a =
γ0.6 − γ0.4

p75 − p25
and b =

γ0.4 p75 − γ0.6 p25

p75 − p25
. (1)

Finally, all pixel intensities from the given data channel of the current MRI record are
transformed according to the formula:

Î = min{max{α, aI + b}, β} , (2)

using the values a and b given by Equation (1), where I and Î stand for the original and
transformed intensities, respectively. This formula assures that the transformed intensities
are always situated within the target interval [α, β].
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2.4. Feature Generation

Feature generation is a key component of the procedure, because the four observed
features, namely the T1, T2, T1C, and FLAIR intensities provided by the MRI device, do
not contain all the possible discriminative information that can be employed to distinguish
tumor pixels from normal ones. A major motivation for feature generation represents
the fact that the automated registration algorithm used by the BraTS experts to align
the four data channels never performs a perfect job, so for an arbitrary cubic millimeter
of brain tissues, represented by the pixel situated at coordinates (x, y, z) in volume T1,
the corresponding information in the other volumes is not in the same place, but somewhere
in the close neighborhood of (x, y, z). A further motivation consists of the usual property
of image data that neighbor pixels correlate with each other.

All four MRI data channels equally contribute to the feature generation process. Ob-
served features are treated independently of each other: 20 computed features are extracted
from each of them. The inventory of extracted features is presented in Table 2. Minimum,
maximum, and average values are extracted in such a way that only the brain pixels are
taken into consideration from the neighborhoods indicated in the table. The computation
of the gradient features involves the masks presented in Figure 4. The current pixel is
part of all masks to avoid division by zero in Equation (3). The 16 gradient features of an
arbitrary pixel p are computed with the formula:

g(c)m (p) = γ0.5 + kg


∑

q∈Nm(p)∩Ω
I(c)q

|Nm(p) ∩Ω| −
∑

q∈Nm′ (p)∩Ω
I(c)q

|Nm′(p) ∩Ω|

 , (3)

followed by g(c)m (p) ← min{max{α, g(c)m (p)}, β} to stay within the target interval [α, β],
where c ∈ {T1, T2, T1C, FLAIR} is one of the four data channels, m ∈ {A, B, C, D} is the
index of the current gradient mask, Ω stands for the set of all brain pixels in the volume,
γ0.5 is the middle of the target interval of intensities, kg is a globally constant scaling factor,
and |Q| represents the cardinality of any set denoted by Q.

Table 2. Inventory of computed features. Observed data channels were equally involved. Together
with the four observed features, the total feature count is nϕ = 84.

Neighborhood AVG MAX MIN GRD GBW Total

3× 3× 3 4 4 4 12
3× 3 4 4
5× 5 4 4
7× 7 4 16 20
9× 9 4 4

11× 11 4 32 36

Total 24 4 4 16 32 80
AVG—average, MAX—maximum, MIN—minimum. GRD—gradient, GBW—Gabor wavelets.

Figure 4. Neighborhoods used for the extraction of gradient features, with respect to the current
pixel indicated by grey color.
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2.5. Multi-Atlas-Based Data Enhancement

In image segmentation, atlases are usually used as approximative maps of the objects
that should be present in the image in the normal case. Atlases are usually established
based on prior measurements. The image data before the current segmentation is registered
to the atlas, and the current segmentation outcome is fused with the atlas to obtain a final,
atlas assisted segmentation result.

In this study, we use atlases in a different manner. We build a spatial atlas for each
feature using the training records, which contains the local average and standard deviation
of the intensity values taken from normal pixels only. Of coarse, the training records need
to be registered to each other so that we can build consistent atlases. These atlases are then
used to refine the feature values in both the training and test records, before proceeding to
the ensemble learning-based classification.

First of all, it is important to define the spatial resolution of atlases, which depends on
a single parameter denoted by S. Each atlas is a discrete spatial array defined on S3, where
S = {−S,−S + 1, . . . 0 . . . , S− 1, S}. Within the atlas array, the neighborhood of atlas point
π̂ having the coordinates (x̂, ŷ, ẑ) is defined as:

Cδ(π̂) = {(α̂, β̂, γ̂) ∈ S3, |α̂− x̂| ≤ δ ∧ |β̂− ŷ| ≤ δ ∧ |γ̂− ẑ| ≤ δ} , (4)

where δ is a small positive integer, typically one ore two, which determines the size of
the neighborhood.

The mathematical description of the atlas building process requires the introduction
of several notations. Let M stand for the set of all MRI records of the chosen data set,
whileM(T) andM(E) represent the current set of training and evaluation (or test) records,
respectively. Obviously,M =M(T) ∪M(E), andM(T) ∩M(E) = Φ. Let Mi be the record
with index i, belonging to either M(T) or M(E) in a certain scenario. The set of pixels
belonging to record Mi is denoted by Ωi, for any i = 1 . . . nρ. The set of all pixels from
all MRI records is Ω =

⋃nρ

i=1 Ωi. Any pixel π ∈ Ω has a feature vector with nϕ elements.

For any pixel π, the value of the feature with index ϕ ∈ {1 . . . nϕ} is denoted by I(ϕ)
π .

Further, let Γ(ν) and Γ(τ) be the set of negative and positive pixels, respectively, as indicated
by the ground truth. Obviously, Ω = Γ(ν) ∪ Γ(τ), and Γ(ν) ∩ Γ(τ) = Φ.

A rigid registration is defined in the following, so that we can map all volumes
onto the atlas. For each record Mi (i = 1 . . . nρ), a function fi : Ωi → S3 is needed that
maps the pixels onto the atlas, to find the corresponding atlas position for all brain pixels.
These functions map the gravity center of each brain to the atlas origin, and the standard
deviations of the x, y, and z coordinates are all transformed to S/ξ, where ξ = 2.5 is
a predefined constant. From the pixel coordinates, we compute averages and standard
deviations as follows: 

µ
(i)
x = 1

|Ωi | ∑
π∈Ωi

xπ

µ
(i)
y = 1

|Ωi | ∑
π∈Ωi

yπ

µ
(i)
z = 1

|Ωi | ∑
π∈Ωi

zπ

, (5)

and then: 

σ
(i)
x =

√
1

|Ωi |−1 ∑
π∈Ωi

(
xπ − µ

(i)
x

)2

σ
(i)
y =

√
1

|Ωi |−1 ∑
π∈Ωi

(
yπ − µ

(i)
y

)2

σ
(i)
z =

√
1

|Ωi |−1 ∑
π∈Ωi

(
zπ − µ

(i)
z

)2

, (6)
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where xπ , yπ , and zπ are the coordinates of pixel π in the brain volume. The formula of the
mapping fi is:

fi(π) =

(〈
S
(

xπ−µ
(i)
x

)
ξσ

(i)
x

〉
,

〈
S
(

yπ−µ
(i)
y

)
ξσ

(i)
y

〉
,

〈
S
(

zπ−µ
(i)
z

)
ξσ

(i)
z

〉)
, (7)

where 〈·〉 stands for the operation of rounding a floating point variable to the closest integer.
For any feature with index ϕ ∈ {1 . . . nϕ}, the atlas function has the form Aϕ : S3 →

R3, which for any atlas point π̂ ∈ S3 is defined as:

Aϕ(π̂) =
(

µ̂
(ϕ)
π̂ , σ̂

(ϕ)
π̂ , ν̂

(ϕ)
π̂

)
, (8)

where the components µ̂
(ϕ)
π̂ , σ̂

(ϕ)
π̂ , and ν̂

(ϕ)
π̂ are established with the following formulas:

ν̂
(ϕ)
π̂ = ∑

Mi∈M(T)
|Ψ(i, π̂)|

µ̂
(ϕ)
π̂ =

(
ν̂
(ϕ)
π̂

)−1
∑

Mi∈M(T)

(
∑

π∈Ψi(π̂)
I(ϕ)
π

)

σ̂
(ϕ)
π̂ =

√√√√(ν̂
(ϕ)
π̂ − 1

)−1
∑

Mi∈M(T)

(
∑

π∈Ψi(π̂)

(
I(ϕ)
π − µ̂

(ϕ)
π̂

)2
) (9)

where:
Ψi(π̂) =

{
π ∈ Ωi ∩ Γ(ν), fi(π) ∈ Cδ(π̂)

}
. (10)

The feature values of each pixel π ∈ Ωi (i = 1 . . . nρ), no matter whether π belongs to
a record of the training or test data, are updated with the following formula:

Ĩ(ϕ)
π ← min

max

α,

〈
µ + σ

I(ϕ)
π − µ̂

(ϕ)
fi(π)

σ̂
(ϕ)
fi(π)

〉, β

 , (11)

where parameters µ and σ represent the target average and standard deviation, respectively,
and their recommended values are:{

µ = γ0.5 = (α + β)/2
σ = (β− α)/10

. (12)

Algorithm 1 summarizes the construction and usage of the atlas. The updated intensity
values compose the pre-processed data denoted by P2 in Figure 1. Both P1 and P2 follow
the very same classification and post-processing steps.

2.6. Ensemble Learning

The total number of nρ records is randomly separated into six equal or almost equal
groups. Any of these groups can serve as test data, while the other five groups are used to
train the decision making ensemble. The ensembles consist of binary decision trees, whose
main properties are listed in the following:

1. The size of the ensemble is defined by the number of trees, set to nT = 125 based
on intermediary tests performed on the out-of-bag (OOB) data, which are the set of
feature vectors from the training data that are never selected for training the trees of a
given ensemble.

2. The training data size, represented by the number of randomly selected feature vectors
used to train each tree, and denoted by nF, is chosen to vary between 100 thousand
and one million in four steps: nF ∈ {100k, 200k, 500k, 1000k}. These four values are
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used during the experimental evaluation of the proposed method to establish its
effect on the segmentation accuracy and efficiency.

3. The selection of feature vectors for training the decision trees is not totally random.
The balance of positive and negative feature vectors in the training set of each BDT is
defined by the rate of negatives p− and rate of positives p+. For the LGG and HGG
data sets, p− = 93% and p− = 91% are used, respectively, values set according to the
findings of intermediary tests performed on OOB data.

4. Trees are trained using an entropy-based rule, without limiting their depth, so that
they can provide perfect separation of feature vectors representing pixels belonging
to tumors and normal tissues. The trees of the ensemble have their maximum depth
ranging between 25 and 45, depending on nF and the random training data itself.

Algorithm 1: Build the atlas function Aϕ for each feature ϕ = 1 . . . nϕ, and apply it
to all feature data.

Data: Set of MRI records involved in the studyM, its set of pixels Ω, each pixel
with 4 observed and nϕ − 4 computed features.

Data: Parameters S and δ
Result: Atlas functions Aϕ, ϕ = 1 . . . nϕ

Result: Updated intensities in all records ofM
Define the set of training and test records,M(T) andM(E), respectively.
for each Mi ∈ M do

Compute the mapping function fi(π) for every pixel π ∈ Ωi using
Equations (5)–(7).

end
for ϕ = 1 . . . nϕ do

Compute the atlas function Aϕ(π̂) for every discrete point π̂ ∈ S3 having

ν̂
(ϕ)
π̂ > 1, using Equations (8)–(10).

for each Mi ∈ M do
for each π ∈ Ωi do

Update the value of feature ϕ of pixel π using the formula given in
Equation (11).

end
end

end

When all trees of the ensemble are trained, they can be used to obtain the prediction
for the feature vectors from the test data records. Each pixel from the test records receives
nT votes, one from each BDT. The decision of the ensemble is established by the majority
rule, and that gives a label to each test pixel. However, these are intermediary labels only,
as they undergo a twofold post-processing. The intermediary labels received by test pixels
compose the S1 and S2 segmentation results indicated in Figure 1.

2.7. Random Forest-Based Post-Processing

The first post-processing step reevaluates the initial label received by each pixel of
the test data records. The decision is made by a random forest classifier that relies on
morphological features. The details of this post-processing step are listed in the following:

1. The RF is trained to separate positive and negative pixels using six features extracted
from the intermediary labels produced by the BDT ensemble. Let us consider K = 5
concentric cubic neighborhoods of the current pixel, denoted by Nk (k = 1 . . . K),
each having the size (2k + 1)× (2k + 1)× (2k + 1). Inside the neighborhood Nk of
the current pixel, the count of brain pixels nk and the count of positive intermediary
labeled brain pixels n+

k is extracted. The ratio ρk = n+
k /nk is called the rate of positives

within neighborhoodNk. The feature vector has the form (ρ1, ρ2, . . . ρK, η), where η is



Appl. Sci. 2021, 11, 564 12 of 24

the normalized value of the number of complete neighborhoods of the current pixel,
determined as:

η =
1
K

K

∑
k=1

δ
(

nk, (2k + 1)3
)

, (13)

where:

δ(u, v) =
{

1 if u = v
0 otherwise

. (14)

2. To assure that testing runs on data never seen by the training process, pixels from
HGG tumor volumes are used to train the random forest applied in the segmentation
of LGG tumor volumes, and vice versa. Each forest is trained using the feature vectors
of 107 randomly selected voxels, whose feature values fulfil ∑K

k=1 ρk > 0.
3. Pixels whose features satisfy ∑K

k=1 ρk = 0 are declared negatives by default; they are
not used for training the RF and are not tested with the RF either.

4. The number of trees in the RF is set to 100, while the maximum allowed depth of the
trees is eight.

The result of this post-processing step can be seen in Figure 1, represented by segmen-
tation results S′1 and S′2.

2.8. Structural Post-Processing

The structural post-processing handles only pixels that are labeled positive in segmen-
tation results S′1 and S′2; consequently, it has the option to approve or discard the current
positive labels. As a first operation, it searches for contiguous spatial regions formed by
positive pixels within the volume using a region growing algorithm. Contiguous regions
of positive labeled pixels with a cardinality below 100 are discarded, because such small
lesions cannot be reliably declared gliomas. Larger lesions are subject to shape-based
validation. For this purpose, the coordinates of all positive pixels belonging to the cur-
rent contiguous region undergo a principal component analysis (PCA), which establishes
the three main axes determined by the three eigenvectors and the corresponding radii
represented by the square root of the three eigenvalues provided by PCA. We denote by
λ1 > λ2 > λ3 the three eigenvalues in decreasing order. Lesions having the third radius
below a predefined threshold (

√
λ3 < 2) are discarded, as they are considered unlikely

shapes for a glioma. All those detected lesions that are not discarded by the criteria pre-
sented above are finally declared gliomas, and all their pixels receive final positive labels.
This is the final solution denoted by S′′1 and S′′2 in Figure 1.

2.9. Evaluation Criteria

The whole set of pixels of the MRI record with index i is Ωi, which is separated by
the ground truth into two disjoint sets: Γ(π)

i and Γ(ν)
i , the set of positive and negative

pixels, respectively. The final segmentation result provides another separation of Ωi into
two disjoint sets denoted by Λ(π)

i and Λ(ν)
i , which represent the positive and negative

pixels, respectively, according to the final decision (labeling) of the proposed procedure.
Statistical accuracy indicators reflect in different ways how much the subsets Γ(π)

i and Λ(π)
i

and their complementary subsets Γ(ν)
i and Λ(ν)

i overlap. The most important accuracy
markers obtained for any record with index i (i = 1 . . . nρ) are:

1. Dice similarity coefficient (DSC) or Dice score:

DSCi =
2× |Γ(π)

i ∩Λ(π)
i |

|Γ(π)
i |+ |Λ

(π)
i |

, (15)
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2. Sensitivity or true positive rate (TPR):

TPRi =
|Γ(π)

i ∩Λ(π)
i |

|Γ(π)
i |

, (16)

3. Specificity or true negative rate (TNR):

TNRi =
|Γ(ν)

i ∩Λ(ν)
i |

|Γ(ν)
i |

, (17)

4. Positive predictive value:

PPVi =
|Γ(π)

i ∩Λ(π)
i |

|Λ(π)
i |

, (18)

5. Accuracy or rate of correct decisions (ACC):

ACCi =
|Γ(π)

i ∩Λ(π)
i |+ |Γ

(ν)
i ∩Λ(ν)

i |
|Γ(π)

i |+ |Γ
(ν)
i |

. (19)

To characterize the global accuracy, we may compute the average values of the above-
defined indicators over a whole set of MRI records. We denote them by DSC, TPR, TNR,
PPV, and ACC. The average Dice similarity coefficient is given by the formula:

DSC =
1

nρ

nρ

∑
i=1

DSCi . (20)

The average values of other accuracy indicators are computed with analogous formulas.
The overall Dice similarity coefficient (D̃SC) is a single Dice score extracted from the

set of all pixels from Ω, given by the formula:

D̃SC =

2×
∣∣∣∣ nρ⋃
i=1

Γ(π)
i ∩

nρ⋃
i=1

Λ(π)
i

∣∣∣∣∣∣∣∣ nρ⋃
i=1

Γ(π)
i

∣∣∣∣+ ∣∣∣∣ nρ⋃
i=1

Λ(π)
i

∣∣∣∣ . (21)

All accuracy indicators are defined in the [0, 1] interval. Perfect segmentation sets all
indicators to the maximum value of 1.

3. Results

The proposed brain tumor segmentation procedure was experimentally evaluated in
various scenarios. Tests were performed using four different data sets: the LGG and HGG
records separately from the BraTS 2015 training data set and, similarly, the LGG and HGG
records separately from BraTS 2019 training data set. Detailed information on these data
sets is given in Table 1. The whole segmentation process was the same for all four data sets,
the one indicated in Figure 1.

All records of these four data sets underwent the mandatory pre-processing steps,
namely the histogram normalization and feature generation, resulting in pre-processed
data denoted by P1. At this point, the records were randomly separated into six equal or
almost equal groups, which took turns serving as the test data. An atlas was built using the
training data only, namely the records from the other five groups. The atlas was then used
to extract enhanced feature values for all records, resulting in pre-processed data denoted
by P2. During the whole processing, there were six different such sets denoted by P2, one
for the testing of each group.
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Preprocessed data sets P1 and P2 underwent the ensemble learning process separately,
so that we could evaluate the benefits of the atlas-based pre-processing. All ensembles
involved in this study consisted of nT = 125 binary decision trees, but there were four
variants for each data set, in terms of training data size. Each tree of an ensemble was
trained to separate nF feature vectors, nF ranging from 100 thousand to on million, as indi-
cated in Section 2.6. The intermediary segmentation obtained at the ensemble output is
denoted by S1 or S2, depending on the use of the atlas during pre-processing. The labels
of pixels in S1 or S2 were treated with two post-processing steps described in detail in
Sections 2.7 and 2.8, reaching the final segmentation denoted by S′′1 or S′′2 . Theoretically,
all six segmentation results S1, S2, S′1, S′2, S′′1 , and S′′2 can be equally evaluated with the
statistical measures presented in Section 2.9. The main result is represented by the final
outcome of the segmentation: S′′1 for the data that are not pre-processed with the atlas
and S′′2 for the data with atlas-based enhancement.

Table 3 presents the average (DSC) and overall (D̃SC) values of the Dice similarity
coefficients obtained for various data sets and training data sizes, at four different phases
of the segmentation process. A larger training data size always led to better accuracy: both
the average and overall value rose by 0.5–0.8% if the training data size changed from 100k
to 1000k. If we consider segmentation accuracy the only important quality marker, then
it is worth using the largest training data size. The use of the atlas was beneficial in all
scenarios, but there were large differences in the strength of this effect: at the ensemble
output, the difference was between 0.3% and 2%, while at the final segmentation, it was
between 0.2% and 1%. The difference between the average and overall values in the same
scenario usually ranged between 2% and 3%. This was caused by the distribution of the
Dice similarity coefficients obtained for individual MRI records. The obtained Dice scores,
having most averages between 0.85 and 0.86 and overall values ranging between 0.86 and
0.88, were quite competitive.

Table 3. Average and overall Dice similarity coefficients obtained for various data sets and training data sizes, with and
without atlas-based data enhancement at pre-processing.

Segmentation Train BraTS 2015 LGG BraTS 2015 HGG BraTS 2019 LGG BraTS 2019 HGG

Result Data Size DSC D̃SC DSC D̃SC DSC D̃SC DSC D̃SC

ensemble

(S1)

100k 0.7904 0.8217 0.7827 0.8248 0.7693 0.8065 0.8232 0.8560
output 200k 0.7928 0.8239 0.7858 0.8267 0.7748 0.8113 0.8264 0.8578

without 500k 0.7961 0.8266 0.7903 0.8290 0.7795 0.8154 0.8300 0.8602
atlas 1000k 0.7980 0.8284 0.7935 0.8310 0.7828 0.8185 0.8324 0.8619

final

(S′′1 )

100k 0.8470 0.8618 0.8217 0.8524 0.8266 0.8495 0.8421 0.8679
result 200k 0.8490 0.8635 0.8241 0.8540 0.8309 0.8531 0.8436 0.8692

without 500k 0.8515 0.8657 0.8276 0.8557 0.8347 0.8565 0.8452 0.8707
atlas 1000k 0.8536 0.8674 0.8300 0.8571 0.8378 0.8591 0.8464 0.8717

ensemble

(S2)

100k 0.8040 0.8316 0.7943 0.8279 0.8015 0.8307 0.8259 0.8602
output 200k 0.8063 0.8336 0.7963 0.8301 0.8047 0.8337 0.8281 0.8626
with 500k 0.8089 0.8359 0.7990 0.8334 0.8074 0.8367 0.8307 0.8654
atlas 1000k 0.8107 0.8375 0.8013 0.8357 0.8091 0.8386 0.8326 0.8675

final

(S′′2 )

100k 0.8503 0.8646 0.8299 0.8573 0.8412 0.8624 0.8464 0.8738
result 200k 0.8519 0.8662 0.8317 0.8588 0.8442 0.8652 0.8485 0.8751
with 500k 0.8547 0.8683 0.8337 0.8610 0.8470 0.8681 0.8504 0.8766
atlas 1000k 0.8564 0.8696 0.8355 0.8625 0.8479 0.8691 0.8516 0.8775

Tables 4–7 exhibit the average sensitivity, positive predictive value, specificity, and cor-
rect decision rate (accuracy) values, respectively, obtained for different data sets and various
training data sizes. Not all these indicators increased together with the training data size,
but the rate of correct decisions did, showing that it is worth using a larger amount of
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training data to achieve better segmentation quality. Sensitivity values were in the range
0.8–0.85, while positive predictive values around 0.9, which indicate a fine recognition of
true tumor pixels. Specificity rates were well above 0.99, which is highly important because
it grants a reduced number of false positives. The average rate of correct decisions, with its
values mostly above 0.98, indicates that one out of fifty or sixty pixels was misclassified
by the proposed segmentation procedure. All values from Tables 4–7 reflect the evalu-
ation of the final segmentation outcomes denoted by S′′2 , obtained from atlas enhanced
pre-processed data.

Table 4. Average sensitivity values (TPR)—final result with atlas (S′′2 ).

Train BraTS 2015 Data BraTS 2019 Data

Data Size LGG HGG LGG HGG

100k 0.8155 0.7990 0.8131 0.8366
200k 0.8191 0.8016 0.8179 0.8401
500k 0.8248 0.8056 0.8234 0.8444

1000k 0.8299 0.8094 0.8279 0.8473

Table 5. Average positive predictive values (PPV)—final result with atlas (S′′2 ).

Train BraTS 2015 Data BraTS 2019 Data

Data Size LGG HGG LGG HGG

100k 0.9071 0.8935 0.9055 0.8888
200k 0.9064 0.8936 0.9046 0.8878
500k 0.9043 0.8923 0.9032 0.8857

1000k 0.9019 0.8909 0.8986 0.8842

Table 6. Average specificity values (TNR)—final result with atlas (S′′2 ).

Train BraTS 2015 Data BraTS 2019 Data

Data Size LGG HGG LGG HGG

100k 0.9936 0.9913 0.9933 0.9923
200k 0.9935 0.9913 0.9932 0.9922
500k 0.9933 0.9912 0.9931 0.9920

1000k 0.9931 0.9910 0.9927 0.9919

Table 7. Average accuracy values (ACC)—final result with atlas (S′′2 ).

Train BraTS 2015 Data BraTS 2019 Data

Data Size LGG HGG LGG HGG

100k 0.9812 0.9792 0.9796 0.9837
200k 0.9814 0.9794 0.9799 0.9838
500k 0.9816 0.9796 0.9803 0.9840

1000k 0.9817 0.9797 0.9803 0.9840

Figure 5 exhibits the Dice similarity coefficients obtained for individual MRI records
(DSCi, for i = 1 . . . nρ) plotted against the true size of the tumor according to the ground
truth. Each cross represents one of the MRI records, while the dashed lines indicate the
linear trend of the DSCi values identified with linear regression. As was expected, the linear
trends indicate better segmentation accuracy for larger tumors. It is also visible that for
most tumors, we achieved a Dice score above 0.8, and there were some records below that
limit where the Dice scores could be very low. This is mostly because not all records in the
BraTS data have the same image quality; some of them even contain artificially created
obstacles. This distribution of the DSCi values is also the reason why the overall Dice
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similarity value was higher than the average (D̃SC > DSC) in case of all four data sets. In
fact, D̃SC was close to the median value of individual Dice scores DSCi, i = 1 . . . nρ.
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Figure 5. Individual Dice scores plotted against the true size of the tumor: (a) 54 records of BraTS
2015 LGG data; (b) 220 records of BraTS 2015 HGG data; (c) 76 records of BraTS 2019 LGG data; (d)
259 records of BraTS 2019 HGG data.

Figure 6 presents the Dice similarity scores we may expect for a 10 cm3 and a 100 cm3
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sized tumor according to the linear trends identified from the data presented in Figure 5,
in the case of the four data sets separately. Small tumors of 10 cm3 are not even present in
all data sets, but the proposed method apparently learned how to segment them accurately,
with an expected Dice similarity value around 0.8, which reportedly represents fine seg-
mentation [57]. The Dice score obtained for an average sized tumor from the data sets was
expected in the proximity of 0.85.
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Figure 6. Expected Dice similarity coefficients for a 10 cm3 and a 100 cm3 sized tumor, in the case of
the four BraTS data sets, according to the identified linear trends.

Figure 7 exhibits some selected segmentation results. Four MRI volumetric records
were selected from each of the four data sets, out of which that slice was chosen that
contained the highest number of positive pixels, ground truth positives, and positive
labeled pixels combined. Thus, each row in this figure exhibits one slice from a volume
in five images, which represent the four observed data channels T1, T2, T1C, and FLAIR
and the segmentation outcome, respectively. In the segmentation outcome, true positives
are drawn in green, false negatives in red, false positives in blue, and true negatives in grey.
These segmentation results suggest that there is still place for improvement in establishing
the exact boundary of the tumor, and also in suppressing the patches of false positives.

The proposed procedure does not require special hardware equipment. The whole
evaluation process was performed with an Asus Zenbook computer having a quad-core i7
processor with 1.8 GHz nominal frequency, 16 GB RAM, and 1 TB SSD for data storage.
The most part of the time consuming processing steps was implemented to run in paral-
lelized tasks. The average processing time of an MRI record (coming in uncompressed .nii
files) never seen by the trained procedure was 58 s, out of which: (1) 26 s were needed by
the pre-processing including feature generation and atlas based data enhancement; 21 s
were required by the trained ensemble to produce the intermediary segmentation; (3) 11 s
were the duration of the post-processing steps. No GPU was involved in the computations,
so there is still place for improvement in terms of efficiency.
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Figure 7. One slice from 16 different MRI records, four from each data set, showing the four observed
data channels and the segmentation result. The first four columns present the T1, T2, T1C, and FLAIR
channel data of the chosen slices. The last column shows the segmented slice, representing true

positives (|Γ(π)
i ∩Λ(π)

i |) in green, false negatives (|Γ(π)
i ∩Λ(ν)

i |) in red, false positives (|Γ(ν)
i ∩Λ(π)

i |)
in blue, and true negatives (|Γ(ν)

i ∩Λ(ν)
i |) in grey, where i is the index of the current MRI record.

4. Discussion

Table 8 presents the accuracy performance of a collection of state-of-the-art methods
proposed for the whole brain tumor segmentation problem. Although they are recent
solutions, the vast majority still use the BraTS 2013 and BraTS 2015 data sets for evaluation
purposes. An important requirement for the methods to be selected is that they apparently
report results obtained by processing the whole data set, not only some records that
give high accuracy. The Dice similarity coefficients shown in the table are written in the
form published by the authors, with the intention to be interpreted correctly. We do not
agree with publishing DSC values expressed with two decimals only, because the half
percent imprecision can hide an extremely large difference. One important thing reflected
by this table is that it is much easier to obtain high accuracy with the BraTS 2013 data,
which is probably caused by the reduced number of records in this set that cannot cover
enough variation of tumor shapes and appearances. See for example the method of Pereira
et al. [29], which obtains average Dice scores of 0.88 and 0.78 on BraTS 2013 and BraTS
2015, respectively. The proposed procedure with its achieved Dice scores belongs to the set
of methods with top accuracy.
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From the point of view of efficiency, the main question is how much time a method
needs to perform a whole segmentation on an MRI record of the same type that is never
seen during the training of the method. Table 9 presents the performance against the
clock of some selected state-of-the-art methods. Our goal is to report those runtime values,
which reflect the total duration needed, starting from uncompressed .nii files and ending
when the segmentation result is saved, but we cannot be sure that all methods included
in this table report this kind of duration. It is not surprising at all that solutions based on
CNN need a longer time even if they run on GPUs, because their architecture is usually
more complex. However, other methods can also achieve fine segmentation quality in less
time using CPUs only. This is probably because fine tuning complex architectures is much
more difficult, and some of them may still run in a suboptimal state. With its reduced
time complexity, our proposed method is very competitive and can be deployed without
needing any special hardware.

Table 8. Accuracy comparison with state-of-the-art methods using BraTS 2013 and BraTS 2015 data.

Method Year Classifier Data Dice Scores

Tustison et al. [11] 2015 RF, MRF BraTS 2013 DSC = 0.87
Pereira et al. [29] 2016 CNN BraTS 2013 DSC = 0.88

Lefkovits et al. [58] 2017 RF BraTS 2013 DSC = 0.868
Havaei et al. [59] 2017 deep CNN BraTS 2013 DSC = 0.88
Pinto et al. [12] 2018 ERT BraTS 2013 DSC = 0.85

Pereira et al. [60] 2019 FCNN BraTS 2013 DSC = 0.86

Pereira et al. [29] 2016 CNN BraTS 2015 DSC = 0.78
Kamnitsas et al. [32] 2017 deep CNN BraTS 2015 DSC = 0.849

Xue et al. [34] 2018 CNN, GAN BraTS 2015 DSC = 0.85
Zhao et al. [30] 2018 FCNN, CRF BraTS 2015 DSC = 0.84

Hussain et al. [61] 2018 deep CNN BraTS 2015 DSC = 0.86
Chen et al. [35] 2019 CNN BraTS 2015 DSC = 0.85
Ding et al. [33] 2019 deep residual network BraTS 2015 DSC = 0.86
Pei et al. [62] 2020 RF, boosting BraTS 2015 DSC = 0.850
Wu et al. [31] 2020 CNN BraTS 2015 DSC = 0.83

Proposed method 2020
BraTS 2015 DSC = 0.8564, D̃SC = 0.8696 (LGG)

ensembles of DSC = 0.8355, D̃SC = 0.8625 (HGG)

binary decision trees BraTS 2019 DSC = 0.8479, D̃SC = 0.8691 (LGG)
DSC = 0.8516, D̃SC = 0.8775 (HGG)

Table 9. Efficiency comparison with state-of-the-art methods. Runtime is expressed in seconds, and it
represents the total time needed for the whole processing of a multi-spectral BraTS record, averaged
over one or more BraTS data sets.

Method Year CPU GPU Runtime (s)

Pereira et al. [29] 2016 i7 3.5 GHz GTX 980 480
Havaei et al. [59] 2017 unspecified unspecified 90–180

Kamnitsas et al. [32] 2017 unspecified GTX TitanX 12 GB 210
Zhao et al. [30] 2018 unspecified shared GPU server 120–240
Chen et al. [35] 2019 unspecified GTX TitanX 12 GB 187
Hu et al. [63] 2019 unspecified unspecified 90–180

Imtiaz et al. [15] 2019 i7 3.2 GHz no GPU involved 335
Proposed method 2020 i7 1.8 GHz no GPU involved 58
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The main parameters of the proposed brain tumor segmentation procedure are: (1)
the size of training data, or in other words, the number of feature vectors used to train
each BDT in the ensemble, nF; (2) the percentage of negatives p− and positives p+ in the
set of feature vectors used to train the BDTs; (3) the number of trees in the ensemble nT ;
(4) the presence or absence of the atlas enhanced pre-processing within the pipeline of
the procedure.

The decision on the training data size has to take into account its twofold implications.
Larger training data sets enable the procedure to achieve slightly better accuracy in all
tested cases. On the other hand, changing nF from 100k to 1000k raises the training time of
an ensemble from 2 to 40 min, but the total duration of a segmentation after having the
ensemble trained only increases by 4–5 s. Once the large ensembles are trained, they can
perform the segmentation quickly enough without prohibitive computational load.

The percentage of negatives p− in the training data can have a strong implication on
the segmentation quality. Experiments show that there are MRI records in the BraTS data
sets that give the best segmentation accuracy at p− = 75%, others at p− = 95%, and many
of them at various values between these two. It is very likely that the optimal value of
p− for a given MRI record strongly correlates with the true rate of negative pixels in the
volume. However, this true rate is unknown, as we are not allowed to look at the ground
truth while testing. The best accuracy at the ensemble output could be achieved if we had
a precise estimation for each MRI record, which is the best choice for p−, only using the
intensity values of the four observed data channels. Such an estimator would allow for
2–3% higher Dice similarity coefficients at the ensemble output. Without such an estimator,
a dedicated constant value of p− needs to be chosen for all MRI records in each data set.
In this study, p− was set to 91% for HGG data and 93% for LGG data, based on evaluations
performed on OOB data.

The number of trees in the ensemble (nT) theoretically has an impact on the decision
error, which should decrease with any additional tree included in the ensemble. Exper-
iments show that the decision accuracy saturates at a certain level due to the noise that
is present in the data. Further, the number of trees linearly affects the runtime of both
the training and testing process. After several evaluation loops performed on OOB data,
with various values of nT ranging from five to 255, the size of the ensemble was chosen to
be set to nT = 125 [43,64].

The use of the atlas caused up to a 3% improvement in the average Dice scores
obtained at the output of the ensemble (see the difference between solutions S1 and S2 in
Table 3), but this difference diminished to a maximum of 1% in the accuracy of the final
segmentation. Even for this difference, we consider the use of the atlas beneficial, as it does
not affect the execution time of the procedure much.

The relatively high accuracy achieved by the proposed procedure is probably caused
by the way it handles the imbalanced amounts of positive and negative data. Our BDTs
are allowed to grow to unlimited depth during ensemble training, as deep as is found
necessary by the entropy-based criterion applied in decision nodes. Unlike the random
forest classifier, which limits its depth and sometimes assigns labels to mixtures of positives
and negatives when the depth limit is reached, our binary trees has crisp labels assigned to
their leaves. This allows for more precise classification unless the trees are over-trained.
With the parameter settings we used, the decision trees did not show signs of being over-
trained, which is supported by the accuracy indicators that improved as the training data
size grew. The number of false positives was not high at the output of the ensemble, and it
was still reduced by the twofold post-processing, which discarded those predicted positive
structures that were too small or too flat to be reliably called tumors.

The proposed procedure also has some limitations. In its current version, it is trained
and tuned to segment the whole tumor only, not the parts of it. Using only a set of
handcrafted features, it may not succeed in exploring the input data as thoroughly as
a convolutional network can. Further, the approximately three million decision nodes
contained by our most complex trained forest of binary decision trees is less than the
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number of parameters used in current CNN architectures by up to two orders of magnitude.
This might become a visible limitation in accuracy if we increase the number of MRI records
used for training and testing.

5. Conclusions

This paper proposes a fully automatic procedure for brain tumor segmentation from
multi-spectral magnetic resonance image data. The procedure consists of three main
phases. The first phase prepares the data to be suitable for supervised classification, via
noise suppression, handling missing data, histogram normalization, feature generation,
and an optional atlas-based data enhancement. In the second phase, an initial labeling
of the pixels is achieved, using supervised classification performed by an ensemble of
binary decision trees. In the final phase, the intermediary pixel labels are refined using a
random forest-based reclassification and a structural post-processing step that investigates
contiguous regions within the detected tumor. The proposed procedure is trained and
evaluated using all the MRI records of the BraTS 2015 and BraTS 2019 training data sets.

With average Dice similarity coefficients of up to 85.6% and overall Dice scores
approaching 88%, as well as the whole processing time of an MRI record being below one
minute without needing a GPU for high-speed computations, the proposed procedure is
in competition with state-of-the-art methods. The segmentation quality achieved by the
procedure could still improve with the use of more sophisticated handcrafted features in
the decision ensemble, while the implementation of a feature selection scheme could be
beneficial to the efficiency of the proposed procedure.
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The following abbreviations are used in this manuscript:

ACC accuracy
BDT binary decision tree
BraTS Brain Tumor Segmentation (Challenge)
CNN convolutional neural network
CPU central processing unit
CT computed tomography
DICOM digital imaging and communications in medicine
DSC Dice similarity score
ERT extremely randomized trees
FCM fuzzy c-means
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FCNN fully convolutional neural network
FLAIR fluid-attenuated inversion recovery
GAN generative adversarial network
GPU graphical processing unit
GT ground truth
HGG high-grade glioma
INU intensity non-uniformity
LGG low-grade glioma
MICCAI Medical Image Computation and Computer Assisted Intervention
MLP multi-layer perceptron
MRI magnetic resonance imaging
MRF Markov random field
OOB out-of-bag
PCA principal component analysis
PET positron emission tomography
PPV positive predictive value
RAM random access memory
RF random forest
SLIC simple linear iterative clustering
SSD solid state drive
SVM support vector machine
TNR true negative rate
TPR true positive rate
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64. Győrfi, A.; Kovács, L.; Szilágyi, L. Brain tumor detection and segmentation from magnetic resonance image data using ensemble
learning methods. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Bari, Italy, 6–9 October
2019; pp. 919–924. [CrossRef]

http://dx.doi.org/10.1109/SAMI48414.2020.9108752
http://dx.doi.org/10.1109/TMI.2006.891486
http://www.ncbi.nlm.nih.gov/pubmed/17354645
http://dx.doi.org/10.1016/j.cmpb.2012.01.005
http://dx.doi.org/10.1109/TMI.2010.2046908
http://dx.doi.org/10.1109/42.836373
http://dx.doi.org/10.1016/j.neuroimage.2009.12.059
http://dx.doi.org/10.1016/j.neuroimage.2011.05.038
http://dx.doi.org/10.1038/srep23376
http://dx.doi.org/10.1038/sdata.2017.117
http://dx.doi.org/10.1155/2018/2512037
http://www.ncbi.nlm.nih.gov/pubmed/29853828
http://dx.doi.org/10.1007/s12652-018-0883-3
http://dx.doi.org/10.1016/j.jvcir.2018.11.047
http://dx.doi.org/10.1007/978-3-030-33904-3_35
http://dx.doi.org/10.1016/j.jksuci.2018.11.001
http://dx.doi.org/10.1007/978-3-319-55524-9_9
http://dx.doi.org/10.1016/j.media.2016.05.004
http://dx.doi.org/10.1109/TMI.2019.2918096
http://dx.doi.org/10.1016/j.neucom.2017.12.032
http://dx.doi.org/10.1016/j.bspc.2019.101648
http://dx.doi.org/10.1109/ACCESS.2019.2927433
http://dx.doi.org/10.1109/SMC.2019.8914463

	Introduction
	Materials and Methods 
	Overview
	Data
	Histogram Normalization
	Feature Generation
	Multi-Atlas-Based Data Enhancement
	Ensemble Learning
	Random Forest-Based Post-Processing
	Structural Post-Processing
	Evaluation Criteria

	Results
	Discussion
	Conclusions
	References

