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Abstract. Suppressed fuzzy c-means clustering was proposed as an at-
tempt to combine the better properties of hard and fuzzy c-means cluster-
ing, namely the quicker convergence of the former and the finer partition
quality of the latter. In the meantime, it became much more than that. Its
competitive behavior was revealed, based on which it received two gen-
eralization schemes. It was found a close relative of the so-called fuzzy
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c-means algorithm with generalized improved partition, which could im-
prove its popularity due to the existence of an objective function it op-
timizes. Using certain suppression rules, it was found more accurate and
efficient than the conventional fuzzy c-means in several, mostly image
processing applications. This paper reviews the most relevant extensions
and generalizations added to the theory of fuzzy c-means clustering mod-
els with suppressed partitions, and summarizes the practical advances
these algorithms can offer.

1 Introduction

C-means clustering algorithms represent a subset of the objective function
optimizer clustering methods, which group a set of object data into a set of
predefined number of clusters. Chronologically, the first c-means clustering
algorithm is hard c-means (HCM) having its origins in the works of Steinhaus
[34] and McQueen [23], also known as k-means, which uses bivalent (crisp)
logic to represent the created partition, namely it assigns each object to a
single cluster. The fuzzy c-means (FCM) algorithm was introduced by Dunn
[7], and generalized by Bezdek [2]. FCM uses a probabilistic partition to create
the clusters: for any object, the sum of the fuzzy memberships with respect to
all clusters is always one.

Both HCM and FCM have certain limitations. HCM converges quickly but
it is very sensitive to initialization [1], and frequently gives mediocre partitions
because it gets stuck in local minima of the objective function. On the other
hand, FCM has a slower convergence, which becomes a problem when the
input data is huge. Despite these limitations, HCM and FCM are very popular
algorithms, having lots of applications in various research domains.

Several solutions have been proposed to reduce the runtime of the FCM algo-
rithm, without damaging the quality of the provided partition. Early solutions
generally turned to data approximation, e.g. Cannon [3] et al. and Kamel et al.
[18] implemented FCM using only computations on integer values. Cheng et
al. [6] deployed a random sampling of the input data, thus achieving a fast ap-
proximative FCM clustering. Later, data reduction schemes were introduced,
aggregating similar input data before proceeding to clustering. Eschrich et al.
[8] accelerated FCM this way by an order of magnitude. Data aggregation was
also employed in image segmentation: clustering gray intensity levels instead of
individual pixel intensities can speed up FCM by up to two orders of magnitude
[29]. Szilágyi et al. [31] extended this pixel aggregation scheme to color images,
thus achieving an efficient color reduction procedure. Alternately, Lázaro et
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al. [21] proposed a parallel hardware implementation to FCM, and deployed it
successfully in signal processing. Kolen and Hutcheson [20] proposed an FCM
implementation that does not need to store the partition matrix, which is a
relevant step toward clustering unloadable amounts of data. Further remark-
able FCM solutions specialized for clustering huge data sets were introduced
by Hathaway and Bezdek [12], and Havens et al. [13].

FCM has a main governing parameter called fuzzy exponent, usually de-
noted by m, and generally constrained by m > 1. The value of m has a strong
impact on the fuzzyness of the created partition, and on the convergence speed
as well. Large values of m reduce the ability of FCM to distinguish the input
data: above a certain limit value all clusters merge together at the grand mean
of the input data. However, this limit value is unknown, it strongly depends
on the data. If m approaches its lower limit, the fuzzy partition tends toward
the crisp one. In the limit case m→ 1+, FCM becomes HCM.

Let us consider an FCM algorithm that uses fuzzy exponent m0. If we do
not like its convergence speed and the partition it makes, we may reduce the
fuzzy exponent to m (where 1 < m < m0), which is a step towards the
behavior of the HCM algorithm. The algorithm we obtain with this change
is still FCM. The suppressed fuzzy c-means (s-FCM) algorithm, introduced
by Fan et al. [9] in 2003, also makes a step towards HCM determined by the
so-called suppression rate α ∈ [0, 1], but a different way, without staying in the
bounds of the FCM algorithm. The s-FCM proved to converge in less iterations
than FCM when used with the same fuzzy exponent m, and it provided fine
partitions in all tested cases. However, the authors left several questions open,
including (1) how to choose the value of the suppression rate α, or (2) is s-
FCM an optimal algorithm? Since its introduction, the theory of the s-FCM
algorithm evolved a lot, some of the open questions were answered and further
open questions emerged. For example, Szilágyi et al. [28] explained the effect
of the partition suppression in a comparative study with competitive learning
[19], based on which later they introduced several generalized suppression rules
for the fuzzy partition [30]. Several other works [15, 16, 17, 24, 27, 36] proposed
minor modifications of the original s-FCM algorithm, providing parameter
selection schemes for the suppression rate, and successfully applying s-FCM
in various image processing tasks.

This paper proposes to provide an inventory of the theoretical advances
regarding the s-FCM algorithm, and the successful applications that emerged
since its introduction. The rest of this paper is structured as follows: Section
2 enumerates the foundations of the s-FCM algorithm, the c-means clustering
models s-FCM relies on. Section 3 presents the details of the original s-FCM
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algorithm, analyses its competitive behavior, and shows some of its general-
ization schemes. Section 4 explores the relation between suppressed c-means
clustering models and the so-called FCM with generalized improved partition,
giving some hints about the optimality of suppressed FCM clustering models.
Section 5 relates on suppression parameter setting techniques found in the
literature. Section 6 discusses the advantages and disadvantages of suppressed
FCM clustering algorithms, while Section 7 concludes this study.

2 Background
2.1 The fuzzy and hard c-means algorithms
The conventional c-means clustering algorithms partition a set of object data
into a predefined number of c clusters, through minimizing of a quadratic
objective function. The objective function of FCM is:

JFCM =

c∑
i=1

n∑
k=1

um
ik||xk − vi||

2 =

c∑
i=1

n∑
k=1

um
ikd

2
ik , (1)

where

• xk stands for the input data (k = 1, 2, . . . , n),

• vi represents the prototype (or centroid or representative element) of
cluster i (i = 1, 2, . . . , c),

• uik ∈ [0, 1] is the fuzzy membership function describing the degree to
which input vector xk belongs to cluster i,

• m > 1 is the fuzzy exponent (m = 2 in the version of Dunn [7]),

• and dik represents the distance between vector xk and cluster prototype
vi.

FCM uses a probabilistic partition, meaning that for any input vector xk

we have
c∑

i=1

uik = 1 . (2)

The objective function JFCM is minimized by alternately applying the opti-
mization of JFCM over {uik} with vi fixed, i = 1, 2, . . . , c, and the optimization
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Figure 1: Fuzzy membership functions provided by FCM in a 1D problem,
with random integer input values between 0 and 100. In case of m = 6, the
peak of the membership functions also reach the maximum value 1, but not
at integer valued inputs.

of JFCM over {vi} with uik fixed, i = 1, 2, . . . , c; k = 1, 2, . . . , n [2]. The opti-
mization formulas are deduced from the zero gradient conditions of JFCM and
Lagrange multipliers, and obtained as follows:

u⋆
ik =

d
−2/(m−1)
ik

c∑
j=1

d
−2/(m−1)
jk

∀ i = 1, 2, . . . , c

∀k = 1, 2, . . . , n
, (3)

v⋆
i =

n∑
k=1

um
ikxk

n∑
k=1

um
ik

∀ i = 1, 2, . . . , c . (4)

According to the optimization scheme of the FCM, Eqs. (3) and (4) are
alternately applied, until cluster prototypes converge.

HCM is a limit case of FCM, which uses m→ 1+, and thus the memberships
are obtained by the winner-takes-all rule:

u⋆
ik =

{
1 if i = arg min

j
{djk, j = 1, . . . , c}

0 otherwise
. (5)
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The propotype of each cluster in HCM is the average of the input vectors
assigned to it, according to Eq. (4) using m = 1.

2.2 FCM versions with improved partition
An undesired property of the fuzzy memberships provided by FCM is their
multimodality. Figure 1 presents some membership functions obtained by
FCM in a single dimension problem with c = 4 clusters at various values of the
fuzzy exponent. Each of the four fuzzy membership functions has a maximum
at the cluster prototype, having the value of 1. Because of the probabilistic
constraint, all other fuzzy membership functions are zero at these points. But,
for example the fuzzy membership function represented in blue can have ele-
vated values for input data situated very far from the cluster prototype. This
is the multimodality, which gets stronger as the value of the fuzzy exponent
m grows. So it is obvious that the multimodality gets suppressed if we reduce
the value of m. Alternately, intending to suppress the multimodality, Höpp-
ner and Klawonn [14] proposed the so-called FCM with improved partition
(IFP-FCM), which adds a rewarding term to the objective function of FCM:

JIFP−FCM =

c∑
i=1

n∑
k=1

µm
ikd

2
ik −

n∑
k=1

ak

c∑
i=1

(µik − 1/2)2 , (6)

where parameters denoted by ak are supposed to be positive numbers. The
second term pushes the fuzzy membership values uik, i = 1, 2, . . . , c; k =
1, 2, . . . , n towards the limits situated at 0 and 1, while preserving the prob-
abilistic constraint. A generalized version of this algorithm (GIFP-FCM) was
introduced by Zhu et al. [40], by replacing the rewarding term as follows:

JGIFP−FCM =

c∑
i=1

n∑
k=1

µm
ikd

2
ik +

n∑
k=1

ak

c∑
i=1

µik(1− µm−1
ik ) . (7)

The partition update formula derived by zero gradient conditions of the ob-
jective function is

µ⋆
ik =

(d2
ik − ak)

−1/(m−1)

c∑
j=1

(d2
jk − ak)−1/(m−1)

∀ i = 1, 2, . . . , c

∀k = 1, 2, . . . , n
. (8)

Fuzzy membership functions obtained with Eq. (8) can be interpreted as FCM
partition memberships obtained by applying virtually reduced distances be-
tween cluster prototypes and input data. Each distance dik is replaced by
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δik =
√
d2
ik − ak. The authors also proposed a formula for ak:

ak = ωmin
i
{d2

ik, i = 1, 2, . . . , c} , (9)

where ω ∈ [0.9, 0.99]. Setting ω = 1 would reduce GIFP-FCM to HCM, while
ω = 0 to FCM.

It is important to remark that both of the above improved clustering models
kept FCM’s prototype update formula given in Eq. (4), but applied to fuzzy
membership functions µik instead of uik, as described in Eq. (11).

Lately, these improved FCM clustering models were involved in several ap-
plications [4, 5].

3 The suppressed FCM algorithm
3.1 The original suppressed FCM
The suppressed fuzzy c-means algorithm was introduced by Fan et al. [9],
declaring the goal to propose an algorithm with better convergence speed and
reduced execution time than FCM, but providing the same partition quality.
The s-FCM algorithm manipulates the optimization scheme of FCM, by in-
serting an extra step in each iteration, between partition updating via Eq. (3)
and prototype updating via Eq. (4). This new step deforms the partition given
by FCM according to the following rule:

µik =

{
1− α+ αuik if i = arg max

j
{ujk}

αuik otherwise
, (10)

where µik (i = 1, 2, . . . , c; k = 1, 2, . . . , n) represents the fuzzy memberships
obtained after suppression. The cluster prototype update formula of s-FCM
becomes:

v⋆
i =

n∑
k=1

µm
ikxk

n∑
k=1

µm
ik

∀ i = 1, 2, . . . , c . (11)

Just like in case of competitive clustering [19], s-FCM sets up a competition
for each input vector xk in each iteration, which is won by the cluster whose
prototype is situated at shortest distance from xk. Fuzzy memberships of xk

with respect to any non-winner cluster is proportionally suppressed (µik =
αuik), while all suppressed parts are given to the winner cluster to preserve
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Figure 2: Shortened distance caused by suppression.

the probabilistic constraint: µwk = 1− α+ αuwk. Let w stand for the winner
class index in the current competition for input vector xk. Actually it should
be denoted by wk, as it is specific to input vector xk, but for the sake of
simplicity, the index of w is neglected in all formulas.

In the original article that introduced s-FCM, Fan et al. did not give any
recipe or hint how to choose a suppression rate that would be optimal in any
sense, or suitable for general or any specific purpose. They set the suppression
rate to the middle of its range (α = 0.5). Fan et al. validated s-FCM with
some toy problems and found it insensitive to the fuzzy exponent m [9].

3.2 Suppression, regarded as a competition

Szilágyi et al. [28] showed that the proportional suppression of the FCM par-
tition, the multiplication of all non-winner fuzzy memberships with a sup-
pression rate α ∈ [0, 1], is mathematically equivalent with a reduction of the
distance between the input vector and the closest cluster prototype. In any
stage of the algorithm at partition updating, for any input vector xk and its
winner class with index w, there exists a virtually reduced distance δwk < dwk,
which fulfils all partition update formulas of s-FCM, namely:

µwk =
δ

−2
m−1

wk

δ
−2

m−1

wk +
c∑

j=1,j ̸=w

d
−2

m−1

jk

= 1− α+ α
d

−2
m−1

wk
c∑

j=1

d
−2

m−1

jk

(12)
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Figure 3: Some characteristics of the s-FCM algorithm: (a) learning rate η

plotted against suppression rate α in case of uw = 0.8, at various constant
values of fuzzy exponent m; (b) learning rate η plotted against suppression
rate α in case of m = 2, at various constant values of winner fuzzy membership
uw; (c) learning rate η plotted against winner fuzzy membership uw in case
of α = 0.5, at various constant values of fuzzy exponent m.

and

µik =
d

−2
m−1

ik

δ
−2

m−1

wk +
c∑

j=1,j ̸=w

d
−2

m−1

jk

= α
d

−2
m−1

ik
c∑

j=1

d
−2

m−1

jk

∀i ̸= w . (13)

This virtual distance reduction is exhibited in Fig. 2. For the sake of clarity
we need to remark that although the competition among clusters seems to be
the same as in case of conventional competitive algorithms, these algorithms
radically differ in the sense that conventional competitive algorithms do not
work with quadratic objective functions [26].

Szilágyi et al. [28] also defined a quasi learning rate η of the s-FCM algo-
rithm, in a similar way to the learning rate of competitive algorithms, and
deduced its formula:

η(m,α, uwk) ≡ 1−
δwk

dwk

= 1−

(
1+

1− α

αuwk

) 1−m
2

, (14)

where uwk stands for the winner fuzzy membership value of vector xk, obtained
without suppression. The learning rate η depends on both parameters of the
s-FCM algorithm (fuzzy exponent m and suppression rate α), but also on the
winner fuzzy membership function (uwk) of the given input vector xk. This
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means that η can hardly be a constant in any s-FCM scenario, unless defined
as such.

3.3 Generalized suppressed FCM algorithm
The FCM algorithm with generalized suppression (gs-FCM) was introduced
by Szilágyi et al. [30]. The s-FCM algorithm, as proposed by Fan et al. [9],
uses a constant suppression rate α. There are three possible ways to give the
suppression rate some variation:

1. Time variant suppression means to employ a suppression rate αt that
changes according to the iteration counter t. This sort of variation was
used for example by Hung et al. [15].

2. Context sensitive or data sensitive suppression means to introduce time
invariant rules of suppression, which provide dedicated suppression rate
αk for each input vector xk, depending on the current distances dik,
k = 1, 2, . . . , n.

3. Time and context variant suppression means to combine both previous
variation versions in a unique suppression rule.

Szilágyi et al. [30] focused on context sensitive suppression rules only. Aim-
ing at achieving quicker convergence they did not consider changing the sup-
pression rule in every iteration. Their suppression rules were define according
to two different schemes, presented in the following sections.

3.3.1 Learning rate defined as a function of the winner fuzzy mem-
bership

The first generalization scheme of the s-FCM algorithm uses a learning rate
defined as a function of winner fuzzy membership uw: η = f(uw), where f :
[0, 1]→ [0, 1] is a continuous function. Using Eq. (14), the context dependent
suppression rate generally becomes

αk =
[
1− uw + uw(1− f(uw))

2
1−m

]−1

. (15)

Some special cases using the above definition are:
• θ-type gs-FCM (gsθ-FCM) that uses constant learning rate η = f(uw) =

θ with parameter θ ∈ [0, 1], which leads to suppression rate

αk =
[
1− uw + uw(1− θ)

2
1−m

]−1

, (16)
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Table 1: Original s-FCM and generalized s-FCM algorithms defined with the
first scheme (η = f(uw)): definitions and context dependent suppression rates.
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Definition η vs. uw αk vs. uw
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Table 2: Generalized s-FCM algorithms defined with the second scheme (µw =
g(uw)): learning rates and context dependent suppression rates.

• ρ-type gs-FCM (gsρ-FCM) that uses learning rate linearly decreasing
with the winner fuzzy membership η = f(uw) = 1−ρuw with parameter
ρ ∈ [0, 1], which leads to suppression rate

αk =

[
1− uw + ρ

2
1−mu

3−m
1−m
w

]−1

, (17)



314 L. Szilágyi et al.

• β-type gs-FCM (gsβ-FCM) that uses learning rate decreasing with the
winner fuzzy membership according to the exponential rule η = f(uw) =

1− u
β

1−β
w with parameter β ∈ [0, 1), which leads to suppression rate

αk =

[
1+ uw

(
u

2β
(1−m)(1−β)
w − 1

)]−1

. (18)

3.3.2 Direct formula between µw and uw

The second generalization scheme is defined by a direct formula between the
winner fuzzy membership values before and after suppression. In a general
form, it is defined as µw = g(uw) with g : [0, 1] → [0, 1] and g(x) ≥ x

∀x ∈ [1/c, 1]. Using Eq. (14), the context dependent suppression rate gen-
erally becomes

αk =
1− g(uw)

1− uw
∀uw ∈ [1/c, 1) . (19)

For the special case when uw = 1, the suppression rate is irrelevant, as non-
winner memberships are zero valued, so there is nothing to suppress. Some
special cases using the above definition are:

• τ-type gs-FCM (gsτ-FCM) that is inspired by the relativistic speed ad-
dition formula µw = (uw+τ)/(1+uwτ) with parameter τ ∈ [0, 1], which
leads to suppression rate

αk =
1− τ

1+ uwτ
∀uw ∈ [1/c, 1] , (20)

• σ-type gs-FCM (gsσ-FCM) that uses the relation µw = uσ
w with param-

eter σ ∈ [0, 1], which leads to suppression rate

αk =
1− uσ

w

1− uw
∀uw ∈ [1/c, 1) , (21)

• ξ-type gs-FCM (gsξ-FCM) that uses learning rate decreasing with the
winner fuzzy membership according to the rule µw = (sinπuw/2)

ξ with
parameter ξ ∈ [0, 1], which leads to suppression rate

αk =
1−

(
sin πuw

2

)ξ
1− uw

∀uw ∈ [1/c, 1) . (22)
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Algorithm 1: The gs-FCM algorithm
Data: Input data xk, k = 1, 2, . . . , n

Data: Fuzzy exponent m > 1, suppression scheme and parameter,
limit ε

Result: Cluster prototypes vi, i = 1, 2, . . . , c

Initialize cluster prototypes vi, i = 1, 2, . . . , c with random
input vectors, vi ̸= vj ∀i ̸= j

repeat
for k = 1, 2, . . . , n do

Compute fuzzy memberships uik, i = 1, 2, . . . , c with Eq.
(3).

Compute suppression rate αk, according to the chosen
suppression scheme and parameter value with one of
the Eqs. (16)-(22).

Compute suppressed fuzzy memberships µik, i = 1, 2, . . . , c

with Eq. (10), using suppression rate αk.
end
for i = 1, 2, . . . , c do

v(old)
i ← vi

Update cluster prototype vi with Eq. (11).
end

until
c∑

i=1

||v(old)
i − vi|| < ε;

3.3.3 The gs-FCM algorithm

The previous sections presented six generalized suppression rules, each regu-
lated by a suppression parameter that can take an infinite number of different
values. A limited number of these parameter values (up to two) reduce the
generated algorithm to either FCM or HCM, while all other value define new
clustering algorithms, different from HCM and FCM, or the original s-FCM.
The suppression rules introduced above are summarized in Tables 1 and 2.
Anyone can define further suppression rules by following the recipe given in
Sections 3.3.1 and 3.3.2, by proposing a function η = f(uw) or µw = g(uw),
different from the ones exhibited in Tables 1 and 2. The gs-FCM algorithm is
summarized in Algorithm 1.
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4 The relation between s-FCM and GIFP-FCM clus-
tering models

Now let us investigate the similarities and differences in the main loop of
gs-FCM variants (let us call in this section the original s-FCM a variant of
gs-FCM) and GIFP-FCM:

• All gs-FCM variants and GIFP-FCM use the same formula to update
the cluster prototypes, given in Eq. (11).

• Compared to the original FCM, all gs-FCM variants and GIFP-FCM use
modified dik distances. GIFP-FCM changes all distances by subtracting
the same amount from the square of all dik values, i = 1, 2, . . . , c, while
gs-FCM variants reduce only the shortest distance dwk to δwk = dwk(1−
ηk), where ηk is the learning rate applied to vector xk.

• GIFP-FCM makes two optimal steps in each loop, by executing its par-
tition update and cluster prototype update formula. However, it changes
the cost function in every loop by establishing the winner cluster for each
vector xk and adjusting the ak values accordingly. Szilágyi [32] showed
that gs-FCM variants can act the same way, the only difference is in the
ak terms, which are changed to sik and thus made dependent on cluster
index i.

Szilágyi [32] introduced a unification theory for gs-FCM variants and GIFP-
FCM. The new clustering model has the objective function very similar to the
one of GIFP-FCM, but the so-called rewarding term, now denoted by sik, has
a double indexing.

JU =

c∑
i=1

n∑
k=1

um
ikd

2
ik +

n∑
k=1

sik

c∑
i=1

uik(1− um−1
ik ) . (23)

Obviously, we can make this clustering model act like GIFP-FCM by setting
sik = ak ∀i = 1, 2, . . . , c, where ak is the rewarding term of GIFP-FCM defined
in Eq. (9).

On the other hand, if we wish this new clustering model act like a certain
gs-FCM variant, it is necessary to set:

sik =

{
d2
wk(1− η2k) if i = w ≡ arg min

j
{djk, j = 1, . . . , c}

0 otherwise
, (24)
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Algorithm Parameter Formula of swk

s-FCM α ∈ [0, 1] d2
wk

[
1−

(
αuw

1−α+αuw

)m−1
]

gsθ-FCM θ ∈ [0, 1] d2
wkθ(2− θ)

gsρ-FCM ρ ∈ [0, 1] d2
wk(1− ρ2u2

w)

gsβ-FCM β ∈ [0, 1) d2
wk

(
1− u

2β/(1−β)
w

)
gsτ-FCM τ ∈ [0, 1] d2

wk

[
1−

(
uw(1−τ)
uw+τ

)m−1
]

gsσ-FCM σ ∈ [0, 1]

 d2
wk

[
1−

(
uw−uσ+1

w

uσ
w−uσ+1

w

)m−1
]

if uw < 1

0 if uw = 1

gsξ-FCM ξ ∈ [0, 1]

 d2
wk

[
1−

(
uw

1−uw
((sin πuw

2
)−ξ − 1)

)m−1
]

if uw < 1

0 if uw = 1

Table 3: The definition of swk rewarding term for gs-FCM algorithm variants,
uw stands for the highest fuzzy membership provided by FCM for the input
vector xk.

where ηk represents the learning rate applied to the current vector xk according
to the chosen suppression scheme, suppression parameter, and dik distances
with i = 1, 2, . . . , c. Table 3 exhibits swk rewarding terms for various gs-FCM
algorithms.

Consequently we can affirm that s-FCM and gs-FCM are optimal algorithms
to the same extent as GIFP-FCM, as they all optimize JU. The partition
update formula of the unified clustering model is:

µ⋆
ik =

(d2
ik − sik)

−1/(m−1)

c∑
j=1

(d2
jk − sjk)−1/(m−1)

∀ i = 1, 2, . . . , c

∀k = 1, 2, . . . , n
, (25)

while the cluster prototype update formula is the one given in Eq. (11). The
unified clustering algorithm that integrates all suppressed clustering models
and the GIFP-FCM algorithm is exhibited in Algorithm 2. This version of the
algorithm is not the recommended one to implement GIFP-FCM or gs-FCM
model. It is only the proof of their similar structure. GIFP-FCM runs optimally
as described in [40], while gs-FCM variants as described in Algorithm 1.
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Algorithm 2: The unified algorithm
Data: Input data xk, k = 1, 2, . . . , n

Data: Fuzzy exponent m > 1, limit ε, the chosen algorithm and its
parameter (one of {α, θ, ρ, β, τ, σ, ξ,ω})

Result: Cluster prototypes vi, i = 1, 2, . . . , c

Initialize cluster prototypes vi, i = 1, 2, . . . , c with random
input vectors, vi ̸= vj ∀i ̸= j

repeat
for k = 1, 2, . . . , n do

Find the index of the winner cluster
w = arg min

i
{dik, i = 1, 2, . . . , c}.

Compute fuzzy memberships uik, i = 1, 2, . . . , c with Eq.
(3).

if algorithm is GIFP-FCM then
sik ← ωd2

wk, i = 1, 2, . . . , c

end
else

Set sik values according to Eq. (24) and Table 3.
end
Compute suppressed fuzzy memberships µik, i = 1, 2, . . . , c

with Eq. (25).
end
for i = 1, 2, . . . , c do

v(old)
i ← vi

Update cluster prototype vi with Eq. (11).
end

until
c∑

i=1

||v(old)
i − vi|| < ε;

5 Parameter selection

Fan et al. [9] did not give any recipe how to choose the value of the suppression
rate α. They set the suppression rate to the middle of its definition interval,
to be well in between HCM and FCM. Several further works, including the
gs-FCM clustering models of Szilágyi et al. [28, 30], set the parameter values
experimentally and showed that there are various settings that make s-FCM
and gs-FCM models work better than FCM or HCM in various applications.
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However, there are some application papers [15, 16, 17, 24, 27, 36] in the
literature that give recipes for the choice of the suppression parameter.

5.1 Constant suppression rate based on input data
Fan et al. [10] proposed a constant suppression rate based on the distribution
of the input data, defined as

α =

n∑
j=1

n∑
r=1

||xj − xr||

n
n∑
j=1

||xj − x||
− 1 , (26)

where x stands for the grand mean of the input vectors: x = n−1
∑n

i=1 xi. The
authors proved that the value of α defined by Eq. (26) is always in the interval
[0, 1]. The value of α should be evaluated once as an initialization step of the
algorithm, and applied as constant compression rate through all optimization
loops. Obviously, this only works with the original s-FCM algorithm, not with
gs-FCM models.

5.2 Time variant suppression rate based on partition entropy
Li et al. [22] proposed a time variant suppression rate based on the entropy of
the partition provided by the FCM algorithm, defined with the formula

αLi =
1

log c

(
−
1

n

c∑
i=1

n∑
k=1

uik log(uik)

)
. (27)

This formula is evaluated in every optimization loop, after having applied the
partition update formula given in Eq. (3) and before starting the partition
suppression using Eq. (10). The authors found their method successful in im-
age segmentation problems, despite this entropy based suppression rate fully
suppresses the crisp partition and applies no change in the completely am-
biguous situation described by uik = 1/c ∀i = 1, 2, . . . , c and ∀k = 1, 2, . . . , n.
In our opinion, it would be more useful setting the suppression rate to 1−αLi.

5.3 Time variant suppression rate based on current cluster
prototypes

There is a set of works that apply time variant suppression rate, which changes
from iteration to iteration according to the current cluster prototypes. As
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prototypes converge, the suppression rate also stabilizes. The foundation of all
these recipes is the formula of the Xie-Beni cluster validity index [38]:

XB =

c∑
i=1

n∑
k=1

u2
ik||xk − vi||

2

n
(
min1≤i ̸=j≤c ||vi − vj||2

) , (28)

which indicates fine cluster quality at low values of XB. Knowing that well sep-
arable clusters are best partitioned by HCM, while FCM handles overlapping
clusters better, it seems a good idea to apply stronger suppression when the
minimum distance between cluster prototypes is higher. In this order, Hung
et al. [15] proposed a time variant suppression rate defined as

α = exp
(
−
1

β
min

1≤i̸=j≤c
||vi − vj||

2

)
, (29)

where

β =
1

n

n∑
j=1

||xj − x||2 , (30)

and x = n−1
∑n

i=1 xi is the grand mean of input vectors. In the application
of Hung et al. [15], α is evaluated at the beginning of each optimization loop,
and applied to suppress the fuzzy memberships provided by the FCM partition
update formula. This suppression was found successful in an ophthalmology
image segmentation problem, similarly to the alternative one introduced by
the same authors in [16]:

α =

(
1+ min

1≤i̸=j≤c

||vi − vj||
2

β

)−1

, (31)

that also uses the formula of β given in Eq. (30). Tsai et al. [36] also introduced
a kernel-based suppressed FCM version, using the suppression formula derived
from Eq. (29).

A very similar formulation of the suppression rate formula was given by
Nyma et al. [24]:

α = exp
(
− min

1≤i ̸=j≤c

||vi − vj||
2

m

)
, (32)

where m is the fuzzy exponent. In spite of being applied successfully in medical
image segmentation by the authors, we find this an ill-posed formula, as it
advises a different suppression rate if we replace all input vectors by a constant
κ ̸= 1.
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6 Discussion

All fuzzy c-means algorithms with suppressed or improved partitions use an
extra parameter compared to FCM, which regulates the alteration of the FCM
partition. In case of the GIFP-FCM algorithm we cannot talk about suppres-
sion, but the effect is similar: although the parameter ω is recommended to be
chosen from the interval [0.9, 0.99], we need to remark that ω = 1 reduces the
GIFP-FCM to HCM, while ω = 0 means fully FCM behavior for GIFP-FCM.
Some of the suppression schemes, namely the original s-FCM and the gs-FCM
algorithm of type σ act like HCM when the value of the parameter (α, σ) is 0,
and as FCM at the other extremum 1. On the other hand, the gs-FCM algo-
rithms of type θ, β, τ act like FCM when the value of the parameter (θ, β, τ)
is 0, and as HCM at the other extremum 1. Any other value of the suppression
parameters defines a clustering model that is different from HCM or FCM of
any fuzzy exponent m > 1.

Suppressed FCM clustering algorithms have a moderate popularity, because
they are not optimal, as they do not minimize the objective function of FCM
or any other known objective function. The unification theory with the GIFP-
FCM algorithm revealed that all suppressed clustering models can be consid-
ered optimal to the same extent as GIFP-FCM. Despite this disadvantage,
several applications showed that s-FCM and gs-FCM clustering models can
perform better than HCM or FCM, and run in less time than FCM. Although
the quality of the clustering outcome should be characterized by cluster va-
lidity indexes (CVI), several image processing applications showed that sup-
pressed FCM clustering models can capture better the underlying structure
of the input data than FCM or HCM, leading to better segmentation quality.
Szilágyi et al. [30] employed the Xie-Beni [38], the extended Xie-Beni [25],
and the Fukuyama-Sugeno [11] CVIs to prove the ability of gs-FCM models to
produce valid partitions. The authors also showed that suppressed FCM clus-
tering is substantially less sensitive to imbalanced cluster sizes. Hung et al.
[15, 16] deployed suppressed FCM in an ophthalmologic MRI image segmen-
tation problem and found it more effective than the classical FCM. Zhao et
al. [39] reported improved image processing accuracy achieved via suppress-
ing the FCM partition in a general purpose image processing environment.
Improvement in performance against the clock achieved via suppressing the
FCM partition were reported by Szilágyi et al. [31, 33] in a color reduction
application. In a very recent paper, Wu et al. [37] combined the suppressed
FCM with the so-called picture fuzzy clustering method [35] that has type
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II fuzzy background. The resulting clustering model performed better than
previous methods in terms of both accuracy and efficiency.

7 Conclusion
This paper presents the short history of the suppressed fuzzy c-means algo-
rithm, focusing on the most important theoretical advances and providing a
short summary of practical achievements. Applying suppressed partitions in
clustering models derived from fuzzy c-means currently have a moderate pop-
ularity, which may rise in the future due to the recent successful extensions
and applications.
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