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EDUCATIONAL REVIEW

Microbleeds show a characteristic 
distribution in cerebral fat embolism
Omar Giyab1*  , Bendegúz Balogh1, Péter Bogner1, Orsi Gergely1,2,3 and Arnold Tóth1,3 

Abstract 

This systematic review aims to test the hypothesis that microbleeds detected by MRI are common and show a char-
acteristic pattern in cerebral fat embolism (CFE). Eighty-four papers involving 140 CFE patients were eligible for this 
review based on a systematic literature search up to 31 January 2020. An additional case was added from hospital 
records. Patient data were individually scrutinised to extract epidemiological, clinical and imaging variables. Charac-
teristic CFE microbleed pattern resembling a “walnut kernel” was defined as punctuate hypointensities of monoto-
nous size, diffusely located in the subcortical white matter, the internal capsule and the corpus callosum, with mostly 
spared corona radiata and non-subcortical centrum semiovale, detected by susceptibility- or T2* weighted imaging. 
The presence rate of this pattern and other, previously described MRI markers of CFE such as the starfield pattern and 
further diffusion abnormalities were recorded and statistically compared. The presence rate of microbleeds of any pat-
tern, the “walnut kernel microbleed pattern”, diffusion abnormality of any pattern, the starfield pattern, and cytotoxic 
edema in the corpus callosum was found to be 98.11%, 89.74%, 97.64%, 68.5%, and 77.27% respectively. The presence 
rate between the walnut kernel and the starfield pattern was significantly (p < 0.05) different. Microbleeds are com-
mon and mostly occur in a characteristic pattern resembling a “walnut kernel” in the CFE MRI literature. Microbleeds of 
this pattern in SWI or T2* MRI, along with the starfield pattern in diffusion imaging appear to be the most important 
imaging markers of CFE and may aid the diagnosis in clinically equivocal cases.
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Key points

•	 Microbleeds detected by susceptibility- or T2* 
weighted imaging show a characteristic distribution 
in cerebral fat embolism.

•	 Such microbleed pattern may be just as commonly 
and more constantly present in cerebral fat embolism 
than the well-known “starfield pattern” detected by 
diffusion weighted imaging.

•	 Confluent cytotoxic edema is most commonly pre-
sent in the corpus callosum.

Introduction
Cerebral fat embolism (CFE) is part of the fat embolism 
syndrome (FES), which results from the intravascu-
lar embolisation of fat globules. FES is most commonly 
caused by displaced long bone fractures, or during ortho-
paedic procedures but it may also be caused by other 
conditions like sickle cell disease, severe pancreatitis, or 
following liposuction [1, 2].

First described by Zenker in 1862 the exact mechanism 
of CFE remains poorly understood. Both mechanical and 
biochemical theories have been proposed to explain the 
syndrome [3, 4]. The mechanical obstruction of arterial 
circulation by neutral fat globules, followed by a delayed 
biochemical toxic injury caused by free fatty acids is 
the most probable mechanism of tissue injury [5, 6]. 
CFE can occur without a patent foramen ovale, as small 
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deformable fat globules can pass through the capillary 
circulation of the lung [7].

Cerebral fat embolism syndrome (CFES) occurs in up 
to 60% of patients with FES and is usually considered 
to be a self-limiting entity, but recent studies have also 
shown possible links to long term neurocognitive impair-
ment [8–10]. The clinical presentation of CFES may vary 
considerably, symptoms typically appear between 12 to 
72 h after the injury and may range from mild neurologi-
cal impairment to alarming symptoms like coma or even 
death in the most severe cases [11].

There are no definitive clinical diagnostic tests and 
criteria developed, making the diagnosis of FES difficult 
[12, 13]. The diagnosis is usually based on a combination 
of symptoms, laboratory and imaging findings [9]. Cur-
rently the most commonly used diagnostic criteria have 
been proposed by Gurd and Wilson presented in Table 1 
[14]. In this system, at least two positive major criteria, 
or one positive major and four positive minor criteria are 
considered suggestive of FES [14].

Many patients, however, do not develop the classic 
triad of cutaneous, respiratory and neurological symp-
toms [9]. Accordingly, the Gurd and Wilson’s criteria are 
not fulfilled, and the sole or first manifestation of FES 
may be neurologic, thus resulting in a diagnostic chal-
lenge to clinicians [9, 15]. Post-mortem pathological 
studies have shown CFE to be more common than pre-
viously thought indicating that it is underdiagnosed, and 
the clinical criteria used to diagnose the condition are 
not entirely reliable [16].

CT scans performed are typically without any spe-
cific finding, however may show widespread interval low 
density changes which should raise the suspicion of CFE 
[11]. Compared to CT, imaging findings in MRI are much 
more common in CFE [17]. The “starfield pattern” has 

been widely used in literature for describing the revers-
ible imaging pattern of multifocal punctate lesions show-
ing diffusion restriction. Other reported features include 
confluent cytotoxic edema in the white matter, and vaso-
genic lesions that may enhance [1, 11, 17]. Additional 
features of CFE that has been increasingly reported more 
recently are cerebral and cerebellar microbleeds depicted 
by susceptibility weighted imaging (SWI) or T2* MRI 
[18]. These studies and a case that we present in this 
review have led us hypothesize that microbleeds show 
a characteristic pattern in CFE. We aimed to test this 
hypothesis by a systematic review of the literature.

Methods
Literature search
We have searched the PubMed database up to 31 Janu-
ary 2020 (no time constraints were set for the earliest 
publication) for papers which included detailed imaging 
description or images of cases with CFE. We used the 
keywords “MR” or “MRI” and”fat emboli” or”fat embo-
lism”, or “starfield pattern”. References of the included 
papers were then individually checked for additional arti-
cles. We also searched the PACS, and the hospital infor-
mation system (HIS) of the University of Pécs for CFE 
cases. We used the ICD-10-CM diagnosis code T79.10 
(traumatic fat embolism) for searching the PACS (Med-
View – ASPYRA LLC 7400 Baymeadows Way, Suite 101 
Jacksonville, FL 32,256), and HIS (eMedSolution—T-
Systems Magyarország Zrt. H-1097 Budapest, Könyves 
Kálmán krt. 36.) of the University of Pécs from 1 October 
2016 (installation of MR scanner) until 31 January 2020. 
We have found one potentially suitable case for inclusion 
in this systematic review, whose legal representative was 
contacted and a signed informed consent was acquired 
for the anonymized inclusion and publication in this 
review. Search results were saved and organised via the 
commercially available Mendeley software (V1.19.5) and 
its web importer plug-in.

The exclusion criteria included recorded head trauma, 
poor image quality, unavailable images and poor image 
description, non-English language articles, animal exper-
iment articles, CFE articles related to facial lipid injection 
procedure, and articles that are not available for online 
access.

Data extraction
All included articles were individually scrutinised by a 
board certified neuroradiologist (O.G.) and other two 
board certified radiologists with a minimum of five-year 
experience in interpreting neuroradiological exami-
nations (A.T. and P.B.) to collect relevant data for this 
review. Data were populated into an Excel (ver. 1908, 

Table 1  Gurd and Wilson’s criteria

*The diagnosis of FES requires 2 major or 1 major and 4 minor criteria to be 
fulfilled

Gurd and Wilsion’s criteria*

Major criteria Minor criteria

Petechial rash Tachycardia (> 110 bpm)

Respiratory insufficiency Fever (> 38.5 °C)

Cerebral symptoms in non-
head injury patients

Retinal changes (fat or petechiae)

Jaundice

Renal changes (oliguria, anuria, or lipiduria)

Acute onset thrombocytopenia

Acute drop in haemoglobin

Elevated erythrocyte sedimentation rate

Fat macroglobinemia
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Microsoft, Redmond, Washington, US) table for statisti-
cal evaluation.

If more than one case was presented in an article, then 
all the available information from each case was recorded 
separately. If only mean values were reported for a given 
variable regarding patients, then these data were not 
included in further evaluation. The time point of CT and 
MRI scans were recorded in days, and time point 0 was 
considered to be the time of arrival to the hospital. If 
mentioned, the Glasgow coma scale (GCS) was used to 
record the neurological status. Gurd and Wilson’s, and 
Schönfeld’s criteria were only recorded if they were men-
tioned in the article.

The extracted clinical and epidemiological variables 
and available patients, are presented in Table 2.

Regarding imaging findings, the presented images, text 
and supplementary materials were evaluated as well. 
Imaging findings were recorded if they were identifi-
able on the presented images, or clearly described in the 
text. Findings that were not identifiable in the presented 
images or were not mentioned in the text were consid-
ered to be absent. In case of any discrepancy between the 
text and the available images, they were double-checked 
by each participating radiologist, and were excluded 

from the statistical analyses if the discrepancy was con-
firmed by all readers. Ambiguous imaging findings (due 
to poor image quality, or partially visible pathology) if not 
detailed in the text were not considered in the statistical 
calculations.

The hypothesized, CFE characteristic microbleed pat-
tern was defined as the diffuse presence of round micro-
bleeds (punctate focal hypointensities) of monotonous 
size in the subcortical white matter (involving but not 
limited to the U-fibers), internal capsule and the cor-
pus callosum, mostly sparing the corona radiata and the 
non-subcortical centrum semiovale on T2* GRE or SWI 
images. As authors believe this pattern resembling the 
appearance of a walnut kernel, it is further referred to as 
the “walnut kernel pattern”.

The starfield pattern as described by Parizel et al. refers 
to the presence of scattered bright spots in a dark back-
ground in DWI with diffusion restriction, was considered 
positive if it was identifiable in the presented DWI and 
ADC images, or was clearly described in text [1]. Cases 
referred to as starfield positive without presented ADC 
or clear reference to diffusion restriction, but with very 
typical starfield pattern in the presented DWI agreed by 
the three reviewing radiologists in the present study were 

Table 2  Epidemiological and clinical data

*Total number of cases eligible for analysis

**Standard deviation

Variable Number (n) Total* (Σ) Rate (%) SD** Mean

Epidemiological and clinical data

Patients included 141 141

Male 72 141 71

Female 29 141 29

Age Overall 101 141 71.63 18.5 42.1

Males 72 101 71.29 20.1 36

Females 29 101 28.71 24.2 58

Etiology Fracture 79 141 56.03

Single bone fracture 38 141 26.95

Multiple bone fracture 37 141 26.24

Femur fracture 41 141 29.08

Tibia fracture 21 141 14.89

Polytrauma 27 141 19.15

Sickle cell disease 10 141 7.09

Patent foramen ovale 8 141 5.67

Initial neurological status (GCS) 15 76 85 89.41

14 4 85 4.71

 < 14 5 85 5.88

Gurd and Wilson’s criteria applied 43 141 30.49

Time to first MRI in days 60 60 3.478 3.45

Follow up MRI performed 59 141 41.84

Mortality 4 141 2.8
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also accepted as definitive starfield pattern. We catego-
rised a case as starfield negative if there was no mention 
or image of the starfield pattern, ADC map did not show 
restricted diffusion, and there was no additional mention 
of restricted diffusion in the text.

Confluent diffusion restriction in the corpus callosum, 
if present, was also recorded.

Further recorded imaging findings included confluent 
cytotoxic edema in the white matter (other than corpus 
callosum), vasogenic edema in the white matter, pete-
chial hemorrhages of non-characteristic pattern, and 
chronic sequel – atrophy.

Data analysis
Descriptive statistics were used to summarise the 
recorded parameters. To assess the presence rate of 
"walnut kernel microbleed pattern" for CFE, the num-
ber of characteristic CFE pattern cases was divided by 
the number of all cases where it was possible to evalu-
ate the presence of microbleed pattern. Similarly, pres-
ence rate of starfield pattern for CFE was calculated by 
dividing the number of cases with definitive starfield pat-
tern by all cases in which it was possible to definitively 
evaluate. Characteristic microbleed pattern and starfield 
pattern presence rates were compared using Fisher exact 
test. For a more direct, one-sample comparison, the pres-
ence rates were compared by McNemar test in a subset 
of patients for whom it was possible to evaluate both the 
microbleed and the starfield patterns. Both Fisher and 
McNemar tests were run in MedCalc Statistical Software 
version 18.11.3 (MedCalc Software bvba  https://​www.​
medca​lc.​org; 2019, [19]) and tests were regarded signifi-
cant if yielding a p value less than 0.05.

To present temporal features of the walnut kernel 
microbleed pattern and the starfield pattern, the included 
cases were assigned into three stages: acute stage (first 
4 days of hospitalisation), subacute stage (5–14 days) and 
late stage (14 + days). In all stages, four groups were cre-
ated: starfield pattern positive and negative groups and 
walnut kernel pattern positive and negative groups. For 
this analysis, we disqualified case studies and reviews if 
the exact time point of the MRI for each patient was not 
reported.

Results
The literature search identified 277 articles, from which 
193 articles were excluded, resulting in a total of 84 
included articles, for details see Fig.  1 flow chart. The 
oldest included paper was published in 1998 [15]. In 
our institution’s database search, we have found one 
case that was tagged by the ICD-10-CM diagnosis code 
T79.10 for traumatic fat embolization. This was the case 
of a previously healthy 16-year-old female patient who 

was run over by a car and suffered severe thoracic and 
abdominal injuries including right sided serial rib frac-
tures, right sided hemothorax, bilateral pneumotho-
rax, diaphragmatic and hepatic rupture. No direct head 
injury was recorded based on clinical evaluation and the 
negative admission CT. Due to delayed awakening on the 
sixth postoperative day, a head CT was performed which 
showed multiple punctiform hyperdensities which disap-
peared by day 17 (Fig. 2.). The typical starfield pattern of 
CFE, were not seen on the MR images that were acquired 
on day 12 after admission to the hospital, but there was 
facilitated diffusion in the subcortical white matter, and 
diffusion restriction was limited to the corpus callosum 
only (Fig. 3.). The case showed the walnut kernel micro-
bleed pattern in SWI, surrounded by extracellular edema, 
except for the corpus callosum where cytotoxic edema 
was shown (Figs.  3, 4). Considering the results of lab 
tests and previous reports, the diagnosis of cerebral fat 
embolism was made. Following supportive care and three 
months long rehabilitation, a near-complete neuropsy-
chological recovery was achieved. Long term follow-up 
MR images 16  months later revealed signs of cerebral 
atrophy (Fig. 5.).

From the 84 included articles, there were 73 case 
reports, 6 review papers, 4 original papers, and 1 review 

Databases:

PubMed: n=276

Searching through the references of the 
included papers: n=1

Identified records through the University of 
Pécs database search: n=1

No article found

n=50

Non-English article

n=19

Not relevant (not cerebral 
related complication of 
FES, other pathology, 
animal experiment)

n=83

No MR images

n=41

Articles included in the review

n=84 and one patient from the 
database search of the University of 
Pécs

Fig. 1  Quality of Reporting of Meta-analysis standards (QUOROM) 
flow diagram of articles included in this systematic review

https://www.medcalc.org
https://www.medcalc.org
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pictorial essay. 140 patients from the included articles 
satisfied our inclusion criteria and were included in this 
review, in addition to the previously mentioned case 
from our own databases, resulting in an overall patient 
number of 141.

The extracted epidemiological and clinical data are 
summarised in Table 2.

In the included literature SWI was done in 40 cases, 
T2* was performed in 21 cases, and both SWI and T2* 
measurements were performed in 12 cases. Microbleeds 
in general, were present in 52 out of 53 cases (98.11%). 
The "walnut kernel microbleed pattern" was found in 35 
out of 39 evaluable cases resulting in a presence rate of 
89.74%.

Diffusion abnormality in general, was seen in 97.64% 
of the cases (n = 124). The starfield pattern description 
was used in 70.08% (n = 89) of the cases, but only 19.10% 
(n = 17) of these cases were confirmed with an ADC map 
(Fig. 6.). The majority of the presented cases relied on T2 
or DWI images only for using the starfield pattern term. 
However, in 59 out of these cases, diffusion restriction 
was referred to in the text, in other 8 cases the authors 
did not use the term starfield pattern, yet it was clearly 
present in the shown images, and in 3 cases the authors 
described the lesions as starfield positive, but there was 
no further accurate detailing of this finding presented. 
Thus, definitive starfield pattern was ascertained in 87 
out of 127 cases yielding a presence rate of 68.5%. In 
3.3% (n = 4) the term was used to describe foci of vaso-
genic edema, large confluent areas of cytotoxic edema, 
or infarcts were described on T2 images alone [20–23]. 

Confluent restricted diffusion was seen in the corpus cal-
losum in 77.27% (34 out of 44 cases). On follow-up stud-
ies brain atrophy has been confirmed in 8 cases [1, 17, 
24–29].

Fig. 2  A case showing microhemorrhages as seen on CT. Axial 
native CT scan images at the level of the centrum semiovale and 
the basal ganglia of a 16-year-old polytraumatised female patient 
acquired on postoperative day 11 after hospital admission. Multiple 
subcortical punctiform hyperdensities presumably representing 
microhemorrhages are seen bilaterally in the subcortical white 
matter (a), and a larger hyperdensity is seen in the genu of the corpus 
callosum (b)

Fig. 3  A case representing the various patterns of diffusion 
abnormalities seen in CFE. T2 (a, b), DWI (c, d), and ADC (e, f) MRI 
images at the level of the centrum semiovale (left column), and 
at the level of the basal ganglia (right column) of a 16-year-old 
polytraumatised female patient acquired on day 12 after hospital 
admission. T2 weighted images show hyperintense signal in the 
subcortical white mater, internal capsule and the corpus callosum (a, 
b). Diffusion-weighted MR Image with a b value of 1000 s/mm2 (c, 
d), and ADC (e, f) images show cytotoxic edema affecting the corpus 
callosum and facilitated diffusion over the subcortical white matter



Page 6 of 11Giyab et al. Insights Imaging           (2021) 12:42 

CFE related imaging findings are summarised in 
Table 3.

Between the presence rates of the walnut kernel and 
definitive starfield patterns (89.74% vs. 68.5%), Fisher 
exact test showed a significant (p = 0.0073) difference. 
In the subset of patients where both microbleed and 
starfield patterns were possible to be evaluated (n = 29), 
the "walnut kernel pattern" was present in 27 cases 
(93.1%), while the starfield pattern was present in 12 

cases (41.38%). The McNemar test showed these rates 
to be significantly different (p = 0.0003).

Regarding the temporal characteristics of the 
lesions (Fig.  7.), the starfield pattern was mostly pre-
sent within the first 4 days after injury where 21 posi-
tive and 6 negative cases existed, while only 3 positive 
cases were reported along with 3 negative cases in the 
4–14  days period. In turn, the walnut kernel micro-
bleed pattern had a more consistent presence among 

Fig. 4  A case representing the walnut kernel microbleed pattern. SWI (a–d) MRI images at the level of the centrum semiovale (a), at the level of 
the corona radiata (b), at the level of the basal ganglia (c), and at the level of the brainstem and the cerebellum (d) of a 16-year-old polytraumatised 
female patient acquired on day 12 after hospital admission. SWI shows very high number of monotonous punctuate microbleeds in the subcortical 
white matter, the internal capsule, the corpus callosum, the cerebellum and the brainstem resembling a “walnut kernel”. The larger hypointensity 
visible in the right centrum semiovale and near the third ventricle is due to a ventricular drain (a–c)

Fig. 5  A case representing the long-term radiological consequences 
of CFE. T2 MRI images at the level of the basal ganglia of a 16-year-old 
polytraumatised female patient acquired on day 12 after hospital 
admission (a), and 16 months later (b). The long-term follow-up 
images show resolution of the subcortical and corpus callosum T2 
hyperintensities, and dilation of the intergyral sulci, and the lateral 
ventricles indicative of cerebral atrophy (b)

Fig. 6  A case representing the starfield pattern of restricted 
diffusion. MRI scan of an 18-year-old man with a closed displaced 
fracture of the left femoral shaft after a high velocity motor vehicle 
accident. Diffusion-weighted MR Image (10000/89; b value, 1000 s/
mm2) showing foci of hyperintensities within both centrum 
ovale (a), and the corresponding ADC map confirming restricted 
diffusion (b). Published under the permission of G. Bierry and S. 
Kremer, Department of Radiology, University Hospital of Strasbourg, 
Strasbourg, France



Page 7 of 11Giyab et al. Insights Imaging           (2021) 12:42 	

time periods, with a case count of 9 positive vs 1 nega-
tive until day 4, 7 positive vs 1 negative in the 4–14 day 
period and 2 positive in the day 14 + period.

Discussion
Since the clinical diagnosis of CFE is often difficult, 
imaging could provide significant help. We hypoth-
esized that the increasingly described microbleeds and 
their particular distribution, the walnut kernel pattern 
(diffuse uniform punctiform microbleeds located in 
the subcortical region, the corpus callosum, and in the 
internal capsule) maybe an important marker for CFE.

Reviewing the literature and our database, it can be 
noted that although the authors have previously not 
referred to this actual pattern of microbleeds, the wal-
nut kernel pattern appears to be indeed very common 
in CFE, as it was present in 89.74% of the cases. Rec-
ognizing this specific pattern could be utmost impor-
tant because microbleeds in other distributions can be 
associated with other, possibly coinciding pathologies 
such as diffuse axonal injury (DAI) or sepsis, but they 
are also common in cardiovascular diseases.

In contrast to the walnut kernel pattern, microbleeds 
in DAI are seen in groups with varying size and shape 
(linear, curvilinear, to ovoid), in specific locations [18]. 
Hypertension associated microbleeds are typically 
seen only in deeper areas of the brain, while in amyloid 

Table 3  Radiological findings

*Total number of cases eligible for analysis

**For definition see methods
a  Cases with presented susceptibility- or T2* images, or with no presented images but with clear description regarding microbleed presence
b  Cases with susceptibility- or T2* images in which the subcortical white matter, internal capsule, and the corpus callosum were evaluable, and cases with no 
presented images but description of findings regarding microbleeds in the specified locations
c  Cases with presented DWI, or DWI and ADC. Cases with no such presented imaging but with clear description of any diffusion abnormality, or the absence of any 
diffusion abnormality were also included
d  Cases with presented DWI and ADC images. Cases without presented images but with description of findings regarding the presence or absence of confluent 
cytotoxic edema were also included
e  Cases with DWI and ADC images where the corpus callosum is visible. Cases without presented images but with clear description regarding the presence or absence 
of corpus callosum diffusion restriction were also included
f  Cases with presented DWI and ADC images. Cases without presented images but with clear description regarding the presence or absence of lesions of facilitated 
diffusion were also included.
g  Cases with presented follow-up MR or CT images. Cases without presented images but with clear description regarding the presence or absence of atrophy in the 
late stage

Variable (n) (Σ)* Rate (%) References

Radiological findings

Microbleeds 52 53a 98.11 [17, 18, 20, 21, 24–27, 39–71]

Walnut kernel microbleed pattern** 35 39b 89.74 [17, 18, 23–26, 39, 41, 45–47, 49, 50, 52–54, 56, 58, 61–63, 66, 70–73]

Diffusion abnormality 124 127c 97.64 [1, 8, 9, 11, 17, 18, 22–30, 39–55, 57–59, 61–71, 73–104]

Definitive starfield pattern** 87 127c 68.5 [1, 9, 11, 17, 18, 23, 24, 26–28, 40–42, 44, 46, 48, 50–52, 54, 58, 59, 61–65, 67–69, 
74–78, 80–85, 88, 90, 91, 93–96, 98, 99]

Confluent cytotoxic edema in white matter 41 82d 50 [8, 17, 18, 24–26, 28, 29, 42, 44, 45, 47, 50–52, 54, 55, 65, 70, 76, 78, 84–87, 89, 90, 
92–94, 97, 98, 100, 103–105]

Cytotoxic edema in the corpus callosum 34 44e 77.27 [9, 17, 18, 23–26, 28, 40, 44, 45, 61, 62, 65, 66, 70, 72, 81, 83–85, 88, 89, 93, 94, 96–98, 
101]

Vasogenic edema lesions 17 58f 29.31 [8, 11, 17, 23, 26, 29, 30, 41, 42, 47, 50, 52, 55, 56, 78, 89, 92]

Atrophy 9 9g 100 [1, 17, 24–29]

Fig. 7  Bar graph indicating the positive proportion of radiological 
patterns against time. The starfield pattern was mostly present within 
the first 4 days after injury, while walnut kernel microbleed pattern 
had a more consistent presence among the different time periods
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angiopathy the microbleeds show a diffuse lobar pat-
tern of more heterogeneous, mainly larger size [30].

Acute haemorrhagic leucoencephalitis is generally also 
associated with widespread white matter T2 lesions, the 
microbleeds are more often randomly distributed, and its 
clinical presentation is substantially different [31].

Diffuse cerebral microbleeds have been reported in 
up to 2% of patients receiving extracorporeal membrane 
oxygenation (ECMO) [33]. While having a similarly 
favourable prognosis to CFE in the published cases, dif-
fuse cerebral microbleeds related to ECMO also have a 
quite similar distribution, therefore it is very important 
for radiologist to be informed about the patient undergo-
ing such therapy [34, 35]. Disseminated cerebral micro-
hemorrhages have been described as a late complication 
in critically ill COVID-19 patients as well [36]. When 
compared to CFE, microbleeds in critically ill patients 
such as in sepsis, disseminated intravascular coagu-
lopathy, COVID-19 infection, and patients undergo-
ing ECMO therapy tend to be more variable in size, and 
shape [32, 36–38]. To date, the exact pathomechanism of 
cerebral microbleeds in the critically-ill in general and in 
patients undergoing ECMO therapy is not known, but 
a commonly accepted speculation is that it is probably 
multifactorial in its nature, involving an ischemic and/
or a biochemical insult induced a thrombotic or embolic 
event, hence the authors speculate that the underlying 
pathomechanism could be similar to that of CFE. Further 
imaging research and accompanying post-mortem stud-
ies might elucidate differential diagnosis and the exact 
mechanisms of microbleeds in critically ill patients.

Beyond microbleeds several types of CFE MR signs 
have been described in previous studies. According to 
a comprehensive review published in 2014, the imaging 
patterns of CFE were classified in to 4 groups (scattered 
cytotoxic edema, confluent cytotoxic edema in white 
matter, vasogenic edema lesions that may enhance, pete-
chial hemorrhage of white matter, and chronic sequel), 
amongst which the starfield appearance was the most 
commonly encountered (61.5% of 44 MRI scans) [17]. In 
our review, it was possible to include more recent papers 
and therefore a larger number of patients were analysed 
that revealed a very similar occurrence rate 68.5% of 
the starfield pattern in CFE. However, the more recent 
papers included also considerably more SWI and T2* 
studies, revealing that microbleeds, and specifically the 
walnut kernel pattern may be even more common than 
the starfield pattern.

An emerging concern regarding the starfield pat-
tern seems to be that there is a degree of uncertainty 
around its use in the literature. Originally, Parizel et al. 
has described the starfield pattern as “scattered bright 

spots on a dark background” on DW-MRI, which, 
according to their interpretation, “presumably reflect 
foci of cytotoxic edema” according to low ADC values 
[1]. Since then this expression has been used widely in 
the literature, but often without considering the ADC 
values. According to our findings this was the case in 
around half of the reviewed patients. In a few pub-
lished cases the starfield pattern was used to describe 
confluent T2 hyperintense white matter lesions poten-
tially representing other pathologies like vasogenic 
edema, while in other reports lesions of obviously high 
ADC values were referred to as starfield pattern.

From a practical point of view, it is important to note 
that compared to the starfield pattern, over time, micro-
bleeds could be more consistently identified on MRI. 
Although due to the small number of corresponding 
cases, reasonable statistical analysis was not possible, it 
seems that the starfield pattern is typically present in 
the first 4  days, as there are much more positive than 
negative cases in this period, whereas in the 4–14 day 
time interval the number of positive and negative cases 
are equal. In contrast, irrespective of the time point, 
microbleeds were always more commonly present than 
absent—indicating constant visibility (Fig. 7). This is in 
line with the article published by Kuo et al. [17].

An additional remarkable observation of our review 
is that the previously described “confluent cytotoxic 
edema” is mostly present in the corpus callosum, with a 
prevalence of 77.27%, which is comparable to the star-
field and walnut kernel patterns.

There is limited data in the literature regarding the 
chronic radiological sequel of CFE. Although the long 
term prognosis of CFE is generally considered to be 
good, cerebral atrophy and persistent T2 hyperintensi-
ties can be seen in some cases where follow-up imaging 
has been performed [1, 17, 24–29].

This study has certain limitations. First, comparison 
of the rates of the starfield and walnut kernel patterns 
is somewhat limited since considerably more articles 
investigated diffusion abnormalities than microbleeds. 
Second, the presence rates of the investigated imaging 
patterns do not necessarily reflect their true sensitivity, 
since it is possible that authors published their imag-
ing results more likely in case of positive findings, caus-
ing seemingly higher presence rates of these imaging 
markers. Still, it can be safely postulated that the wal-
nut kernel microbleed pattern, the starfield pattern and 
corpus callosum diffusion restriction are the most com-
mon imaging alterations in CFE. Third, data regard-
ing chronic changes induced by CFE are scarce and 
therefore the prevalence of cerebral atrophy remains 
unknown.
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Conclusion
Microbleeds are very common and mostly occur in a char-
acteristic pattern resembling a “walnut kernel” in the CFE 
MRI literature. Microbleeds of this pattern in SWI or T2* 
MRI, along with the starfield pattern and corpus callosum 
diffusion restriction in DWI/ADC appear to be the most 
important imaging markers of CFE and may aid the differ-
ential diagnosis in clinically equivocal cases.
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