

Cerebral microbleeds may be less detectable by susceptibility weighted imaging (SWI) MRI from 24h to 72h after traumatic brain injury

Bálint S. Környei^{1, 2*}, Viktor Szabó^{3, 1}, Gabor Perlaki^{4, 3, 5, 1}, Bendegúz L. Balogh^{2, 1}, Dorottya K. Szabó Steigerwald^{2, 1}, Szilvia A. Nagy^{4, 5, 6, 7, 1}, Luca Tóth^{3, 1}, András Büki^{3, 1}, Tamas P. Doczi^{3, 1}, Péter Bogner^{2, 1}, Attila Schwarcz^{3, 1}, Arnold Tóth^{2, 1}

¹Medical School, University of Pécs, Hungary, ²Department of Medical Imaging, Faculty of Health Sciences, University of Pécs, Hungary, ³Department of Neurosurgery, Medical School, University of Pécs, Hungary, ⁴MTA-PTE Clinical Neuroscience MR Research Group, Hungary, ⁵Pécs Diagnostic Center, Hungary, ⁶Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, Hungary, ⁷Department of Laboratory Medicine, Medical School, University of Pécs, Hungary

Submitted to Journal: Frontiers in Neuroscience

Specialty Section: Brain Imaging Methods

Article type:
Original Research Article

Manuscript ID: 711074

Received on: 17 May 2021

Revised on: 07 Aug 2021

Journal website link: www.frontiersin.org

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest

Author contribution statement

Bálint Soma Környei: study conception and design, data acquisition, analysis and interpretation of data, drafting, final approval; Viktor Szabó: study design, data acquisition, draft revision, final approval; Gábor Perlaki: study design and conception, analysis and interpretation of data, draft revision, final approval; Bendegúz Balogh: analysis and interpretation of data, draft revision, final approval; Dorottya Kata Szabó Steigerwald: analysis and interpretation of data, draft revision, final approval; Szilvia A. Nagy: study design and conception, analysis and interpretation of data, draft revision, final approval; Luca Tóth: data acquisition, draft revision, final approval; András Büki: conception and design, draft revision, final approval; Tamás Dóczi: conception and design, draft revision, final approval; Attila Schwarcz: study conception and design, analysis and interpretation of data, draft revision, final approval Arnold Tóth: study conception and design, analysis and interpretation of data, draft revision, final approval Arnold Tóth: study conception and design, analysis and interpretation of data, draft revision, final approval Arnold Tóth: study conception and design, analysis and interpretation of data, draft revision, final approval Arnold Tóth: study conception and design, analysis and interpretation of data, draft revision, final approval Arnold Tóth: study conception and design, analysis and interpretation of data, draft revision, final approval Arnold Tóth: study conception and design, analysis and interpretation of data, draft revision, final approval Arnold Tóth: study conception and design, analysis and interpretation of data, draft revision, final approval Arnold Tóth: study conception and design, analysis and interpretation of data, draft revision, final approval Arnold Tóth: study conception and design, analysis and interpretation of data, draft revision, final approval Arnold Tóth: study conception and design, analysis and interpretation of data, draft revision, final approval arnold Tót

Keywords

SWI MRI, Traumatic Brain Injury, Diffuse Axonal Injury, white matter, microbleeds, SWI, TMB

Abstract

Word count: 220

Purpose - A former rodent study showed that cerebral traumatic microbleeds (TMBs) may temporarily become invisible shortly after injury when detected by susceptibility weighted imaging (SWI). The present study aims to validate this phenomenon in human swi

Methods - In this retrospective study, 46 traumatic brain injury (TBI) patients in various forms of severity were included and willingly complied to our strict selection criteria. Clinical parameters potentially affecting TMB count, Rotterdam and Marshall CT score, Mayo Clinic Classification, contusion number and total volume were registered. The precise time between trauma and MRI (5h 19 min - 141h 54 min, including SWI and FLAIR) were individually recorded, TMB and FLAIR lesion counts were assessed. Four groups were created based on elapsed time between the trauma and MRI: 0-24h, 24-48h; 48-72h and >72h. Kruskal Wallis, ANOVA, chi square and Fisher exact tests were used to reveal differences among the groups within clinical and imaging parameters, statistical power was calculated retrospectively for each comparison.

Results- Kruskal-Wallis ANOVA with Conover post-hoc analysis showed significant (p=0.01; 2009) median TMB number differences in the subacute period: 0-24h=4.00 (n=11); 24-48h=1 (n=14); 48-72h=1 (n=11); 72h< =7.5 (n=10). Neither clinical parameters nor FLAIR lesions depicted significant differences among the groups.

Conclusion- Our results demonstrate that TMBs on SWI MRI may temporarily become less detectable at 24-72 hours following TBI.

Contribution to the field

A former rodent study showed that cerebral traumatic microbleeds (TMBs) may temporarily become invisible shortly after injury when detected by susceptibility weighted imaging (SWI). The present study aims to validate this phenomenon in humans. In this retrospective study, 46 traumatic brain injury (TBI) patients in various forms of severity were included, clinical parameters potentially affecting TMB count as Rotterdam and Marshall CT score, Mayo Clinic Classification, contusion number and total volume were registered. The precise time elapsed between trauma and MRI were individually recorded, TMB and FLAIR lesion counts were assessed. Four groups were created based on elapsed time between the trauma and MRI: 0-24h, 24-48h; 48-72h and >72h. Statistical tests were used to reveal differences among the groups within clinical and imaging parameters, statistical power was calculated retrospectively for each comparison. A significant decrease of median TMB number could be revealed in the subacute period: 0-24h=4.00 (n=11); 24-48h=1 (n=14); 48-72h=1 (n=11); 72h< =7.5 (n=10). Neither clinical parameters nor FLAIR lesions depicted significant differences among the groups. Our results demonstrate that TMBs on SWI MRI may temporarily become less detectable at 24-72 hours following TBI.

B.S.K. was supported by the ÚNKP-20-3-I-PTE-552 New National Excellence Program of the Ministry for Innovation and Technology. A.T. was supported by the ÚNKP-20-5-PTE-794 New National Excellence Program of the Ministry for Innovation and Technology. A.T. was supported by the Bolyai Scholarship of the Hungarian Academy of Science. Sz.A.N. was supported by the ÚNKP-20-5-PTE-715 New National Excellence Program of the Ministry for Innovation and Technology and János Bolyai Research Scholarship of the Hungarian Academy of Sciences and PTE ÁOK-KA-2020-08. G.P. was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences and the Institutional Excellence Program for the Higher Education II within the framework of the 5th thematic program.

This study was funded by the Hungarian Scientific Research Fund Grant No. OTKA/K-120356.

Additionally, the study was also funded by EFOP-3.6.2-16-2017-00008 "The role of neuro-inflammation in neurodegeneration: from molecules to clinics";

Supported by the ÚNKP-20-3-I-PTE-552, ÚNKP-20-5-PTE-794, and ÚNKP-20-5-PTE-715 New National Excellence Program of the Ministry for Innovation and Technology

This work was financially supported by the following grant agencies: Hungarian Brain Research Program (KTIA_NAP_13-2-2014-0019 and 2017-1.2.1-NKP-2017-00002)

Ethics statements

Studies involving animal subjects

Generated Statement: No animal studies are presented in this manuscript.

Studies involving human subjects

Generated Statement: The studies involving human participants were reviewed and approved by the Institutional Review Board of the University of Pécs (No.4525). The patients/participants provided their written informed consent to participate in this study.

Inclusion of identifiable human data

Generated Statement: No potentially identifiable human images or data is presented in this study.

Data availability statement

Generated Statement: The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

Cerebral microbleeds may be less detectable by

2 susceptibility weighted imaging (SWI) MRI from 24h to 72h

3 after traumatic brain injury

- 4 Bálint S. Környei¹, Viktor Szabó², Gábor Perlaki³, Bendegúz Balogh⁴, Dorottya K. Szabó
- 5 Steigerwald⁵, Szilvia A. Nagy⁶, Luca Tóth⁷, András Büki⁸, Tamás Dóczi⁹, Péter Bogner¹¹, Attila
- 6 Schwarcz¹⁰ Arnold Tóth¹²
- 7 ¹ Bálint Soma Környei, Department of Medical Imaging, Medical School, University of Pécs; 8 balint.kornyei@gmail.com*¹ mailing address: UP MS Department of Medical Imaging: 7624 Pécs, Ifjúság 9 str. 13. Office Telephone +3672/535-801
 - 2 Viktor Szabó, Department of Neurosurgery, Medical School, University of Pécs; viktorszabo0706@gmail.com
- 3 Gábor Perlaki, MTA-PTE Clinical Neuroscience MR Research Group; Department of Neurosurgery, Medical
 School, University of Pécs; Pécs Diagnostic Center petzinger.gabor@gmail.com
 - 4 Bendegúz Balogh, Department of Medical Imaging, Medical School, University of Pécs; bendi24@gmail.com
- Dorottya Kata Szabó Steigerwald, Department of Medical Imaging, Medical School, University of Pécs;
 szabo.dorottya29@gmail.com
 - 6 Szilvia A. Nagy, MTA-PTE Clinical Neuroscience MR Research Group, Pécs Diagnostic Center; Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary, Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary; szilvia.anett.nagy@gmail.com
- 20 7 Luca Tóth, Department of Neurosurgery, Medical School, University of Pécs; tothluca.pte@gmail.com
- 21 8 András Büki, Department of Neurosurgery, Medical School, University of Pécs; buki.andras@pte.hu 22 9 Tamás Dóczi, Department of Neurosurgery, Medical School, University of Pécs; MTA-PTE C
 - 9 Tamás Dóczi, Department of Neurosurgery, Medical School, University of Pécs; MTA-PTE Clinical Neuroscience MR Research Group doczi.tamas@pte.hu
 - 11Péter Bogner, Department of Medical Imaging, Medical School, University of Pécs; bogner.peter@pte.hu
 - 10 Attila Schwarcz, Department of Neurosurgery, Medical School, University of Pécs; schwarcz.attila@pte.hu*2
 - 12 Arnold Tóth, Department of Medical Imaging, Medical School, University of Pécs; MTA-PTE Clinical Neuroscience MR Research Group prsarn@gmail.com*2

*1 Correspondence: Bálint Soma Környei MD balint.kornyei@gmail.com; *2 Authors share last authorship

31 Key words

10

13

16

17

18

19

23

24

25

26

27

28 29

30

32

33

SWI MRI, traumatic brain injury, diffuse axonal injury, white matter, microbleeds

34 **Abstract:**

- Purpose A former rodent study showed that cerebral traumatic microbleeds (TMBs)
- 36 may temporarily become invisible shortly after injury when detected by susceptibility
- 37 weighted imaging (SWI). The present study aims to validate this phenomenon in human

38 SWI.

39 Methods - In this retrospective study, 46 traumatic brain injury (TBI) patients in various 40 forms of severity were included and willingly complied to our strict selection criteria. 41 Clinical parameters potentially affecting TMB count, Rotterdam and Marshall CT score, 42 Mayo Clinic Classification, contusion number and total volume were registered. The precise 43 time between trauma and MRI (5h 19 min - 141h 54 min, including SWI and FLAIR) were 44 individually recorded, TMB and FLAIR lesion counts were assessed. Four groups were 45 created based on elapsed time between the trauma and MRI: 0-24h, 24-48h; 48-72h and >72h. 46 Kruskal Wallis, ANOVA, chi square and Fisher exact tests were used to reveal differences 47 among the groups within clinical and imaging parameters, statistical power was calculated 48 retrospectively for each comparison. 49 Results- Kruskal-Wallis ANOVA with Conover post-hoc analysis showed significant 50 (p=0.01; $1-\beta>0.9$) median TMB number differences in the subacute period: 0-24h=4.00 (n=11); 51 24-48h=1 (n=14); 48-72h=1 (n=11); 72h< =7.5 (n=10). Neither clinical parameters nor FLAIR 52 lesions depicted significant differences among the groups. 53 Conclusion- Our results demonstrate that TMBs on SWI MRI may temporarily become 54 less detectable at 24-72 hours following TBI. 55

Abbreviations

56

DAI diffuse axonal injury

FA fractional anisotropy

FA-SPM fractional anisotropy images analyzed by statistical parametric mapping

FLIRT FMRIB's Linear Image Registration Tool

TBI traumatic brain injury

TMB traumatic microbleed

UP MS University of Pécs, Medical School

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

Introduction

Traumatic brain injury (TBI), has become a devastating health problem in developed countries[1][2-5]. TBI affects healthy, young, and often employed individuals resulting in a heavy burden placed on society both in sociological and economic context[3,4,6-8]. Diffuse axonal injury (DAI) caused by shear forces due to acceleration and deceleration of brain compartments of different consistency during an accident is a common pathological factor regarding TBI[9,10]. DAI has been found in all severities of TBI and is referenced as an important determining factor regarding severity and outcome[11,12]. DAI encompasses a vast spectrum, dependent upon the severity and extent of injury, which can acutely manifest as immediate loss of consciousness or confusion resulting in a coma and/or cognitive dysfunction, or in other circumstances, leads to reversible impairments to full axonal disruption[13]. A specific imaging marker regarding DAI will likely contribute to 1) early diagnosis and severity assessment, 2) timely onset of rehabilitation, 3) estimation of return to normal activity, 4) improved patient management, 5) and effectively following up on the patients' condition and assuring the efficacy of the applied therapy[14,15]. Currently, DAI is considered an exclusionary diagnosis, conventional imaging techniques are considered

not to be sensitive enough to fully visualize it[13]. Certain modern MRI techniques however are capable of detecting pathological components regarding DAI. [16,17].

Functional MRI, diffusion tensor imaging (DTI) or MR spectroscopy promises a comprehensive understanding of DAI, however, these methods are mostly applicable in form of statistical group analysis. To date, their individual routine clinical application is not entirely clarified [18–20]. T2* MRI techniques -sensitive in visualizing magnetic susceptibility- are capable of visualizing microscopic bleeding, among them, susceptibility weighted imaging (SWI) is reported to be the most sensitive [21–23].

By definition, traumatic microbleeds (TMBs) in SWI appear as ovoid or curvilinear hypointensities localized in the white matter (WM), mostly at the white-grey matter (WM-GM) junction, in the brainstem or in the corpus callosum and the region of the basal ganglia. Imaging of TMBs is indeed challenging: their visibility and number is influenced by numerous clinical and technical factors (e.g. age, SWI field strength, SWI slice thickness, TBI severity, neurological comorbidities, etc.)[24–26].

Although TMBs are reportedly potential markers of DAI[27], there is a lack of consensus regarding how DAI exactly relates to hemorrhagic lesions. A DTI study implies that DAI may develop without focal MRI lesions in TBI[19] and that DTI is also capable of revealing minute lesions of the WM and deep brain structures, which may not be visualized on T2*GRE or FLAIR images[18][28]. According to an increasing number of studies, hemorrhagic lesion localization seemingly is more important than the overall number associated with DAI severity assessment [29][30]. Based on histological analysis of one patient, a very recent study suggests DAI does not co-localize with TMBs[31]. Nevertheless,

nearly all studies concur that a certain number, form or localization of TMBs are associated with more severe injuries and less favorable outcomes, therefore their detection is of clinical importance[32–37]. Interestingly, some human case studies reported significant temporal changes regarding TMB morphology in the acute to subacute phase following injury, yet it was unclear if these changes mean only changes in appearance, or true biophysical-biochemical changes in reference to the hemorrhages. [38–42].

In our recent study, we managed to better understand this phenomenon based on a rodent cerebral microbleed model: surgically created artificial microscopic WM bleedings showed a significant and transient intensity increase (i.e. decrease in visibility) between 24-96 hours following surgery. Additionally, 69% of the lesions became "invisible," i.e., isointense to the WM which was followed by a reappearance. Histology confirmed that microbleeds were present at every time point when MRI measurements were made, therefore we regarded this phenomenon to be due to changes in biophysical properties of microbleeds. We concluded that the timing of SWI may be critical to avoid false-negative results[43]. Additionally, the relative inconsistency in previous studies regarding the clinical applicability of SWI MRI in TBI may be explained by our findings. In the present study, we aimed to reveal if such transient reduction in TMB visibility occurs in humans as well, and we aimed to define the typical time frame of this phenomenon.

Materials and Methods

116 Subjects

195 adults with closed TBI, compliant to our MRI protocol were initially included retrospectively from a prospectively collected observational cohort at UP Clinical Center

Department of Neurosurgery and Pécs Diagnostic Center. A crucial criterion was precise TBI time documentation. Additionally, the exact time of admission, CT and MRI acquisition were also recorded. Exclusion criteria included any diagnosis of comorbidities capable of causing WM TMBs (e.g., fat embolism, chronic hypertension, cerebral amyloid angiopathy, cavernous malformations, epilepsy, Alzheimer disease, dementia or migraine, brain tumor or cerebral metastasis [34,44–56]) based on patient medical records. <u>Grubbs' test was applied to exclude patients with outlier TMB numbers.</u>– Figure 3. shows our algorithm and criteria of inclusion and exclusion.

The final number of patients eventually was narrowed to 46 cases who were eligible for the study (37 male, 9 female; 6 symptomatic, 8 mild and 32 severe according to the Mayo Clinic Classification of Traumatic Brain Injury[57]). Investigations were carried out compliant to the rules of the Declaration of Helsinki, and ethical approval was granted from the Institutional Review Board of the University of Pécs (No.4525). Written informed consent was obtained from all the participants or their legally authorized representatives regarding the MRI scans used in the study.

Clinical data and admission CT parameters

TBI severity was individually defined according to the Mayo Clinic Classification of Traumatic Brain Injury (symptomatic, mild, moderate- severe)[58]. Age at the time of trauma, gender, Rotterdam[59] and Marshall CT scores[60] (assessed on admission CT), MRI field strength (1.5 or 3 T), FLAIR lesion number and macroscopic injuries were recorded. Furthermore, the total approximate volume of contusions was recorded on

admission, through individual CTs (MedViewTM) in accordance to the following formula developed by Rashumi U. Kothari et al.[61] (Table 1-3):

$$CV = \frac{LPD * NSL * SL}{2}$$

Where CV is the contusion voulume, LPD are the longest perpendicular diagonals of the contusion apperarin on admission CT, NSL is the number of slices on which the contusion is present and SL is slice thickness.

MRI acquisition

SWI, T1-weighted MPRAGE and FLAIR images were assessed. Brain MRI was performed using 1.5T (Avanto/Avantofit) and 3T (Magnetom Trio/Prisma_Ffit) Siemens MR scanners, and, in the case of SWI, special attention was given to the evaluation of MRI images with higher field strength and thinner slices in the estimated timeframe of TMB disappearance (24h-72h) as shown in Table 2.

T1-weighted high-resolution images were obtained using a three-dimensional (3D) MP-RAGE sequence (TI=900-1100900 ms; TR=1900-2530 1400 ms; TE= 2.5-2.4_3 ms; slice thickness=0.9-1.0 mm; field of view (FOV) = 256192 -mm*256 mm; matrix size = 256192*256.

3D and 2D FLAIR images were acquired using: TI= 1888.100-2713.4 2872 ms; TR= 5000-90008910 ms; slice thickness= 1.5-4.0 mm; FOV= 192-22530 mm*22500-256 mm; matrix size= 187-512384*256-512, and 3D SWI images were acquired as follows: TR=2746-49 ms; TE= 20-40 ms; slice thickness=1.2.0-3.0 mm; FOV= 137158-201mm*230-240 230 mm; matrix size= 125137-182177* 256192-320256, with no inter-slice gap for 1.5 T and (3D) MP-RAGE

165 sequence (TI=900 or 1100 ms; TR= 1380 or 2530 ms; TE= 2.2 or 3.4 ms; slice thickness=1.0 or 166 1.1 mm; FOV= 211 or 256 mm * 211 or 256 mm; matrix size = 192 or 256 * 192 or 256. 3D and 167 2D FLAIR images were acquired using: TI= 1800-2500 ms; TR= 5000-9000 ms; slice thickness= 168 0.9-4.0 mm; FOV= 193-230 mm*220 or 230 mm; matrix size= 192-512*256 or 512, and 3D SWI 169 images were acquired as follows: TR= 27 ms; TE= 20 ms; slice thickness= 1.5 mm; FOV= 158-170 199 mm* 220 or 230 mm; matrix size= 167-223* 256, with no inter-slice gap for 3T 171 measurements (Supplementary Table 1)._ 172 Elapsed time expressed as hours between the trauma and the nearest SWI imaging was 173 recorded as follows: time of the trauma was registered according to admission 174 documentation, recorded by the National Ambulance Service or the Emergency Department 175 of UP MS, and the exact time of scans were documented from the MRI scans' DICOM data. 176 177 Haemorrhagic and non haemorrhagic MRI lesion detection 178 179 Anonymized CT and MRI scans were read by A.T. and B.S.K., both authors with more 180 than six years of experience in human brain CT and MRI data processing, blinded to clinical 181 and time-to-scan data. Final lesion counts were described as per agreement. Lesion parameters were validated by P.B., specializing in neuroradiology with more than ten years 182 183 of experience. 184 185 SWI TMBs were defined as ovoid or curvilinear hypointensities localized in the WM, 186 mostly at the WM-GM junction, in the brainstem or in the corpus callosum and the region 187 of the basal ganglia. described above. For precise TMB identification, exclusion of SWI

188 lesion mimicks (intersects of veins, bottom of sulci, calcium deposits, artefacts caused by air-189 tissue interfaces or macroscopic bleeding caused by e.g., an intraventricular drain) had to 190 be performed. Therefore, SWI images were registered with high resolution T1 weighted 191 images using FMRIB's Linear Image Registration Tool (FLIRT), which allowed a multi-192 modal and anatomically accurate assessment of TMBs[62–64]. 193 Lesions adjacent to contusions, intraventricular hemorrhage or bone-air interface 194 artifacts (e.g., near mastoid process) or an external ventricular drain, were excluded. The 195 overall TMB number and localization according to Adams et al [65] was individually 196 recorded. 197 FLAIR lesions were defined as focal, round to ovoid hyperintensities and strictly 198 localized within the white matter. Examples of SWI and FLAIR lesions at different time points are shown in Figure 1 and 199 200 Figure 2. 201 Anonymized CT and MRI scans were read by A.T. and B.S.K., both authors with more 202 than six years of experience in human brain CT and MRI data processing, blinded to clinical 203 and time to scan data. Final lesion counts were described as per agreement. Lesion 204 parameters were validated by P.B., specializing in neuroradiology with more than ten years 205 of experience. 206 207 Statistical analysis 208 209 MedCalc for Windows, version 19.1.1. (MedCalc Software, Ostend, Belgium) was used 210

regarding all statistical analyses on the anonymized data except for the Fisher exact test,

211 which was processed using the IBM SPSS Statistics for Windows, Version 25.0. (Armonk, 212 NY: IBM Corp.). Descriptive statistics were applied to summarize clinical, CT and MRI data. 213 In cases of non-normal distributed data median and the interquartile range, and in cases of 214 normally distributed data mean and SD are depicted in Table 2. 215 To model temporal trends of lesions, linear, exponential and second degree polynomial 216 trend lines were aligned to the number of SWI TMBs and FLAIR hyperintensities in function 217 of elapsed time following TBI, respectively, Grubbs' test was applied to exclude outliers. For 218 further analysis, the best fitting trend line (the one with highest R² value) was selected. For 219 both TMBs and FLAIR lesions, a second order polynomial trend line aligned the best 220 (R2=0.20). The solution of this trend line's equation regarding the average TMB count 221 defined the exact time frame in which TMB numbers were below average. 222 The commonly referred defined time frame was adapted considering clinical and 223 practical applicability, thus four groups were created based on the elapsed time between the 224 trauma and the earliest MRI: 0-24h (n=11); 24-48h (n=14); 48-72h (n=11) 72h< (n=10). Sapiro-225 Wilk normality test was applied to test the distribution of TMB, and FLAIR lesion numbers, 226 age, contusion number and total volume. Fisher exact test with continuity correction was 227 used to elucidate differences in occurrence of categorical variables between the groups 228 possibly affecting lesion count such as gender, Mayo TBI classification, Rotterdam and 229 Marshall scores, TMB localization, slice thickness, and scanner field strength. Kruskall-230 Wallis ANOVA with Conover post hoc test was applied to assess the average TMB and 231 FLAIR lesion count, contusion number and volume differences between the groups, 232 statistical power of the comparisons was calculated with R Statistical Software's

- 233 MultNonParam-kwpower package (version 3.6.0.; R Foundation for Statistical Computing,
- 234 Vienna, Austria).

Results

According to the Mayo Classification System regarding TBI, severity distributed as 6 symptomatic, 8 mild and 32 moderate-severe in the set of 46 patients. The distribution of age in our entire set of patients was not normally distributed (p=0.02), mean age in time of the trauma was 46.09 (SD=24.39) years. A total of 248 TMBs (131 on 3T and 117 on 1.5T scanners) and 220 hyperintense focal lesions in FLAIR were identified among 46 patients. In reference to acute CTs, 16 contusions were detectable in 9 of our patients. Detailed demographic and admission clinical data are presented in Table 1-3. A second order polynomial trend line is depicted regarding the individual TMB number over time with the highest R² value. In reference to the TMB number R²= 0.2; p=0.002; y=3,0206X²-13,065X+15,04 values were yielded (Figure 4). The average TMB number with respect to the entire population was 5.4. Substituting this value in the quadratic formula:

$$x1; 2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

 X_1 =85h 55min, and X_2 =21h 50min were yielded. The nearest two acquisitions in our set of patients to these results were 21h11min and 79h45min following trauma. This result supported a strong tendency regarding the further division of our data into the groups described in methods (0-24h (n=11); 24-48h (n=14); 48-72h (n=11) 72h< (n=10). Additionally, a polynomial tendency line was represented with the highest R^2 value for FLAIR lesion numbers (R^2 =0,07 p=0.08, Figure 5).

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

Sapiro-Wilk normality test revealed both TMB (0-24h: p=0.003; 24-48h: p=0.005; 48-72h: p=0.003; 72h<: p=0.04) and FLAIR lesion count significantly differed from normal distribution in every group (0-24h: p=0.003; 24-48h: p= 0.004; 48-72h: p=0.003; 72h<: p=0.04) and in the entire population, as well (p<0.001 for both TMB and FLAIR lesion count). Contusion numbers did not show normal distribution (p<0.001 in every group), contusion volumes as continuous variables also failed to show normal distribution, median contusion volumes were 0-24h=842.00 (IQR 539.29-1316.00) mm³; 24-48h= 331.50 (IQR 0.00-1642.25) mm³; 48-72h=214.00 (IQR 143.28-9480.25) mm³; 72h< = 129.60 mm³. Patients' age in each group did not significantly differ from that which is normally distributed: 0-24: p=0.12; 24-48h: p=0.16; 48-72h= p=0.28; 72h< p=0.14. Results for comparison of clinical and CT data among groups were as follows: mean age in years were 0-24h=34.45 (SD=25.72); 24-48h=52.00 (SD=25.45); 48-72h=53.91 (SD=18.65); 72h< =42.00 (SD=24.59). One-way ANOVA revealed there were no significant differences in relation to age: p=0.19 (Table 2). Fisher exact test did not reveal significant differences with respect to the Mayo TBI classification (p=0.11), Rotterdam (p=0.09) and Marshall (p=0.73) scores, SWI field strength (p=0.77) and slice thickness (p=0.59), in the distribution of macroscopic pathologies (p=0.79) or the gender of our patients (p=0.72). (Table 2.). Median TMB count in each group were as follows: 0-24h=4.0 (IQR 1.50-11.00); 24-48h=1.0 (IQR 0.00-3.00); 48-72h=1.0 (IQR 0.00-6.00); >72h=7.5 (IQR 3.00-10.00), while median FLAIR lesion count was 0-24h=0,00 (IQR 0.00-1.75); 24-48h=0,50 (IQR 0.00-14.00); 48-72h=3,00 (IQR 1.00-4.00); >72h=5,00 (IQR 1.00-14.00) (Table 3). Kruskal-Wallis test for TMBs revealed significant differences (p=0,01) between the groups, but showed no significant correlations with respect to FLAIR lesions (p=0.18), number of contusions (p=0.66) or in respect to the average contusion volume (p=0.69), as it is shown in Table 3 and

Figure 6. Statistical power was 1- β >0.9 for TMB, FLAIR lesion count and contusion volume comparisons. TMB localization did not show differences amongst the groups (p=0.68).

Discussion

This retrospective study on cross-sectional imaging data enabled an indirect validation of the phenomenon of general transient TMB visibility decrease in human SWI scans. A trend line representing the individual TMB count revealed a nadir between approximately 21-80h following trauma. According to practical considerations, these time points were adjusted to 24h and 72h for further analysis. Due to the cross-sectional nature of the study, it was crucial to check the presence regarding factors potentially posing as a bias. Neither TBI severity (according to Mayo classification and Marshall score), distribution of macroscopic pathologies, SWI field strength, age, gender distribution or any of the influential factors among the time-groups significantly differed. Thus, these time-groups proved ideally suitable to examine the influence of elapsed time between TBI and SWI on TMB visibility. Median TMB count in the 24-72h period was significantly lower than in the hyperacute (0-24h) or than in the 72h< period. Although TMB formation is reported to be significantly more frequent among older patients, we experienced lower median TMB numbers in groups in which the average age was higher.

As an internal control of our study, we examined the occurrence of FLAIR lesions, as markers of edema developing along with DAI, over time. Distinctly, FLAIR lesion count did not significantly differ in the examined time period, which suggests we are confronting a

301 phenomenon specific for TMBs. FLAIR lesions are also regarded as markers of DAI and 302 injury severity and may be more stable over the acute to subacute phase however, previous 303 studies suggest they are not so specific and clearly related to the extent of actual DAI and 304 prognosis[66–69] as TMBs[70]. 305 Findings of this study are congruent with our former results: in our rat model, TMBs 306 showed significant temporal visibility reduction in SWI, they often became completely 307 invisible in the 24h-96h period, while microbleeds' consistent presence was histologically 308 proven. Reappearance was demonstrated after 96h. In this paper, the authors expressed that 309 the most possible explanation regarding acute TMB disappearance may be clot retraction 310 caused by voxel level homogenization resulting in signal gain. Authors also suspected the 311 possible role of methemoglobin formation and consequential T1 shine through. The re-312 appearance of microbleeds could be explained by the development of late breakdown 313 products hemoglobin hemosiderin of and ferritin, known to be as 314 superparamagnetic[71,72]. 315 Our findings support former case studies reporting TMBs' morphological changes in 316 SWI, moreover coincide with case observations by Watanabe et al, TMB invisibility may 317 occur roughly between 24 hours and seven days after formation [40]. Furthermore, a study 318 focusing on cerebral blood flow changes in an experimental closed head injury rat model, 319 authors ancillary reported some cases in which hypointense foci congruent with TMBs 320 disappeared and later reappeared[73]. 321 The main practical consequence of these results implies SWI may be false-negative for 322 TMBs between 24h and 72h following injury. Half of our patients (23 of 46) were examined 323 in this time period. This demonstrates at least in our institution, there is a considerable

chance for patients being MRI scanned within the "decreased TMB visibility" period. We assume this may be a general problem, since MRI is almost always electively, secondarily performed to admission CT-s, often after clinical stabilization. Additionally, our finding may be applicable not only in relation to TMBs but to the acute examination of every pathology capable of causing WM TMBs. Although 1.5T and 3T field strength acquisition rates were rather evenly distributed among time points, considering overall lesion counts 3T detected somewhat more lesions (131) than 1.5T (117) supporting the fact 3T has a higher sensitivity for TMBs irrespective from imaging timing.

The main limitations of this study are the limited sample size, as a result of our strict inclusion criteria and temporal features of TMBs were indirectly investigated based on cross-sectional data. Also, according to the assumed nature of temporal changes of TMB visibility, there could be an uncertainty of TMB development in patients examined between 24 – 72 hours. Direct investigation of the temporal visibility changes of TMBs would have been only possible by a longitudinal study. Unfortunately, the conduction of multiple time point follow-up MRI studies in TBI, especially when including severely injured patients is almost impossible: although MRI itself can be regarded as a safe imaging technique, the relatively long acquisition time can be inconvenient for TBI patients, or may even pose risk for severely injured patients due to patient and anesthesiological/intensive care gear transportation. However, very strict patient selection criteria were applied and factors most possibly affecting TMB presence were considered to minimize biased results.

Conclusion

This retrospective study indirectly substantiates that short-term temporary TMB visibility decrease is generally present not only in rodents, but in humans, as well. Based on our results, TMB visibility decrease seems to occur from 24h to 72h following TBI. MRI for detecting TMBs in this period may result in false-negative findings, leading to an underdiagnosis of injury severity and false prognosis estimation.

Figure 1. Representative examples of TMBs in SWI images in <24h, 24-48h, 48-72h and 72h< groups. All four SWI measurements were performed on a 3T Siemens Magnetom Prisma MRI scanner. According to MAYO classification both cases (top left 21 years old male, top right 50 years old male, bottom left 64 years old male and bottom right 60 years old male) were classified as severe TBI, TMBs are indicated by red circles. In the bottom left image, hypointensity caused by the intraventricular drain is indicated by blue circle.

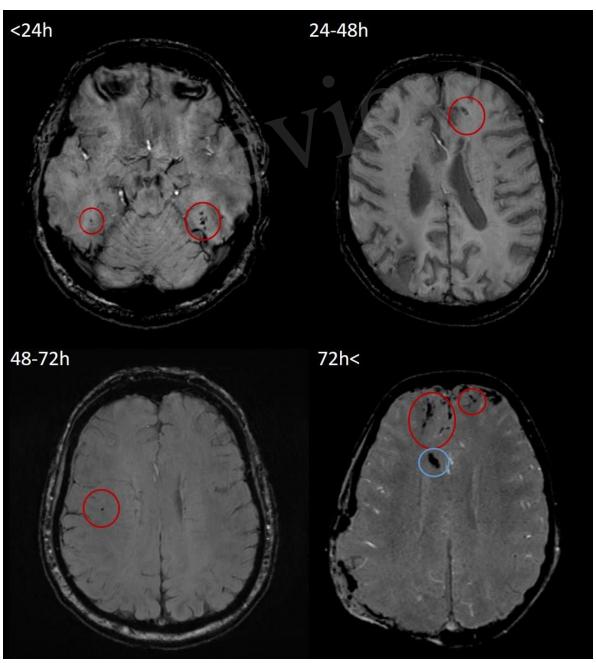
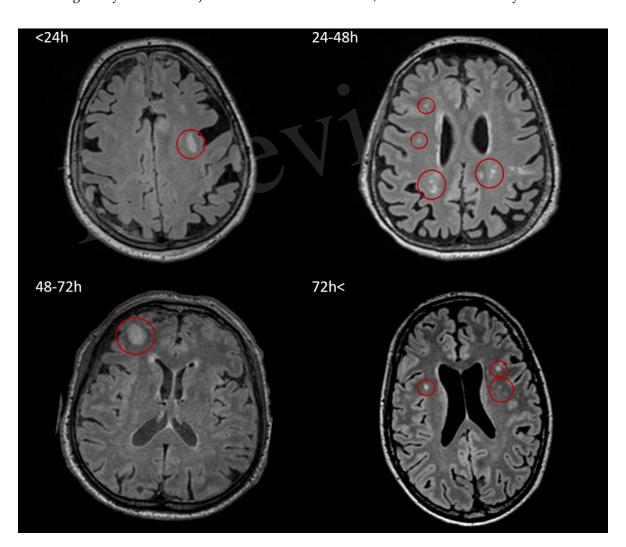



Figure 2. Representative images of non haemorrhagic/ FLAIR lesions in <24h, 24-48h, 48-72h and 72h
groups. All four FLAIR measurements were performed on a 3T Siemens Magnetom Prisma MRI scanner. According to MAYO classification, two of the for patients (top right 77 years old female, bottom left 31 years old male) suffered symptomatic TBI, two of them (top left 75 years old female, bottom right 27 years old male) were classified as severe TBI, lesions are indicated by red circles.

Figure 3. Algorithm of patient inclusion

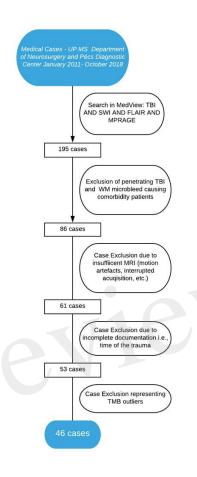
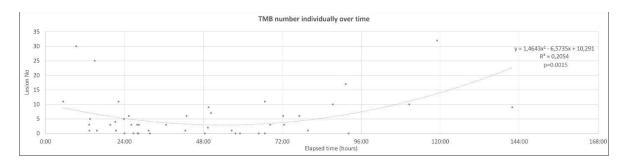



Figure 4. Individual TMB number over time, fitted 2nd order polynomial trend line.

Figure 5. Individual FLAIR lesion number over time, representing the second order polynomial trend

377 line.

Figure 6. Kruskal-Wallis with Conover post hoc test: results for TMB number differences. "*" represents significant (p<0.05) differences of TMB count, the blue circe and the red square stands for the two patients with the highest TMB count.

Kruskal-Wallis test

Test statistic	10,8710
Corrected for ties Ht	11,1757
Degrees of Freedom (DF)	3.
Significance level	P = 0,010813

Post-hoc analysis (Conover)

Factor	n	Average Rank	Different (P<0,05) from factor nr	
(1) 0-24H	11	29,73	(2)(3)	
(2) 24- 48H	14	16,71	(1)(4)	
(3) 48- 72H	11	18,68	(1)(4)	
(4) 72H<	10	31,45	(2)(3)	

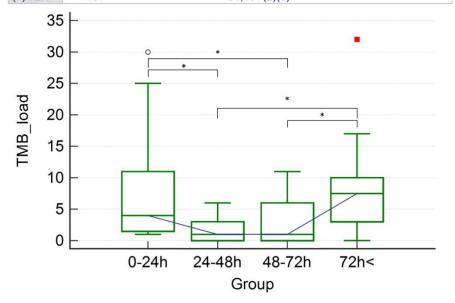


Table 1. Age, causes and symptoms of TBI according to admission data. *: Unknown, intoxicated, GM, sports, etc. **: E.g. blurred or double vision, numbness, hearing impairment, etc. ***:

Disorientation, agitation, seizures, PTSD and thoracic emphysema all occurred.

			~		Gro	ups	
			Σ	0-24h	24-48h	48-72h	72h<
	N° patier	nts	46	11	14	11	10
Median age	e for whole set	for whole set of patients, mean		34.45	52.00	53.91	42.00
	for groups in	years	67)	(SD=25.72)	(SD=25.45)	(SD=18.65)	(SD=24.59)
		falls	21	2	9	5	5
Causo	s of TBI	traffic accident	15	6	2	3	4
Cause	3 01 111	violence	3	1	0	2	0
		other *	7	2	3	1	1
		nausea/vomiting	11	2	2	4	3
		amnesia	9	1	2	5	1
		headache	7	2	0	3	2
	physical symptoms	loss of consciousness	6	1	1	3	1
Symptoms		somnolence	2	1	0	0	1
of tBI		dizziness	2	1	0	1	0
	sensory	sensory symptoms **		1	0	1	0
		d not be obtained	12	3	3	3	3
	0	ther***	7	3	1	1	2
	asyr	mptomatic	6	0	5	0	1

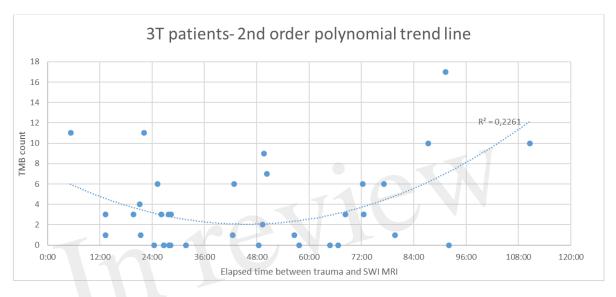
Table 2. Influential factors of TMB count: age, TBI severity, and relevant SWI imaging data, level of significance of differences between groups. Results of One- Way ANOVA (*) and Fisher exact test (***).

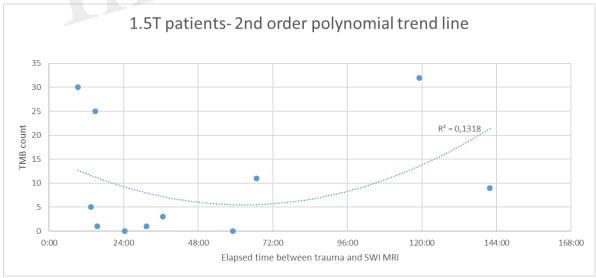
		-		Gro	ups		Ciamificana as
		Σ	0-24	24-48	48-72	72<	Significance
N°	patients	46	11	14	11	10	
patients, mo	for whole set of ean for groups in rears*	50 (IQR 27- 67)	34.45 (SD=25.72)	52.00 (SD=25.45)	53.91 (SD=18.65)	42.00 (SD=24.59)	p=0.19
- 1 4444	Male	37	10	10	9	8	2 -2
Gender***	Female	9	1	4	2	2	p=0.72
	symptomatic	6	0	3	3	0	
TBI severity	mild	8	3	0	3	2	p=0.11
(MAYO)***	moderate-severe	32	8	11	5	8	ρ-0.11
	I	13	4	5	2	2	
	II	8	2	2	1	3	
MARSHALL	III	8	2	1	4	1	n=0.72
score***	IV	0	0	0	0	0	p=0.73
	V	0	0	0	0	0	
	VI	17	3	6	4	4	
	1	27	6	12	4	5	
	2	14	3	1	7	3	
Rotterdam	3	2	1	0	0	1	p=0.09
score***	4	2	1	0	0	1	μ=0.09
	5	0	0	0	0	0	
	6	0	0	0	0	0	
SWI field	1.5 T	11 (23.91%)	4 (36.36%)	3 (21.43%)	2 (18.18%)	2 (20.00%)	p=0.77
strenght***	3 T	35	7	11	9	8	μ-υ.//
	1.15	1	1	0	0	0	
SWI slice	1.2	1	1	0	0	0	
thickness	1.5	32	5	10	9	8	p=0.59
(mm)***	2	8	2	2	2	2	
	3	3	2	1	0	0	

Table 3. TMB count and localization, macroscopic pathologies, FLAIR lesion counts, contusion number and volume and the level of significance of differences between groups. Results of Kruskal-

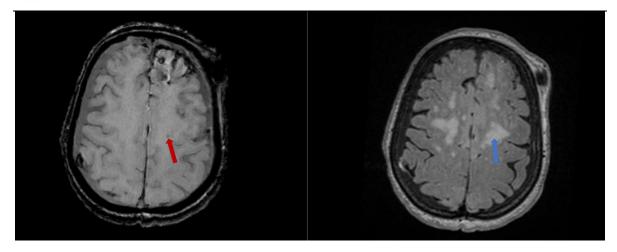
Wallis with Conover post hoc test (**) and Fisher exact test (***)

		_		Gro	ups		
		Σ	0-24	24-48	48-72	72<	
N° pati	ents	46	11	14	11	10	Significance
TMB load**	total	248	95	26	33	94	p=0.011
	median	3.00 (IQR 0.00-7.00)	4.00 (IQR 1.50- 11.00)	1.00 (IQR 0.00-3.00)	1.00 (IQR 0.00-6.00)	7.50 (IQR 3.00- 10.00)	
	subcortical	220	85	25	27	83	
TMB localization***	corpus callosum	19	7	1	3	8	p=0.68
	brainstem	9	3	0	3	3	
	total	277	20	124	32	101	
FLAIR lesion N ^o **	median	2.00 (IQR 0.00-7.25)	0.00 (IQR 0.00-1.75)	0.50 (IQR 0.00- 14.00)	3.00 (IQR 1.00-4.00)	5.00 (IQR 1.00- 14.00)	p=0.18
	total	16	7	3	5	1	
Contusion N ^o **	median	0.00 (IQR 0.00-0.75)	0.00 (IQR 0.00-1.50)	0.00 (IQR 0.00-0.00)	0.00 (IQR 0.00-1.00)	0.00 (IQR 0.00-0.00)	P=0.66
	total	19837.8	2741.00	4064.50	12902.7	129.60	
Contusion volume**	median	378.25 (IQR 124.65- 1446.00)	842.00 (IQR 539.29- 1316.00)	331.50 (IQR 0.00- 1642.25)	214.00 (IQR 143.28- 9480.25)	129.60	p=0.69
	Intraventricular hematoma	2	1	0		1	
	Skull fracture	13	5	5		3	
Macroscopic	Epidural hematoma	3	3	0		0	0.70
pathologies***	Subdural hematoma	7	1	3	3	3	p=0.79
	Subarachnoideal hematoma	7	2	4	4	1	
	Atrophy	4	1		3	0	




397 Supplementary Table 1: MRI measurement parameters for each applied protocols.

7.5		F					MPRAGE	\de					FLAIR						SWI		
	뀔	SL	FOV	matrix	F	Æ	坦	S	FOV	matrix	F	¥	坦	SI	<u>Э</u>	matrix	ĸ	坦	SI	Š	matrix
	106	4	220*220 320*320	320*320	1100	2530	3.4	1	256x256	256x256	(3D space,	2000	387	6.0	230x230	512x512	77	70	1.5	199x220	223x256
	84	5	192*256 192*256	192*256	900	1400	3	1	192*256	192*256	1888.1	2000	96	4	192*256	384*512	46	40	3	172*230	137*192
	97	4	188*225 268*320	268*320	006	1400	3	1	192*256	192*256	2872.1	8750	93	4	225*225	230*256	49	40	2	180*230	158*256
	26	4	188*225 268*320	268*320	006	1400	3	1	192*256	192*256	2713.4	8910	93	4	195*240	187*256	49	40	2	165*230	145*256
	26	4	188*225 268*320	268*320	006	1400	3	1	192*256	192*256	2713.4	8910	93	4	225*225	230*256	49	40	2	180*230	158*256
	6	4	188*225 268*320	268*320	006	1400	3	1	192*256	192*256	2710.4	8890	93	4	225*225	230*256	49	40	2	187*230	164*256
	97	4	188*225 268*320	268*320	006	1400	3	1	192*256	192*256	2713.4	8910	93	4	225*225	230*256	49	40	2	201*230	177*256
	84	2	192x256 192x256	192x256	006	1400	3	1	192*256	192*256	1888.1	2000	99	4	192*256	384*512	46	40	3	172*230	137*192
	84	5	192*256 192*256	192*256	006	1400	3	1	192*256	192*256	1888.1	2000	99	4	192*256	384*512	49	40	2	201*230	177*256
	97	4	188x225 268x320	268x320	006	1400	3	1	192*256	192*256	2713.4	8910	93	4	225x225	230x256	49	40	2	180x230	158x256
	84	2	192x256 192x256	192x256	006	1400	3	1	192*256	192*256	1888.1	2000	66	4	192*256	384*512	46	40	3	158*230	125*192
	119	3	200x200 288x384	288x384	006	1380	2.2	1.1	211x211	192×192	2500	0006	125	3	200x200	192x256	28	70	1.2	137x230	175x320
	74	4	193x220 280x320	280x320	900	1380	2.2	1.1	211x211	192x192	1800	2000	93	4	193x220	224x256	27	70	1.5	173x230	182x256
	93	4	193*220 280*320	280*320	006	1380	2.2	1.1	211x211	192x192	1800	2000	93	4	193*220	224*256	27	70	1.5	173*230	182*256
	74	4	193*220 280*320	280*320	900	1380	2.2	1.1	211x211	192x192	1800	2000	93	4	193*220	224*256	27	70	1.5	173*230	182*256
	74	4	193*220 280*320	280*320	006	1380	2.2	1.1	211x211 192x192	192×192	1800	2000	33	4	193*220 224*256	224*256	27	70	1.5	151*230	160*256


Supplementary Figure 1. TMB count as a function of time in patients scanned by 1.5T (n=11) or 3T (n=35) scanners (y axis: TMB count; x axis: elapsed time between trauma and MRI scan individually). A 2^{nd} order polynomial trend line could be fitted with the highest R^2 value ($R^2 = 0.1318$ (1.5T) and $R^2 = 0.2261$ (3T)) on individual TMB count in the same manner as when patients scanned with two different field strength were examined combined.

Supplementary Figure 2.: In our final 46 patients included, there were only two cases -of which one is shown in Supplementary Figure 2- when a TMB (indicated by red arrow) and a non haemorrhagic FLAIR lesion (indicated by blue arrows) were co-localised.

Declarations

Funding

B.S.K. was supported by the ÚNKP-20-3-I-PTE-552 New National Excellence Program of the Ministry for Innovation and Technology and the manuscript was also "PREPARED WITH THE PROFESSIONAL SUPPORT OF THE DOCTORAL STUDENT SCHOLARSHIP ROGRAM OF THE CO-OPERATIVE DOCTORAL PROGRAM OF THE MINISTRY OF INNOVATION AND TECHNOLOGY FINANCED FROM THE NATIONAL RESEARCH, DEVELOPMENT AND INNOVATION FUND. KDP-2020-986041". A.T. was supported by the ÚNKP-20-5-PTE-794 New National Excellence Program of the Ministry for Innovation and Technology. A.T. was supported by the Bolyai Scholarship of the Hungarian Academy of Science. Sz.A.N. was supported by the ÚNKP-20-5-PTE-715 New National Excellence Program of the Ministry for Innovation and Technology and János Bolyai Research Scholarship of the Hungarian Academy of Sciences and PTE ÁOK-KA-2020-08. G.P. was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences and the Institutional Excellence Program for the Higher Education II within the framework of the 5th thematic program.

This study was funded by the Hungarian Scientific Research Fund Grant No. OTKA/K-120356. Additionally, the study was also funded by EFOP-3.6.2-16-2017-00008 "The role of neuro-inflammation in neurodegeneration: from molecules to clinics";

Supported by the ÚNKP-20-3-I-PTE-552, ÚNKP-20-5-PTE-794, and ÚNKP-20-5-PTE-715 New National Excellence Program of the Ministry for Innovation and Technology

This work was financially supported by the following grant agencies: Hungarian Brain Research Program (KTIA_NAP_13-2-2014-0019 and 2017-1.2.1-NKP-2017-00002)

Conflicts of interest

The authors have no relevant financial or non-financial interests to disclose.

Availability of data and material

Raw data were generated at Pécs Diagnostic Center and the Department of Medical Imaging UP Clinical Center. Derived data supporting the findings of this study are available from the corresponding author [initials] on request.

Code availability

Not applicable

Authors' Contributions

Bálint Soma Környei: study conception and design, data acquisition, analysis and interpretation of data, drafting, final approval; Viktor Szabó: study design, data acquisition, draft revision, final approval; Gábor Perlaki: study design and conception, analysis and interpretation of data, draft revision, final approval; Bendegúz Balogh: analysis and interpretation of data, draft revision, final approval; Dorottya Kata Szabó Steigerwald: analysis and interpretation of data, draft revision, final approval; Szilvia A. Nagy: study design and conception, analysis and interpretation of data, draft revision, final approval; Luca Tóth: data acquisition, draft revision, final approval; András Büki: conception and design, draft revision, final approval; Péter Bogner: conception and design, draft revision, final approval; Attila Schwarcz: study conception and design, analysis and interpretation of data, draft revision, final approval Arnold Tóth: study conception and design, analysis and interpretation of data, draft revision, final approval

All authors agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Ethics approval

 Investigations were carried out compliant to the rules of the Declaration of Helsinki, and ethical approval was granted from the Institutional Review Board of the University of Pécs (No.4525).

Consent to participate

Written informed consent was obtained from all the participants or their legally authorized representatives regarding the MRI scans used in the study.

Consent for publication

Written informed consent was obtained from all the participants or their legally authorized representatives regarding the MRI scans used in the study.

Acknowledgements

We wish to express our gratitude to Farkas Kornélia Borbásné, MD, PhD, senior lecturer of the Institute of Bioanalysis UP MS for her professional assistance in biostatistics and John Eugene Marquette for his professional linguistic assistance.

References

[1] C.D. Mathers, D. Loncar, PLoS Med. 3 (2006) e442.

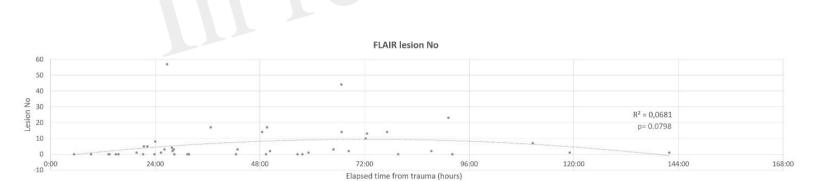
- 489 [2] W.-T. Chiu, S.-J. Huang, S.-H. Tsai, J.-W. Lin, M.-D. Tsai, T.-J. Lin, W.C.W. Huang, J.
- 490 Clin. Neurosci. 14 (2007) 930–5.
- 491 [3] H.T. Keenan, S.L. Bratton, Dev. Neurosci. 28 (2006) 256–63.
- 492 [4] H.J. Thompson, W.C. McCormick, S.H. Kagan, J. Am. Geriatr. Soc. 54 (2006) 1590–5.
- 493 [5] T.B. Cole, JAMA 291 (2004) 2531–2.
- 494 [6] J. Lu, A. Marmarou, S. Choi, A. Maas, G. Murray, E.W. Steyerberg, Impact and Abic
- 495 Study Group, Acta Neurochir. Suppl. 95 (2005) 281–5.
- 496 [7] J. Berg, F. Tagliaferri, F. Servadei, Eur. J. Neurol. 12 Suppl 1 (2005) 85–90.
- 497 [8] F. Tagliaferri, C. Compagnone, M. Korsic, F. Servadei, J. Kraus, Acta Neurochir.
- 498 (Wien). 148 (2006) 255–68; discussion 268.
- 499 [9] M.J. McGinn, J.T. Povlishock, Neurosurg. Clin. N. Am. 27 (2016).
- 500 [10] C. Moenninghoff, O. Kraff, S. Maderwald, L. Umutlu, J.M. Theysohn, A. Ringelstein,
- K.H. Wrede, C. Deuschl, J. Altmeppen, M.E. Ladd, M. Forsting, H.H. Quick, M.
- 502 Schlamann, PLoS One 10 (2015).
- 503 [11] K. Blennow, D.L. Brody, P.M. Kochanek, H. Levin, A. McKee, G.M. Ribbers, K. Yaffe,
- 504 H. Zetterberg, Nat. Rev. Dis. Prim. (2016).
- 505 [12] C.Y. Tang, E. Eaves, K. Dams-O'Connor, L. Ho, E. Leung, E. Wong, D. Carpenter, J.
- Ng, W. Gordon, G. Pasinetti, Transl. Neurosci. (2012).
- 507 [13] T.A. Gennarelli, J.H. Adams, D.I. Graham, in: Mech. Second. Brain Damage, Springer
- 508 US, 1986, pp. 15–28.
- 509 [14] Claus-W. Wallesch, Noreen Curio, Su, Brain Inj. 15 (2001) 401–412.

- 510 [15] K. Paterakis, A.H. Karantanas, A. Komnos, Z. Volikas, J. Trauma Inj. Infect. Crit.
- 511 Care 49 (2000) 1071–1075.
- 512 [16] M.K. Blitstein, G.A. Tung, Am. J. Roentgenol. 189 (2007) 720–725.
- 513 [17] R. Sharma, S. Dearaugo, B. Infeld, R. O'Sullivan, R.P. Gerraty, J. Med. Imaging Radiat.
- 514 Oncol. 62 (2018) 451–463.
- 515 [18] Y. Asano, J. Shinoda, A. Okumura, T. Aki, S. Takenaka, K. Miwa, M. Yamada, T. Ito,
- 516 K. Yokoyama, Neurol. Med. Chir. (Tokyo). (2012).
- 517 [19] R. Kumar, M. Husain, R.K. Gupta, K.M. Hasan, M. Haris, A.K. Agarwal, C.M.
- Pandey, P.A. Narayana, J. Neurotrauma (2009).
- 519 [20] A. Toth, N. Kovacs, G. Perlaki, G. Orsi, M. Aradi, H. Komaromy, E. Ezer, P. Bukovics,
- O. Farkas, J. Janszky, T. Doczi, A. Buki, A. Schwarcz, J. Neurotrauma (2013).
- 521 [21] S. Mittal, Z. Wu, J. Neelavalli, E.M. Haacke, Am. J. Neuroradiol. (2009).
- 522 [22] E.M. Haacke, S. Mittal, Z. Wu, J. Neelavalli, Y.C.N. Cheng, Am. J. Neuroradiol. (2009).
- 523 [23] A.L. Cheng, S. Batool, C.R. McCreary, M.L. Lauzon, R. Frayne, M. Goyal, E.E. Smith,
- 524 Stroke (2013).
- 525 [24] S.M. Greenberg, M.W. Vernooij, C. Cordonnier, A. Viswanathan, R. Al-Shahi Salman,
- 526 S. Warach, L.J. Launer, M.A. Van Buchem, M.M. Breteler, Lancet Neurol. (2009).
- 527 [25] M.A. Ripoll, B. Siösteen, M. Hartman, R. Raininko, Acta Radiol. (2003).
- 528 [26] P.M. Parizel, S. Makkat, E. Van Miert, J.W. Van Goethem, L. Van den Hauwe, A.M.
- 529 De Schepper, Eur. Radiol. (2001).
- 530 [27] D.I. A, L. T, A.-L. P, B. A, M. W, C. MD, J. Neurosurg. 123 (2015) 1463–1475.

- 531 [28] G. Spitz, J.J. Maller, A. Ng, R. O'Sullivan, N.J. Ferris, J.L. Ponsford, J. Neurotrauma
- 532 (2013).
- 533 [29] A. Toth, B. Kornyei, N. Kovacs, T. Rostas, A. Buki, T. Doczi, P. Bogner, A. Schwarcz,
- 534 Behav. Brain Res. 340 (2018).
- 535 [30] S.H. Andreasen, K.W. Andersen, V. Conde, T.B. Dyrby, O.T. Puonti, L.P.
- Kammersgaard, C.G. Madsen, K.H. Madsen, I. Poulsen, H.R. Siebner, J. Neurotrauma
- 537 (2019).
- 538 [31] A.D. Griffin, L.C. Turtzo, G.Y. Parikh, A. Tolpygo, Z. Lodato, A.D. Moses, G. Nair,
- D.P. Perl, N.A. Edwards, B.J. Dardzinski, R.C. Armstrong, A. Ray-Chaudhury, P.P.
- Mitra, L.L. Latour, Brain (2019).
- 541 [32] S. Akoudad, F.J. Wolters, A. Viswanathan, R.F. De Bruijn, A. Van Der Lugt, A.
- Hofman, P.J. Koudstaal, M. Arfan Ikram, M.W. Vernooij, JAMA Neurol. (2016).
- 543 [33] S. de Haan, J.C. de Groot, B. Jacobs, J. van der Naalt, Neuroradiology (2017).
- 544 [34] B.J. Kim, S.-H. Lee, J. Stroke (2013).
- 545 [35] H.J. van der Horn, S. de Haan, J.M. Spikman, J.C. de Groot, J. van der Naalt, Brain
- 546 Imaging Behav. (2018).
- 547 [36] M.H. Beauchamp, R. Beare, M. Ditchfield, L. Coleman, F.E. Babl, M. Kean, L.
- 548 Crossley, C. Catroppa, K.O. Yeates, V. Anderson, Cortex (2013).
- 549 [37] E.L. Yuh, P. Mukherjee, H.F. Lingsma, J.K. Yue, A.R. Ferguson, W.A. Gordon, A.B.
- Valadka, D.M. Schnyer, D.O. Okonkwo, A.I.R. Maas, G.T. Manley, Ann. Neurol. 73
- 551 (2013) 224–235.

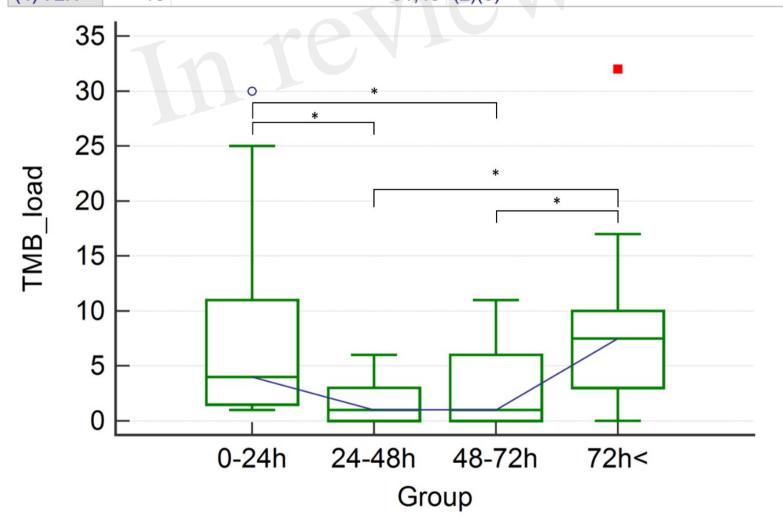
552 [38] T.P. Lawrence, P.M. Pretorius, M. Ezra, T. Cadoux-Hudson, N.L. Voets, Neurosci. 553 Lett. (2017). 554 A. Toth, N. Kovacs, V. Tamas, B. Kornyei, M. Nagy, A. Horvath, T. Rostas, P. Bogner, [39] 555 J. Janszky, T. Doczi, A. Buki, A. Schwarcz, Neurosci. Lett. 617 (2016). 556 Y. Ezaki, K. Tsutsumi, M. Morikawa, I. Nagata, Acta Neurochir. (Wien). 148 (2006) [40] 557 547–50; discussion 550. 558 J. Watanabe, J. Maruya, Y. Kanemaru, T. Miyauchi, K. Nishimaki, Acta Neurochir. [41] 559 (Wien). (2016). 560 S. Kallakuri, S. Bandaru, N. Zakaria, Y. Shen, Z. Kou, L. Zhang, E.M. Haacke, J.M. [42] 561 Cavanaugh, J. Clin. Imaging Sci. (2015). 562 [43] A. Tóth, Z. Berente, P. Bogner, B. Környei, B. Balogh, E. Czeiter, K. Amrein, T. Dóczi, 563 A. Büki, A. Schwarcz, J. Neurotrauma 36 (2019) 1670–1677. 564 E.M. Haacke, Z.S. DelProposto, S. Chaturvedi, V. Sehgal, M. Tenzer, J. Neelavalli, D. [44] 565 Kido, Am. J. Neuroradiol. (2007). 566 G. Trifan, R. Gattu, E.M. Haacke, Z. Kou, R.R. Benson, Magn. Reson. Imaging (2017). [45] 567 Brain Trauma Foundation, American Association of Neurological Surgeons, [46] 568 Congress of Neurological Surgeons, Joint Section on Neurotrauma and Critical Care, 569 AANS/CNS, S.L. Bratton, R.M. Chestnut, J. Ghajar, F.F. McConnell Hammond, O.A. 570 Harris, R. Hartl, G.T. Manley, A. Nemecek, D.W. Newell, G. Rosenthal, J. Schouten, 571 L. Shutter, S.D. Timmons, J.S. Ullman, W. Videtta, J.E. Wilberger, D.W. Wright, J.

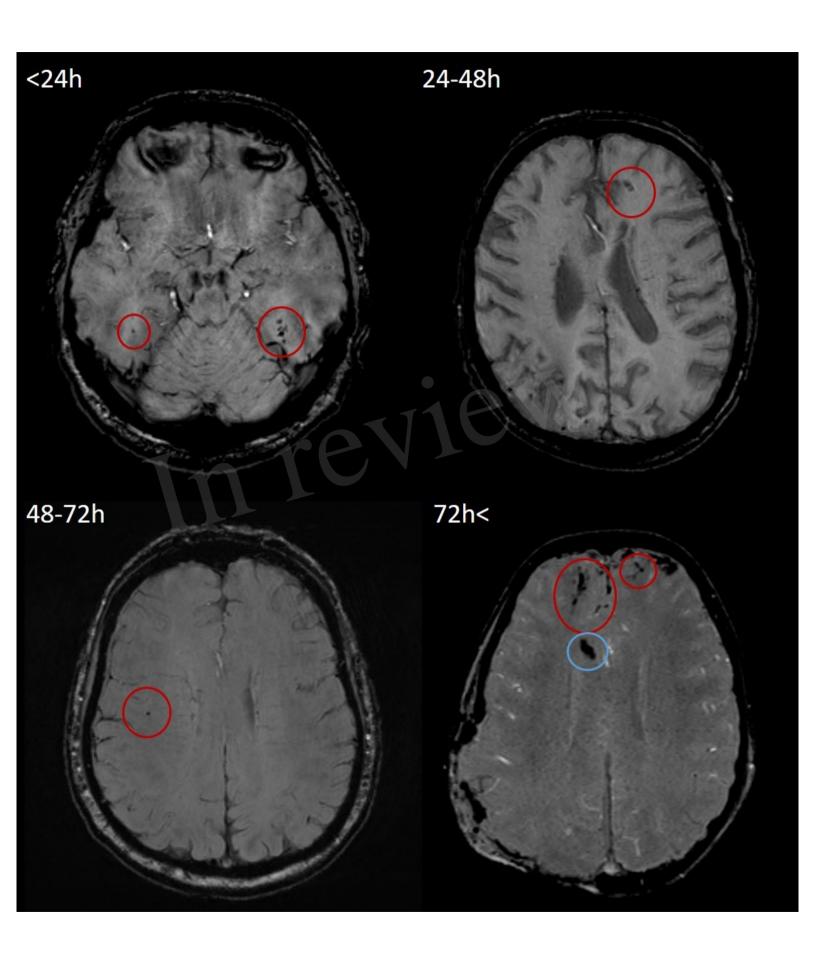
Neurotrauma 24 Suppl 1 (2007) S7-13.


- 573 [47] M. Susman, S.M. DiRusso, T. Sullivan, D. Risucci, P. Nealon, S. Cuff, A. Haider, D.
- 574 Benzil, J. Trauma 53 (2002) 219–23; discussion 223-4.
- 575 [48] G. Trifan, R. Gattu, E.M. Haacke, Z. Kou, R.R. Benson, Magn. Reson. Imaging (2017).
- 576 [49] Y. Nakata-Kudo, T. Mizuno, K. Yamada, K. Shiga, K. Yoshikawa, S. Mori, T.
- Nishimura, K. Nakajima, M. Nakagawa, Dement. Geriatr. Cogn. Disord. (2006).
- 578 [50] S. Shams, J. Martola, T. Granberg, X. Li, M. Shams, S.M. Fereshtehnejad, L. Cavallin,
- P. Aspelin, M. Kristoffersen-Wiberg, L.O. Wahlund, Am. J. Neuroradiol. (2015).
- 580 [51] Y. Y., K. Y., W. Y., S. H., I. N., Circulation (2016).
- 581 [52] Y. Nakagami, G. Sugihara, K. Uemura, N. Jingami, K. Ueda, R. Takahashi, T. Murai,
- 582 Epilepsy and Seizure (2014).
- 583 [53] A. E.B., T. G.M., D.C. A.J., K. J., F. M.D., V.D.G. J., V.B. M.A., K. M.C., J. Headache
- 584 Pain (2010).
- 585 [54] J.H. Oh, J.S. Lee, S.Y. Kang, J.H. Kang, J.C. Choi, Clin. Neurol. Neurosurg. (2008).
- 586 [55] M.H. Beauchamp, R. Beare, M. Ditchfield, L. Coleman, F.E. Babl, M. Kean, L.
- 587 Crossley, C. Catroppa, K.O. Yeates, V. Anderson, Cortex (2013).
- 588 [56] M. Ayaz, A.S. Boikov, E.M. Haacke, D.K. Kido, W.M. Kirsch, J. Magn. Reson. Imaging
- 589 (2010).
- 590 [57] J.F. Malec, A.W. Brown, C.L. Leibson, J.T. Flaada, J.N. Mandrekar, N.N. Diehl, P.K.
- 591 Perkins, J. Neurotrauma 24 (2007) 1417–1424.
- 592 [58] J.F. Malec, A.W. Brown, C.L. Leibson, J.T. Flaada, J.N. Mandrekar, N.N. Diehl, P.K.
- 593 Perkins, J. Neurotrauma (2007).

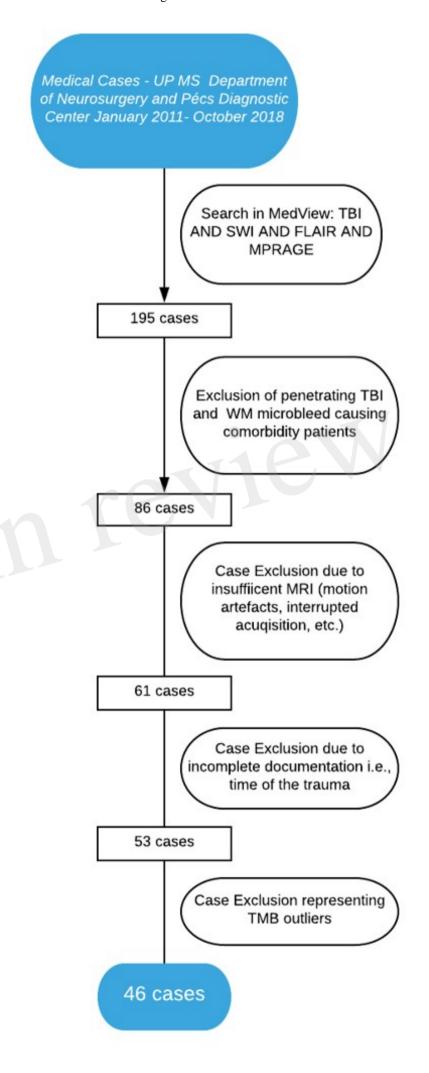
- 594 [59] A.I.R. Maas, C.W.P.M. Hukkelhoven, L.F. Marshall, E.W. Steyerberg, Neurosurgery
- 595 57 (2005) 1173–1181.
- 596 [60] (n.d.).
- 597 [61] R.U. Kothari, T. Brott, J.P. Broderick, W.G. Barsan, L.R. Sauerbeck, M. Zuccarello, J.
- 598 Khoury, Stroke 27 (1996) 1304–1305.
- 599 [62] D.N. Greve, B. Fischl, Neuroimage (2009).
- 600 [63] M. Jenkinson, S. Smith, Med. Image Anal. (2001).
- 601 [64] M. Jenkinson, P. Bannister, M. Brady, S. Smith, Neuroimage (2002).
- 602 [65] J.H. Adams, D. Doyle, I. Ford, T.A. Gennarelli, D.I. Graham, D.R. Mclellan,
- 603 Histopathology 15 (1989) 49–59.
- 604 [66] F. Amyot, D.B. Arciniegas, M.P. Brazaitis, K.C. Curley, R. Diaz-Arrastia, A.
- Gandjbakhche, P. Herscovitch, S.R. Hinds, G.T. Manley, A. Pacifico, A. Razumovsky,
- J. Riley, W. Salzer, R. Shih, J.G. Smirniotopoulos, D. Stocker, J. Neurotrauma 32 (2015)
- 607 1693–1721.
- 608 [67] E.D. Bigler, T.J. Abildskov, J.A. Petrie, T.J. Farrer, M. Dennis, N. Simic, H.G. Taylor,
- K.H. Rubin, K. Vannatta, C.A. Gerhardt, T. Stancin, K.O. Yeates, Neuropsychology
- 610 27 (2013) 438–451.
- 611 [68] C. Marquez De La Plata, A. Ardelean, D. Koovakkattu, P. Srinivasan, A. Miller, V.
- Phuong, C. Harper, C. Moore, A. Whittemore, C. Madden, R. Diaz-Arrastia, M.
- 613 Devous, J. Neurotrauma 24 (2007) 591–598.
- 614 [69] K. Ding, C.M. De La Plata, J.Y. Wang, M. Mumphrey, C. Moore, C. Harper, C.J.

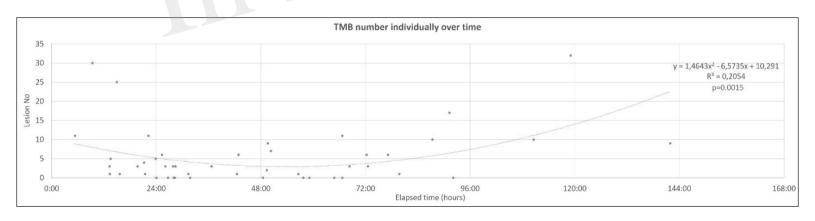
615 Madden, R. McColl, A. Whittemore, M.D. Devous, R. Diaz-Arrastia, J. Neurotrauma 616 25 (2008) 1433-1440. 617 K.A. Tong, S. Ashwal, B.A. Holshouser, L.A. Shutter, G. Herigault, E.M. Haacke, D.K. [70] 618 Kido, Radiology 227 (2003) 332-339. 619 W.G. Bradley, Radiology 189 (1993) 15-26. [71] 620 A. Tó th, Z. Berente, P. ter Bogner, B. lint Környei, B. Balogh, E. Czeiter, K. Amrein, [72] 621 T. Dó czi, A. Bü ki, A. Schwarcz, (n.d.). 622 S. Kallakuri, S. Bandaru, N. Zakaria, Y. Shen, Z. Kou, L. Zhang, E. Haacke, J. [73] Cavanaugh, J. Clin. Imaging Sci. 5 (2015). 623 624




Kruskal-Wallis test


Test statistic	10,8710
Corrected for ties Ht	11,1757
Degrees of Freedom (DF)	3
Significance level	P = 0,010813


Post-hoc analysis (Conover)


Factor	n	Average Rank	Different (P<0,05) from factor nr	
(1) 0-24H	11	29,73	(2)(3)	
(2) 24- 48H	14	16,71	(1)(4)	
(3) 48- 72H	11	18,68	(1)(4)	
(4) 72H<	10	31,45	(2)(3)	

