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Abstract: To evaluate the effects of hyperglycemia and insulin treatment on the proportion of
serotonin-immunoreactive (5-HT-IR) myenteric neurons, samples were taken from the duodenum,
ileum, and colon of diabetic, insulin-treated diabetic, and control rats 10 weeks after the onset of
streptozotocin-induced hyperglycemia. Myenteric whole-mount preparations were immunostained
with anti-5-HT and pan-neuronal anti-HuCD markers. In controls, the 5-HT-IR myenteric neurons
represent a small proportion (~2.5%) of the total neuronal number in the investigated gut segments.
The proportion of 5-HT-IR myenteric neurons was significantly higher in the duodenum (p < 0.01)
and colon (p < 0.0001) of diabetic rats compared to the controls but exhibited a slight increase in the
ileum. Immediate insulin treatment resulted in a significantly lower proportion of myenteric 5-HT-IR
neurons in each segment (duodenum p < 0.0001; ileum p < 0.01; and colon p < 0.0001) compared to
the untreated diabetics. Our study demonstrates that the proportion of 5-HT-IR myenteric neurons
was enhanced in type 1 diabetes in a region-specific manner. Immediate insulin treatment prevents a
higher hyperglycemia-induced amount of 5-HT-IR neurons and restores it to the control level in each
investigated gut segment. Despite the low proportion of 5-HT-IR myenteric neurons, hyperglycemia-
related changes of these neurons may play a crucial role in gastrointestinal symptoms in type
1 diabetes.

Keywords: diabetic enteropathy; gut segment specificity; myenteric neurons; serotonin; type 1 diabetes;
enteric nervous system

1. Introduction

Diabetic patients often suffer from gastrointestinal (GI) symptoms such as nausea,
vomiting, diarrhea, constipation, dyspepsia, or abdominal pain. These complications are
associated with structural and functional alterations of the enteric nervous system (ENS),
which is known as diabetic enteropathy [1]. The ENS is structured as two major ganglion-
ated plexuses. The myenteric plexus is located between the circular and the longitudinal
muscle layers of the gut wall and regulates intestinal motility [2]. The submucous plexus is
situated in the submucosal tissue layer close to the muscularis mucosae and the intrinsic
vasculature; in small animals, it is found in one layer, while in larger animals and hu-
mans, it is in two layers. The submucous neurons influence mucosal secretion, electrolyte
absorption across the mucosa, blood flow, and intestinal motility [3–6].

The ENS is particularly sensitive to hyperglycemia. The persistence of a high level of
blood glucose disturbs the intracellular glucose metabolism and leads to the generation of
reactive oxygen species damaging the ENS [7–9]. Diabetes-related alterations in the enteric
neuronal microenvironment contribute to pathological pathways [10]. These alterations
include structural neuronal changes, altered secretion of neurotransmitters, or loss of
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enteric neurons, which in turn modify GI motility and secretory functions and lead to the
abovementioned GI symptoms in diabetic patients [11,12].

Serotonin (5-hydroxytryptamine, 5-HT) in the central nervous system is mainly as-
sociated with mood, depression, sleep, and appetite, but the gut can store a vast amount
of 5-HT. Although enteric 5-HT received more attention recently, most of these studies
focused on the 5-HT produced by mucosal enterochromaffin cells [13,14], which accounts
for about 90% of the body’s total 5-HT. However, enteric 5-HT is also synthetized by the
ENS. 5-HT-immunoreactive (IR) neurons, although in small proportions, are present along
the GI tract in rodents [15] and humans [16,17]. The physiological roles of these neurons
in GI motility are controversial [18,19]. On the one hand, this discrepancy arises from
the large number of different 5-HT receptors, such as 5-HT1, 5-HT2, 5-HT3, 5-HT4, and
5-HT7, and their subtypes [20]. On the other hand, 5-HT-IR neurons have extensive projec-
tions. The immunohistochemical study of Hempfling et al. [16] determined the presence
of 5-HT-IR neurons and 5-HT-IR nerve fibers in the myenteric ganglia, motor endplates,
lamina muscularis mucosae, and blood vessels of a mice esophagus. In a murine colon,
Okamoto et al. [21] observed the divergence of myenteric 5-HT-IR neurons throughout
the myenteric and submucous plexus, the pacemaker, intramuscular and submucous in-
terstitial cells of Cajal, and submucous arterioles. Moreover, 5-HT-IR neurons appear to
synapse with one another, and most neuronal nitric oxide synthase (nNOS)-IR neurons
and glial cells are found in the murine colon. This diverse range of targets suggests that
these neurons function not only as interneurons or sensory neurons but also as motor
neurons innervating interstitial cells of Cajal and blood vessels. Furthermore, this study
offers the possibility that myenteric 5-HT-IR neurons coordinate motility with blood flow
and secretion in the colon [22].

Despite unanswered questions, such as whether the endogenous 5-HT originates from
mucosa or enteric neurons or whether it is essential in GI motility, there is evidence about
its important role in gut pathophysiology. 5-HT signaling has been altered in patients
with diverticular disease [23], irritable bowel syndrome [24], Hirschsprung’s-associated
enterocolitis [25], and autism spectrum disorders [26,27]. Furthermore, the manipulation
of 5-HT3; 5-HT4 receptors; and tryptophan hydroxylase, the rate limiting the enzyme of
the 5-HT synthesis, is a therapeutic target in the treatment of GI motility disorders [20]. In
addition, selective 5-HT4 receptor agonists being considered new prokinetic agents are
under investigation for the treatment of diabetic gastroparesis, a syndrome that involves
delayed gastric emptying [28].

Although diabetic patients often suffer from GI disturbances, little is known about the
gut segment-specific alterations of 5-HT-IR enteric neurons in hyperglycemia or in insulin-
treated diabetes. Lincoln et al. [29] detected that the ileal and colonic 5-HT neurons are
affected by hyperglycemia in a region-dependent manner. Moreover, Gorio et al. [30] found
that insulin treatment is preventive in the neurochemical changes in an alloxan-induced
diabetic gut. Segment-specific alterations in the heme oxygenase-IR and nNOS-IR neurons
were demonstrated in the small and large intestines of streptozotocin (STZ)-induced
diabetic rats [31,32]. In addition, the diabetic alterations in the neuronal microenvironment,
including changes in the morphology and function of the capillary endothelium adjacent
to the myenteric plexus, were also intestinal region-dependent [10,33]. The protective
effects of insulin treatment on the enteric neurons, mainly on nitrergic neurons and on
the capillary endothelium supplying the myenteric plexus in type 1 diabetes, have been
confirmed in a few studies [10,34–36].

Based on these findings, our primary aim was to quantify the 5-HT-IR neurons in the
myenteric plexus of the duodenum, ileum, and colon of control animals using fluorescent
immunohistochemistry. Furthermore, it was our goal to evaluate the effects of chronic
hyperglycemia on the proportion of 5-HT-IR neurons in different gut segments and to
investigate whether the insulin treatment results in segment-specific changes in the 5-HT-IR
subpopulation of myenteric neurons in diabetes.
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2. Materials and Methods
2.1. Animal Model

Adult male Wistar rats (Crl:WI BR; Toxi-Coop Zrt.) weighing 210–230 g kept in type III
plastic cages on a 12/12 h day/night cycle with standard laboratory food (Farmer-Mix Kft.,
Zsámbék) and free access to drinking water were used throughout the experiments. Twenty-
five rats were divided randomly into three groups: STZ-induced diabetics (diabetics;
n = 7), insulin-treated STZ-induced diabetics (insulin-treated diabetics; n = 8), and sex
and age-matched controls (controls; n = 10). Hyperglycemia was induced as described
previously [10,34]. The animals were considered diabetic if the non-fasting blood glucose
concentration was higher than 18 mM. Hereupon one group of hyperglycemic rats received
a subcutaneous injection of insulin (Humulin M3, Eli Lilly Nederland) each morning
(3 IU) and afternoon (3 IU). The blood glucose level and weight of each animal were
measured weekly. The protocol was designed to minimize pain or discomfort for the
animals. In all procedures involving experimental animals, the principles of the National
Institutes of Health (Bethesda, MD, USA) guidelines and the EU directive 2010/63/EU
for the protection of animals used for scientific purposes were strictly followed, and
all experiments were approved by the National Scientific Ethical Committee on Animal
Experimentation (National Competent Authority) with the license number XX./1487/2014.

2.2. Tissue Handling

The animals were killed by cervical dislocation under chloral hydrate anesthesia
(375 mg/kg i.p.) 10 weeks after the onset of hyperglycemia. The gut segments were dis-
sected and rinsed in a 0.05 M phosphate buffer (PB; pH 7.4). Samples were taken from the
duodenum (1 cm distal to the pylorus), the ileum (1 cm proximal to the ileo-cecal junc-
tion), and the proximal colon and were processed for quantitative immunohistochemistry.
For double-labelling immunohistochemistry, the intestinal segments were cut along the
mesentery, pinched flat, and fixed overnight at 4 ◦C in 4% a paraformaldehyde solution
buffered with 0.1 M PB (pH 7.4). The samples were then washed, and whole-mounts with
the myenteric plexus were prepared.

2.3. Fluorescent Immunohistochemistry

For double-labelling immunohistochemistry, myenteric whole-mount preparations
from different gut segments were immunostained with both a 5-HT and a HuCD pan-
neuronal marker. In brief, after blocking in PB containing 0.1% bovine serum albumin
(Sigma-Aldrich, Hungary), 10% normal goat serum (Sigma-Aldrich, Hungary), and 0.3%
Triton X-100, the samples were incubated overnight with anti-5-HT (rabbit; Sigma-Aldrich,
Budapest, Hungary; final dilution 1:700, Cat. No: S5545) and anti-HuCD (mouse; Invit-
rogen, Thermo Scientific, United States of America; final dilution 1:50, Cat No: A-21271)
primary antibodies. After being washed in PB, whole-mounts were incubated with anti-
rabbit Alexa Fluor 488 (Life Technologies Corporation, Molecular Probes, Inc., Eugene;
final dilution 1:200) and anti-mouse CyTM3 (Jackson ImmunoResearch Laboratories, Inc.,
Baltimore Pike, PA; final dilution 1:200) secondary antibodies for 2 h. All incubations
were conducted at room temperature. Negative controls were performed by omitting the
primary antibody when no immunoreactivity was observed.

Two whole-mounts per animal were mounted on slides in an EverBriteTM Mounting
Medium (Biotium, Inc., Hayward, CA, USA), observed, and photographed with a Zeiss
Imager Z.2 fluorescent microscope equipped with an Axiocam 506 mono camera. In each
animal group, 100 ganglia were studied, during which the percentage of 5-HT-IR neurons
(per ganglia) relative to the HuCD-IR neurons (per the same ganglia) was determined.

2.4. Statistical Analysis

Statistical analysis was performed with the Kruskal–Wallis test, Dunn’s multiple
comparison tests (Figures), or one-way ANOVA and the Newman–Keuls test (Table 1).
All analyses were conducted with GraphPad Prism 7.0 (GraphPad Software, La Jolla, CA,



Appl. Sci. 2021, 11, 5949 4 of 13

USA). A probability of p < 0.05 was set as the level of significance. All data were expressed
as mean ± SEM.

Table 1. Weight and glycemic characteristics of the three experimental groups of rats.

Body Weight
(g) ± SEM

Blood Glucose Concentration
(mmol/L) ± SEM

Initial Final Initial Final (Average)

Controls (n = 10) 226.2 ± 4.3 457.1 ± 19.7 * 5.46 ± 0.4 5.56 ± 0.1
Diabetics (n = 7) 226.7 ± 6.0 344.4 ± 16.0 *◦◦ 4.99 ± 0.4 25.54 ± 1.1 *◦◦

Insulin-treated
diabetics (n = 8) 241.3 ± 1.9 398 ± 8.9 *◦+ 4.85 ± 0.1 13.75 ± 1.0 *◦◦++

* p < 0.0001 vs. initial; ◦ p < 0.001 and ◦◦ p < 0.0001 vs. final controls; and + p < 0.01 and ++ p < 0.0001 vs. final diabetics.

3. Results
3.1. Disease Characteristics in Diabetic and Insulin-Treated Diabetic Rats

The general characteristics of the control, STZ-induced diabetic and insulin-treated
diabetic animals, ten weeks after the onset of hyperglycemia are shown in Table 1. The
diabetic rats were characterized by a significantly reduced body weight and an increased
blood glucose concentration (25.54 ± 1.1 mM) compared to the sex and age-matched
controls. The immediate insulin treatment resulted in a significantly higher body weight
towards the end of the experiment and significantly lower blood glucose concentration
(13.75 ± 1.0 mM) during the ten weeks compared to the untreated diabetics.

3.2. Distribution of Serotonergic Neurons in the Myenteric Ganglia of Controls

The occurrence of 5-HT-IR myenteric neurons was calculated as the proportion of
the total myenteric neuronal number that was HuCD-stained. Despite the extremely low
representation of 5-HT-IR neurons in the myenteric ganglia, strong immunoreactivity was
observed in the varicosities of projections within the plexus (Figure 1).

In the myenteric ganglia, 5-HT-IR neurons displayed very similar distributions among
the different intestinal segments (Figure 2). The proportion of 5-HT-IR neurons varied only
by 2–3% in different gut segments: 2.42 ± 0.35% in the duodenum, 2.45 ± 0.33% in the
ileum, and 2.35 ± 0.31% in the colon.

3.3. Proportion of Serotonergic Neurons in the Myenteric Ganglia of Diabetics and Insulin-Treated
Diabetics

In the myenteric ganglia of diabetic rats, the proportion of 5-HT-IR neurons was
increased in each gut segment compared to the controls (Figures 3 and 4).

A 2.5-fold change was observed in the duodenal ganglia of diabetics (5.97 ± 0.7%
vs. 2.42 ± 0.35%). A similar proportional increase was observed in the colon where the
percentage was 5.91 ± 0.54% relative to 2.35 ± 0.31% of the controls. In the ileum, a slight
increasing tendency was observed (3.8 ± 0.41% vs. 2.45 ± 0.33%).

The immediate insulin treatment maintained the proportion of 5-HT-IR myenteric
neurons close to the control value in all investigated gut segments (Figures 4 and 5).
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Figure 1. Representative fluorescent micrographs from the duodenum (a), ileum (b), and colon (c) 
of controls after 5-HT-HuCD immunohistochemistry. On the myenteric plexus whole-mount prep-
arations, asterisks indicate neurons that are labelled for HuCD, arrowheads point to myenteric 5-
HT-IR varicosities, and the arrow points to a myenteric neuron that is double-labelled for both 5-
HT and HuCD. Scale bars are 100 µm (a), 20 µm (b), and 100 µm (c). 

Figure 1. Representative fluorescent micrographs from the duodenum (a), ileum (b), and colon
(c) of controls after 5-HT-HuCD immunohistochemistry. On the myenteric plexus whole-mount
preparations, asterisks indicate neurons that are labelled for HuCD, arrowheads point to myenteric
5-HT-IR varicosities, and the arrow points to a myenteric neuron that is double-labelled for both
5-HT and HuCD. Scale bars are 100 µm (a), 20 µm (b), and 100 µm (c).
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Figure 2. Proportion of 5-HT-IR neurons in the myenteric ganglia of the duodenum, ileum, and
colon of controls. The percentage of 5-HT-IR neurons was only 2–3% in the myenteric ganglia in
all intestinal segments without any significant differences. Data are expressed as mean ± SEM.
CD—control duodenum; CI—control ileum; and CC—control colon.
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Figure 3. Representative fluorescent micrographs from the duodenum (a), ileum (b), and colon (c) 
of diabetic rats after 5-HT-HuCD immunohistochemistry. On the myenteric plexus whole-mount 
preparations, asterisks indicate neurons that are labelled for HuCD, arrowheads point to myen-
teric 5-HT-IR varicosities, and arrows point to myenteric neurons that are double-labelled for both 
5-HT and HuCD. Scale bars are 100 µm (a), 20 µm (b), and 50 µm (c). 

Figure 3. Representative fluorescent micrographs from the duodenum (a), ileum (b), and colon (c)
of diabetic rats after 5-HT-HuCD immunohistochemistry. On the myenteric plexus whole-mount
preparations, asterisks indicate neurons that are labelled for HuCD, arrowheads point to myenteric
5-HT-IR varicosities, and arrows point to myenteric neurons that are double-labelled for both 5-HT
and HuCD. Scale bars are 100 µm (a), 20 µm (b), and 50 µm (c).
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are similar to the control level. Data are expressed as mean ± SEM. **p < 0.01 and ****p < 0.0001 
(between controls and diabetics); °p < 0.05 and °°°°p < 0.0001 (between diabetics and insulin-
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Figure 4. Proportion of 5-HT-IR neurons of the duodenum, ileum, and colon of controls, diabetics,
and insulin-treated diabetics. The percentage of 5-HT-IR myenteric neurons was increased in each
gut segment of diabetics. The insulin treatment reduced the proportion of 5-HT-IR neurons that
are similar to the control level. Data are expressed as mean ± SEM. ** p < 0.01 and **** p < 0.0001
(between controls and diabetics); ◦ p < 0.05 and ◦◦◦◦ p < 0.0001 (between diabetics and insulin-treated
diabetics). C—controls; D—diabetics; and ID—insulin-treated diabetics.
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Figure 5. Representative fluorescent micrographs from the duodenum (a), ileum (b), and colon (c) 
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whole-mount preparations, asterisks indicate neurons that are labelled for HuCD and arrowheads 
point to myenteric 5-HT-IR varicosities. Scale bars are 20 µm. 
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Figure 5. Representative fluorescent micrographs from the duodenum (a), ileum (b), and colon (c) of insulin-treated
diabetics after 5-HT-HuCD immunohistochemistry. On the myenteric plexus whole-mount preparations, asterisks indicate
neurons that are labelled for HuCD and arrowheads point to myenteric 5-HT-IR varicosities. Scale bars are 20 µm.
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3.4. Proportion of Myenteric Ganglia Containing 5-HT-IR Neurons and the Amount of the
Serotonergic Neurons in These Ganglia

In controls, the total number of 5-HT-IR neurons per ganglia is extremely low and
varied between 0.31 ± 0.06 and 0.46 ± 0.1 in the three investigated gut segments (Figure 6).
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Figure 6. Number of 5-HT-IR neurons of the duodenum, ileum, and colon of controls, diabetics, and
insulin-treated diabetics. The total number of 5-HT-IR myenteric neurons was elevated in each gut
segment of diabetics. In insulin-treated diabetic rats, the total number of 5-HT-IR neurons remained
close to the control level. Data are expressed as mean ± SEM. ** p < 0.01 (between controls and
diabetics); ◦◦ p < 0.01 (between diabetics and insulin-treated diabetics). C—controls; D—diabetics;
and ID—insulin-treated diabetics.

However, only 25–30% of the myenteric ganglia contain serotonergic neurons (Figure 7),
and the number of 5-HT-IR neurons is 1–2 in these ganglia (Figure 8).
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Figure 7. Percentage of myenteric ganglia containing 5-HT-IR neurons. In controls and insulin-
treated diabetics, 20–30% of the myenteric ganglia contain 5-HT-IR neurons. In diabetic rats, a gut
segment-specific increase was observed with the most pronounced elevation in the colon where
50% of the myenteric ganglia contain 5-HT-IR neurons. C—controls; D—diabetics; and ID—insulin-
treated diabetics.
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most pronounced increase was found in the duodenum but the insulin treatment restored the level
to close to that of the control. Data are expressed as mean ± SEM. * p < 0.05 (between controls and
diabetics); ◦ p < 0.05 (between diabetics and insulin-treated diabetics). C—controls; D—diabetics;
and ID—insulin-treated diabetics.

In diabetics, the total number of 5-HT-IR neurons per ganglia increased in each gut
segment; however, the increase was significant only in the colon (p < 0.01) where the
number of 5-HT-IR neurons was doubled relative to the controls (1.05 ± 0.14 vs. 0.46 ± 0.1;
Figure 6). In the diabetic colon, half of the ganglia contained serotonergic neurons (Figure 7)
where an average of two cells were found (Figure 8). A significant elevation of the total
number of 5-HT-IR neurons per ganglia containing serotonergic neurons was observed in
the duodenum compared to the controls (2.13 ± 0.21 vs. 1.25 ± 0.1; Figure 8).

The immediate insulin treatment resulted in low levels of 5-HT-IR myenteric neurons
similar to the controls in each intestinal segment in all investigated aspects such as the total
number of serotonergic neurons per ganglia (Figure 6), the percentage of myenteric ganglia
containing serotonergic neurons (Figure 7), and the total number of 5-HT-IR neurons per
serotonergic ganglia (Figure 8).

4. Discussion

The present study was conducted to investigate the gut segment-specific effects of
hyperglycemia and insulin treatment on myenteric 5-HT-IR neurons in STZ-induced type
1 diabetes.

A single injection with a high dose of STZ leads to a rapid loss of pancreatic beta cells
and concomitant hyperglycemia [37]. In this study, an average 25.5 mM blood glucose level
was measured in diabetic rats with a less elevated body weight gain during the 10 weeks
compared to controls. Moreover, STZ-induced diabetes is a widely used model of diabetic
neuropathy with features including reduced size of nerve fibers, axon and myelin sheath,
and decreased nerve conduction velocities [38]. The GI manifestation of neuropathy leads
to GI motility disorders that were demonstrated in STZ-diabetic rodents including delayed
gastric emptying of both liquids and solids, rapid small intestinal transit, and enhanced
spontaneous activity of the colon [34,39].

The proportion of 5-HT-IR myenteric neurons was about 2.5% in controls, which is
in good agreement with previous results found in the guinea-pig ileum [17]. Moreover,
we found no differences in the proportion of 5-HT-IR neurons between the investigated
duodenum, ileum, and colon segments, which is in agreement with the immunohistochem-
ical study of Fuyimiya et al. [40] in which the localization, distribution, and projection of
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5-HT-IR neurons and fibers were similar in the stomach, duodenum, jejunum, ileum, and
colon of rats.

Although the role of 5-HT in GI motility under physiological conditions is controver-
sial [18,19], a growing amount of evidence demonstrates altered serotonergic signaling
as an underlying mechanism in disorders with disturbed GI motility [25,26] including
diabetes mellitus [41,42]. The effects of diabetes on the different neurochemical properties
of myenteric neuronal populations have been widely investigated. The conclusion of those
findings is an altered balance between inhibitory efferent (generally reduced) and excita-
tory (increased or unchanged) mechanisms [8,39]. We demonstrated a significant 2.5-fold
increase in the proportion of 5-HT-IR myenteric neurons in the duodenum and the colon
and an increasing tendency in the ileum 10 weeks after STZ treatment application. Based
on our earlier findings [33,34] regarding changes in the total neuronal number in diabetes
(unchanged in the duodenum and decreased in the ileum and colon), on present results
of percentage of myenteric ganglia containing 5-HT-IR neurons, and the total number of
serotonergic neurons in these ganglia, we presume that the increase in the percentage
of 5-HT-IR neurons relative to the total neuronal number in the duodenum was due to
neurochemical alterations of myenteric neurons. We found that more serotonergic neurons
in 5-HT-IR ganglia and 5-HT-IR neurons were also detected in those ganglia that previously
did not contain 5-HT-IR neurons. The above listed results of studies investigating 5-HT-IR
nerves in different segments of the diabetic gut support our findings that the alterations
are segment-specific. Increased 5-HT content was found in the duodenum and was un-
changed in the rest of the small and large intestines 5 weeks after the alloxan-induced
hyperglycemia [30]. Lower brightness of fluorescence in 5-HT-IR nerves in the ileum and
increased 5-HT level in the proximal colon were detected 8 weeks after STZ-induced dia-
betes [29]. In a three-time interval study, alterations in 5-HT levels were demonstrated with
a significantly higher 5-HT level in rats’ colons 8 weeks after the induction of STZ-diabetes,
followed by a progressive decrease at 16 and 25 weeks, while at later time points, there
were no differences in the 5-HT levels between the diabetics and age-matched controls [43].
The inconsistent data from the 1980s and 1990s might be a result of the difference in the
duration of diabetes and the difference in the methods used.

Our results are the first to verify the beneficial effects of insulin treatment on the
proportion of myenteric 5-HT neurons in different gut segments in 10-week STZ-induced
diabetic rats. Immediate insulin treatment prevented the diabetes-induced increased
proportion of 5-HT-IR neurons at the control level. Our data are also in good agreement
with the findings of Gorio et al. [30] regarding the preventive role of insulin therapy on
intestinal 5-HT content in 5-week alloxan-induced diabetes; however, in that stage of the
disease, the 5-HT content was increased only in the duodenum and unchanged in the rest of
the gut. The segment-specific protective effects of insulin treatment on the neurochemical
changes induced by STZ-diabetes have been revealed in some aspects. Izbéki et al. [34]
found that insulin treatment has beneficial effect in the ileum and colon but not in the
duodenum and jejunum on the density of nitrergic neurons. Jancsó et al. [9] detected that
insulin therapy restored the enhanced heme oxygenase 2 protein level to the control level
in the duodenum and colon of diabetic rats.

The roles of neuronal 5-HT are generally associated with GI motility, but some of the
recently discovered less conventional features of 5-HT-IR neurons should be mentioned [44].
The 5-HT-IR neurons are among the first in the gut to arise, and they coexist later-born
neurons. It is possible that 5-HT may be a neuronal growth factor promoting the develop-
ment/survival of some neurons being among the last to be born including dopaminergic,
GABAergic, nitrergic, and calcitonin gene-related peptide-expressing neurons [45]. In sup-
port of this, the essential role of 5-HT in the growth and maintenance of enteric neurons [46]
and intestinal mucosal epithelium in adult mice were demonstrated [47]. Recent studies
focus on the role of 5-HT signaling in enteric neurogenesis in adulthood both in health
and diseases [48,49]. The importance of gut microbiota in maintaining the serotonergic
network through release of 5-HT and the activation of the 5-HT4 receptor has also been
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illustrated in a recent study [50]. Significant differences were seen in the composition of
luminal microbiota in the fecal samples collected from the ileum and colon of diabetic
rats [51]. These findings suggest mechanisms linking microbial dysbiosis to GI disorders.
The abovementioned multifaceted role of neuronal 5-HT implies more complex underlying
mechanisms in the structural and functional alterations of the ENS in the diabetic state.

5. Conclusions

We demonstrated a gut segment-specific alteration in the proportion of myenteric
5HT-IR neurons, with significantly increased numbers in the duodenum and colon, and
illustrated the increasing tendency in the ileum of 10-week STZ-diabetic rats. Moreover, the
immediate insulin treatment was preventive of the hyperglycemia-induced enhancement
in the amount of 5-HT-IR neurons in all investigated gut segments. The impaired insulin
signaling may contribute to these neurochemical changes in 5-HT-IR myenteric neurons
found in diabetes.
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