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We have extended the study of the Kuramoto model with additive Gaussian noise running on the KKI-18
large human connectome graph. We determined the dynamical behavior of this model by solving it
numerically in an assumed homeostatic state, below the synchronization crossover point we determined
previously. The de-synchronization duration distributions exhibit power-law tails, characterized by the
exponent in the range 1:1 < st < 2, overlapping the in vivo human brain activity experiments by Palva
et al. We show that these scaling results remain valid, by a transformation of the ultra-slow eigen-
frequencies to Gaussian with unit variance. We also compare the connectome results with those,
obtained on a regular cube with N ¼ 106 nodes, related to the embedding space, and show that the
quenched internal frequencies themselves can cause frustrated synchronization scaling in an extended
coupling space.

� 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction [15,16]. Criticality in models can be defined by the diverging corre-
The organization of resting-state activity, i.e. the dynamics of
the brain under the absence of external stimulation and no task
condition, plays putatively a critical functional role given the fact
that its maintenance requires a large part of the total brain’s
energy budget [1,2]. There are nowadays empirical and computa-
tional evidences showing that the resting organization facilitates
task-based information processing [3]. Resting brain networks as
captured by Functional Connectivity (FC) maps very consistently
show task-evoked activity such that individual differences in FC
can predict individual differences in task-evoked regional activity
[4–6]. From a mechanistic perspective, whole-brain models were
able to demonstrate that resting-state organization conforms to a
state of ‘criticality’ that promotes responsiveness to external stim-
ulation, i.e. resting-state organization facilitates task-based pro-
cessing [7–9].

Neural activity avalanche measurements found size and dura-
tion distributions that can be fitted by power-laws before a size
cutoff, which can arise naturally close to a critical point of a second
order phase transition [10–14]. Criticality hypothesis has been
advanced, because information processing, sensitivity, long-range
and memory capacity is optimal in the neighborhood of criticality
lation volume, as we tune a control parameter to a threshold value.
It has been debated how a neural system is tuned to criticality.

At first self-regulatory mechanisms [17], leading to self-organized
criticality [18] were proposed. Recently, it has been shown that as
the consequence of heterogeneity extended dynamical critical
regions emerge in spreading models [19,20] naturally. As real sys-
tems are mostly inhomogeneous and one must asses whether
heterogeneity is weak enough to use homogeneous models for
describing them. Heterogeneity can create rare-region effects of
different relevancy [21]. They can generate so-called Griffiths
Phases [22] in which scale-free dynamics appears over an extended
region around the critical point with slowly decaying auto-
correlations and burstyness [23]. This phenomenon was proposed
to be the reason for the working memory in the brain [24]. Further-
more, in GP the susceptibility is infinite for an entire range of con-
trol parameters near the critical point, providing a high sensitivity
to stimuli, beneficial for information processing.

As individual neurons emit periodic signals [25] it is natural to
expect criticality in oscillator models at the synchronization tran-
sition point. Very recently analysis of Ginzburg–Landau type equa-
tions arrived at the conclusion that empirically reported scale-
invariant avalanches can possibly arise if the cortex is operated
at the edge of a synchronization phase transition, where neuronal
avalanches and incipient oscillations coexist [26]. Several oscillator
models have been used in biology, the simplest possible one is the
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Hopf model [27], which has been used frequently in neuroscience,
as it can describe a critical point with scale-free avalanches, with
sharpened frequency response and enhanced input sensitivity.

Indeed, Deco and colleagues developed a mesoscopic whole-
brain model based on the Hopf model, which provides an excellent
account of resting-state empirical FMRI [28] and MEG data [29].
Furthermore, the Hopf whole-brain model is able to be used in con-
junction with higher-resolution functional parcellations that will
increase model accuracy. The model consists of coupled dynamical
units representing the cortical and sub-cortical brain areas from a
given parcellation. The local dynamics of each brain area (node) is
described by the normal form of a supercritical Hopf bifurcation,
also called a Landau-Stuart Oscillator, which is the canonical model
for studying the transition from noisy to oscillatory dynamics. The
emerging global whole-brain dynamics results from the partial
meta-stable entrainment of different clusters of brain areas that
synchronize and build up different network micro-states.

Another complex model, describing more non-linearity 1 is the
Kuramoto model [31,32], with phases hi tð Þ, located at N nodes of net-
works, according to the dynamical equation

_hi tð Þ ¼ xi þ K
X
j

Wij sin hj tð Þ � hi tð Þ� � ð1Þ

The global coupling K is the control parameter of this model, by
which we can tune the system between asynchronous and syn-
chronous states. The summation is performed over other nodes,
with connections described by the weighted adjacency matrix Wij

andxi denotes the intrinsic frequency of the i-th oscillator. For sim-
plicity we used for the g xið Þ distributions Gaussian functions [33].

Earlier Eq. (1) was studied analytically and computationally on
a human connectome graph network of 998 nodes and in hierar-
chical modular networks (HMN), in which moduli exist within
moduli in a nested way at various scales [34]. As the consequence
of quenched, purely topological heterogeneity an intermediate
phase, located between the standard synchronous and asyn-
chronous phases was found, showing ‘‘frustrated synchronization”,
meta-stability, and chimera-like states [35]. This complex phase
was investigated further in the presence of noise [36] and on a sim-
plicial complex model of manifolds with finite and tunable spectral
dimension [37] as simple models for the brain.

We continued to investigate Eq. (1) on a large, weighted human
connectome network, containing 804092 nodes, in an assumed
homeostatic state [33]. Homeostasis in real brains occurs via inhi-
bitory neurons [38,39,8,40,41], here we modeled this by normaliz-
ing the incoming interaction strengths [42]. Recent experiments
arrived at a similar conclusion: equalized network sensitivity
allows critical behavior and produces model results, which repro-
duce measured FMRI correlations [43].

Since this graph has a topological dimension d < 4 [44], a real
synchronization phase transition is not possible in the thermody-
namic limit, still we could locate a transition between partially
synchronized and desynchronized states. At this crossover point
we observe power-law-tailed synchronization durations, with
st ’ 1:2 1ð Þ, away from experimental values for the brain. Below
the transition of the connectome we found global coupling
control-parameter dependent exponents 1 < st 6 2, overlapping
with the range of human brain experiments [14].2 Note however,
1 In the weak coupling limit an equivalence with the integrate-and-fire models [30
was shown.

2 The topological (also called graph) dimension is defined by

Nrh i � rd; ð2

where Nr is the number of node pairs that are at a topological (also called ‘‘chemi-
cal”) distance r from each other (i.e. a signal must traverse at least r edges to trave
from one node to the other).
]

Þ

l
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that in case of the Kuramoto model the so-called spectral dimension
is a more relevant factor influencing the scaling behavior [37].
2. Materials and methods

Now we extend this study by an additional, annealed zero cen-
tered Gaussian distributed noise term n ið Þ with unit variance and a
coupling strength s

_hi tð Þ ¼ xi þ K
X
j

Wij sin hj tð Þ � hi tð Þ� �þ sn ið Þ ð3Þ

The effect of noise on synchronization of Kuramoto oscillators has
been investigated by many works (see for example [45]). It was
shown, that in high dimensional, mean-field models the noise can
be neglected, it shifts the critical coupling rate Kc only, but does
not change the scaling behavior. Earlier we found the KKI-18 graph
finite dimensional [44] and very heterogeneous, exhibiting a hierar-
chical modular topology. In low dimensional heterogeneous sys-
tems a large repertoire of attractors can exist, causing meta-stable
states with different degrees of coherence and stability. Noise
enables the system to jump into another close, more stable, attrac-
tor. As neurons work in a noisy background this study can be inter-
esting for neuroscience.

We follow the dynamical behavior of the system through study-
ing the Kuramoto order parameter defined by

R tð Þ ¼ 1
N

XN

j¼1

eihj tð Þ
�����

�����; ð4Þ

which is finite, above a critical coupling strength K > Kc , or tends to

O N�1=2
� �

for K < Kc . At Kc , in case of an incoherent initial state it

evolves as

R t;Nð Þ ¼ N�1=2tgf " t=N~z
� �

; ð5Þ

characterized by the dynamical exponents: ~z;g and f " denotes a
scaling function.

Within the framework of the synchronization model we identi-
fied a spontaneous avalanche start times at t ¼ 0 of the fully desyn-
chronized initial condition and the end times tx, when R tð Þ
returned back to 1=

ffiffiffiffiffiffiffiffi
Nð Þp

, related to the synchronization value of
independent oscillators. Note, that by changing the start times to
the first up crossing value did not change the tail behavior we con-
sider here. To obtain the avalanche duration probability distribu-
tions P txð Þ we performed ’ 104 runs, with independent random
xi intrinsic frequencies and applied histogramming method with
increasing bin sizes: Dtx / t1:12x .

The following graphs have been considered:

1. 3D lattice with linear size L ¼ 100 and periodic boundary
conditions.

2. Weighted, symmetric large human connectome graph: KKI-18
[44] downloaded from the Open-connectome project [46].

To integrate the differential Eq. (1) we used a Graphics card
(GPU) code, based on the fourth order Runge–Kutta method of
Numerical Recipes [47] and the boost library odeint [48] on various
networks. Step sizes: D ¼ 0:1;0:01;0:001 have been tested and
finally the D ¼ 0:01 precision found to be sufficient, for s 6 2. For
larger noise amplitudes s this precision was not enough. In case
of our initial attempt, with naturalxi < 0:02 we needed large s val-
ues to see a synchronization transition and even D < 0:01 turned
out to be insufficient, making the numerical analysis prohibitively
time-consuming for available computer resources.



Fig. 1. Network of the modules of the KKI-18 human connectome graph. The size of
circles is proportional with the number of nodes. The network of modules itself
shows modularity arising from the hierarchical structure of the KKI-18 connectome.
The each circle’s color indicates its membership in one of seven modules obtained
through Leiden community analysis of the displayed cluster graph.
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In general, the D < 0:01 precision did not improve the stability
of the solutions further, but caused smaller fluctuations due to the
chaotic behavior of Eq. (1), which could be compensated by aver-
ages over many independent samples with different xi. We used
the � ¼ 10�12 criterion in the Runge–Kutta algorithm and paral-
lelized the solver for NVIDIA graphic cards, by which we could
achieve a � �40 increase in the throughput on Tesla V100 GPU-s
with respect to a single 12-core Intel Xeon Gold 6136 CPU. Algo-
rithmic and benchmark details will be discussed elsewhere [49].

We determined the Kuramoto order parameter at a fixed K, by
increasing the sampling time steps exponentially

tk ¼ 1þ 1:08k; ð6Þ
which is a common method at critical systems, where we expect
power-law (PL) asymptotic time dependences. We estimated
tx ¼ tk þ tk�1ð Þ=2, where tk was the first measured down crossing
time. The initial conditions were generally hi 0ð Þ 2 0;2pð � phases,
with uniform distribution, describing fully disordered states. The
probability distribution tails were fitted using the least squares fit
method beyond a time, fixed by visual inspection of the results.
To visualize corrections to PL scaling we determined the effective
exponents of R as the discretized, logarithmic derivative of Eq. (1),

geff ¼
ln R tkþ3ð Þh i � ln R tkð Þh i

ln tkþ3ð Þ � ln tkð Þ ; ð7Þ

were the brackets denote sample averaging over different initial
conditions.

We obtained the KKI-18 graph from the Open Connectome pro-
ject repository [46]. This is based on the diffusion tensor image
[50], approximating the structural connectivity of the white matter
of a human brain. The graph version we downloaded in 2015 com-
prises a large component with N ¼ 804092 nodes, connected via
41523908 undirected edges and several small sub-components,
which were ignored here.3 This graph allowed us to run extensive
dynamical studies on present day CPU/GPU clusters, large enough
to draw conclusions on the scaling behavior without too strong finite
size effects, hindering scaling regions. The large connectomes from
[46] of the human brain possess 1mm3 resolution, obtained by a
combination of diffusion weighted, functional and structural mag-
netic resonance imaging scans. These are symmetric, weighted net-
works, where the weights measure the number of fiber tracts
between nodes. The KKI-18 graph is generated via the MIGRAINE
method, described in [51]. It exhibits a hierarchical modular struc-
ture by the construction from the Desikan cerebral regions with
(at least) two quite different scales. The graph topology is displayed
on Fig. 1, in which modules were identified by the Leiden algorithm
[52], and the network of modules generated and visualized using the
python-igraph library [53]. This identified 153 modules, with sizes
varying between 7 and 35332 nodes in the displayed case, however
since this is a heuristic approach, these numbers vary by about 10%.
A recent experimental study has provided confirmation for the con-
nectome generation used here [54]. This suggests that diffusion MRI
tractography is a powerful tool for exploring the structural connec-
tion architecture of the brain.

In [44] it was found that, contrary to the small world network
coefficients, these graphs exhibit topological dimension D ¼ 3:05
[44], slightly above the embedding space and a certain amount of
universality, supporting the selection of KKI-18 as a representative
of the large human connectomes available.

To keep a local sustained activity requirement for the brain [55]
and to provide a homeostatic state, we modified KKI-18 by normal-
izing the incoming weights of node i in [42]:
3 Note, that keeping the sub-components, did not change the results within
numerical accuracy.
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W 0
i;j ¼ Wi;j=

P
j2neighb: of iWi;j at the beginning of the simulations. In

reality such local homeostasis is the consequence of the competi-
tion of exhibitory and inhibitory neurons.
3. Results

3.1. The 3D lattice

In [33] we compared the connectome results with small-world
graphs, generated from 2D lattices with additional random long-
range links (2Dll). This was done as both the connectome and the
2Dll graphs exhibit small world properties and quenched topolog-
ical disorder on top of the intrinsic heterogeneity. As the topolog-
ical dimension of the connectome is slightly above the D ¼ 3
embedding space [44], due to the long connections, now we have
studied the growth of R tð Þ on the 3D lattice of linear size L ¼ 100
by starting from states of oscillators with fully random phases
and by averaging over 5000� 10000 internal frequency realiza-
tions up to t ¼ 103 time steps. In this case we can test the effect
of quenched heterogeneity of the xi-s on the dynamical behavior,
using a zero centered, unit variance g xð Þ distribution.

Fig. 2 shows how the synchronization order parameter grows
below the transition. Note, that for comparison with the connec-
tome simulations we used incoming weight normalization, which
means a constant factor 6, the incoming degree in 3D, by which
the global couplings are renormalized with respect to the original
(1). The initial growth changes from convex to concave at Kc ’ 2:2,
suggesting a crossover point there. This value is higher than what
we obtained for the KKI-18 connectome [33]: Kc ¼ 1:7, as we have
much lower connectivity now. The KKI-18 graph has an average
node degree: kh i ¼ 156, in contrast with the cubic lattice: kh i ¼ 6,
thus we need stronger global coupling to achieve synchronization.
The initial behavior of growth at Kc ¼ 2:2 is like R tð Þ / t0:5, with an
exponent somewhat smaller, but close to the estimates obtained
for the 2Dll and for the KKI-18 graphs: g ¼ 0:6 1ð Þ. This can be
read-off from the local slopes before finite-size cutoff, shown in
the inset of Fig. 2. The upper inset of Fig. 2 shows the steady state



Fig. 2. Growth of the average R on the 3D lattice for Gaussian quenched xi and
couplings K ¼ 1:5;1:7;2:0;2:2;2:4;3:0 (bottom to top curves). The lower inset
shows the effective exponents defined as (7). The upper inset shows the steady
state values as the function of K.

Fig. 3. Duration distribution of tx on 3D lattice for couplings: K ¼ 1:5 (bullets), 1:7
(boxes), 1:8 (stars), 2:0 (diamonds), 2:2 (up triangles), 2:2 (right triangles), 3:0
(stars). Lines show a PL fits for the tails. Noisy case: K ¼ 2:0 (plus sign).
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values of R tð Þ, obtained by averaging over the realizations for
t > 50.

As for the connectomewe determined the first crossing times tx,
when R tð Þ of single realizations first fell below the threshold value
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nð Þ ¼ 0:001

p
. Following the usual histogramming procedure we

obtained the de-synchronization distributions, which can be con-
sidered as avalanches, induced by a spontaneous synchronization
and a relaxation process. The tail of the relaxation time distribution
PDF at Kc ¼ 2:2 decays as ’ t�1:33 7ð Þ

x (see Fig. 3), obtained by least
squares power-law regression, applied for the tail region tx > 30.
Below Kc the curves shown on the figure provide good agreement
with non-universal PL-s. However, for K < 1:7 the PL region seems
to shrink. The ineffectiveness of the weak additive noise has also
been demonstrated in case K ¼ 2:0 coupling, using a Gaussian
annealed term of strength s ¼ 1.

The emergence of frustrated synchronization by xi heterogene-
ity is similar to the contact process with site disorder [21], where
Griffiths Phase has been found in various spatial dimensions. To
provide a counter-example we have also studied the 3D case with
uniform oscillators and annealed noise. In the Appendix we show
that in this case no extended scaling region, but a single critical
point emerges.
3.2. The Connectome graph

3.2.1. Mapping ultra-slow self-frequency scales onto computationally
feasible oscillations

FMRI measurements [56,28] found that in the human brain glo-
bal phase synchrony of the BOLD signals evolves on a characteristic
ultra-slow: < 0:01 Hz time scale. In modeling this, on smaller sized
connectomes, using the noisy Kuramoto equation [56] and the
Hopf model [28], the intrinsic frequencies were filtered in the
0:04 < x < 0:07 Hz band. In both cases the temporal and spatial
synchronization patterns were found to approximate well the
empirical data. Here we extend this modeling for a large human
connectome, which allows to test possible scaling behavior, with
xi-s of narrow spread (r ¼ 0:02) and typical mean value
x ¼ xih i ¼ 0:05.

First we show, that in the case of the Kuramoto model the nar-
row frequency band can be mapped onto the much wider
r ¼ 1;x ¼ 0 Gaussian case, where we obtained recent results
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[33] on synchronization durations. The invariance over the mean
frequency is obvious, as (1) is invariant to the global shift of a mean
rotation framex! x0. The oscillation-size dependence can also be
gauged out by the following transformation: xi ! ax0

i; t ! 1=að Þt0
and K ! aK 0. Therefore, for small a values corresponding to empir-
ical data, we can obtain the same results as for r ¼ 1 at rescaled,
late times and using small global couplings.

From a technical point of view this is very important, because
we can recover the asymptotic results at ultra-slow frequencies
using much shorter time scales in our simulations. Note, that in
the case of the Hopf model the rotating frame transformation is
also possible, but the width of the g xð Þ distribution cannot be
gauged out and acts as an independent parameter, causing a non-
trivial phase structure of the oscillations [57]. Furthermore, a com-
pletely band filtered g xið Þ spectrum with a flat top can be
transformed onto the uniformly distributed natural frequencies.
In this case it is known, that in the limit of infinite system size
the Kuramoto model in the steady state undergoes a first-order
phase transition [58]. At first-order transitions we don’t expect
critical scaling behavior and indeed our simulations for this case
do not show PL de-synchronization duration tails (see Appendix).
3.2.2. Noisy Kuramoto results
Having taken into account the transformation properties of the

previous section we investigated the effect of annealed noise, by
adding a time varying Gaussian distributed random numbers to
the (1). Earlier in [33] we concluded that using step sizes D < 0:1
in the Runge–Kutta-4 solver did not modify the results. Here we
test the effect of D again, as we add a stochastic noise on top of
the chaoticity, inherent in the noiseless Kuramoto equation.

First we applied s ¼ 1 noise to the KKI-18 homeostatic graph
case [33]. As Fig. 4 shows slightly below the synchronization tran-
sition point: K ¼ 1:4 < Kc ¼ 1:7 the Kuramoto order parameter
growth curves fully agree with the noiseless case [33] one and
the applied D ¼ 0:1;0:01;0:001 step sizes do not affect too much
the growth regime. One can see a smaller saturation value for
D ¼ 0:1 than for D ¼ 0:01;0:001. Here each line corresponds to
an average over � 104 realizations, in which both the quenched
and the annealed noise varies.

We have determined the first crossing times tx, when R fell
below: 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nð Þ ¼ 0:001094

p
. Following the histogramming



Fig. 4. Growth of the average R on the KKI-18 graph below the synchronization
transition point at K ¼ 1:4 for s ¼ 1, using different precision: D ¼ 0:1;0:01;0:001.
The dashed line shows the noiseless case result obtained by D ¼ 0:1. The inset
shows the same for s ¼ 2.

Fig. 6. Duration distribution of tx on the KKI-18 model at K ¼ 1:4 for s ¼ 2 using
different precisions: D ¼ 0:1 (bullets), D ¼ 0:01 (boxes), D ¼ 0:001 (diamonds). The
dashed line shows a PL fit for the tail region: tx > 10 of the D ¼ 0:01 data. The stars
show former results, obtained for the noiseless case.
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procedure we obtained the distributions p txð Þ, which again show
PL tails, characterized by exponents: st ¼ 1:2 1ð Þ (see Fig. 5). The fit-
ted st ¼ 1:9 1ð Þ exponent is in the range of in vivo human neuro
experiments: 1:5 < st < 2:4 [14]. Then we repeated the analysis
for K ¼ 1:3; s ¼ 1 and found similar agreement with the noiseless
results (see figure in the Appendix).

We have tested noise: s ¼ 2 at K ¼ 1:4 as shown on the inset of
Fig. 4 and on 6, but again we just found insensitivity in the growth
and scaling results. We have learned, that going to even stronger
noise amplitudes requires smaller D-s to achieve numerical preci-
sion independence and it is questionable from neuroscience point
of view if it is worth to study such strong noises. We plan to study
this later.

In order to see the effect of the modules on the synchronization
behavior in greater detail, we also computed the order parameter
for each module separately. Fig. 7 shows the steady-state values
Fig. 5. Duration distribution of tx on the KKI-18 model at K ¼ 1:4 for s ¼ 1 using
different precisions: D ¼ 0:1 (bullets), D ¼ 0:01 (boxes), D ¼ 0:001 (diamonds). The
dashed line shows a PL fit for the tail region: tx > 10 of the D ¼ 0:01 data. The stars
show former results, obtained for the noiseless case.

Fig. 7. Size dependence of the steady state values of R in the modules at different
couplings K. One can observe normal finite-size scaling below the transition and
breaking of this at or above the transition point. The single points to the far right for
each series correspond to steady state values R inf :ð Þ for the whole graph. The lines
show PL fits below the transition point.
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for each module for different coupling parameters. While normal
finite-size scaling can be observed below the transition point, lar-
ger modules start to synchronize above. We fitted PL-s for the sub-
critical scaling, showing non-universal exponents in an extended K
region.
4. Conclusion and discussion

Resting-state activity of the brain can be modeled by simple
whole-brain models, exhibiting critical behavior at the edge of
the synchronization transition. We have investigated the dynami-
cal synchronization behavior of the Kuramoto model on a large,
weighted human connectome network. The dynamical behavior
of heterogeneous Kuramoto, especially for local interactions is a
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largely unexplored field, according to out knowledge. In case of
identical oscillators heterogeneous phase lags or couplings have
been shown to result in partial synchronization and stable chimera
states [59–62] Realistic models of the brain, however, require oscil-
lators [63] to be heterogeneous.

In particular, we focused on the effect of additive noise on the
de-synchronization duration distributions. In Ref. [33] it was found
that below the phase synchronization transition point these distri-
butions exhibit non-universal power-law tails, with exponents
overlapping with the empirical activity avalanche duration values
for humans in vivo.

We found that weak Gaussian noises with amplitudes not larger
than those of the quenched Gaussian self-frequencies do not affect
the previous results within numerical precision. This means that
time-dependent, thermal like noise does not destroy or alter the
dynamical scaling behavior of this model.

Ref. [34] studied the synchronization behavior of the Kuramoto
model on hierarchical modular networks with N ¼ 4096 and
human connectomes with N ¼ 998 nodes. They found stretched
exponential decay tails for the order parameter q tð Þ ¼ 1� R tð Þh i
in the absence of frequency heterogeneity, in agreement with ana-
lytic approximations using xi ¼ 0. They assumed that fixing all
intrinsic frequencies to be identical does not decrease generality
of the results. We have also tried to fit our p txð Þ results with
stretched exponential functions, (see Appendix) but reasonable
agreement could be found only for very low couplings, far below
Kc . So, we conclude that the quenched disorder in the self-
frequencies cause PL tails in the dynamical behavior of chimera-
like states at the edge of criticality. These non-universal PL-s
resemble to Griffiths Phase effects and the results obtained in case
of the second order Kuramoto model for power-grids below the
synchronization transition [64]. We have also detected module size
scaling of R t ! 1ð Þ below the transition point, with K-dependent
exponents, which would be an interesting subject of further study.

We have shown that the empirical results with ultra-slow oscil-
lations can be transformed onto zero mean Gaussian frequencies as
the consequence of the Galilean symmetry of the Kuramoto equa-
tion. As we used the 4th order Runge–Kutta solver, we carefully
confirmed that the step size D ¼ 0:01 is sufficient for the increased
precision required by the additive noise. This sensitivity is related
to the fast changes of the time dependent, additive noise.

Another point is the positiveness of the g xið Þ distribution in the
brain, as we don’t expect neural oscillators ‘rotating backwards’.
This corresponds to the question of asymmetric distribution of nat-
ural frequencies, such that for g xið Þ ¼ 0 for xi < 0. It has been
shown that in case of uni-modal g xið Þ-s only the first derivative,
the flatness of g xið Þ, matters here. Without a flat top, like an asym-
metric triangle, one obtains the same universal critical behavior
(b ¼ 1=2) as for the original Kuramoto model with zero centered
Gaussian [65]. Thus we expect the same dynamical behavior for
an asymmetric, truncated Gaussian: g xið Þ ¼ 0 for xi < 0 as we
found by the symmetric Gaussian.

We have compared the results with those obtained on regular
3D lattices of similar size and found, that the heterogeneity of
the self-frequencies already generate the non-universal scaling
region, which can be called a frustrated synchronization phase,
exhibiting chimeras [35]. At the synchronization transition point
we found: st ¼ 1:33 7ð Þ, slightly higher than in case of the connec-
tome: st ¼ 1:2 1ð Þ [33] and well below the mean-field value:
st ¼ 1:6 1ð Þ [33], so the topology plays a role mainly via the graph
dimension. Determination of these exponent estimates depend
strongly on the precise location of Kc , which is harder to get in
smaller systems, suffering finite-size cutoffs. Therefore the large
systems considered here are justified. The local, 3D connected
results can also be important for neuroscience, as local cortical
connections appear before more distant ones at the creation of
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the circuit [66]. Thus this study can be interesting for understand-
ing young brains, containing local connections mainly. Further-
more, 3D networks may occur in case of artificial intelligence
neural systems.

The dynamical scaling behaviors have been found to be robust,
supporting universality even if the Kuramoto model could be con-
sidered too simplistic to describe the brain. Note, however that in
the weak-coupling limit equivalence of phase-oscillator and
integrate-and-fire models was found [30], which may hold for
the sub-critical region, where we observed the dynamical scaling.
This provides a support for the edge-of-criticality hypothesis of
oscillating systems near and below the synchronization transition
point.

An interesting continuation of this work would be the study of
the effect of phase shifts, caused by the finite signal propagation in
the neural network or the introduction of a threshold, as in
integrate-and-fire models, although by universality of critical sys-
tems we don’t expect qualitative change in the scaling behavior.
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Fig. A.2. Duration distribution of tx on the KKI-18 model for different K values
shown in the legends.
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Appendix A

In this Appendix we show results for the synchronization dura-
tion distribution of Kuramoto on the KKI-18 model at K ¼ 1:3. As
Fig. A.1 shows dependence on the numerical integration step size
D is negligible and the results agree with the former noiseless case.
A least-squares fit for the tails results in st ¼ 2:1 1ð Þ, which is in the
experimentally measured range for activity avalanche durations.

We have also tried to test in the noiseless case whether the P txð Þ
distributions would follow stretched-exponential decay instead of
PL-s. As Fig. A.2 shows the � ln P txð Þð ÞÞ curves do not exhibit
straight lines on the log–log plot, except perhaps for K ¼ 1:2 only,
which is far from Kc .

The method has been tested by considering 3D lattices of size
L ¼ 100. of uniform oscillators and annealed noise with s ¼ 5
amplitude. In this case we don’t have any heterogeneity and an
order–disorder phase transition emerges by increasing the cou-
pling, which should belong to the XY criticality in 3D [67]. As
one can see on the attached graph (Fig. A.3) we obtain a PL at
the phase transition point K ¼ 0:05 1ð Þ and fast decays below it.
Here the fitted slope is st ¼ 1:1 3ð Þ. This agrees with the expecta-
tion, coming from scaling relations and known data for the critical
dynamics of the XY with model-A dynamics in 3D:
b ¼ 0:347 1ð Þ; m? ¼ 0:670 1ð Þ [68], Z ¼ 2 [69],
Fig. A.1. Duration distribution of tx on the KKI-18 model at K ¼ 1:3 for s ¼ 1 using
different precisions: D ¼ 0:1 (boxes), D ¼ 0:01 (bullets), D ¼ 0:001 (thin line). The
dashed line shows a PL fit for the tail region: tx > 20 of the D ¼ 0:01 data. The stars
show former results, obtained for the noiseless case.

Fig. A.3. Duration distribution of tx in the homogeneous model Kuramto model for
different K values shown in the legends. At the critical point: Kc ¼ 0:05 1ð Þwe see XY
model-A dynamical behavior, and exponential decays sub-critically.

Fig. A.4. Duration distribution of tx in case of Kuramto with uniformly distributed
g xið Þ for different K values shown in the legends. One cannot observe PL-s here.
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st ¼ 1þ b= m?Zð Þ ¼ 1:25 2ð Þ. Note, that for K > 0:05 the distribu-
tions become singular, characterized by 1=tx decay, before a finite
size cutoff.

Here we also show duration distribution results for the Kura-
moto model with uniform g xið Þ, which undergoes a first-order
phase transition. We do not expect critical scaling behavior and
indeed our simulations for this case do not show PL de-
synchronization duration tails. The p txð Þ curves saturate, followed
by a sharp decay for different K-s as shown on Fig. A.4.
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