PROGRAM,
ELŐADÁSKIVONATOK,
KIRÁNDULÁSVEZETŐ

17. ŐSLÉNYTANI
VÁNDORGYŰLÉS
GYŐR 2014

17. MAGYAR ŐSLÉNYTANI
VÁNDORGYŰLÉS
Győr
ló gia figyelhető meg, 3) a harapásnyomok nagy gyakorisága figyelhető meg egy kisebb lehatárolt csonfelfületen, 4) a zöldség és pseudozöldség fogazott állatok (pl. Theropoda dinoszauruszok, egyes krokodilok) harapásnyomainak jellemző karakterek (pl. egymással párhuzamos, vekony barázdák) teljesen hiányoznak. Ezen jegenek alapján a legvalószínűbb támadó az Allokaposuchus-szerű krokodil lehetett, mert az ismert iharkuti faunának csak ez a forma viselt erős, törésre alkalmas, küps alakú fogakat, melyek képesek lehettek az ellenálló táplálék összepontosságára.

A fentiek alapján levonható néhány paleontológiai következtetés az egykori biocénzis táplálékfelvételével illetően. Mivel a koponyaacsontok a dögvevők számára nem jelentenek elölös táplálékforrás, a feltételezhetően Allokaposuchus-szerű krokodiltól származó harapásnyomok az Iherbicus kisméretű krokodil koponyáján elsők között nyújtottak információt két krokodillal közötti ragadozó-zsákmány interakcióra a fosszilis anyagban. A felismerhető ragadozó-zsákmány interakció két krokodillal között felvetett annak lehetőségét, hogy a kis testmérettel és heterodont fogazattal rendelkező Iherbicus a teknősök és a halak mellett fontos zsákmányállapot lehetett Iharbút egykori vizes környezetében. A teknősök és krokodilok közti ragadozó-zsákmány interakcióra több példát találnunk a fosszilis és recens életkörzetességekben, az utóbbiakban a krokodilok táplálékának jelentős hányadát (~15%) a teknősök teszik ki. Azonban az iharkuti teknős-példány esetében kizárható a ragadozó-zsákmány interakció, hiszen a harapásnyomokat viselő pánclétőredék egy 70–80 cm-es testhosszú Feroxynx-hez tartozhatott, mely valószínűleg meghaladta a maximálisan 25 cm hosszúsági koponyával és kb. 170 cm testhosszal rendelkező Allokaposuchus-szerű krokodil zsákmányállatait. Sokkal valószínűbb, hogy a Feroxynx pánclétőredéken megfigyelhető harapásnyomok a már elpusztult állat páncléjának feltörése során keletkeztek.

Kutatásokat támogatta: MTA-ELTE Lendület Program, OTKA NF 84193, Magyar Természettudományi Múzeum.

A SOMISSICH-HEGY 2-ES LELOHELY ALSÓ-PLEISZTOCÉN SORICIDAE FAUNÁJA

BOTKA DÁNIEL, MÉSZÁROS LUKÁCS
ELTE TTK Öslénytani Tanszék, 1117 Budapest, Pizmány Péter sétány 1/C; botkadani@gmail.com; salpin@freemail.hu

JANOSII Dénes 1990-es előzetes faunálistája szerint az emlősfaunában szinte minden kisméretű csoport megtagadható. Vízszigetek alapján a Soricidae családot 3 genus 7 fajra (Berenestria fissidens, B. cf. minor, Crocidura korfledi, C. obusa, Sorex margaritodon, S. minutus és S. ronodensis) képvisel. Célunk a lelőhely paleontológiai vizsgálata volt ezen csoportok réteg szerinti eloszlása alapján. A lelőhely anyagában ugyan csak egy ma is élő cikánfaj van jelen, ám a többi faj környezeti igényét is megbecsülhetjük a rokon recens formák alapján.

A rendkívül nagy egyedszám és a példányok töredékessegé miatt az elsődleges vizsgálatok során a Sorex és a Crocidura cikánynagyságúk esetében csak a genus szintű meghatározást és a fák szárnak rétegenkénti összevetését alkalmazták, így módon legalább 5 periodust sikerült elkülöníteni. A Sorex fák aránya a rétesor közepén a legmagasabb. Ez zárt erdő vegetációtipust jelent. Az ezt megelőző és
az ezt követő rétegekben a Sorexek mellett jelen-
tőssé válannak a Crocidura cickányok előfordulását,
amy nyilattab, űves társulás megjelenésére utal.
A rétegsor tetején és alján ismét a Sorexek domi-
nálnak, bár kisebb mértékben, mint a rétegsor kö-
czné. A Sorex-dominancia a 18-25. rétegekben a
legerősebb.

A lelőhelyen nagy számban fordul el a nagy-
méretű Berenemda is. Minden idegre megadnak
a Berenemda fajok minimum egyedszámát, így
nyomon tudtuk követni, hogy a rétegsoron belül
hogyan változik az előfordulásuk gyakorisága. A
rétegsor 35-25. rétegeiben gyakoriak, minimum
egyeszamuk első nagyobb kiugrása a 28-27. ré-
tekben figyelhető meg. A 15-12. rétegek szintén
nagy mennyiségű Berenemda példányt szolgáltat-
tak, második maximunuk a 13. rétegben figyelhető
meg. A rétegsor felső rétegeiben viszonylag kevés
példányt találtunk, de a harmadik és egyben legna-
gyobb ésszerű a 5. réteg mutatja. A Berenemda faj-
ok egy-két tribuszhoz tartoznak, amelyeket válto-
zatos ökológiai lelőhelyekről írtak le. Valószínűleg
opportunista, változatos étrendű formákról van szó,
melyek hosszú időn keresztül jelen voltak a pleio-
pleisztocén folyamán. A minimum egyedszámuk-
ban mutatkozó ésszerűsök, illetve a nagyobb példány-
számban következő rétegek azonban korrelációt
mutatnak a lelőhely egyéb nedvességkedvelő cso-
portjainak jelentősebb (nedvesség kedvelő csigák és
bekák, valamint Desmana thermals). Ebből arra
következtethetünk, hogy a Berenemda és a nedvessé-
gkedvelő forma lehetett. A Berenemda és a nedvesség-
kedvelő csoportok réteg szerinti eloszlása
alapján tehát megállapítható, hogy egyes periódus-
sokban a lelőhely közvetlen környezetében volt-e
jelen nyílt víztükör.

A Soreicidae fajok és a kísérőfauna alapján fel-
tételezheto, hogy a rétegsoron belül legalább három
olyan időszak volt, amikor a területen zárt bozótos-
erdős vegetáció alakult ki. A köztes időszakban
a fajok űves vegetációt jelentek. A zárt növényzet
kialakulását nedvesebb klima vagy nagyobb víz-
folyás jelentése, közelsége válthatja ki. A nyilattab
ökoszisztéma megjelenése feltehetően az éghajlat
szárazodásával magyarázható.

A kutatás az OTKA K104506 számú projekt részét képeze.

EUROPÁI DIATÓMA ALAPÚ VÍZSZINT
REKONSTRUKCIÓK A HOLOCÉNÉBEN

BUCZKÓ KRISTZTINA
Magyar Természettudományi Múzeum Növénytárán,
1476 Budapest, Pf. 222, kristzina@buczko.eu

Tény, hogy a holocén kezdetétől a tavak jelentős részének a vízszintje folyamatosan változik
és az is általánosan elfogadott, hogy nagyrészt kli-
matikusan meghatározott a változás. Europában
hét fő típus különítettek el, de Közép-Európából
alig van adat a http://www.nced.nceas.gov/data-
access/paleoeclimatology-datasets/database-
level-reconstruction adatbázis szerint.

A Balaton, mint sekély, zárt, nagy felületű tó
elvileg ideális vizsgálati objektuma lenne a víz-
szintmegválasztásoknak, amelyek a toban zajlottak
annak keletkezése óta. A 19. század vége után
szinte megszámolhatatlanul sok vizsgálat, kutatás cso-
lozta a Balaton. A kovalagák paleolimnológiai
szempontú első elemzését Pantóczy József vé-
gezte 1913-ban, majd Hajos Mátra dolgozott a MAFI-ban Cserny Tibor vezetése alatt mélyült 33
fúras diatomáinak fejlődéséértékelésén. A Tö 25-es
fúras a nyolcvanas évek elején mélyült, a tó köz-
zenek helyezkedik el (N 46.81833, E 17.735, a.
sz. 104 m). Talpmélysége 10,63 m. Pollenanálí-
szis, ozsztakoda, stabilizotóp-mérés (oxigen- és
szénizotópok arányainak változása) eredményeit ismerve kezdtünk a kovalagai elemzésehez. A fúrás al-
ján, 10,63-9,63 méter között találtunk jelentősebb
mennyiségben diatomákat, a halofil Bacillaria par-
redoza és Mastogloia smithii mellett több, a holo-
cén fórólól nem ismert, fajra nem meghatározott
forma jellemzéseket ezeket (pannoniai) mintákat.
Ezután, 9,63 és 3,90 méter között az üledék diatoma
meddő, 3,90 méter felett először az Epithemia
nemzetség képviselői jelennek meg Cymbella és
Gomphonema fajokkal. Sekély, partkőzi minták-
ra utal a fajósszététel. Bodor Elvira pollenanálí-
szis adatai alapján (http://hurricane node.nceas.gov/
pls/paleox/p?f=p=51910:::;P1_STUDY_ID:6729)
A későglaciális és holocén határ 3,4 méter korú
létezett. A diatoma diagram – sok más európai és
Európá kívüli szelvényhez hasonlóan – nem mu-
tat zónahatárt, vagyis a hőmérséklet emelkedése
és hozzáértő változást a diatomaakozösség
életében. Főleg a bentonikus Opephora marlyi és
fragilíta fajok dominálnak, egészen 1,6 m-ig. A
fajzajdag, jó megtartású rétegeket olykor diatoma
meddő szakaszok váltják. Ezután az Asilacoseira
granulata eutróf, planktonikus faj válik meghatá-
PROGRAM, ELŐADÁSKIVONATOK, KIRÁNDULÁSVEZETŐ
17. Magyar Őslénytani Vándorgyűlés, Győr, 2014
Szerkesztette Bosnakoff Mariann és Dulai Alfréd
Kiadja a Magyarhoni Földtani Társulat, Budapest

A kirándulásvezető szerzői:

Klement Fordinál (Štátny geologic ký ústav Dionýza Štúra, klement.fordinal@geology.sk)
Matúš Hyžný (Department of Geology and Palaeontology, Faculty of Natural Sciences, Comenius University, jelenleg: Natural History Museum, Vienna, hyzny.matus@gmail.com)
Natália Hudačková (Department of Geology and Palaeontology, Faculty of Natural Sciences, Comenius University, hudačková@fns.uniba.sk)
Ján Schloegl (Department of Geology and Palaeontology, Faculty of Natural Sciences, Comenius University in Bratislava, schloegl@nic.fns.uniba.sk)

A 17. MAGYAR ŐSLÉNYTANI VÁNDORGYŰLÉST TÁMOGATTA:
Hantken Miksa Alapítvány
Magyar Természettudományi Múzeum

A 17. MAGYAR ŐSLÉNYTANI VÁNDORGYŰLÉS SZERVEZŐI:

Dulai Alfréd (félélős szervező, az MFT Őslénytani–Rétegtani Szakosztályának elnöke)
Ősi Attila (szervező, az MFT Őslénytani–Rétegtani Szakosztályának titkára)
Bosnakoff Mariann (kiadvány)
Kopcsa Ferencné (pénzügyek, a Magyarhoni Földtani Társulat munkatársa)
Krivánné Horváth Ágnes (MFT kapcsolatok, a Magyarhoni Földtani Társulat ügyvezetője)
Köszönet valamennyi önkéntes segítőinknek!