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In this paper, we analyze the numerical aspects of the inherently multi-reference density matrix
renormalization group (DMRG) calculations on top of the periodic Kohn-Sham density functional
theory (DFT) using the complete active space (CAS) approach. The potential of the framework is
illustrated by studying hexagonal boron nitride (hBN) nano-flakes embedding a charged single boron
vacancy point defect by revealing a vertical energy spectrum with prominent multi-reference char-
acter. We investigate the consistency of the DMRG energy spectrum from the perspective of sample
size, basis size, and active space selection protocol. Results obtained from standard quantum chem-
ical atom-centered basis calculations and plane-wave based counterparts show excellent agreement.
Furthermore, we also discuss the spectrum of the periodic sheet which is in good agreement with
extrapolated data of finite clusters. These results pave the way toward applying DMRG method in
extended correlated solid state systems, such as point qubit in wide band gap semiconductors.

I. INTRODUCTION

By discovering a plethora of color centres in hexagonal
boron nitride (hBN) with various point defect complexes
in the last years,1–7 hBN is becoming a focus of interest.
In particular, additionally to favourable optical proper-
ties, point defects in hBN with spin could possibly im-
plement quantum bits controllable by optically detected
magnetic resonance which signal has been recently re-
ported at room temperature.8,9

The standard theoretical approach to study such de-
fects is based on first-principles methods,10–22 in partic-
ular on the Kohn-Sham density functional theory (KS-
DFT),23 which established itself as one of the most preva-
lent numerical methods both in material science and the-
oretical chemistry offering balanced compromise between
accuracy and computational demand. Despite its im-
mense success attained in the field of weakly correlated
systems, it is challenged to describe accurately quasi-
degenerate electronic structures exhibiting strong corre-
lations.24

To overcome the limitations of the standard DFT level
of theory, various distinct computational frameworks
have been proposed for molecular systems.25–34 The de-
scription of electron correlation effects in molecules are
typically improved by configuration interaction based
methods, coupled cluster theory, methods inspired by
Monte-Carlo approach and variants of the complete ac-
tive space self-consistent field approach, see e.g.35–43

More recently, the application of post-Hartree-Fock
methods on periodic problems has witnessed significant
progress as well.44–50 Besides these canonical approaches,

in the last decade, density matrix renormalization group
(DMRG) procedure also became an appealing alternative
for describing the low-lying vertical excitation spectrum
of strongly correlated molecules51 and periodic ab initio
systems.52,53

DMRG was originally developed to describe one-
dimensional quantum models in solid state pyhsics with
local interactions.54,55 The method was later general-
ized to treat long-range interactions found in momen-
tum space representation of lattice models56–58 and in
ab initio quantum chemistry.59–61 The success of these
developments relies on the efficient factorization of in-
teractions56,59 and the optimization of the DMRG net-
work topologies based on concepts of quantum informa-
tion theory62–64 leading to tremendous reduction in com-
putational costs. The underlying mathematical frame-
work, however, is not restricted to models studied in con-
densed matter physics65,66 or applications to molecular
clusters51,64,67 but among many others it can be also used
to study nuclear shell models,68–71, particles in confined
potential72–74 or problems in the relativistic domain.75–77

Therefore, mapping a physical problem to a proper model
together with an optimal choice of basis could pave the
road for DMRG applications in a broad range of disci-
plines which could surpass conventional methods.

In this work, we present the application of DMRG in a
novel direction and use it as a post-DFT approach gov-
erned by the complete active space (CAS) protocol.78,79

The discussed approach focuses on the accurate descrip-
tion of the static correlations treating the rest of the
electronic structure on effective one-electron level. The
method, denoted as DFT-CAS-DMRG in the following,
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has been applied on top of atomic KS orbitals.80,81 Here,
we apply the theoretical framework on top of both atomic
and periodic KS orbitals to predict the main features of
the low-lying many-body spectrum of molecular and peri-
odic ab initio systems. In fact, quite recently, we have ap-
plied this post-DFT approach to the negatively charged
boron vacancy (VB) in single layer hBN82 confirming the
experimental expectations on decay routes.8

As prequel of our former study, now we turn our fo-
cus to the technical aspects of this post-DFT approach
adapted both to KS atomic and periodic orbitals. Par-
ticularly, we investigate the vertical many-body energy
spectrum of a series of finite VB-hBN samples terminated
with hydrogen atoms. As part of the study, to the best
of our knowledge, we benchmark ab initio DMRG results
on top of plane-wave based Kohn-Sham orbitals against
the vertical spectrum computed in localized basis for the
first time. Furthermore, tendencies observed on flakes
are set against the results obtained for explicit periodic
sheet.

The paper is structured as follows. In section II, we

introduce shortly the DMRG method and also discuss
the technical details of the Hamiltonian matrix construc-
tion and of the active space selection. In section III,
we describe the main features of the studied molecular
systems. In section IV, the numerical aspects of the sim-
ulations are summarized. In section V, the results are
discussed. Finally, conclusion is provided in section VI.

II. METHODS

A. Quantum chemical Hamiltonian and molecular
orbitals

In this study, the molecular system of N electrons with
coordinate {ri} is investigated in the Born-Oppenheimer
approximation, i.e., in the presence of nuclei of atomic
number {Zµ} with fixed position {dµ}. Considering the
Coulomb interaction among charged particles, the corre-
sponding time-independent Schrödinger equation,

ĤΨ =

− N∑
i

(
1

2
∇2
i +

∑
µ

Zµ
| ri − dµ |

)
+

N∑
i<j

1

| ri − rj |
+
∑
µ<ν

ZµZν
| dµ − dν |

Ψ(r1, . . . , rN ) = EΨ(r1, . . . , rN ), (1)

is to be solved to obtain stationary electronic wave func-
tion Ψ(r1, . . . , rN ) with energy E. Hamiltonian (1) mea-
sured in Hartree atomic units describes the kinetic en-
ergy of the electrons, their potential energy induced by
the charged nuclei in addition to the electron-electron
Coulomb interaction. Owing to the two-body interac-
tions, the many-electron equation, Eq. (1), is not sep-
arable to a system of independent single-electron equa-
tions. An approximate mean field level solution can be
provided by the variational Hartree-Fock method which
treats Hartree and exchange interactions exactly but
completely neglects correlation effects. Based on the
Hartree-Fock solution, various methods has been devel-
oped to recover the correlation energy which methods
may show limitations on accessible system size or accu-
racy.83 The density functional theory (DFT) can provide
a viable compromise by mapping the original problem of
interacting electrons to a gas of non-interacting particles
in an effective potential which also includes the relevant
effects of the electron-electron interactions in addition to
the external potentials. In standard DFT procedure the
energy is minimized with respect to the electron den-
sity obtained iteratively from the Kohn-Sham orbitals,
{ψj(r)}. Whereas the Hartree potential is treated ex-
actly in the DFT method, the accurate description of
the many-orbital interactions, encoded in the exchange-
correlation energy functional, is the actual challenge of
the approach. Various approximations for the functional
had been suggested that were optimized in given con-

densed matter systems but the method became only a
standard in computational chemistry with the advent of
hybrid functionals which include a portion of the exact
exchange energy of the Hartree-Fock theory to give a
more precise characterization of exchange effects.

The method has numerous advantages and became ex-
tremely popular for treating weakly correlated systems
in the last decades. Notwithstanding the enormous suc-
cess and broad applicability of the approach, one may
have to go beyond the pure DFT approach to provide
an accurate description of strongly-correlated electronic
states. In the following, we summarize the simplest such
possible procedure applicable on one-electron level theory
based on the complete active space method.

B. Matrix elements of the ab-initio Hamiltonian

Considering large supercells, the electronic bands be-
come flat, i.e., dispersionless in the reduced Brillouin
zone. Furthermore, band states of Γ-point, which is the
center of the Brillouin zone with zero momentum, are
purely real-valued. Consequently, Γ-point states of large
supercells can be regarded as molecular orbitals of solid
state systems. Hence, similarly to molecular orbitals ob-
tained by atomic codes, electronic states computed by
periodic programs can also be employed to construct
the corresponding ab initio Hamiltonian. The following
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discussion summarizes the computation of the Hamilto-
nian’s matrix elements of spin restricted molecular or-
bitals and Γ-point only periodic states. In the following,
these localized Γ-point periodic states are also referred
to as orbitals. For the sake of simplicity, spin-restricted
orbital set is considered but the concept can be readily
generalized.

In terms of operators â†iσ and âiσ, which creates and
annihilates electron with σ spin projection in orbital
i, the second quantized representation of the ab initio
Hamiltonian operator, Eq. (1), is parameterized as

Ĥ =
∑
ij,σ

tij â
†
iσâjσ +

1

2

∑
ijkl,σσ′

Vijklâ
†
iσâ
†
jσ′ âkσ′ âlσ + Enuc

(2)

with system specific one- and two-electron integrals, tij ,

and Vijkl, respectively. Assuming all-electron descrip-
tion, the former integrals expand the kinetic contribu-
tions and the electron-nuclear attractions in the basis of
electronic orbitals, {ψj(r)},

tij = −
∫
ψ∗i (r)

(
1

2
∇2 +

∑
µ

Zµ
| r− dµ |

)
ψj(r)dr (3)

with nuclei of atomic number Zµ at fixed coordinate
dµ. Note that applying pseudopotentials, which is op-
tional in atomic codes, but rather mandatory in plane-
wave based calculations, the nuclei and the frozen core
electrons are described by non-local potential functions.
When states either in the band gap or close to it are
considered, the correlation effects with core electron are
negligible and the pseudopotential approximation is ade-
quate. As a consequence of the approach, i.e., by reduc-
ing the number of electrons and making the core potential
softer, plane-wave calculations become considerably less
demanding.

The interelectronic repulsions yield two-electron inte-
grals,

Vijkl =

∫
ψ∗i (r)ψ∗j (r′)ψk(r′)ψl(r)

| r− r′ |
drdr′, (4)

whereas the nuclear-nuclear repulsion gives a constant
energy shift,

Enuc =
∑
µ<ν

ZµZν
| dµ − dν |

. (5)

Evaluation of the two-electron matrix elements

The definition of the two-electron integrals (4) pre-
scribes an expensive six dimensional real space integral.
It is easy to show that the matrix elements can be equiv-
alently evaluated by a three dimensional integral in re-
ciprocal space q,

Vijkl =

∫
ρil(q)ρjk(−q)

|q|2
dq (6)

using auxiliary density operators,

ρil(q) =

∫
ψ∗i (r)ψl(r)eiqrdr . (7)

We implemented the computation of Hamiltonian matrix
elements within the plane-wave based Quantum Espresso
suite84,85 adopting the momentum space representation,
Eq. (6), where the evaluation reduces to two wave func-
tion multiplications and Fourier transformation besides
a threefold integration. Restricting ourselves to the us-
age of norm-conserving wave functions, we do not face
the problem of augmentation charges observed in systems
with ultrasoft pseudopotentials.86 In some situations, the
divergence at |q| → 0 can be treated analytically.87 Nev-
ertheless, the application of large supercells ensures that
the Fourier grid is fine enough to treat divergence safely
by discarding q = 0 term in the numerical integration.

The number of two-electron matrix elements to be eval-
uated scales as quartic of the number of active orbitals
thus their effective computation is the most critical part
of constructing the Hamiltonian matrix. In order to op-
timize performance, balancing between memory size and
numerical efforts, portions of the computationally expen-
sive auxiliary operators, {ρil(q)}, are cached during the
two-electron matrix evaluation.

C. DMRG

In the following, the basic concept of the DMRG
method is summarized, whereas interested reader finds
thorough overviews of DMRG and related numerical ap-
proaches in the context quantum chemistry.64,67

Many-body wave function |Ψ〉, i.e., an eigenstate of
Eq.(2), expanded in the space of L spatial-orbitals reads
as

|Ψ〉 =
∑
{n}

C(n)
L∏
i=1

(
â†i↑

)ni↑ (
â†i↓

)ni↓
|0〉 , (8)

with notation n = (n1↑n1↓n2↑n2↓n3↑n3↓...nL↑nL↓) where
niσ ∈ {0, 1}. The components of the state specific C ten-
sor increase exponentially with system size L scaling as
22L. Hence, the exact solution of problem (2) on current
classical machines is generally limited to systems repre-
sented with a dozen of orbitals.

It is shown88 that tensor C is factorizable to a set of
numerically more manageable matrices using the equiv-
alent matrix product state (MPS) form of it, i.e.,

C(n) =

L∏
i=1

A
(ni↑ni↓)
i . (9)

The dimension of the Ai matrix grows towards the center
of the MPS chain as dim(Ai) = [4i−1, 4i] for i ≤ L/2 and
dim(Ai) = [4L−i+1, 4L−i] otherwise (for even L). Con-
sequently, recovering exact MPS representation of ten-
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sor C, the overall computational cost of the MPS ma-
trices also grows exponentially just as the original ten-
sor representation. To overcome this limit, the DMRG
approach provides an approximate description of the C
tensor in terms of optimized matrices, ADMRG

i , trun-
cated to a fixed manageable bond dimension, M , i.e.,
dim(ADMRG

i ) ≤ [M,M ]. Increasing M , the precision of
the approximation is well controlled approaching varia-
tionally the exact solution. In the DMRG protocol the
MPS matrices are locally optimized and truncated by
minimizing the discarded entanglement between the left
and right neighboring blocks of the MPS chain, obtained
from the reduced density matrix of the block. The algo-
rithm iterates through the MPS chain in sequential order
back and forth until reaching convergence. For a detailed
tutorial about the DMRG approach in MPS formalism,
we refer to tutorial.66

Compared to wave functions obtained from typical
quantum chemical approaches, the DMRG method pa-
rameterizes the eigenstates in terms of local variational
objects instead of excitations of a reference configura-
tion. Consequently, DMRG can precisely describe active
spaces up to 40-80 orbitals due to the implicitly polyno-
mial scaling of computational demand for gapped non-
critical systems. Most typically the method is applied to
obtain the ground state properties but it can be used to
describe not only the vertical but also the relaxed low-
lying electronic excitations as well.89,90

In the following, we compute the vertical excitation
spectrum on the relaxed ground state geometry. In the
DMRG truncation procedure, the reduced density matrix
of the blocks is formed of the equally weighted linear
combination of all target states.

D. Complete active space (CAS) method

The investigated systems, consisting of dozens of
atoms, is described by hundreds of Kohn-Sham orbitals
which cannot be directly treated by the DMRG owing
to the computational costs. Therefore, an optimal selec-
tion of orbitals with tractable size is needed which are
responsible for the strong static correlations. The com-
plete active space (CAS) scheme78,79 classifies the set of
orbitals to three categories, i.e., the so called core and vir-
tual orbitals are frozen to the mean field level and filled
with two and zero electrons, respectively. The third class
comprises of the so called active orbitals which are pop-
ulated with the rest of electrons minimizing the energy.

Accordingly, the virtual orbitals does not play any role
in the corresponding CAS Hamiltonian whereas the core
electrons affect the electrons of the active space through
the Coulomb interactions, i.e., the Hamiltonian of the

active space reads

ĤCAS = Enuc + Ecore +
∑
ij,σ

tCAS
ij â†iσâjσ (10)

+
1

2

∑
ijkl,σσ′

Vijklâ
†
iσâ
†
jσ′ âkσ′ âlσ

with the previously defined Vijkl integrals restricted to
the active orbital set. The one-electron integrals of the
CAS space, tCAS

ij , describes not only the kinetic energy
of the active electrons and their attraction to nuclei but
also their interaction with the core electrons. Describ-
ing the active electrons with the DMRG method, which
treats exactly the electron exchange, the one-electron in-
teractions are written as

tCAS
ij = tij +

1

2

∑
c

(2Viccj − Vicjc) (11)

to treat the Coulombic effects of the frozen electrons on
the active orbitals. Here, the summation runs only on
the indices of the core orbitals. Finally, the additional
energy contribution of the core electrons is summed up
in term Ecore, i.e,

Ecore = 2
∑
c

tcc +
∑
cc′

(2Vcc′c′c − Vcc′cc′). (12)

Including more and more orbitals in the active space,
the corresponding CAS ground state energy gets lower
and lower consistently, i.e., enlarging the active space
class the energy of the CAS approaches variationally the
ground state energy of the original problem.

In practice, the active space is restricted to the most
important orbitals featuring strong correlation. Even
though the method has limitations to provide correct de-
scription of dynamic correlations using relatively small
active space, it captures static correlations with high ac-
curacy providing valuable insight into the low-lying en-
ergy spectrum and the essential structure and symmetry
properties of the corresponding electronic eigenstates.

Note also that, contrary to alternative post-DFT meth-
ods,91 the CAS Hamiltonian (11) to be investigated does
not include the Kohn-Sham energies explicitly but only
the Kohn-Sham orbitals by construction. Also, the abso-
lute energies of the states computed from the CAS Hamil-
tonian are not trivially comparable with counterparts ob-
tained on the DFT level of theory due to the different
description of the exchange and correlation effects.

E. Protocols for selecting the active space orbitals

The studied systems are described by hundreds of oc-
cupied orbitals, which limits the applicability of sophis-
ticated CAS selection schemes based on large-scale post-
self-consistent field calculations.92 Occupation pattern
of natural orbitals93 evaluated on the level of second-
order Møller-Plesset perturbation theory94 or the com-
plementing information of the occupied orbitals95 has
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been proven helpful guidance to construct minimal vir-
tual space in periodic calculations as well.

Nevertheless, in the following, we use alternative
scheme for constructing active subspace owing to two
distinguished features of the investigated defect system.
First, the performed DFT calculations provide a partic-
ularly accurate description of the ground state of the de-
fects, hence its partial occupations on the level of pertur-
bation theory are negligible and provide no insight into
the structure of excited states. Second, in the studied
defect systems, the low-lying many-body energy spec-
trum is expected to be conceptually described by the
localized defect orbitals (see Fig. 1) and their interaction
with the hosting environment, i.e., orbitals with large
lobes around the central atoms can potentially interfere
with the in-gap orbitals. Therefore, in the following, we
apply two approaches to define the active space: i) we
select canonical orbitals with prominent localization at
the core of the defect, ii) we construct the active space
based on energy window around the valence band maxi-
mum (VBM) level to verify the applicability of the CAS
selection based on orbital localization around the defect.

It is to be noted that we do not localize the canon-
ical orbital set in order to preserve their point group
symmetry thus providing the possibility of studying the
symmetry properties of the many-body states. In prac-
tice, such orbitals are taken into account whose degree
of localization on the central part of the defect yield a
critical value according to their orbital volumetric data
or (in case of availability) to their projection on atomic
basis. Comparing the many-body excited state spectrum
yielded from the two CAS selection protocols, we find
that the structure of the spectra is essentially identical
up to some 0.001−0.2 eV shifts in energy as discussed in
section V B, i.e., the most important orbitals are the lo-
calized in-gap orbitals incorporated in both of the applied
protocols. Nevertheless, obtaining slightly lower absolute
energies with the applied variational computational pro-
cedure indicates that the orbital selection based on local-
ization is preferable to the one based on KS energy. Cor-
respondingly, results discussed in section V C are based
on DMRG calculations performed on CAS which is se-
lected according to orbital localization.

III. INVESTIGATED SYSTEMS

Defect-free hexagonal boron nitride monolayer has
been investigated numerically on the level of ab initio
dynamical mean-field theory using crystal atomic or-
bitals. The computed direct and indirect band gaps are
of around 10 eV.96

Various defects embedded in hBN with potential in
technology have been recently investigated, for the cur-
rent progress see review.97 In this work, we study hBN
nano-flakes and sheet hosting a negatively charged boron
vacancy (VB-hBN). The defect system of D3h symme-
try exhibits spin triplet ground state which can be un-

e′x e′y

a′′2

e′′x e′′y

a′1

1

FIG. 1. The six defect molecular orbitals demonstrated for
B18N18H15 in cc-pVDZ basis. Defect orbitals characterized in
Sect. III are localized dominantly on the core of the defect,
i.e., on the three neighbor nitrogen atoms.

derstood as following. The in-plane dangling bonds and
the out-of-plane pz orbitals of the three neighbor nitro-
gen atoms, located at the core of the defect, provide six
single-particle defect states. The two non-degenerate a
and the two degenerate e defect states plotted in Fig. 1
are occupied with ten electrons in the negatively charged
system. The highest-lying e dangling bond becomes half
occupied yielding spin-triplet ground state. Analysing
the single-electron spectrum of VB-hBN also reveals that
these localized in-gap orbitals are close in energy.19

Therefore, the accurate description of the strongly-
correlated excited states necessitates the application of
multi-reference methods. In our recent work,82 we pro-
vided a detailed description of magneto-optical proper-
ties of the system and also studied its many-body elec-
tronic spectrum applying the DFT-CAS-DMRG method.
In this work, we turn our focus on the computational as-
pects of the DFT-CAS-DMRG approach illustrated on
VB-hBN samples.

IV. COMPUTATIONAL DETAILS

We study two-dimensional planar VB-hBN flakes of
various sizes, i.e., investigating clusters of increasing size
is necessary to capture long-range correlations and to
minimize the finite-size effects of the terminating hydro-
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FIG. 2. Snippet of KS energy spectrum close to the VBM,
for VB-hBN model with 18 boron atoms. DFT calculations
on the DFT-PBE level of theory are performed using plane-
wave basis with kinetic energy cutoff of the wave function at
ε = 400, 500, 600, 700, 800 and 900 eV. Doubly and partially
occupied in-gap orbitals are marked by solid and dashed red
lines, whereas other valence and virtual orbitals are visualized
by black and blue solid lines, respectively.

gen atoms. In particular, we study molecules B6N6H9,
B18N18H15, B36N36H21, B60N60H27, B90N90H33. In ad-
dition, we investigate a periodic sheet of a 182 atom su-
percell which is large enough to minimize the interference
between neighboring impurity sites and to reach conver-
gence even restricting to Γ-point-only description.

The hosting molecular flakes embed the vacancy in the
center of the model so that the relaxed lattice structures
exhibit D3h symmetry. The relaxed molecular geome-
tries of the charged defects are obtained on DFT-PBE
level of theory98 with a homogeneous compensating back-
ground charge using VASP package.99 The finite flakes
are embedded in a cubic supercell of 30 Å, correspond-
ingly, 30 Å vacuum size is applied in the perpendicular
direction of the periodic sheet.

The electronic structure of the molecules is described in
terms of spin restricted Kohn-Sham DFT orbitals using
PBE functional. Self-consistent field (SCF) calculations
are performed using both atomic basis based quantum
chemical program suite ORCA100 and plane-wave based
Quantum Espresso (QE)85 with norm-conserving pseudo
potentials. The actual capabilities of the periodic code
are taken advantage of studying the single layer. Various
atomic basis sets and plane-wave basis with increasing
cutoff are tested as discussed in the Sect. V A.

The Hamiltonian matrix elements are computed by our
in-house implementation for QE KS orbitals. Alterna-
tively, matrix elements are also obtained from ORCA
calculations through the interface to MRCC101,102 for
isolated flakes. Active spaces of up to 40 orbitals are
selected as discussed in Sect. II E.

DMRG simulations are performed using the Budapest
DMRG package.103 Due to the dozen of excited states to
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FIG. 3. Vertical energy spectrum relative to the ground state
energy for model B18N18H15. The active space is selected
according to KS energy. Orbitals are expanded in PW basis
with various energy cut-off ε. For better visibility spin-triplet
and spin-singlet energy levels are contrasted using solid green
and dashed purple line, respectively.

be described, DMRG calculations are performed for tar-
get states with total spin 0 and 1. In the DMRG trunca-
tion procedure, the density matrix is constructed of the
equally weighted linear combination of all target states.
As discussed in our tutorial,64 the convergence is sped
up by initialization procedures inspired by quantum in-
formation theoretical considerations and the accuracy of
the simulations is controlled by the dynamic block state
selection approach. In the calculations, the quantum in-
formation loss is kept below threshold value χ = 10−5.
As the static correlation effects are dominantly attributed
to the six defect orbitals, the optimal ordering is practi-
cally determined by the Kohn-Sham energies rendering
the most strongly correlated orbitals to the center of the
DMRG chain.

Note that the direct comparison with experimental
data is not straightforward as the important structural
relaxation effects are not incorporated in the current level
of theory. Furthermore, it is also to be kept in mind that
the neglected orbital relaxation effects as well as the ac-
curate treatment of dynamical screening effects decrease
the presented vertical excitation energies.

V. RESULTS

A. Energy spectrum of B18N18H15 obtained in
localized and in plane-wave basis sets

To demonstrate the robustness of the plane-wave based
calculations, we investigate both the Kohn-Sham single-
electron and the resulted vertical many-body excitation
spectrum of the model with 18 boron atoms in terms of
the energy cutoff, which are plotted in Figs. 2 and 3,
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FIG. 4. Snippet of the Kohn-Sham one-electron energy spec-
trum of model B18N18H15 on the DFT-PBE level of theory
around the gap. Orbitals are expanded in STO-3G, 6-31G,
cc-pVDZ, cc-pVTZ, cc-pVQZ, aug-cc-pVDZ atomic bases and
in PW basis applying energy cutoff at ε = 700 eV. Color key
as in Fig. 2.

respectively. The kinetic energy cutoff of the wave func-
tion is varied in the ε = 400 − 900 eV range whereas
the cutoff for charge density and potential is fixed as 4ε
in agreement with the default QE parametrization. The
details of the KS spectrum around the VBM are pre-
sented in Fig. 2 where the energy is measured relative
to the lowest lying defect state. We find that the en-
ergy spectrum is rather independent of the applied en-
ergy cut-off which also illustrates the quick convergence
of the DFT calculations. The observed small fluctuations
are acknowledged to the fact that ε is increased in steps
of 100 and not in steps of the lowest ε = 400 eV value.
Correspondingly, due to the convergence of the KS or-
bitals observed already for surprisingly low cut-offs, the
orbital-dependent DMRG results found in Fig. 3 vary
marginally for ε > 400 eV. Therefore, in the following,
according to the observed quick convergence in cutoff en-
ergy, PW results for ε = 700 eV are used as reference
data.

We also perform a series of DFT calculations for
the model with 18 borons applying various complexity
of atomic basis sets,78 i.e., STO-3G, 6-31G, cc-pVDZ,
cc-pVTZ, cc-pVQZ, aug-cc-pVDZ. The corresponding
Kohn-Sham one-electron spectra and, as reference, the
result obtained in the plane-wave basis (PW) with energy
cutoff of ε = 700 eV are presented in Fig. 4. Interestingly,
whereas the details of the spectrum show some sensitiv-
ity to the applied basis, the energy gaps of the localized
state are rather independent of the chosen atomic basis
for 6-31G and more complex basis.

Comparing sophisticated atomic basis results to coun-
terpart obtained in PW, we find great agreement for the
doubly occupied orbitals. The observed deviations are
yielded from the different treatment of the core electrons
and the effect of background charge in the PW calcula-

0

1

2

3

4

5

6

v
er
ti
ca
l
en

er
g
y
sp
ec
tr
u
m

(e
V
)

ST
O
-3
G

6-
31
G

cc
-p
V
D
Z

cc
-p
V
T
Z

cc
-p
V
Q
Z

au
g-
cc
-p
V
D
Z

PW

FIG. 5. Relative vertical energy spectrum of model
B18N18H15 obtained in active space of energy selected 21 or-
bitals which are expanded in STO-3G, 6-31G, cc-pVDZ, cc-
pVTZ, cc-pVQZ, aug-cc-pVDZ atomic bases and also in PW
basis of ε = 700 eV. Color code as in Fig. 3.

tions. On the other hand, the KS energy of the partially
occupied and the lowest lying virtual levels deviate sig-
nificantly due to technical differences which understood
as following.

The energy of half-filled defect e′′ level displayed in
Fig. 4 with dashed red line is discrepant corresponding to
the distinct treatment of unpaired electrons applied by
the atomic and by the plane-wave basis computations.
In particular, the ORCA program describes the spin
triplet ground state using restricted open-shell approach
whereas the unpaired electrons are set to be smeared in
spin averaged manner on the degenerate e′′ level in the
QE calculation. Therefore the observed energy differ-
ence corresponds to this spin flip energy. Nevertheless,
we find that the corresponding ORCA and QE molecular
orbitals are equivalent up to 95% comparing their volu-
metric data. Note that such disagreement on the level of
the KS spectra does not affect the presented post-DFT
results as the DFT-CAS-DMRG procedure does not rely
on KS energies but exclusively on orbitals. The discrep-
ancy of the virtual spectra is understood as the artifact of
the PW calculations where the resulted lowest lying vir-
tuals show a tendency to describe ionization, i.e., the cor-
responding orbitals are localized off the molecular sheet.

The many-electron DMRG energy spectrum resulted
in the CAS constructed of the series of KS-DFT-SCF or-
bitals is plotted in Fig. 5. The active space for all the test-
ing CAS calculations were selected according to the one-
electron energies correlating 32 electrons in 21 orbitals.
The overall structure of the many-electron spectrum ob-
tained in reasonably large basis sets, i.e., cc-pVDZ and
beyond, is rather independent of the applied basis even
for excitations of 4 − 5 eV. Using more and more so-
phisticated atomic basis, the absolute energy of each ex-
citation lowers but with varying tendency. Nevertheless,
approaching the completeness of the basis, i.e., using cor-
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relation consistent and PW basis with large cutoff ε, the
spectrum becomes consistent with slight variations yield-
ing ∼90% agreement on the many-body excitation ener-
gies. It is also notable that the singlet-triplet gap, which
involves predominantly spin excitation of the partially
filled defect e′ level, is predicted surprisingly well, i.e.,
with 10% accuracy, even on the minimal STO-3G level
of theory. Based on these results, cc-pVDZ atomic basis
is an optimal choice for reasonably accurate non-periodic
DFT-CAS-DMRG calculations.

The observed discrepancies in the spectrum obtained
for various orbital sets reflect not only the distinct char-
acter of the underlying incomplete basis sets but also the
limitations of the CAS based description. In particular,
as valence orbitals can be very close in energy with ac-
cidental ordering as observed in Fig. 4, the selection of
a dozen of valence orbitals for the CAS can be biased
which could be cured with the study of a much larger
and optimally constructed active space.

B. Sensitivity of active space selection

Having a CAS based description in our hands, care-
ful selection of active orbitals is crucial. In the following
CAS selection is investigated from the perspective of ac-
tive space size and selection protocols on the example of
B36N36H21 on cc-pVDZ level of theory.

First, the large gap, ∆ ≈ 5 eV, also observed in Fig. 4
and the partial occupation of the defect e′′ level suggest
that virtual orbitals does not play crucial role in the de-
scription of low-lying electronic states excited with en-
ergy of a few eV. Similar conclusion is drawn from the
molecular orbitals obtained in PW SCF calculations, i.e.,
some of the lowest-lying virtuals are out of the plane of
the sheet and expand in the vacuum, i.e., the system can
be ionized with around energy ∆.

Hence, we typically include only a couple of virtual
orbitals in the active space and select active orbitals
mostly from the valence band besides the six localized
orbitals presented in Fig. 1. As an illustration, we show
many-electron energy spectrum obtained for KS-energy-
selected active space of various sizes in Fig. 6. Increas-
ing CAS size as more and more correlation effect is pos-
sible to be retrieved, consequently every many-electron
energy decreases but with a particular rate depending
on the structure of the corresponding many-body state.
We find that the main features of the spectrum are al-
ready captured using the six orbital CAS, nevertheless
the energy of some many-body states lower with more
than 1 eV including more dynamic correlations by in-
creasing CAS size. The results also show that a CAS
of around 30 orbitals is already large enough to describe
the low-lying application-relevant excitations. It is no-
table that besides the ground state, i.e., ≈ 1e′2 in hole
representation, there are some many-body excited states
which are predominantly characterized by defect-orbital
excitations whose energy decreases less dramatically with
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FIG. 6. Many-electron energy spectrum of model B36N36H21

obtained for CAS with 6, 12, 17, 21, 25, 30, 34 and 38 orbitals
selected according to KS energy on DFT-cc-pVDZ-PBE level
of theory. Energies are shifted for better visibility. Color code
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FIG. 7. Many-electron energy spectrum of model B36N36H21

on DFT-cc-pVDZ-PBE level of theory obtained for CAS of
25 orbitals based on KS energy and localization as discussed
in Sect. II E. Energies are shifted for better visibility. Color
code as in Fig. 3.

increasing active space. In particular, the lowest-lying
spin-singlet spatial-doublet state is dominantly charac-
terized by spin excitations within the degenerate defect
e′ level, i.e., ≈ 0.7e′2+0.3e′a′1 in hole representation as we
have shown.82 The multiple quasi degenerate states found
around 2 eV are also of multi-reference character. In par-
ticular, spatial doublets are detected with both spin sin-
glet and triplet symmetry which are dominated by mul-
tiple configurations summarized as ≈ 0.45e′a′′2 + 0.45e′e′′

in hole representation. Considering higher-energy exci-
tations, e.g., the spin-triplet doublet state with single-
reference character found around 4 eV for smaller ac-
tive space sizes, i.e. < 30, describes excitation from the
localized a′1. Nevertheless, extending the active space
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FIG. 8. Snippet of the KS energy spectrum of orbitals around
the gap on the DFT-PBE level of theory for models with 6,
18, 36, 60, 90 boron atoms and for the periodic sheet with
80 boron atoms computed using cc-pVDZ atomic and plane-
wave basis with cut-off at 700 eV, respectively. Color key as
in Fig. 2.

further with lower-energy orbitals, which exhibit signifi-
cant localization around the defect, the state of character
≈ 0.95e′a′1 shifts by 0.5 eV for active spaces of ≥ 30 or-
bitals.

This observation also underlines the detailed analysis
of the eigenstates, which indicates that valence orbitals
showing larger overlap with the defect orbitals become
more correlated in the post-DFT calculations than or-
bitals far from the center confirming the chemical intu-
ition of CAS selection based on localization. In Fig. 7,
we demonstrate the results obtained for 25 active orbitals
selected by the two CAS construction schemes, i.e., se-
lecting orbitals based on their KS energy and on their
localization around the defect. In the first case the occu-
pied orbitals are kept in the active space based solely on
their proximity to the Fermi surface. In the latter case
the localization filters further the orbitals, i.e., only those
orbitals are considered whose atomic basis projection on
the first neighbor three nitrogen atoms reaches at least
0.005-0.01. Comparing DMRG spectrum obtained in the
two differently constructed active spaces of 25 orbitals,
corroborates the expectations, i.e. all the many-electron
states get lower in energy with 0.0001−0.2 eV using local-
ization based CAS. In fact, the latter calculation recovers
essentially the spectrum obtained for the larger CAS of
30 orbitals selected according to KS energy (see Fig. 6).
In larger systems, where the corresponding orbitals are
more distributed in space, the CAS selection scheme has
even more drastic effect.

C. Large model and single sheet results

The KS-PBE energy levels close to the gap are de-
picted in Fig. 8 for various model sizes and for periodic

0

1

2

3

4

5

v
er
ti
ca
l
en

er
g
y
sp
ec
tr
u
m

(e
V
)

6

18
36

60
90 sheet

FIG. 9. Relative vertical energy spectrum of models with
6, 18, 36, 60, 90 boron atoms and of single layer with 80
borons obtained in localization-selected CAS of 40 orbitals.
The models and the sheet are described in cc-pVDZ and PW
basis, respectively. Color code as in Fig. 3.

sheet with 80 boron atoms. Having observed good con-
vergence on the relatively cheap cc-pVDZ basis set for
B18N18H15 in Sect. V A, all molecules are treated on the
cc-pVDZ level of theory whereas the periodic sample is
computed using PW basis with cut-off at ε = 700 eV. We
find that the structure of the in-gap spectrum is similar
for models with 18, 36, 60 and 90 boron atoms, however,
the energy gaps are enlarged in smaller models due to the
quantum confinement. It is also clearly observed that the
confinement affects strongly the typical extended molec-
ular orbitals but hardly the six localized defect states
which are coded essentially with color red in Fig. 8. Fur-
thermore, we also find that the doubly occupied energy
spectrum of the larger molecules is in good agreement
with result obtained on the periodic sheet (also noting
differences of partial-filled and virtual energies owing to
technical reasons discussed in Sect. V A.

The yielded vertical many-electron DMRG spectrum
obtained for CAS with 40 localized orbitals in the active
space is presented in Fig. 9 for the distinct systems. The
ground state has single reference nature in each cases, i.e.
> 0.95% weight for the leading configuration with half-
filled e orbitals is observed, confirming the applicability
of DFT as ground-state calculation on VB-hBN systems.
Disregarding the smallest model with 6 borons, we find
that the overall structure of the vertical many-body spec-
trum is largely independent of system size. Nevertheless,
the actual excitation energies generally increase with sys-
tem size yielding convergence for model with 60-90 boron
atoms for lower-lying excitations. Interestingly, the min-
imal excitation energy, i.e., singlet-triplet energy gap, is
less dependent on the model size. Its stability is the con-
sequence of the corresponding many-body state, which
is dominated by the spin flip on the half-filled twofold
degenerate e orbitals.

Furthermore, comparing spectra obtained on the peri-



10

odic sheet with 80 boron atoms and larger flake models
in Fig. 9, rather good agreement is observed. In partic-
ular, for excitations below 3 eV, which are actually the
most relevant for possible quantum bit applications,8 the
agreement is quantitative. Therefore, the results indicate
that clusters with 60-90 borons can already reproduce
the low-energy features of large periodic sheets, whereas
the smaller flakes, especially B6N6H9, have limitations
to capture the physics of the single layer due to the non-
negligible perturbative effect of the terminating hydrogen
atoms.

The effect of the active space selection on the electronic
spectrum, i.e., the relevance of dynamic correlation is in-
vestigated as well. First, in addition to the presented 40
orbital calculations, we performed further DMRG com-
putations on 25 orbitals selected according to localization
concluding very similar many-body energy spectrum. In
fact, for models with 6-18 borons the variation is insignif-
icant for all many-body states whereas for larger systems
the energies shift with up to 5% for the higher excita-
tions. Investigating the spectrum resulted of 10− 15 rel-
evant orbitals, more significant deviations of 10−15% are
observed in the excitation regime above 3 eV for larger
systems. These results suggest that active space of 30-40
orbitals might be already sufficient to provide reasonable
description for the low-energy excitations. Nevertheless,
the accurate description of the missed portion of dynamic
correlations could potentially lower the gaps of larger sys-
tems to some extent.

VI. CONCLUSION

We report the first detailed implementation and dis-
cussion of DFT-CAS-DMRG method on plane-wave ba-
sis. As application of the approach, we investigate the
electronic structure of VB-hBN defect systems of current
interest, i.e., the sheet with a single defect and its molecu-
lar models. Applying our novel computational scheme to
construct the CAS Hamiltonian of QE-DFT orbitals, we
find great agreement on the many-electron spectrum with
results obtained using standard atomic quantum chemi-
cal program suite.

We show that flakes with around 60-90 boron atoms
are large enough to reflect faithfully the low-lying energy
spectrum of the sheet with 80 borons. In agreement with
expectations, we confirm that static correlation effects
can be attributed mainly to the six localized defect or-
bitals and using CAS of 30-40 orbitals can provide a rea-

sonable description of the main electronic features of the
system. Further dynamic correlation effects retrieved by
the application of perturbative methods104 would slightly
modify the spectrum. Nevertheless, the presented con-
clusion on convergence issues are in agreement with re-
cent analysis conducted on substitutional nitrogen defect
neighbored with nitrogen vacancy in h-BN sheet using
various computational schemes.105

The simulation of the periodic sheet also serves as val-
idation and benchmark of the PW based approach whose
actual potential advantage is to be realized in bulk cal-
culations. Given the underlying theoretical background
of the presented DFT-CAS-DMRG method, we hypoth-
esize that it might be well-suited for predicting the main
features of the low-lying many-body spectrum of wide-
band-gap semi-conducting defect materials with localized
ingap orbitals which class of materials show emerging po-
tentials in various quantum technology applications.
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