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ON ENTANGLEMENT ASSISTANCE TO A NOISELESS

CLASSICAL CHANNEL

PÉTER E. FRENKEL AND MIHÁLY WEINER

Abstract. For a classical channel, neither the Shannon capacity,
nor the sum of conditional probabilities corresponding to the cases
of successful transmission can be increased by the use of a non-
signaling resource. Yet, perhaps somewhat counterintuitively, en-
tanglement assistance can help and actually elevate the chances
of success even in a one-way communicational task that is to be
completed by a single-shot use of a noiseless classical channel.

To quantify the help that a non-signaling resource provides to a
noiseless classical channel, one might ask how many extra letters
should be added to the alphabet of the channel in order to per-
form equally well without the specified non-signaling resource. As
was observed by Cubitt, Leung, Matthews, and Winter, there is no
upper bound on the number of extra letters required for substitut-
ing the assistance of a general non-signaling resource to a noiseless
one-bit classical channel. In contrast, here we prove that if this
resource is a bipartite quantum system in a maximally entangled
state, then an extra classical bit always suffices as a replacement.

1. Introduction

If a certain two-part resource is non-signaling, then — essentially by
definition — it cannot be used to exchange messages between its two
users. However, as an aid, it might boost the capabilities of an already
existing communicational channel between them. For example, in the
famous dense coding protocol [2], entanglement is used to boost the
classical capacity of a quantum channel.

The situation changes somewhat when the channel to be improved
is a classical one. This is because it turns out that important quanti-
ties such as “information storability” — that is, the sum of conditional
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2 P. E. FRENKEL AND M. WEINER

probabilities corresponding to the “output = input” cases; see e.g. [9]
— or the Shannon capacity of a classical channel cannot be increased
by the additional use of a non-signaling resource [4]. However, entan-
glement can be used, for example, to increase the zero-error capacity of
a noisy classical channel [3]. To put it in another way, it can improve
the capability of a noisy classical channel to simulate a noiseless one.

One might also consider the inverse problem of using a noiseless
classical channel (together with the possible help of a non-signaling
resource) to simulate a noisy one. In [4], an example was given for
a classical channel which cannot be simulated by (a single use of) a
noiseless one-bit classical channel aided only by shared randomness,
but which can be simulated by the same channel if assistance, in the
form of using a bipartite quantum system prepared in an entangled
state, is allowed. Using the concepts introduced in [5], we may say
that the assistance increases the “signaling dimension” of our classical
channel.

1.1. Game interpretation. We might view this simulability question
from the point of view of one-way communicational tasks. For example,
let us consider the following simple game. We have four boxes, two of
them empty, two containing (equal) treasures; thus, there are

(

4
2

)

= 6
possible configurations regarding the positions of the treasures. Each
configuration is equally likely, with the actual (secret) configuration
revealed only to Alice, who is allowed to send one classical bit to Bob.
After receiving the bit sent by Alice, Bob chooses a box. If it contains
a treasure, Alice and Bob win (as a team).

Without a non-signaling resource, relying only on arrangements be-
fore the game and a possible use of shared randomness, it is easy to see
that the maximum chance of winning can be achieved by a pure (deter-
ministic) strategy — in terms of expected reward, shared randomness
is of no use.

We may assume that upon receiving the bit sent by Alice, depending
on its value, Bob points to either box nr. 1 or box nr. 2. With this
agreed, Alice can always send a bit value to Bob that makes him point
to a treasure box unless the treasures are in boxes nr. 3 & 4; that
is, Alice and Bob will win with a chance of 1 − 1/6 = 5/6. On the
other hand, if during the game Alice and Bob can also make some
measurements on a pair of quantum bits (prepared in a maximally
entangled state and distributed between them before the start of the
game), then there exists a strategy allowing them to win this game
with a chance of

(

4 +
√
2
)

/6 > 5/6 — see the Appendix.
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In this protocol involving the use of entanglement, Alice and Bob re-
alize a certain classical channel N ∈ C(X → Y ) with |X| = 6 possible
inputs and |Y | = 4 outputs (with the input being the whereabouts of
the treasures revealed to Alice and the output being the box chosen
by Bob). The use of this channel allows Alice and Bob to win the
game with a chance of

(

4 +
√
2
)

/6. The fact that
(

4 +
√
2
)

/6 > 5/6
shows that channel N cannot be simulated by a single use of a noiseless
classical one-bit channel aided only by shared randomness.

Let us consider, in general, for any pair of (finite) sets X, Y , natural
number n and non-signaling resource ω the following:

• Cn(X → Y ), the set of X → Y classical channels that can be
simulated by a single use of a noiseless classical channel with n
different letters (without any other resources),

• CSR
n (X → Y ), the set of X → Y classical channels that can be

simulated by a single use of a noiseless classical channel with
n different letters together with an unlimited source of shared
randomness between the sender and receiver,

• Cω
n (X → Y ), the set of X → Y classical channels that can be

simulated by a single use of a noiseless classical channel with n
different letters and assistance coming from ω,

• CBQ
n (X → Y ), the set of X → Y classical channels that can be

simulated by a single use of a noiseless classical channel with
n different letters and assistance from any bipartite quantum
system (prepared in any state),

• CNS
n (X → Y ), the set X → Y classical of channels that can be

simulated by a single use of a noiseless classical channel with n
different letters and assistance from any non-signaling resource.

We postpone to Section 2 the precise definition and detailed description
of these sets, and – omitting the X → Y indication – note here only
that CSR

n is the convex hull of Cn; C
BQ
n and CNS

n are convex sets; and
CSR

n ⊆ CBQ
n ⊆ CNS

n .
We now generalize the game above and connect the question of

(im)possibility of simulations to advantages in one-way communica-
tional games. We begin by describing what we mean by a general
one-way communicational game.

Suppose we have a team of players consisting of Alice and Bob. An
element x of a (finite) set X is chosen according to a given probability
distribution q, and revealed to Alice (but not to Bob). At the end of the
game, Bob will need to pick an element y of another (finite) set Y and
the team receives a reward, but the actual sum of this reward depends
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both on his choice y and on the input x; it is given by some “reward-
function” R : X×Y → R. With both the probability distribution q and
reward-function R publicly given, we shall consider how the maximum
expected reward (achieved by the best team strategy) depends on the
allowed forms of communication and non-signaling resources the team
can use.

Once a team strategy (using the given channels and resources) is
chosen, the conditional probability of Bob choosing y, given that Alice
receives input x, is fixed. Thus, an actual strategy realizes a classical
N ∈ C(X → Y ) channel. The expected reward is a linear functional
of the realized channel:

E(reward) =
∑

x∈X,y∈Y
R(x, y)N(y|x)q(x),

with the functional depending on R and q. Since we want to consider
all such games, we do not have a restriction on possible reward func-
tions and input probability distributions and thus, for us, the expected
reward is just an arbitrary linear functional of the realized channel.
It follows that there exists a one-way communicational game in which
the single use of a classical noiseless channel with n different letters to-
gether with assistance coming from a non-signaling resource ω is more
advantageous (in terms of maximal expected rewards) than the single
use of a classical noiseless channel with n′ different letters together with
assistance from a non-signaling resource ω′ if and only if Cω

n (X → Y )
is not contained in the convex hull of Cω′

n′ (X → Y ) for some X and Y .
In particular, with assistance coming from a non-signaling resource ω,
the use of a classical noiseless channel of n letters is never more advan-
tageous than a single use of an unaided classical noiseless channel of m
different letters if and only if

Cω
n (X → Y ) ⊆ CSR

m (X → Y )

for all possible sets X and Y of input and output symbols.

1.2. Entanglement vs. generic non-signaling resources. By [4,
Proposition 19], for every n there exists a non-signaling resource ωn

such that Cωn

2 is not contained in CSR
n (for some sets of input and

output symbols which from now on we shall omit). Thus, in the sense
explained, there is no bound on the advantage that a non-signaling
resource can give to a one-bit classical noiseless channel. In contrast,
in what follows we shall prove that

Cω
2 ⊆ CSR

4
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whenever ω is realizable by a quantum bipartite system prepared in a
maximally entangled state. The result is general in the sense that it
holds without any limit on the size of the quantum system (i.e. the
dimension of the Hilbert space) used. However, we do exploit that the
state is a maximally entangled one. Since there are Bell inequalities
whose maximal violation occurs in states which are not maximally en-
tangled [1], it remains unclear whether CBQ

2 ⊆ CSR
4 . Nevertheless, we

conjecture that this is indeed so; maybe even CBQ
2 ⊆ CSR

3 . Also, it is
a natural guess that CBQ

n should always be contained in CSR
n2 .

If this turns out to be true, then we may say that quantum physics
follows the proverb “God helps those who help themselves”. Whereas
with generic non-signaling resources, the “help” the resource can give in
a one-way communicational game is unlimited, assistance from the use
of a bipartite quantum system can give advantage, but — if CBQ

n ⊆ CSR
n2

holds — definitely not more than what a simple second shot of the em-
ployed classical noiseless channel would offer. Similarly to the so-called
“Information Causality” [10], this could be viewed as a fundamental
principle limiting the non-signaling resources that can appear in na-
ture.

2. Preliminaries

Given two finite sets X, Y (the “alphabets”), a classical channel from
X to Y is a function N : Y ×X → [0, 1] satisfying

∑

y∈Y N (y|x) = 1

for all x ∈ X. We interpret the value N (y|x) as the probability of
the channel producing the output y given that the input is x, and we
denote by C(X → Y ) the set of all classical channels from X to Y .

For a natural number n, set [n] ≡ {1, . . . , n}. We shall say that
N ∈ C(X → Y ) can be realized by a single use of a noiseless classical
channel with n different letters if there exists a pair of encoding and
decoding, i.e., channels Nenc ∈ C(X → [n]) and Ndec ∈ C([n] → Y )
such that

N (y|x) =
n

∑

r=1

Ndec(y|r)Nenc(r|x)

for all x ∈ X and y ∈ Y . We denote the set of all such channels N by
Cn(X → Y ).

Using a source of randomness shared between the sender and receiver,
it is possible to mix different encoding–decoding strategies. Thus, the
set of classical channels CSR

n (X → Y ) realizable by a single use of a
noiseless classical channel with n different letters aided by an unlimited
source of shared randomness is simply the convex hull of Cn(X → Y ).
We note that N ∈ CSR

n (X → Y ) if and only if the stochastic matrix
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A with entries ai,j := N (y(i)|x(j)), where x : [l] → X and y : [k] → Y
are some bijections enumerating the l = |X| and k = |Y | elements
of X and Y , is a convex combination of stochastic matrices with at
most n nonzero rows. (Throughout this paper, by a stochastic matrix
we mean a matrix with nonnegative entries whose columns sum to 1;
i.e., A = (ai,j)i,j is a stochastic matrix if ai,j ≥ 0 for all i and j, and
∑

i ai,j = 1 for all j.)
In our context, a two-part resource ω is just a classical channel with

two inputs and two outputs; i.e. an element of C(X1 ×X2 → Y1 × Y2),
where X1, X2, Y1, Y2 are some finite sets. We say that ω is non-signaling
if for any x1, x

′
1 ∈ X1 and (x2, y2) ∈ X2 × Y2, we have
∑

y1∈Y1

ω(y1, y2|x1, x2) =
∑

y1∈Y1

ω(y1, y2|x′
1, x2),

i.e., if the choice of the input at access point nr. 1 does not affect
the outcome probabilities at access point nr. 2, and, further, the same
holds in the other direction as well:

∑

y2∈Y2

ω(y1, y2|x1, x2) =
∑

y2∈Y2

ω(y1, y2|x1, x
′
2)

for any x2, x
′
2 ∈ X2 and (x1, y1) ∈ X1 × Y1.

A channel N ∈ C(X → Y ) can be realized by a single use of a
noiseless classical channel with n different letters assisted by a non-
signaling resource ω if there exist

• a coding for the sender Nin1 ∈ C(X → X1) for selecting an
input for the sender’s part of the resource,

• an encoding Nenc ∈ C(X×Y1 → [n]) for the sender for selecting
the message (in light of the response of the resource) to be sent,

• a coding for the receiver Nin2 ∈ C([n] → X2) for selecting an
input for the receiver’s part of the resource,

• a decoding for the receiver Ndec ∈ C([n]×Y2 → Y ) for selecting
the output

such that for all x ∈ X and y ∈ Y , we have that N (y|x) =
∑

r,x1,x2,y1,y2

Ndec(y|r, y2)Nin2(x2|r)Nenc(r|x, y1)ω(y1, y2|x1, x2)Nin1(x1|x),

where the summation is for all r ∈ [n] and (x1, x2, y1, y2) ∈ X1 ×X2 ×
Y1 × Y2. We denote by Cω

n (X → Y ) the set of all such channels and
by CNS

n (X → Y ) the union of these sets taken over all non-signaling
resources ω. Note that this latter set is automatically convex; this is
because shared randomness is also a particular case of a non-signaling
resource.
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Recall that a partition of unity (also known as a positive operator
valued measure; POVM) on a Hilbert space is a collection of positive
semidefinite operators summing to the identity operator 1.

Let HA and HB be two (complex) Hilbert spaces and ρ a density
operator on HA⊗HB; i.e. a positive semidefinite operator with tr ρ = 1.
A two-part resource ω ∈ C(XA ×XB → YA × YB) is realizable by the
use of a bipartite quantum system (with parts corresponding to the
spaces HA and HB) in state ρ if, for each xa ∈ XA and xb ∈ XB, there

exist a partition of unity
(

F
(xa)
ya

)

ya∈YA

on HA and a partition of unity
(

E
(xb)
yb

)

yb∈YB

on HB such that

ω(ya, yb|xa, xb) = tr ρ
(

F (xa)
ya ⊗E(xb)

yb

)

for all (xa, xb, ya, yb) ∈ XA × XA × YB × YB. We note that such a
resource is automatically non-signaling, and introduce CBQ

n (X → Y )
as the union of the sets Cω

n (X → Y ) with ω ranging over all non-
signaling resources realizable by the use of some bipartite quantum
system prepared in some state.

Let us consider the linear map Φρ with domain B(HA) defined by
the formula

(2.1) Φρ(Z) ≡ trA ρ(Z ⊗ 1),

where trA denotes the partial trace corresponding to HA. It is easy to
check that this map is well defined, takes values in B(HB), and is a
positive map: if Z ≥ 0, then Φρ(Z) ≥ 0. Let us now introduce, in the
previous construction of the non-signaling resource ω, the operator

β(xa)
ya ≡ Φρ

(

F (xa)
ya

)

.

Then, for each xa ∈ XA, the operators
(

β
(xa)
ya

)

ya∈Ya

form a positive

decomposition of ρB ≡ trA ρ; i.e., β
(xa)
ya ≥ 0 for all xa and ya, and

∑

ya∈Ya

β(xa)
ya = ρB ≡ trA ρ

for all xa. With these newly introduced operators, we can express ω as
follows:

(2.2) ω(ya, yb|xa, xb) = trE(xb)
yb

β(xa)
ya

for all (xa, xb, ya, yb) ∈ XA×XB ×YA×YB. This shows that for a non-
signaling resource ω to be realizable by the use of a bipartite quantum
system, with parts corresponding to the Hilbert spaces HA and HB,
prepared in the state given by the density operator ρ, there must exist,
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for each xa ∈ XA and xb ∈ XB, a positive decomposition
(

β
(xa)
ya

)

ya∈Ya

of ρB = trA ρ and a partition of unity
(

E
(xb)
yb

)

yb∈Yb

such that (2.2) holds.

In some cases, we can turn this construction the other way around.

Lemma 1. Let HA and HB be separable Hilbert spaces, ρ a density
operator on HA ⊗ HB, Φρ the map defined by (2.1), ρB = trA ρ and

finally K = ρ
1/2
B B(HB)ρ

1/2
B . If ρ is pure (i.e., it is an orthogonal projec-

tion of rank 1), then there exists a linear map Γρ : K → B(HA) such
that

• Φρ ◦ Γρ = idK; i.e., Γρ is a right-inverse of Φρ,
• Γρ(K) ≥ 0 whenever K ≥ 0; i.e., Γρ is a positive map,
• Γρ(ρB) = 1.

Hence for every positive decomposition (βy)y∈Y of ρB, the formula Fy :=
Γρ(βy) defines a POVM for which Φρ(Fy) = βy holds for all y ∈ Y .

Proof. Suppose ρ = |Ψ〉〈Ψ|, where Ψ ∈ HA ⊗HB is a unit vector. By
the existence of a Schmidt decomposition, we have a countable set S,
an orthonormal system

(

eAn
)

n∈S in HA, another one
(

eBn
)

n∈S in HB,

and some positive numbers (λn)n∈S such that

Ψ =
∑

n∈S
λn e

A
n ⊗ eBn .

Moreover, we have that ρA ≡ trB ρ =
∑

n∈S λ
2
n |eAn 〉〈eAn | and similarly,

ρB =
∑

n∈S λ
2
n |eBn 〉〈eBn |. Let us further consider the partial isometry

V =
∑

n∈S
|eAn 〉〈eBn |

and the orthogonal projections QA = V V ∗ and QB = V ∗V onto the
closed subspaces spanned by

{

eAn |n ∈ S
}

and
{

eBn |n ∈ S
}

, respectively.

Finally, we choose an anti-unitary map J : HA → HA satisfying JeAn =
eAn for every n ∈ S, and define Γρ by setting

Γρ(K) = Γρ

(

ρ
1/2
B Zρ

1/2
B

)

:= JV Z∗V ∗J + (trK)
(

1−QA
)

for any

K = ρ
1/2
B Zρ

1/2
B ∈ ρ

1/2
B B(HB)ρ

1/2
B = K.

By the above formula, it is evident that Γρ is well defined (note that

ρ
1/2
B Zρ

1/2
B = ρ

1/2
B Z̃ρ

1/2
B implies V ZV ∗ = V Z̃V ∗), that it is linear (be-

cause both the adjoint map and J are anti-linear), that it is a positive
map from K to HA, and that Γρ(ρB) = 1.
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It is easy to see that

ρ
((

1−QA
)

⊗ 1
)

= 0,

and hence that the part (trK)
(

1−QA
)

appearing in the definition
of Γρ(K), can be ignored when considering the composition Φρ ◦ Γρ.
Thus, for any T ∈ B(HB), and for Z and K as before, we have

trΦρ(Γρ(K))T = tr ρ(Γρ(K)⊗ T ) = 〈Ψ, (JV Z∗V ∗J ⊗ T )Ψ〉
=

∑

n,m∈S
λnλm

〈

eAn ⊗ eBn , (JV Z∗V ∗J ⊗ T )
(

eAm ⊗ eBm
)〉

=
∑

n,m∈S
λnλm

〈

Z∗eBm, e
B
n

〉 〈

eBn , T e
B
m

〉

=
∑

n,m∈S
λm

〈

eBm, Zρ
1/2
B TeBm

〉

= tr ρ
1/2
B Zρ

1/2
B B = trKT,

showing that Φρ(Γρ(K)) = K as claimed. �

Suppose now that ω is realizable by the use of a bipartite quantum
system — with parts corresponding to the Hilbert spaces HA and HB

— prepared in the state given by the density operator ρ. When defining
Cω

n (X → Y ), we needed to consider all protocols involving four different
kinds of codings (two on the sender side and two on the receiver side).
It is not difficult to see that all these codings can be incorporated into
the choice of partitions / positive operator valued measures, and hence
that N ∈ Cω

n (X → Y ) if and only if, for each x ∈ X and r ∈ [n], there

exist a partition of unity
(

F
(x)
s

)

s∈[n]
on HA and a partition of unity

(

E
(r)
y

)

y∈Y
on HB such that

N (y|x) =
n

∑

r=1

tr ρ
(

F (x)
r ⊗ E(r)

y

)

for all x ∈ X and y ∈ Y . In particular, if ρ is a density operator
corresponding to a maximally entangled state; i.e., if d := dimHA =
dimHB < ∞, ρ is pure and trA ρ = (1/d)1, then, by Lemma 1, the
channel N is in Cω

n (X → Y ) if and only if, for each x ∈ X and r ∈ [n],

there exists a positive decomposition
(

β
(x)
s

)

s∈[n]
of 1/d and a partition

of unity (Er
y)y∈Y such that

N (y|x) =
n

∑

r=1

trEr
yβ

(x)
r
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for all x ∈ X and y ∈ Y . In what follows, we will apply the above

formula specifically with n = 2, and use the notation E±
y and β

(x)
±

rather than Er
y (r = 1, 2) and β

(x)
r (r = 1, 2).

3. Main result

Our goal is to show that a classical bit assisted by a maximally
entangled quantum state can be simulated by two classical bits assisted
only by shared randomness. The proof relies on the method that was
used in [6, 7] to obtain simulation results. We shall need the following
trace inequality.

Lemma 2. For any operators 0 ≤ E± ≤ 1 and β± ≥ 0 such that
β+ + β− =: ρB is a density operator, we have

∣

∣trE+E−ρB
∣

∣

2 ≤ trE+β+ + trE−β−.

Proof. Set c± = trE±β± and t± = trβ±; then c± and t± are all non-
negative, and t+ + t− = 1. Using the Cauchy–Schwarz inequality
| trAB|2 ≤ (trA∗A) · (trB∗B), we have

∣

∣trE+E−β+

∣

∣

2
=

∣

∣

∣
trβ

1/2
+ E+E−β

1/2
+

∣

∣

∣

2

≤ tr
(

(E+)2β+

)

· tr
(

(E−)2β+

)

≤
(

trE+β+

)

· trβ+ = c+t+,

and, similarly, |tr β−E
+E−|2 ≤ c−t− by interchanging + and − through-

out. Therefore,
∣

∣trE+E−ρB
∣

∣

2
=

∣

∣trE+E−β+ + trE+E−β−
∣

∣

2

≤
(

| trE+E−β+| + | trE+E−β−|
)2

≤
(

√

c+t+ +
√

c+t+

)2

.

Computing this last square we find that
(

√

c+t+ +
√

c+t+

)2

= c+t+ + c−t− + 2
√

(c+t−)(c−t+)

≤ c+t+ + c−t− + 2
c+t− + c−t+

2
= c+ + c−

by the inequality between the geometric and arithmetic means and the
fact that t+ + t− = 1. Putting together the last two inequalities, we
have |trE+E−ρB|2 ≤ c+ + c−, as claimed. �

Theorem 3. Let ω be a non-signaling resource realizable by the use
of a bipartite quantum system prepared in a maximally entangled state.
Then Cω

2 (X → Y ) ⊆ CSR
4 (X → Y ) for any finite alphabets X and Y ,
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i.e., a classical bit assisted by ω can be simulated by two classical bits
assisted only by shared randomness.

Proof. Let l = |X| and k = |Y |. The Theorem is equivalent to
the statement that any k × l matrix A = (aij)i,j with entries aij =

trE+
i β

(j)
+ + trE−

i β
(j)
− , where E±

i and β
(j)
± are d×d positive semidefinite

matrices with E+
1 + · · ·+E+

k = E−
1 + · · ·+E−

k = 1 and β
(j)
+ +β

(j)
− = 1/d

for all j ∈ [l], is a convex combination of stochastic matrices with at
most four non-zero rows.

For I = (i1, i2, i3, i4) ∈ [k]4, put

(3.1) pI =
1

d2
(

trE+
i1
E−

i2

) (

trE+
i3
E−

i4

)

.

We have pI ≥ 0 for all I. Thus, we get a measure P on [k]4 defined
by P (T ) =

∑

I∈T pI . Due to the multilinear nature of (3.1) and the
assumption that E±

1 , . . . , E±
k is a partition of unity (POVM), we see

that

P ([k]4) =
1

d2
(

tr(12)
) (

tr(12)
)

= 1,

so P is a probability measure. Now set E±
S :=

∑

i∈S E
±
i for any S ⊆ [k].

Since 0 ≤ E±
S ≤ 1, we may apply Lemma 2 with ρB = 1/d to get

P (S4) =
1

d2
(

trE+
S E

−
S

)2 ≤ trE+
S β

(j)
+ + trE−

S β
(j)
−

for all j. The right hand side here is Aj(S), where Aj is the probability
measure on [k] given by the numbers aij (i ∈ [k]); i.e. the jth column
of the matrix A. So we have

Aj(S) ≥ P
(

S4
)

for all S ⊆ [k].

Let us connect I ∈ [k]4 to i ∈ [k] by an edge if i occurs in I. This
gives us a bipartite graph. The neighborhood of any set T ⊆ [k]4 is
the set S ⊆ [k] of indices occurring in some element of T . We always
have T ⊆ S4, whence Aj(S) ≥ P (S4) ≥ P (T ). Thus, by the Supply–
Demand Theorem [8, 2.1.5. Corollary], and using the fact that both
Aj and P are probability measures, there exists a probability measure
Pj on [k]4 × [k] which is supported on the edges of the graph and has
marginals P and Aj. Whenever pI 6= 0, let B(I) be the k× l stochastic
matrix whose j-th column is given by the conditional distribution Pj |I
on [k]. Now B(I) has at most four nonzero rows, and A =

∑

pIB(I),
as desired. �

Remark 4. Suppose that our bipartite quantum system is not in a
maximally entangled state, and hence ρB is not (necessarily) a multiple
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of the identity. Still, the above proof could be virtually copied if we
had a bilinear, scalar-valued map D satisfying

(i) D(Z1, Z2) ≥ 0 whenever Z1, Z2 ≥ 0,
(ii) D(1, 1) = 1,
(iii) |D(E+, E−)|2 ≤ trE+β+ + trE−β− whenever 0 ≤ E± ≤ 1

and ρB = β+ + β− is a positive decomposition of ρB.

Indeed, having such a bilinear map, we could replace (3.1) by setting

pI = D
(

E+
i1
, E+

i2

)

D
(

E+
i3
, E+

i4

)

and continue the rest of the argument unchanged. Actually, in the
proof we did set pI to be of the mentioned form; specifically, with D
being the bilinear map given by the formula D(Z1, Z2) = (1/d) trZ1Z2.

When ρB is not necessarily 1/d, one could try to replace the previous
formula by D(Z1, Z2) = (trZ1Z2ρB+trZ2Z1ρB)/2. This reduces to the
previous one when ρB = 1/d, and it satisfies requirements (ii) and (iii);
this latter one follows from Lemma 2 and the fact that for self-adjoint
operators E±, we have

|D(E+, E−)|2 =
(

Re(trE+E−ρB)
)2 ≤ | trE+E−ρB|2.

However, this D does not satisfy the positivity condition (i) — unless
of course ρB is a multiple of the identity.

Another idea is to try setting D(Z1, Z2) = trZ1ρ
1/2
B Z2ρ

1/2
B , which

again reduces to the formula used in our proof in case ρB is a multiple of
the identity. The thus defined D is evidently bilinear and satisfies both
the positivity (i) and the normalization (ii) requirements. However,
examples show that in general it fails to satisfy requirement (iii) —
unless, for example, if ρB is a multiple of a projection.

Having experimented with various candidate formulas, we grew skep-
tical about the possibility of simultaneously satisfying all listed require-
ments. Thus, while we still believe that the theorem remains true even
if arbitrary entangled states are allowed, we expect the general proof
to follow a somewhat different direction.

Appendix A. The “two winning, two losing boxes” game

Let ρ = |Ψ〉〈Ψ|, where Ψ = 1√
2
(e1 ⊗ e2 − e2 ⊗ e1) and (e1, e2) is the

standard basis of C2. Before the game begins, Alice and Bob prepare a
pair of quantum bits in the state given by ρ; Alice then takes the first,
Bob the second quantum bit with herself / himself. Upon learning the
positions a, b ∈ {1, 2, 3, 4} of treasures, Alice performs the measurement

corresponding to the 2 × 2 partition of unity F
{a,b}
+ , F

{a,b}
− and sends

the result, a + or a − sign, to Bob via the noiseless one-bit channel.
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For the specific protocol we want to describe, we will have F
{1,2}
+ = 1,

F
{1,2}
− = 0 (i.e., in case the treasures are in the first two boxes, Alice will

surely send a “+” to Bob), F
{1,3}
± = (1/2)(1±σz), F

{2,4}
± = (1/2)(1∓σz),

F
{1,4}
± = (1/2)(1 ± σx), F

{2,3}
± = (1/2)(1 ∓ σx), where σz and σx are

two Pauli matrices, and, finally, F
{3,4}
+ = 0, F

{3,4}
− = I (so that in case

the treasures are in the last two boxes, Alice will surely send a “−” to
Bob).

After receiving the + or − sign from Alice, Bob performs the mea-
surement corresponding to the partition of unity E±

1 , E±
2 , E±

3 , E±
4

and chooses the box according to the result. We will specifically have
E+

1 = (1/2)
(

1− (σz + σx)/
√
2
)

, E+
2 = 1 − E+

1 , E+
3 = 0, E+

4 = 0 and

E−
1 = 0, E−

2 = 0, E−
3 = (1/2)

(

1+ (σz − σx)/
√
2
)

, E−
4 = 1− E−

3 .

As E+
3 = E+

4 = 0 and likewise, E−
1 = E−

2 = 0, Bob will always
choose one of the first two boxes if he receives a +, and one of the last
two boxes if he receives a − sign. Hence if the two treasure boxes are
either the first two or the last two, they will win with certainty. On
the other hand, if the treasures are e.g. in boxes 1 and 3, then they win
with probability

tr ρ
(

F
{1,3}
+ ⊗ (E+

1 + E+
3 )

)

+ tr ρ
(

F
{1,3}
− ⊗ (E−

1 + E−
3 )

)

,

which, after substitution, turns out to be 1
2
+ 1

4

√
2. It turns out that

all other cases result in the same probability of success, yielding the
claimed overall winning probability of

(

4 +
√
2
)

/6. We finish the dis-
cussion of this example by pointing out that all listed measurements
are either trivial or projective; the entire protocol can be easily realized
experimentally using e.g. a pair of spin-half particles prepared in the
zero-total-spin state and spin measurements performed on individual
particles.
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