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Introduction
We present a model of type theory where types are interpreted as containers [1] aka polynomial
functors. The motivation for this construction is to provide a container semantics for inductive-
inductive types and quotient inductive-inductive types.

Consider the core of our usual example of an inductive-inductive type:

data Con : Set
data Ty : Con → Set
_,_ : (Γ : Con) → Ty Γ → Con
Π : (Γ : Con) (A : Ty Γ) (B : Ty (Γ , A)) → Ty Γ

Since the constructor Π uses the previously defined constructor _,_ in its domain there is no
hope of a functorial semantics where an inductive type is the initial algebra of a container.
Instead we have to interpret the domain of a constructor as a functor L from the category of
algebras induced by the previous constructors to Set, and the codomain a functor from the
category of elements of L to Set. The semantics of a constructor with regard to a fixed algebra
X is given by (x : L X) → R (X , x). This is explained in detail in [2] where L is an arbitrary
functor and types are interpreted using the usual presheaf semantics of type theory.

Such a functorial semantics is too generous because there are many functors which do not
have initial algebras. Hence we want to use containers to model strict positivity semantically.
As a first step we show that containers do form a model of basic type theory, i.e. a category
with families.

Tamara von Glehn also presents a model of type theory using polynomial functors [7] using
comprehension categories as notion of model. The same model was presented by Atkey [4] and
by Kovács [6] using categories with families (CwFs). This model has the same contexts and
substitutions as ours but different types and terms (see below).

In this abstract when we write Set we mean Agda’s universe of types and we assume unique-
ness of identity proofs (see also the Discussion).

The model
A container (or polynomial functor) is given by a set of shapes S : Set and a family of positions
P : S → Set. This gives rise to a functor S � P : Set → Set which on objects is
given by (S � P) X = Σ s : S . P s → X. Given containers S � P and T � Q a
morphism is given by a function on shapes f : S → T and a family of functions on positions
g : (s : S) → Q (f s) → P s — note the change of direction. This gives rise to a
natural transformation f � g : (X : Set) → (S � P) X → (T � Q) X given by
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(f � g) X (s , p) = (f s, λ s → p ◦ g s). Using the Yoneda lemma we can show that every
natural transformation between containers arises this way (i.e. the evaluation functor from the
category of containers to the functor category is full and faithful).

We can generalize set-containers to containers over an arbitrary category C, i.e. covariant
functors C → Set using S : Set and P : S → C and (S � P) X = Σ s : S . C (P s, X)
and morphisms are given by f : S → T and g : (s : S) → C (Q (f s) , P s) with the same
definition of the natural transformation.

We define a category with families (CwF) which are the algebras of an intrinsic presentation
of Type Theory as given in [3]. The objects corresponding to contexts are set containers and
the morphisms are container morphisms. We write Con for this category. Below we sketch some
aspects of the construction, for details please check our (incomplete) Agda formalisation [5].

To interpret types we define a functor Ty : Con → Set1 on objects: given Γ : Con, an
A : Ty Γ is given by a container A :

∫
Γ → Set. Here

∫
Γ is the category of elements of

Γ with objects Σ X : Set . Γ X and morphisms
∫

Γ ((X , x) , (Y , y) are given by a function
f : X → Y such that Γ f x = y.

In contrast, a type in von Glehn’s model [7] over a context Γ = S � P is a container
A :

∫
(Const S) → Set where Const S is the constant S presheaf. Hence types there are

dependent only on shapes, but not positions.
The interpretation of terms is given by Tm :

∫
Ty → Set. On an object of

∫
Ty, i.e.

a Γ : Con and A :
∫

Γ → Set a term is given by a dependent natural transformation
(X : Set) (x : Γ X) → A (X , x). Assuming that Γ = SΓ � PΓ and A = SA � PA

using the dependent Yoneda lemma we can show that this corresponds to f : SΓ → SA and
g : (s : SA) →

∫
Γ (PA s , (PΓ (Ps

A s) , Ps
A s , id)). This can be further simplified using

dependent types — see our Agda code.
Given A : Ty Γ we write PX

A : SA → Set, Ps
A : SA → SΓ and Pg

A : (s : SA) →
PΓ (Ps

A s) → PX
A s for the projections of PA : SA →

∫
Γ.

The empty context is given by the terminal object in Con which is 1 � 0. Assuming a
Γ : Con and A : Ty Γ we construct the context extension Γ , A as SA � PX

A . We can verify
the universal property — see the Agda code.

The definition of type substitution requires pushouts which can be defined using a quotient
inductive type (QIT). That is given f � g : Con (∆ , Γ) and A : Ty Γ we construct
A[f � g] = S � P : Ty Γ. We obtain S as the pullback of f and Ps

A. Given s : S , P s is the
pushout of g s and Pg

A s (this only type-checks after transporting along the equations).

Discussion
For our application we need to construct the model wrt to an already constructed category of
algebras instead of Set. Hence we need to verify that pushouts exists. We need a constructive
variant of locally presentable categories here, which have the required colimits.

For our application we only need a basic CwF structure but we can also interpret Σ-types
and we expect that we can interpret Π-types in our model, the latter giving rise to higher-order
abstract syntax.

One issue with our construction is that types and contexts are not h-sets hence we need to
address the coherence issues. We believe that this fits very well with a generalisation of CwFs
where types can be groupoids (or 1-types) which we are also investigating (coherent CwFs).
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