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1 Introduction

Motivated by the study of asymptotic tensor rank and more generally relative
bilinear complexity, in [16] Strassen developed the theory of asymptotic spectra
of preordered semirings (see also [17, Chapter 2] for a recent exposition). In this
context, the spectrum of a (commutative, unital) semiring S with respect to a
preorder 4 is the set ∆(S,4) of 4-monotone homomorphisms S → R≥0, i.e. maps
f satisfying f(x + y) = f(x) + f(y), f(xy) = f(x)f(y), f(1) = 1 and x 4 y =⇒
f(x) ≤ f(y). Strassen introduces the asymptotic preorder - as x % y iff there is a
sublinear nonnegative integer sequence (kn)n∈N such that for all n the inequality
2knxn < yn holds (see Section 2 for precise definitions). Every element f ∈ ∆(S,4)
satisfies x % y =⇒ f(x) ≥ f(y). The key insight, and the content of [16, Corollary
2.6.], is that under an additional boundedness assumption the converse also holds
in the sense that (∀f ∈ ∆(S,4) : f(x) ≥ f(y)) =⇒ x % y (see the precise statement
below).

In the main application in [16] the role of S is played by the set of (equiva-
lence classes of) tensors over a fixed field and of fixed order but arbitrary finite
dimension. The operations are the direct sum and the tensor (Kronecker) product
of tensors and the preorder is given by tensor restriction (alternatively: degen-
eration). Asymptotic tensor rank can be characterized in terms of the resulting
asymptotic restriction preorder, and as a consequence also in terms of the asymp-
totic spectrum.

More recently, the theory of asymptotic spectra has been applied to a range
of other problems as well. In [18] Zuiddam introduced the asymptotic spectrum
of graphs and found a dual characterization of the Shannon capacity [15]. Contin-
uing this line of research, Li and Zuiddam studied the quantum Shannon capac-
ity (defined as the regularization of the quantum independence number [12]) and
entanglement-assisted quantum capacity [3] of graphs as well as the entanglement-
assisted quantum capacity of noncommutative graphs [5] via the asymptotic spec-
tra of suitable semirings of graphs and noncommutative graphs [11]. In the context
of quantum information theory, tensors in Hilbert spaces represent entangled pure
states, and the relevant preorder is given by local operations and classical com-
munication (see e.g. [2]). This again gives rise to a preordered semiring [10] which
refines the tensor restriction preorder and which also fits into Strassen’s frame-
work. In this application, the asymptotic spectrum provides a characterization of
converse error exponents for asymptotic entantanglement transformations, a vast
generalization of the results of [9].

At the same time, it became clear that the boundedness condition in Strassen’s
theorem is too restrictive for some purposes. For example, it does not hold in the
semiring of noncommutative graphs where one could hope for a characterization of
zero-error capacities similarly to [18]. To motivate a relaxation of this condition,
note first that the definition of the asymptotic preorder does not make use of the
additive structure and in the applications one is mainly interested in the ordered
commutative monoid S \ {0} with multiplication and the preorder. Such objects
have been studied in [6] as a mathematical model for resource theories [1]. In this
context, asymptotic properties such as the asymptotic preorder above and more
generally, rate formulas are of central interest. [6, Theorem 8.24.] implies that if an
ordered commutative monoid has an element u such that for every x there is k ∈ N
such that uk < x and ukx < 1, then uo(n)xn < yn for all large n iff for all monotone
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homomorphisms f into the semigroup R≥0 (with multiplication and the usual
order) the inequality f(x) ≥ f(y) holds. At this point the relation to Strassen’s
result should be clear: if the monoid in question is the multiplicative monoid of
a preordered semiring and the above condition is satisfied with u = 2, then one
can restrict to monotones that preserve both operations. One may wonder if u = 2
is necessary for this stronger conclusion to hold, but simple examples show that
without this assumption the set of monotone semiring homomorphisms can be too
small to characterize the asymptotic preorder. In this spirit, Tobias Fritz proved
a generalization of Strassen’s theorem [8], listing conditions that are equivalent
to ∀f ∈ ∆(S,4) : f(x) ≥ f(y) and generalize the asymptotic preorder in different
ways, emphasizing also the similarity to Positivstellensätze.

Our main result is Theorem 2 below, a sufficient condition under which the
spectrum does characterize the asymptotic preorder as above and which generalizes
Strassen’s condition. Before stating our main theorem, let us formulate Strassen’s
result in a way that eases comparison. We say that an element u ∈ S is power

universal if u < 1 and for every x ∈ S \ {0} there is a k ∈ N such that ukx < 1
and uk < x [8]. If S contains a power universal element then S is said to be
of polynomial growth. The asymptotic preorder is defined as x % y iff there is a
sublinear nonnegative integer sequence (kn)n∈N such that for all n the inequality
uknxn < yn holds. Note that the asymptotic preorder does not depend on the
choice of the power universal element (see Lemma 1 below). With these definitions
Strassen’s theorem on asymptotic spectra can be stated as follows.

Theorem 1 (Strassen [16, Corollary 2.6.], Zuiddam [17, Theorem 2.12]) Let

(S,4) be a preordered semiring such that the canonical map N ↪→ S is an order em-

bedding, and suppose that u = 2 is power universal. Then for every x, y ∈ S we have

x % y ⇐⇒ ∀f ∈ ∆(S,4) : f(x) ≥ f(y). (1)

∆(S,4) is a nonempty compact Hausdorff space.

Our main result is the following (for s ∈ S, evs : ∆(S,4) denotes the evaluation
map f 7→ f(s)).

Theorem 2 Let (S,4) be a preordered semiring of polynomial growth such that the

canonical map N ↪→ S is an order embedding, and let M ⊆ S and S0 be the subsemiring

generated by M . Suppose that

(M1) for all s ∈ S \ {0} there exist m ∈M and n ∈ N such that 1 4 nms and ms 4 n

(M2) for all m ∈M such that evm : ∆(S0,4)→ R≥0 is bounded there is an n ∈ N such

that m 4 n.

Then for every x, y ∈ S we have

x % y ⇐⇒ ∀f ∈ ∆(S,4) : f(x) ≥ f(y). (2)

∆(S,4) is a nonempty locally compact Hausdorff space and if u is power universal

then evu : ∆(S,4)→ R≥0 is proper.

This result is a generalization of Theorem 1: if u = 2 is power universal then one
can choose M = {1} for which both conditions are easily verified, whereas the
topological part follows from the fact that evu is a constant map in this case.
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As a concrete example, we briefly describe a preordered semiring to which our
theorem applies but does not satisfy the conditions of Theorem 1. This application
will be more fully explored and generalized in the context of quantum information
theory in a separate paper [13]. The elements of this semiring are pairs of mea-
sures on finite sets (p, q), up to bijections almost everywhere. Equivalently, one
may consider pairs of equal-dimensional vectors of nonnegative real numbers. The
operations are is induced by the disjoint union and the tensor product, while the
preorder is the relative submajorization [14], defined as (p, q) ≥ (p′, q′) if there is
a substochastic matrix T such that Tp ≥ p′ and Tq ≤ q′ entrywise.

It may happen that (M1) is not satisfied by any subset M of S but can be
satisfied after localizing at a suitable multiplicative set T . We will see that local-
ization does not affect the asymptotic preorder or the spectrum, which leads to
the following corollary, a somewhat more flexible version of our main result:

Corollary 1 Let (S,4) be a preordered semiring of polynomial growth such that N ↪→
S is an order embedding. Let M ⊆ S and T ⊆ S \{0} be a multiplicative set containing

1, and let S0 be the subsemiring generated by M ∪ T . Suppose that

(M1’) for all s ∈ S \ {0} there exist m ∈ M , t1, t2 ∈ T and n ∈ N such that t2 4 nmt1s

and mt1s 4 nt2
(M2’) for all m ∈ M and t1, t2 ∈ T such that evm

evt1
evt2

: ∆(S0,4) → R≥0 is bounded

there is an n ∈ N such that mt1 4 nt2.

Then for every x, y ∈ S we have

x % y ⇐⇒ ∀f ∈ ∆(S,4) : f(x) ≥ f(y). (3)

Verifying (M2’) may require a fairly detailed knowledge of ∆(S0,4), therefore in
practice it may be desirable to choose M and T in such a way that S0 is as simple as
possible (subject to the conditions above). We note however that having a complete
classification of the elements of ∆(S0,4) is not a prerequisite for verifying (M2’).

In particular, choosing M = {1} and T = S \ {0} (effectively repacing S with
its semifield of fractions) guarantees (M1’) and leads to a nontrivial equivalent
condition for the characterization property (3).

Corollary 2 Let (S,4) be a preordered semiring of polynomial growth such that N ↪→
S is an order embedding. The following conditions are equivalent:

(i) for every x, y ∈ S \ {0} such that
evy

evx
: ∆(S,4) → R≥0 is bounded there is an

n ∈ N such that nx % y;

(ii) for every x, y ∈ S we have x % y ⇐⇒ ∀f ∈ ∆(S,4) : f(x) ≥ f(y).

Under the conditions of Theorem 1, the asymptotic spectrum has a certain
uniqueness (or minimality) property [16, Corollary 2.7.]. Before stating the version
that is true in the more general setting of Theorem 2, note first that the map
s 7→ evs is a semiring homomorphism into C(∆(S,4)), the space of continuous
functions on ∆(S,4), monotone with respect to the pointwise partial order. Given
a preordered semiring (S,4) of polynomial growth, let us call a pair (X,Φ) an
abstract asymptotic spectrum for (S,4) if X is a locally compact topological space,
Φ : S → C(X) a semiring homomorphism such that Φ(S) separates the points of
X, the image of every power universal element is a proper map, and ∀x, y ∈ S :
x % y ⇐⇒ Φ(x) ≥ Φ(y).
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Proposition 1 Let (X,Φ) be an abstract asymptotic spectrum for (S,4). Then there

is a unique homeomorphism h : X → ∆(S,4) such that ∀s ∈ S : Φ(s) = evs ◦h.

The proofs are organized as follows. Section 2 studies basic properties of pre-
ordered semirings, including the asymptotic preorder and its relation to localiza-
tion. In Section 3 we define the spectrum as a topological space and study the
continuous maps between spectra induced by monotone homomorphisms between
preordered semirings. Section 4 contains the proof of our main result, Theorem 2,
and of Proposition 1.

Related work. After finishing this work we learned that in an independent work [7]
Fritz has proved a different generalization of Strassen’s theorem.

2 Asymptotic preorder

By a semiring we mean a set equipped with binary operations + and · that are
commutative and associative and have neutral elements 0 and 1 such that 0 ·a = a

and a(b+c) = ab+ac for any elements a, b, c. A semiring homomorphism ϕ : S1 → S2
is a map satisfying ϕ(0) = 0, ϕ(1) = 1, ϕ(a+b) = ϕ(a)+ϕ(b) and ϕ(ab) = ϕ(a)ϕ(b)
for a, b ∈ S1.

Definition 1 A preordered semiring is a pair (S,4) where S is a semiring, 4 is a
transitive and reflexive relation on S such that 0 4 1 and when a, b, c ∈ S satisfy
a 4 b then a+ c 4 b+ c and ac 4 bc.

Let (S1,41) and (S2,42) be preordered semirings. A semiring homomorphism
ϕ : S1 → S2 is monotone if a, b ∈ S1, a 41 b implies ϕ(a) 42 ϕ(b).

Definition 2 ([8, Definition 2.8.]) Let (S,4) be a preordered semiring. An ele-
ment u ∈ S is power universal if u < 1 and for every x ∈ S \ {0} there is a k ∈ N
such that x 4 uk and ukx < 1.

If such an element exists then S is said to be of polynomial growth.

It is clear that any element larger than a power universal one is also power uni-
versal. More generally, if u′ < 1 and u 4 (u′)k for some k ∈ N then u′ is also power
universal.

With the help of a power universal element we can define a generalization of
the asymptotic preorder [16, (2.7)] as follows.

Definition 3 Let (S,4) be a preordered semiring and u ∈ S a power universal
element. The asymptotic preorder -u is defined as x %u y iff there is a sequence
(kn)n∈N such that

lim
n→∞

kn
n

= 0 (4)

and
∀n ∈ N : uknxn < yn. (5)

Since u < 1, we may assume whenever convenient that (kn)n∈N is nondecreasing.
By multiplying the inequalities we may replace kn with a subadditive sequence, or
even require the inequality in (5) only for infinitely many n.

The asymptotic preorder is defined in terms of a power universal element. How-
ever, changing to a different power universal element does not affect the resulting
preorder, as the following lemma shows.
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Lemma 1 If u1 and u2 are power universal elements of S then -u1=-u2 .

Proof By symmetry it is enough to prove -u1⊇-u2 . Let k ∈ N such that u2 4 uk1 .
Suppose that x %u2 y. This means there is a sublinear sequence (kn)n∈N of natural
numbers such that (5) holds with u2. Then we have ukkn1 xn < ukn2 xn < yn for all
n and kkn/n→ 0, therefore x %u1 y.

By Lemma 1 the asymptotic preorder is determined by the preordered semiring
of polynomial growth even without specifying a power universal element. For this
reason we will drop the subscript from the notation and write - for the asymptotic
preorder.

The following pair of lemmas show basic properties of the asymptotic preorder.
Some of these are analogous to those in [17, Lemma 2.3., Lemma 2.4.], with nearly
identical proofs.

Lemma 2 Let (S,4) be a preordered semiring and u a power universal element. Then

(i) 4⊆-.

(ii) (S,-) is a preordered semiring.

(iii) u is power universal with respect to the asymptotic preorder.

(iv) Suppose that x, y ∈ S and there is an s ∈ S \ {0} such that sx < sy. Then x % y.

(v) Let x, y, s, t ∈ S \{0} and suppose that for all n ∈ N the inequality sxn < tyn holds.

Then x % y.

Proof (i): If x < y then (5) is satisfied with kn = 0. (ii): Reflexivity and 0 - 1
follows from (i). To prove transitivity let x % y and y % z. Choose sublinear
sequences (kn)n∈N and (ln)n∈N such that uknxn < yn and ulnyn < zn for all n.
Then n 7→ kn + ln is also sublinear and ukn+lnxn < ulnyn < zn, therefore x % z.
We prove compatibility with the operations. Let x % y and z ∈ S, and choose
(kn)n∈N sublinear and nondecreasing such that uknxn < yn for all n. Then also
ukn(xz)n < (yz)n for all n, therefore xz % yz. For the sum we use

ukn(x+ z)n = ukn
n∑

m=0

(
n

m

)
xmzn−m

<
n∑

m=0

(
n

m

)
ukmxmzn−m

<
n∑

m=0

(
n

m

)
ymzn−m

= (y + z)n,

(6)

therefore x + z % y + z. (iii) is an immediate consequence of (i). (iv): Let k ∈ N
be such that uks < 1 and uk < s. By induction, sxn < sxn−1y < . . . < syn, and
therefore ukxn < yn for all n. This implies x % y. (v): Let k, l ∈ N be such that
ukt < 1 and ul < s. Then uk+lxn < uksxn < uktyn < yn for all n, therefore (5) is
satisfied with kn = k + l.

By (ii) and (iii) of Lemma 2 we can iterate the construction and form the
asymptotic preorder w that compares large powers via -. However, the following
lemma tells us that this does not give anything new.
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Lemma 3 w=-.

Proof We have -⊆w by (i) of Lemma 2. Let x v y and choose (kn)n∈N sub-
linear such that uknxn % yn for all n. Let (ln,m)n,m∈N be such that for all n
limm→∞ ln,m/m = 0 and for all n,m

uln,m+mknxnm = uln,m(uknxn)m < (yn)m = ynm (7)

holds. Choose a sequence n 7→ mn such that ln,mn ≤ mn (e.g. let mn be the first
index such that ln,mn ≤ mn). Then

lim
n→∞

ln,mn +mnkn
nmn

≤ lim
n→∞

1

n
+
kn
n

= 0, (8)

therefore x % y.

Our next goal is to understand how the asymptotic preorder interacts with
localization. Let T ⊆ S\{0} be a multiplicative subset (i.e. t1, t2 ∈ T =⇒ t1t2 ∈ T )
containing 1. The localization of S at T , denoted T−1S is the semiring S × T

modulo the equivalence relation (s1, t1) ∼ (s2, t2) iff there exists r ∈ T such that
rs1t2 = rs2t1, equipped with the operations (s1, t1) + (s2, t2) = (s1t2 + s2t1, t1t2),
(s1, t1) · (s2, t2) = (s1s2, t1t2). We denote the equivalence class of (s, t) by s

t . There
is a canonical homomorphism S → T−1S that sends s to s

1 . The additive and
multiplicative neutral elements are 0

1 and 1
1 .

Lemma 4 Let s1, s2, s
′
1, s
′
2 ∈ S and t1, t2, t

′
1, t
′
2 ∈ T such that s1

t1
=

s′1
t′1

and s2
t2

=
s′2
t′2

.

Then ∃r ∈ T : rs1t2 < rs2t1 iff ∃r′ ∈ T : r′s′1t
′
2 < r′s′2t

′
1.

Proof The roles of the primed and unprimed elements are symmetric, therefore it
is enough to show that rs1t2 < rs2t1 with r ∈ T implies ∃r′ ∈ T : r′s′1t

′
2 < r′s′2t

′
1.

Let q1, q2 ∈ T such that q1s1t
′
1 = q1s

′
1t1 and q2s2t

′
2 = q2s

′
2t2. Let r′ = q1q2t1t2r.

Then

r′s′1t
′
2 = (q1q2t1t2r)s

′
1t
′
2

= q2t2rt
′
2(q1s

′
1t1) = q2t2rt

′
2(q1s1t

′
1)

= q1t
′
1q2t

′
2(rs1t2) < q1t

′
1q2t

′
2(rs2t1)

= rt1q1t
′
1(q2s2t

′
2) = rt1q1t

′
1(q2s

′
2t2)

= (q1q2t1t2r)s
′
2t
′
1 = r′s′2t

′
1.

(9)

According to Lemma 4 we can define a relation 4 on T−1S as

s1
t1

<
s2
t2
⇐⇒ ∃r ∈ T : rs1t2 < rs2t1. (10)

Lemma 5

(i) (T−1S,4) is a preordered semiring.

(ii) The canonical homomorphism s 7→ s
1 is monotone.

(iii) If u ∈ S is power universal then u
1 is power universal in T−1S.



8 Péter Vrana

Proof (i): For s
t ∈ T−1S we have st < st, therefore s

t < s
t , i.e. 4 is reflexive.

Suppose that s1
t1

< s2
t2

and s2
t2

< s3
t3

. This means rs1t2 < rs2t1 and qs2t3 < qs3t2
for some r, q ∈ T . Therefore

(qrt2)s1t3 = q(rs1t2)t3 < q(rs2t1)t3 = rt1(qs2t3) < qrs3t1t2 = (qrt2)s3t1, (11)

which implies s1
t1

< s3
t3

, i.e. 4 is transtive. We have 0
1 4 1

1 since 0 4 1. We prove

compatibility with the operations. Suppose that s1
t1

< s2
t2

and let s′

t′ ∈ T
−1S. This

means rs1t2 < rs2t1 for some r ∈ T . Then r(s1t
′+s′t1)t2 < r(s2t

′+s′t2)t1, therefore

s1
t1

+
s′

t′
=
s1t
′ + s′t1
t1t′

<
s2t
′ + s′t2
t2t′

=
s2
t2

+
s′

t′
, (12)

and rs1t2s
′t′ < rs2t1s

′t′, therefore

s1
t1

s′

t′
=
s1s
′

t1t′
<
s2s
′

t2t′
=
s2
t2

s′

t′
. (13)

(ii): If x, y ∈ S and x < y then x
1 < y

1 since (10) is satisfied for r = 1. : Let u ∈ S
be power universal, x = s

t ∈ T
−1S \ {01}. Choose ks, kt such that the inequalities

s 4 uks , ukss < 1, t 4 ukt , uktt < 1 hold. Then s 4 uks 4 uks+ktt, therefore

s

t
4
(
u

1

)ks+kt
, (14)

and t 4 ukt 4 uks+kts, therefore

1

1
4
(
u

1

)ks+kt s
t
. (15)

It should be noted that even though we use the same symbol for the preorder on S
and that induced on T−1S, it is in general not true that x < y iff x

1 < y
1 . When S

is of polynomial growth, we denote by % the asymptotic preorder on T−1S. Note
that this could mean two different relations, depending on whether we form the
asymptotic preorder on the localization or consider the preorder induced on T−1S

by the asymptotic preorder on S. However, these two relations turn out to be the
same. If rs1t2 % rs2t1 then rnuo(n)sn1 t

n
2 < rnsn2 t

n
1 for all n, i.e.(

u

1

)o(n)(s1
t1

)n
<

(
s2
t2

)n
(16)

Conversely, if (16) holds, then there is a sequence (rn)n∈N in T such that rnu
o(n)(s1t2)n <

rn(s2t1)n, which implies s1t2 % s2t3 by (iv) of Lemma 2 and Lemma 3. A similar
argument in the following lemma shows that the asymptotic preorder is essentially
the same on S and on its image in T−1S.

Lemma 6 For x, y ∈ S we have x % y iff x
1 % y

1 .

Proof Suppose that x % y, i.e. uknxn < yn for some sublinear sequence kn and all

n. This implies
(
u
1

)kn (x
1

)n
<
(y
1

)n
, therefore x

1 % y
1 .

Suppose that x
1 % y

1 . This means there is a sublinear sequence kn and elements
rn ∈ S \ {0} such that

rnu
knxn < rny

n (17)

for all n ∈ N. By (iv) of Lemma 2 and Lemma 3 this implies x % y.
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According to Lemma 6, we may safely identify x with x
1 for the purposes of study-

ing the asymptotic preorder, even though the canonical homomorphism S → T−1S

is in general not injective.

We conclude this section with a construction that enlarges a preorder by forcing
an ordering on certain pairs of elements.

Definition 4 Let (S,4) be a preordered semiring and R ⊆ S×S a relation. We de-
fine the relation 4R on S as a 4R b iff there is an n ∈ N and s1, . . . , sn, x1, . . . , xn, y1, . . . , yn ∈
S such that

∀i ∈ [n] : (xi, yi) ∈ R (18)

and

a+ s1y1 + · · ·+ snyn 4 b+ s1x1 + · · ·+ snxn. (19)

Lemma 7

(i) 4⊆4R
(ii) R ⊆4R

(iii) (S,4R) is a preordered semiring.

(iv) If R1, R2 ⊆ S × S then 4R1∪R2
= (4R1

)R2
.

(v) 4R=
⋃
R′⊆R
|R′|<∞

4R′ .

Proof (i): If a 4 b then we may choose n = 0 in the definition, therefore a 4R b.
(ii): If (x, y) ∈ R then we can choose n = 1, s1 = 1, x1 = x, y1 = y so that (19)
becomes x+y 4 y+x, therefore x 4R y. (iii): By (i) the relation 4R is reflexive. We
prove transitivity. Let a 4R b and b 4R c. Then there are n,m ∈ N and elements
x1, . . . , xn, y1, . . . , yn, z1, . . . , zm, w1, . . . , wm ∈ S and s1, . . . , sn, t1, . . . , tm ∈ S such
that (xi, yi) ∈ R and (zi, wi) ∈ R for all i in [n], respectively [m], and

a+ s1y1 + · · ·+ snyn 4 b+ s1x1 + · · ·+ snxn (20)

b+ t1w1 + · · ·+ tnwm 4 c+ t1z1 + · · ·+ tnzm. (21)

After adding t1w1 + · · ·+ tnwm to both sides of the first inequality and s1x1 + · · ·+
snxn to both sides of the second one we can chain the inequalities and conclude
a 4R c.

The compatibility with addition and multiplication can be seen directly by
adding c to (respectively multiplying by c) both sides of (19). (iv): Expanding the
definition, we see that a(4R1

)R2
b means that there are natural numbers n, n′ and

elements s1, . . . , sn, x1, . . . , xn, y1, . . . , ynS and s′1, . . . , s
′
n′ , x′1, . . . , x

′
n′ , y′1, . . . , y

′
n′ ∈ S

such that for all i (xi, yi) ∈ R1 and (x′i, y
′
i) ∈ R2 and

(a+s1y1+· · ·+snyn)+s′1y
′
1+· · ·+s′n′y′n′ 4 (b+s1x1+· · ·+snxn)+s′1x

′
1+· · ·+s′n′x′n′ ,

(22)
which is clearly equivalent to a 4R1∪R2

. (v) follows from the fact that (19) involves
only finitely many pairs (xi, yi) ∈ R.
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3 Spectrum

In this section we define and study the spectrum of a preordered semiring, i.e.
the set of monotone semiring homomorphisms with the topology generated by the
evaluation maps. We begin with properties related to compactness, and show that
semirings of polynomial growth have locally compact spectra. Then we show that
neither replacing the preorder with its asymptotic preorder nor localization affects
the spectrum. Finally we prove that the inclusion of a certain type of subsemiring
induces a surjective map on the spectra.

Definition 5 Let (S,4) be a preordered semiring. The spectrum ∆(S,4) is the set
of monotone semiring homomorphisms S → R≥0 equipped with the initial topology
with respect to the family of evaluation maps evs : ∆(S,4)→ R≥0 (s ∈ S). For a

subset X ⊆ S we define evX : ∆(S,4) → RX≥0 as f 7→ (f(x))x∈X . Elements of the
spectrum will be referred to as spectral points.

Let (S1,41) and (S2,42) be preordered semirings and let ϕ : S1 → S2 be a
monotone homomorphism. We define the map ∆(ϕ) : ∆(S2,42) → ∆(S1,41) as
f 7→ f ◦ ϕ.

Lemma 8 Let (S,4) be a preordered semiring.

(i) evS is a closed embedding. In particular, ∆(S,4) is Tychonoff.

(ii) Suppose that S is generated by a single element u. Then evu is proper and ∆(S,4)
is locally compact.

Let (S1,41) and (S2,42) be preordered semirings and ϕ : S1 → S2 a monotone

semiring homomorphism.

(iii) ∆(ϕ) is continuous.

(iv) If for every x2 ∈ S2 there is an x1 ∈ S1 such that x2 42 ϕ(x1) then ∆(ϕ) is

proper.

Proof (i): The evaluation map evS clearly separates the points of ∆(S,4), thus
gives an embedding into the Tychonoff space RS≥0. The property of being a mono-
tone semiring homomorphism is preserved by pointwise limits, therefore the em-
bedding is closed. (ii): every element of S can be written as a (not necessarily
unique) polynomial in u with coefficients from N and evp(u) = p(evu). This means
that evu already separates the points and its continuity is equivalent to the con-
tinuity of all evaluation maps. Therefore evu : ∆(S,4) → R≥0 is a closed em-
bedding. This implies that evu is proper and ∆(S,4) is locally compact. (iii):{

ev−1
s (U)

∣∣s ∈ S1, U ⊆ R≥0 open
}

is a subbasis for the topology of ∆(S1,41). The

preimage of such a set under ∆(ϕ) is ev−1
ϕ(s)(U), which is open. (iv): Let C1 ⊆

∆(S1,41) be compact and let C2 = ∆(ϕ)−1(C1) ⊆ ∆(S2,42). C1 is a compact
subset of a Hausdorff space, therefore closed, which implies that C2 is also closed.
For all x2 ∈ S2 let

Bx2 = inf
x1∈S1

x242ϕ(x1)

sup
f∈C1

f(x1). (23)

The infimum is by assumption over a nonempty set and the supremum is of a
continuous function (evx1) over a compact set, therefore Bx2 is finite. If f ∈ C2

then f ◦ϕ ∈ C1 so f(x2) ∈ [0, Bx2 ]. Thus evS2
embeds C2 as a closed subset of the

compact space
∏
x2∈S2

[0, Bx2 ].
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Proposition 2 Let (S,4) be a preordered semiring of polynomial growth and suppose

that u ∈ S is power universal. Then ∆(S,4) is locally compact and evu : ∆(S,4) →
R≥0 is proper.

Proof Let S0 be the subsemiring generated by u and i : S0 → S the inclusion. By
(ii) and (iv) of Lemma 8, ∆(i) : ∆(S,4)→ ∆(S0,4) is a proper map into a locally
compact space ∆(S0,4), thus ∆(S,4) is also locally compact.

evSu = evS0
u ◦∆(i) (note that u may be regarded as an element of both semirings

and the domain of the evaluation map is the spectrum of the semiring indicated
in the superscript) is a composition of proper maps, therefore also proper.

Lemma 9 Let (S,4) be a preordered semiring of polynomial growth. Let j : (S,4)→
(S,-) be the monotone homomorphism with underlying homomorphism the identity.

Then ∆(j) : ∆(S,-)→ ∆(S,4) is a homeomorphism.

Proof ∆(j) is injective since for f ∈ ∆(S,-) we have ∆(j)(f)(x) = f(j(x)) = f(x)
for all x ∈ S. To see that ∆(j) is surjective we show that every f ∈ ∆(S,4) is also
monotone under -. Suppose that x % y. Let (kn)n∈N be as in Definition 3, i.e.
kn/n→ 0 and for all n ∈ N uknxn ≥ yn. Then for every f ∈ ∆(S,4) we have

f(u)knf(x)n ≥ f(y)n. (24)

After taking roots and letting n go to infinity we get f(x) ≥ f(y).
Thus ∆(j) is a bijection and can be used to identify the two spectra as sets.

Under this identification the evaluation maps are the same in both cases, and so
are the topologies they generate. Therefore ∆(j) is a homeomorphism.

Lemma 10 Let (S,4) be a preordered semiring of polynomial growth and T ⊆ S \{0}
a multiplicative set containing 1. Let j : S 7→ T−1S be the canonical map x 7→ x

1 . Then

∆(j) : ∆(T−1S,4)→ ∆(S,4) is a homeomorphism.

Proof We prove that ∆(j) is injective. Let f̃1, f̃2 ∈ ∆(T−1S,4) be different. Then
there are s ∈ S and t ∈ T such that f̃1( st ) 6= f̃2( st ). Since 1

1 = t
1
1
t we have f̃1

(
t
1

)
6= 0

and f̃2
(
t
1

)
6= 0. If f̃1

(
t
1

)
6= f̃2

(
t
1

)
then ∆(j)(f̃1) and ∆(j)(f̃2) are different at t.

Otherwise we have

f̃1

(
s

1

)
= f̃1

(
s

t

)
f̃1

(
t

1

)
6= f̃2

(
s

t

)
f̃2

(
t

1

)
= f̃2

(
s

1

)
, (25)

and therefore ∆(j)(f̃1) and ∆(j)(f̃2) are different at s.
We prove that ∆(j) is surjective. Let f ∈ ∆(S,4). Let u ∈ S be power universal.

For s ∈ S \ {0} there is a k ∈ N such that 1 4 uks. Applying f to both sides we
get 1 ≤ f(u)kf(s), which implies f(s) > 0. If s1

t1
= s2

t2
then by definition rs1t2 =

rs2t1 for some r ∈ T , therefore f(r)f(s1)f(t2) = f(r)f(s2)f(t1), i.e. f(s1)f(t2) =
f(s2)f(t1). This means that the equality

f̃
(
s

t

)
=
f(s)

f(t)
(26)

gives a well-defined function on T−1S. We claim that f̃ ∈ ∆(T−1S,4) and∆(j)(f̃) =
f . For s1

t1
, s2t2 ∈ T

−1S we have

f̃

(
s1
t1

+
s2
t2

)
= f̃

(
s1t2 + s2t1

t1t2

)
=
f(s1t2 + s2t1)

f(t1t2)
=
f(s1)

f(t1)
+
f(s2)

f(t2)
= f̃

(
s1
t1

)
+ f̃

(
s1
t1

) (27)
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and

f̃

(
s1
t1
· s2
t2

)
= f̃

(
s1s2
t1t2

)
=
f(s1s2)

f(t1t2)
=
f(s1)

f(t1)

f(s2)

f(t2)
= f̃

(
s1
t1

)
f̃

(
s1
t1

)
. (28)

Let s1
t1

< s2
t2

. This means there exists r ∈ T such that rs1t2 < rs2t1. Since f is
monotone and f(r) > 0, this implies

f̃

(
s1
t1

)
=
f(s1)

f(t1)
≥ f(s2)

f(t2)
= f̃

(
s2
t2

)
. (29)

If x ∈ S then clearly Clearly f̃(j(x)) = f̃(x1 ) = f(x), thus f̃ extends f . In particular,

f̃(0
1 ) = 0 and f̃(1

1 ) = 1.
Thus we may identify the two spectra via ∆(j) as sets. Since for t ∈ T the

map evt vanishes nowhere, the topology generated by the maps (evs)s∈S and
( evs
evt

)s∈S,t∈T is the same, therefore ∆(j) is a homeomorphism.

Our goal in the following is to relate the spectral points of a semiring to those
of a subsemiring. We will make use of a relaxed preorder whose restriction to the
subsemiring is total.

Definition 6 Let (S,4) be a preordered semiring, S0 ≤ S a subsemiring and
f ∈ ∆(S0,4). We define the relation 4f :=4Rf

(see Definition 4) where Rf is the
relation

Rf = {(x, y) ∈ S0 × S0|f(x) ≤ f(y)} ⊆ S × S. (30)

Since 4⊆4f by Lemma 7, we may identify ∆(S,4f ) with a subset of ∆(S,4).

Lemma 11 Let (S,4) be a preordered semiring, S0 ≤ S a subsemiring and f ∈
∆(S0,4). Let i : S0 ↪→ S be the inclusion. Then ∆(S,4f ) = ∆(i)−1(f).

Proof Let f̃ ∈ ∆(S,4f ) and x ∈ S0. For all n ∈ N we have bf(nx)c ≤ f(nx) ≤
df(nx)e, therefore by (ii) of Lemma 7 also

bf(nx)c 4f nx 4f df(nx)e. (31)

Apply f̃ to both sides, divide by n and let n→∞ to get

f(x) = lim
n→∞

bf(nx)c
n

≤ f̃(x) ≤ lim
n→∞

df(nx)e
n

= f(x). (32)

Therefore f̃ agrees with f on S0, which means f̃ ∈ ∆(i)−1(f).
Let f̃ ∈ ∆(i)−1(f). Then f̃ is a semiring homomorphism and we need to

show that it is monotone with respect to 4f . Let a 4f b. This means there
are x1, . . . , xn, y1, . . . , yn ∈ S0 and s1, . . . , sn ∈ S for some n ∈ N such that
∀j ∈ [n] : f(xj) ≤ f(yj) and

a+ s1y1 + · · ·+ snyn 4 b+ s1x1 + · · ·+ snxn. (33)

Apply f̃ to both sides and rearrange as

f̃(s1)
(
f̃(y1)− f̃(x1)

)
+ · · ·+ f̃(sn)

(
f̃(yn)− f̃(xn)

)
≤ f̃(b)− f̃(a). (34)

Since
f̃(yj)− f̃(xj) = f(yj)− f(xj) ≥ 0 (35)

for all j, this implies f̃(b) ≥ f̃(a), i.e. f̃ is monotone with respect to 4f .
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Lemma 12 Let (S,4) be a preordered semiring and S0 ≤ S a subsemiring such that

∀s ∈ S \ {0}∃r, q ∈ S0 such that 1 4 rs 4 q. Let R ⊆ S0 × S0 ⊆ S × S be an arbitrary

relation. Then

∆(S0, 4R|S0
) =

{
f ∈ ∆(S0, 4|S0

)
∣∣∀(x, y) ∈ R : f(x) ≤ f(y)

}
. (36)

We emphasize that 4R|S0
is in general not the same preorder as (4|S0

)R, since
the latter would only allow elements s1, . . . , sn ∈ S0 in Definition 4.

Proof First note that the condition ∀s ∈ S \ {0}∃r, q ∈ S0 such that 1 4 rs 4 q

implies that every f ∈ ∆(S0, 4|S0
) and s ∈ S0 \ {0} satisfies f(s) 6= 0. To see this

choose r ∈ S0 such that 1 4 rs and apply f to both sides.
We prove∆(S0, 4R|S0

) ⊆
{
f ∈ ∆(S0, 4|S0

)
∣∣∀(x, y) ∈ R : f(x) ≤ f(y)

}
. The pre-

orders satisfy 4⊆4R, therefore ∆(S0, 4R|S0
) ⊆ ∆(S0, 4|S0

). Let f ∈ ∆(S0, 4R|S0
)

and (x, y) ∈ R. (ii) of Lemma 7 implies that x 4R y, therefore f(x) ≤ f(y).
We prove ∆(S0, 4R|S0

) ⊇
{
f ∈ ∆(S0, 4|S0

)
∣∣∀(x, y) ∈ R : f(x) ≤ f(y)

}
. By (v)

of Lemma 7 it is enough to prove the statement for |R| <∞. We prove by induction
on |R|. If R = ∅ then 4R=4 and there is nothing to prove. Otherwise choose
(x, y) ∈ R and let R1 = R \ {(x, y)} and R2 = {(x, y)}. Suppose that

f ∈
{
f ′ ∈ ∆(S0, 4|S0

)
∣∣∀(x′, y′) ∈ R : f ′(x′) ≤ f ′(y′)

}
=
{
f ′ ∈ ∆(S0, 4R1

|S0
)
∣∣∣f ′(x) ≤ f ′(y)

} (37)

Let a, b ∈ S0 such that a 4R b. This means

a+ sy 4R1
b+ sx (38)

for some s ∈ S ((iv) of Lemma 7). If sx = 0 then apply f to both sides to get
f(a) ≤ f(a) + f(sy) ≤ f(b). Otherwise s 6= 0 and x 6= 0, so in particular f(x) > 0.
We prove

a

(
n∑

m=0

xmyn−m
)

+ syn+1 4R1
b

(
n∑

m=0

xmyn−m
)

+ sxn+1 (39)

by induction on n. The n = 0 base case is (38). Suppose (39) holds with n − 1
instead of n. Then

a

(
n∑

m=0

xmyn−m
)

+ syn+1 = axn + y

[
a

(
n−1∑
m=0

xmyn−1−m
)

+ syn

]

4R1
axn + y

[
b

(
n−1∑
m=0

xmyn−1−m
)

+ sxn

]

= xn(a+ sy) + b

(
n−1∑
m=0

xmyn−m
)

4R1
xn(b+ sx) + b

(
n−1∑
m=0

xmyn−m
)

= b

(
n∑

m=0

xmyn−m
)

+ sxn+1,

(40)
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where the first inequality uses the induction hypothesis and the second one uses
(38).

Let r, q ∈ S0 such that 1 4 rs 4 q. Then

ra

(
n∑

m=0

xmyn−m
)

+ yn+1 4 rb

(
n∑

m=0

xmyn−m
)

+ qxn+1. (41)

Apply f to both sides and rearrange to get

f(r)

(
n∑

m=0

f(x)mf(y)n−m
)

(f(a)− f(b)) ≤ f(q)f(x)n+1 − f(y)n+1 (42)

Divide by the coefficient of f(a)− f(b) (nonzero since x 6= 0 and r 6= 0). Then
we use f(x) ≤ f(y) and f(q) ≥ 1 to get

f(a)− f(b) ≤ f(q)f(x)n+1 − f(y)n+1

f(r)
(∑n

m=0 f(x)mf(y)n−m
)

≤ (f(q)− 1)f(x)n+1

f(r)
(∑n

m=0 f(x)mf(y)n−m
)

≤ (f(q)− 1)f(x)n+1

f(r)(n+ 1)f(x)n

=
(f(q)− 1)f(x)

f(r)

1

n+ 1
.

(43)

This inequality is true for every n ∈ N, therefore f(a) ≤ f(b).

The following proposition shows that spectral points of a subsemiring con-
taining a power universal element can be extended to spectral points of the large
semiring. Later we will use this result to relate the condition appearing in (M2)
to boundednes of the evaluation function on ∆(S), but it appears to be also of
independent interest.

Proposition 3 Let (S,4) be a preordered semiring of polynomial growth and S0 ≤ S
a subsemiring satisfying ∀s ∈ S \ {0}∃r, q ∈ S0 such that 1 4 rs 4 q. Let i : S0 ↪→ S

be the inclusion. Then ∆(i) is surjective.

Proof We can assume that the inclusion N ↪→ S is an order embedding (otherwise
both spectra are empty).

By Lemma 11 it is enough to show that for every f ∈ ∆(S0,4) the set ∆(S,4f )
is nonempty. Let u ∈ S be power universal. By the assumption on S0 there is an
u′ ∈ S0 such that u′ < u, and any such u′ is also power universal in S. By (ii) of
Lemma 7,

u′ 4f 2dlog2 f(u
′)e, (44)

therefore 2 is also power universal for (S,4f ).
Lemma 12 implies that ∆(S0, 4f

∣∣
S0

) = {f}. In particular, for n,m ∈ N we have

n 4f m iff n ≤ m. Therefore we can apply Theorem 1 to the preordered semiring
(S,4f ) and conclude ∆(S,4f ) 6= ∅.
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4 Proof of main result and uniqueness

Now we have all the technical tools to prove Theorem 2. In the setting of that
theorem, we introduce the following notations:

S+ = {s ∈ S|∃n ∈ N : ns < 1} ∪ {0} (45)

S− = {s ∈ S|∃n ∈ N : n < s} (46)

Sb = S+ ∩ S−. (47)

We will see that all three are subsemirings, and the definition of Sb ensures that it
satisfies the conditions of Theorem 1. Given a pair of elements in S, we can multiply
both with the same element of M to get elements of S−, at least one of them in Sb.
Here Strassen’s theorem ensures that the collection of monotone homomorphisms
characterize the asymptotic preorder. An essential part of the proof is to show that
most spectral points of Sb admit an extension to S. Informally, an extension exists
unless it would evaluate to ∞ on the power universal element. More precisely, by
assumption (M1) we can form an “inverse up to bounded elements” ū of u, and
f ∈ ∆(Sb,4) extends to S iff f(1 + ū) > 1.

Lemma 13

(i) S+, S− and Sb are subsemirings of S.

(ii) Let i : Sb → S− denote the inclusion. Then ∆(i) : ∆(S−,4) → ∆(Sb,4) is a

homeomorphism.

Proof (i): 0 and 1 are clearly contained both in S+ and S−. Let s1, s2 ∈ S+.
This means that there are n1, n2 ∈ N such that n1s1 < 1 and n2s2 < 1. Then
n1(s1 + s2) < n1s1 < 1 and n1n2(s1s2) < 1 · 1 = 1, therefore s1 + s2 ∈ S+ and
s1s2 ∈ S+. Let s1, s2 ∈ S−. This means that there are n1, n2 ∈ N such that n1 < s1
and n2 < s2. Then n1 + n2 < s1 + s2 and n1n1 < s1s2, therefore s1 + s2 ∈ S− and
s1s2 ∈ S−. Sb = S+ ∩ S− is the intersection of subsemirings, therefore it is also a
subsemiring.

(ii): We prove that ∆(i) is injective. Let f̃ ∈ ∆(S−,4). If x ∈ S− then 1+x ∈ Sb
and therefore f̃(x) = f̃(1 + x)− 1 = ∆(i)(f̃)(1 + x)− 1, so f̃ can be reconstructed
from its restriction ∆(i)(f̃).

We prove that ∆(i) is surjective. Let f ∈ ∆(Sb,4) and let f̃ : S− → R be
defined as f̃(x) = f(1 + x) − 1. Since 1 4 1 + x, we have f̃(x) ≥ f(1) − 1 = 0.
We show that f̃ is a monotone semiring homomorphism and ∆(i)(f̃) = f . Clearly
f̃(0) = f(1 + 0)− 1 = 1− 1 = 1 and f̃(1) = f(1 + 1)− 1 = 2− 1 = 1.

We prove additivity.

f̃(x+ y) = f(1 + x+ y)− 1

= f(1 + x+ 1 + y)− 1− 1

= f(1 + x)− 1 + f(1 + y)− 1

= f̃(x) + f̃(y)

(48)
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We prove multiplicativity.

f̃(xy) = f(1 + xy)− 1

= f(1 + x+ 1 + y + 1 + xy)− f(1 + x)− f(1 + y)− 1

= f(1 + x+ y + xy)− f(1 + x)− f(1 + y) + 1

= f((1 + x)(1 + y))− f(1 + x)− f(1 + y) + 1

= (f(1 + x)− 1)(f(1 + y)− 1)

= f̃(x)f̃(y)

(49)

We prove that f̃ is monotone. Let x, y ∈ S− and suppose that x 4 y. Then
1 + x 4 1 + y, therefore

f̃(x) = f(1 + x) ≤ f(1 + y) = f̃(y). (50)

If x ∈ Sb then f̃(x) = f(1 + x)− 1 = f(1) + f(x)− 1 = f(x), so ∆(i)(f̃) = f .
Finally, from the equality f̃(x) = f̃(1+x)−1 we see that pointwise convergence

in ∆(S−,4) is equivalent to pointwise convergence of the restrictions to Sb.

Lemma 14 Let u be power universal in S and suppose that there is a ū ∈ S \{0} such

that uū ∈ Sb. Then ū ∈ S− and for any f ∈ ∆(S−,4) the following are equivalent:

(i) f has an extension f̃ : S → R≥0 such that f̃ ∈ ∆(S,4)
(ii) ∀x ∈ S− \ {0} : f(x) 6= 0.

(iii) f(ū) 6= 0

When an extension exists, it is unique.

Proof Since 1 4 u and uū ∈ Sb, there is an n ∈ N such that ū 4 uū 4 n, therefore
ū ∈ S−.

(i) =⇒ (ii): Let x ∈ S− \ {0} and choose k ∈ N such that 1 4 ukx. Then
1 ≤ f̃(ukx) = f̃(u)kf(x), therefore f(x) 6= 0.

(ii) =⇒ (iii): We have seen that ū ∈ S−. It is also nonzero since there is an n

such that 1 4 nuū.
(iii) =⇒ (i): Let x ∈ S. There is a k ∈ N such that x 4 uk, and therefore

ūkx 4 (uū)k, which implies ūkx ∈ S−. From this we see that if an extension f̃

exists, it must satisfy f̃(x) = f(ū)−kf(ūkx), which proves uniqueness. We prove
that this expression is well defined. If ūk1x ∈ S− and ūk2x ∈ S− with k1 < k2 then

f(ū)−k2f(ūk2x) = f(ū)−k2f(ūk2−k1 ūk1x)

= f(ū)−k2f(ūk2−k1)f(ūk1x) = f(ū)−k1f(ūk1x).
(51)

f̃ extends f since for x ∈ S− one can take k = 0 above.
We show that f̃ is monotone. Let x1, x2 ∈ S, x1 4 x2. Choose k ∈ N such that

ūkx1 ∈ S− and ūkx2 ∈ S−. Then ūkx1 4 ūkx2, therefore

f̃(x1) = f(ū)−kf(ūkx1) ≤ f(ū)−kf(ūkx2) = f̃(x2). (52)

We show that f̃ is multiplicative. Let x1, x2 ∈ S and choose k1, k2 ∈ N such
that ūk1x1 ∈ S− and ūk2x2 ∈ S−. Then ūk1+k2x1x2 ∈ S− and

f̃(x1x2) = f(ū)−k1+k2f(ūk1+k2x1x2)

= f(ū)−k1f(ūk1x)f(ū)−k2f(ūk2x) = f̃(x1)f̃(x2).
(53)
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We show that f̃ is additive. Let x1, x2 ∈ S and choose k1, k2 ∈ N such that
ūk1x1 ∈ S− and ūk2x2 ∈ S−. Then ūk1+k2(x1 + x2) ∈ S− and

f̃(x1 + x2) = f(ū)−k1+k2f(ūk1+k2(x1 + x2))

= f(ū)−k1+k2
(
f(ūk1+k2x1) + f(ūk1+k2x2)

)
= f̃(x1) + f̃(x2).

(54)

According to Lemma 13 and Lemma 14 we may make the identification ∆(S,4) ⊆
∆(S−,4) = ∆(Sb,4).

Proof (Proof of Theorem 2) First we show that ∆(S,4) 6= ∅. Suppose that ∆(S,4
) = ∅. Then by Proposition 3, ∆(S0,4) is also empty. Choose m ∈ M and n1 ∈ N
such that 1 4 n1mū and mū 4 n1 (possible by (M1)), and n2 ∈ N such that
uū 4 n2. Assumption (M2) implies that there is an n3 ∈ N such that m 4 n3.
Therefore u 4 n1mūu 4 n1n2n3 ∈ N. But then we are in the setting of Theorem 1,
which implies ∆(S,4) 6= ∅, a contradiction.

The implication x % y =⇒ ∀f ∈ ∆(S,4) : f(x) ≥ f(y) follows from Lemma 9.
For the other direction, suppose that x, y ∈ S satisfy ∀f ∈ ∆(S,4) : f(x) ≥ f(y).

There is nothing to prove if y = 0. If x = 0, then 0 = f(x) ≥ f(y) for any
f ∈ ∆(S,4), so y = 0. Therefore we may assume that x 6= 0 and y 6= 0.

Let m1 ∈ M be such that m1y ∈ Sb \ {0} and let m2 ∈ M be such that
m2m1x ∈ Sb \ {0}. Then for all f ∈ ∆(S,4) we have

f(m2) =
f(m2m1x)

f(m1)f(x)
≤ f(m2m1x)

f(m1)f(y)
=
f(m2m1x)

f(m1y)
. (55)

The numerator of the right hand side is bounded from above and the denominator
is bounded away from 0, therefore evm2 is bounded on ∆(S,4). By Proposition 3
it is also bounded on ∆(S0,4), and thus by assumption (M2) we have m2 ∈ S−.

Let t = m1m2 so that tx ∈ Sb and ty ∈ S− (see (i) of Lemma 13). Let u be
power universal and ū ∈M such that uū ∈ Sb \ {0} (possible by (M1)). Let k ∈ N
such that k < ū (Lemma 14) and let

δ = min
f∈∆(Sb,4)

f(tx). (56)

For every f ∈ ∆(S,4) we have

f((k + 1)dδ−ne(tx)n) ≥ f(ū)dδ−nef(tx)n + 1

≥ f(ū)dδ−nef(ty)n + 1

= f(ūdδ−ne(ty)n + 1),

(57)

whereas for every f ∈ ∆(Sb,4) \∆(S,4) we have f(ū) = 0 and therefore

f((k + 1)dδ−ne(tx)n) ≥ 1 = f(ū)dδ−nef(ty)n + 1

= f(ūdδ−ne(ty)n + 1).
(58)

We apply Theorem 1 to Sb and infer

(k + 1)dδ−ne(tx)n % ūdδ−ne(ty)n + 1 < ūdδ−ne(ty)n, (59)

The factors dδ−ne can be cancelled by (iv) of Lemma 2 and Lemma 3. Thus we
have (k + 1)(tx)n % ū(ty)n for all n, which implies tx % ty by (v) of Lemma 2.
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Finally, we cancel the factors t using (iv) of Lemma 2 once more and conclude
x % y.

∆(S,4) is locally compact and evu is proper on ∆(S,4) by Proposition 2.

Proof (Proof of Corollary 1) Consider the localization T−1S with its asymptotic
preorder (see Lemma 6). Choose M ′ =

{
mt1
t2

∣∣m ∈M, t1, t2 ∈ T
}

. Then the semiring

generated by M ′ is
{
s
t

∣∣s ∈ S0, t ∈ T} = T−1S0. We use Theorem 2 with the subset

M ′ ⊆ T−1S.

If s
t ∈ T−1S \ {0} (with s ∈ S \ {0} and t ∈ T ) then let m ∈ M , t1, t2 ∈ T

and n ∈ N such that t2 4 nmt1s and mt1s 4 nt2 as in the condition (M1’). Then
1 4 nmt1tt2

s
t and mt1t

t2
s
t 4 n, therefore (M1) is satisfied by M ′.

Let mt1
t2
∈ M ′ (with m ∈ M and t1, t2 ∈ T ) such that ev mt1

t2

is bounded on

∆(T−1S0,-). Then evm
evt1
evt2

is bounded on∆(S0,4) (see Lemma 9 and Lemma 10),

so by (M2’) we have mt1 4 nt2 for some n ∈ N. This implies mt1
t2

- n, therefore
(M2) is satisfied.

Using Lemma 6 and ∆(S,4) = ∆(S,-) = ∆(T−1S,-) (again by Lemma 9 and
Lemma 10), for x, y ∈ S we conclude

x % y ⇐⇒ x

1
%
y

1
⇐⇒ ∀f ∈ ∆(S,4) : f(x) ≥ f(y). (60)

Proof (Proof of Corollary 2) (i) =⇒ (ii): We apply Corollary 1 to the preordered
semiring (S,-) with M = {1} and T = S \ {0}. Clearly, for s ∈ S \ {0} we can
choose m = 1, t1 = 1, t2 = s and n = 1, so that the inequalitites in (M1’) become
s 4 s. The subsemiring generated by M ∪ T is S0 = S, therefore (i) is the same as
(M2’), noting that ∆(S,-) = ∆(S,4). Therefore (ii) holds by Corollary 1.

(ii) =⇒ (i): Let x, y ∈ S \ {0} such that
evy

evx
: ∆(S,4) → R≥0 is bounded. Let

n ∈ N be an upper bound. Then ∀f ∈ ∆(S,4) : f(y) ≤ nf(x) = f(nx), therefore
by (ii) we have y - nx.

Proof (Proof of Proposition 1) We prove existence. Define the map h(x) : S → R≥0

by h(x)(s) = Φ(s)(x). Then h(x) ∈ ∆(S,-) = ∆(S,4), Φ(s) = evs ◦h and the map
h is injective (since Φ(S) separates points) and continuous (because ∀s ∈ S : Φ(s)
is continuous). Let u be power universal and consider the set

A =

{
a

evs

evk+1
u

− b evt

evk+1
u

∣∣∣∣a, b ∈ R≥0, k ∈ N, ∃n ∈ N∃s, t ∈ S, s 4 nuk, t 4 nuk
}
(61)

Then A ⊆ C0(∆(S,-)) is a subalgebra that separates points (if f1(u) 6= f2(u) then
1

evu
∈ A separates them, otherwise if f1(s) 6= f2(s) then evs

evk+1
u
∈ A for some k does)

and vanishes nowhere (e.g. 1
evu
∈ A is nowhere zero), so by the Stone–Weierstrass

theorem for locally compact spaces [4, Theorem A.10.2] it is dense in C0(∆(S,-)).

Suppose that h is not surjective and let f0 ∈ ∆(S,4) \h(X). Let 0 < ε < f0(u).
By continuity, (evu)−1((f0(u) − ε, f0(u) + ε)) is an open set containing f0. Since
Φ(u) is proper, the subset h(Φ(u)−1([f0(u)− ε, f0(u) + ε])) ⊆ ∆(S,4) is compact in
a Hausdorff space and therefore closed, and does not contain f0. The set

U = (evu)−1((f0(u)− ε, f0(u) + ε)) \ h(Φ(u)−1([f0(u)− ε, f0(u) + ε])). (62)
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is open, disjoint from h(X), and contains f0. By Urysohn’s lemma for locally
compact Hausdorff spaces [4, Lemma A.8.1], there is a function g ∈ C0(∆(S,4))
that is 1 at f0 and 0 outside U , i.e. vanishes on h(X).

By the density of A, there are exist N ∈ N, s, t ∈ S, k ∈ N such that s 4
nuk, t 4 nuk for some n ∈ N and

1

2N

(
f(s)

f(u)k+1
− f(t)

f(u)k+1

)
<

1

4
for all f ∈ h(X) (63)

1

2N

(
f0(s)

f0(u)k+1
− f0(t)

f0(u)k+1

)
>

3

4
. (64)

so

f(s)− f(t+Nuk+1) < −N
2
f(u)k+1 for all f ∈ h(X) (65)

f0(s)− f0(t+Nuk+1) >
N

2
f0(u)k+1 (66)

This means that Φ(t + Nuk+1) ≥ Φ(s), so by assumption t + Nuk+1 % s. On the
other hand, f0(t+Nuk+1) < f0(s), a contradiction.

We prove uniqueness. Let h1, h2 : X → ∆(S,4) be two homeomorphisms satis-
fying ∀s ∈ S : Φ(s) = evs ◦h1 = evs ◦h2. This means that for every x ∈ X and s ∈ S
the equality h1(x)(s) = h2(x)(s) holds. Since S separates the points of ∆(S,4),
this implies h1(x) = h2(x) for all x ∈ X, i.e. h1 = h2.

5 Data availability

Data sharing not applicable to this article as no datasets were generated or anal-
ysed during the current study.
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