
Received April 13, 2021, accepted May 11, 2021, date of publication May 21, 2021, date of current version June 2, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3082848

Template Matching for 3D Objects in Large Point
Clouds Using DBMS
DÁNIEL VARGA 1, JÁNOS MÁRK SZALAI-GINDL 1, BENCE FORMANEK 2,
PÉTER VADERNA 2, LÁSZLÓ DOBOS3, AND SÁNDOR LAKI 1, (Member, IEEE)
1Department of Information Systems, Eötvös Loránd University (ELTE), 1117 Budapest, Hungary
2Ericsson Research, 1117 Budapest, Hungary
3Department of Physics of Complex Systems, Eötvös Loránd University (ELTE), 1117 Budapest, Hungary

Corresponding author: Sándor Laki (lakis@elte.hu)

Dániel Varga and János Márk Szalai-Gindl contributed equally to this work.

The work of Dániel Varga was supported by the European Union, co-financed by the European Social Fund, through the Project
‘‘Integrated Program for Training New Generation of Researchers in the Disciplinary Fields of Computer Science,’’ under Grant
EFOP-3.6.3-VEKOP-16-2017-00002. The work of János Márk Szalai-Gindl and Sándor Laki was supported by the National Research,
Development and Innovation Fund of Hungary, financed under the Thematic Excellence Programme (National Challenges Subprogramme)
Funding Scheme, through the Project Application Domain Specific Highly Reliable IT Solutions, under Grant TKP2020-NKA-06.

ABSTRACT LIDAR and depth cameras have gone through a profound technological evolution, making
large-scale recording of 3D point cloud data possible which raises new challenges for data processing.
Most of the existing 3D point cloud processing methods were developed to work properly when the entire
data set fits into the memory of a single server. When point clouds are significantly larger than the main
memory and data are only available on slow storage, new approaches are necessary. In this paper, we propose
a DBMS-based point cloud processing pipeline that solves the template matching problem, i.e., finding
the – potentially multiple – occurrences of a small query point cloud in an extensive scene data set that
is preprocessed and stored in a database. The storage layer uses a compact and novel data representation
to exploit the benefits of efficient indexing structures whereas the query algorithm consists of a novel
combination of existing point cloud processing and matching methods. To the best of our knowledge, this is
the first template matching proposal in the literature that exploits the benefits of databases.

INDEX TERMS 3D point cloud, template matching, database, registration, PCA.

I. INTRODUCTION
In the past years, LIDAR sensors and 3D sensors built into
mobile devices, such as RGBD cameras, have gone through
a significant evolutionary step, enabling the easy collection
of massive 3D point cloud data with high resolution. These
data can be exploited by novel applications, including robot
navigation, localization, object search, augmented (AR) and
virtual reality (VR) [1]–[3]. The increased volume and accu-
mulation of such data sets cannot be handled by in-memory
methods and poses new challenges against efficient data
handling and processing, requiring more robust and scalable
solutions.

The literature distinguishes 2.5D and real 3D point clouds
with very different characteristics. The former category
includes, for example, airborne laser scanning data – basi-
cally height maps – where the Z coordinates change very
little with respect to X and Y and covering of background

The associate editor coordinating the review of this manuscript and

approving it for publication was Qichun Zhang .

objects is unlikely or unimportant. Whereas the real 3D cate-
gory includes, for example, indoor LIDAR scans or scans of
objects from all directions, where the point cloud varies along
all coordinates similarly. In addition to the 3D positions,
points often have additional attributes such as color that can
also be used by the different search and matching methods.
Note thatmost GIS use cases, where databases are extensively
applied, work with 2.5D data. There is only a limited number
of related work on the DBMS context of real 3D point cloud
processing, c.f. Sec. II.

Template matching aims to solve the problem of finding
the occurrences of a small point cloud, the query (e.g., a scan
of an interesting object, a point cloud captured at a specific
location in a building, etc.) in a significantly large point cloud
we will refer to as the scene. All existing template matching
algorithms [3] in the literature assume a scene point cloud
that can entirely be loaded into the memory, thus the query
matching can be executed quickly. Nowadays, there are large-
scale point clouds where in-memory solutions are not feasi-
ble, and the application of DBMSs seems a natural choice for

76894 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-8004-1704
https://orcid.org/0000-0002-0169-0547
https://orcid.org/0000-0002-7014-9252
https://orcid.org/0000-0003-1813-1562
https://orcid.org/0000-0002-8875-5330
https://orcid.org/0000-0003-2479-8195


D. Varga et al.: Template Matching for 3D Objects in Large Point Clouds Using DBMS

accelerating various preprocessing and query tasks that are
necessary to solve problems such as template matching.

In this paper, we propose a DBMS-based template match-
ing pipeline that uses a compact and novel data representation
and exploits the benefits of efficient indexing structures. The
pipeline can be split into offline and online phases. The offline
phase includes the preparation of scene data (e.g., noise filter-
ing, sub-sampling, keypoint selection, feature vector compu-
tation, dimension reduction), loading into the database, and
generating indexes. Note that this phase is time-consuming
because of the vast amount of 3D points. In the online phase,
a small query point cloud first goes through the prepro-
cessing steps of the offline phase to obtain a uniform data
representation needed for the selection of candidates and
the application of the matching algorithm to get the query
results. Note that this phase is accelerated by the various
mechanisms of DBMSs to get reasonable query execution
time. The evaluation has been carried out with our prototype
implementation relying on PostgreSQL database. To the best
of our knowledge, this is the first study that investigates how
DBMSs can accelerate the resolution of template matching
queries.

In summary, our contributions are:
1) We define a special case of template matching problem

where the 3D scene data is available in advance (e.g.,
in a database) and thus can be pre-processed offline,
while the template (or query) point cloud to be found
in the scene arrives online.

2) We propose a novel feature-based registration pipeline
to solve this template matching problem.

3) A prototype of the proposed pipeline has been imple-
mented using PostgreSQL.

4) Our evaluation shows that the proposed DBMS-based
method has several practical benefits: trivially scalable,
able to work with datasets which do not fit in memory,
using index structures for fast searches, etc.

The paper is organized as follows: In Section II, we briefly
overview the related literature. In Section III, we define the
problem and talk about how a general solution can be divided
into offline and online phases. Section IV introduces the main
elements of the propose template matching pipeline. The
evaluation of the method and the discussion of the results are
presented in Section V. Finally, Section VI summarizes the
main results and concludes the paper.

II. RELATED WORK
Though most of the recent 3D point cloud processing meth-
ods including template matching assume point cloud data that
can entirely be loaded into the memory, few papers propose
the use of database management systems (DBMS) to store,
prefilter or process such data sets.

Oosterom et al. [4] propose the application of DBMS as
convenient and flexible alternatives for storing point clouds.
Their paper has evaluated different database systems such
as PostgreSQL, MonetDB, Oracle and LAStools, using an
airborne data set captured in the Netherlands. It compares

different techniques for storing point cloud data. The authors
propose the flat table model where each point is stored in a
simple row of the database. The data can easily be organized,
filtered or ordered for various use cases. E.g., for ordering the
Hilbert- or Morton-code of the points can be used. On top
of the ordered rows blocks can easily be defined, having
many benefits: 1) spatial dependence, 2) simple compression,
3) reduced overhead and 4) data caching. This paper also
proposes a query algorithm relying on Morton-codes and
their relationship to quad-trees.

Cura et al. in [5] work with point blocks instead of indi-
vidual points and focus on how compression techniques can
be used to reduce the size of these massive data sets without
sacrificing the query execution times. Accordingly, grouping
of 3D points has to be compatible with relevant queries of
the given use case. Block sizes are not necessarily uniform,
can be determined adaptively reflecting the local properties
of the point set. E.g. grouping based on point density or prior
classification are both possible. In their paper, they only con-
sider point clouds with homogeneous density (e.g. air-bone
LIDAR data) which – as they also mention – cannot generally
be hold for indoor point cloud recordings. To reduce the query
execution time they apply B- and R-trees, and function-based
indexing.

In [6], Meyer and Brunn shows how 3D point clouds
can be integrated into PostgreSQL/PostGIS with the use of
the Pointcloud extension and the functions of Point Data
Abstraction Library (PDAL). They form blocks from the
closest points in the 3D space, and store each block as a table
row in their database. During importing the point cloud into
the database, they use PDAL to group points into blocks.
PDAL offers two methods for grouping: a regular and an
irregular one. However, both have been designed for 2D point
sets, applying 2D tessellation on 3D point clouds by sim-
ply omitting the Z-coordinates. The authors combine these
2D approaches by introducing limits on the Z-coordinates
in the groups, resulting in a real 3D tessellation method.
They consider queries which return data points inside a given
polyhedron. However, the Pointcloud extension and PostGIS
do not implement algorithms to answer such queries, so they
apply a workaround and show the proposed 3D tessellation
is definitely worthwhile, but they do not clearly conclude
whether regular or irregular tiling is better.

Based on a thorough review of related work, we can con-
clude that though there are approaches and ideas relevant to
our work, we have not found any articles in the context of
DBMSs that address our specific task of template matching in
a scene point cloud. Note that our study relies on PostgreSQL
DBMS, and since the benefit of organizing points into blocks
is not conclusive, a flat table model is used without the
Pointcloud extension (see more details in Section IV-D).

III. A GENERAL SOLUTION FOR FEATURE-BASED
TEMPLATE-MATCHING PROBLEM
A. PROBLEM DEFINITION
Let S denote the scene representing a large-scale 3D point
cloud (e.g., high resolution recordings of one or more rooms,

VOLUME 9, 2021 76895



D. Varga et al.: Template Matching for 3D Objects in Large Point Clouds Using DBMS

houses, cities or even larger areas) stored in a database, and
Q the template (or query) point cloud which is generally
much smaller and represents an object (e.g., a household
object, a car or a snapshot about a local environment) or a
smaller area. In this context, the goal of template matching
is to find all occurrences of Q in scene S and estimate the
transformations T1, . . . ,Tn, where n ≥ 0 is the number of
query occurrences in S , and Ti (i ∈ [1..n]) is a transformation
fitting query point cloud Q to its ith occurrences in scene
S. A template-matching is a special case of the point set
registration problems where additional presumptions hold:

1) S � Q, meaning that the scene point cloud is orders
of magnitude larger than the template point cloud (e.g.,
an object in a house, a car in a district, a building in a
city).

2) The number of occurrences is not known in advance.
3) Scene S is known in advance, enabling preprocessing

steps as offline phases, but the template point cloud
only becomes known during the online processing
phase.

B. GENERAL PIPELINE
In this section, we define themain steps of a general template-
matching pipeline and also indicate which steps could benefit
from integration with databases. According to our problem
definition, the pipeline can be split into offline and online
phases.

1) Offline phase. Since the scene point cloud is available
in advance, preprocessing steps (e.g., transformations,
feature computations, indexing) can be performed
offline to make the online phase fast. These includes
downsampling, detecting and removing outliers, esti-
mating and orienting normal vectors, and any other
operations which can speed up the online process-
ing. Feature-based pipelines can also benefit from
offline processing: keypoint detection, calculating fea-
ture descriptors, dimension reduction of feature vectors
and creating point pairs or point triplets. Results of
this phase including the point cloud and the calculated
metadata with appropriate indexing structures can be
loaded into a DBMS.

2) Online phase.
a) Preprocessing of template cloud. During online

preprocessing we can perform those compu-
tations which necessary to find the template
occurrences in the scene. We can do the same
preprocessing steps as on the scene cloud. In this
case, however, we need to pay attention to the
computational cost, because it is included in the
total time of query evaluation. Note that if a spe-
cific use case has a requirement on the query
execution time, the preprocessing steps can be
accelerated by choosing faster but less accurate
methods or changing the parameters of the algo-
rithms. In these algorithms there is a trade-off
between run time and reliability.

b) Correspondence estimation. To estimate trans-
formations we need to find all possible matches.
One way to do this could be to determine point-
to-point correspondence (or correspondences
between point pairs or point triplets [7]). Due
to the number of possible correspondences, it is
advisable to use some kind of heuristics. As we
will see later, different methods may use very
different approaches. Because of the large size of
the scene cloud, this step can be a good place to
use a database.

c) Transformation estimation and validation.
While some methods perform transformation
estimation in one step, feature-based registration
pipelines often generate an initial transformation,
and then refine in with some kind of iteration
algorithm. If there is an initial transformation,
the task can be interpreted as a point set registra-
tion problem. There are many algorithms which
are able to produce an accurate transformation
from a not so accurate initial transformation [8].
One of the best-known algorithm is the Itera-
tive Closest Point and its improved versions [9].
After the transformation estimation the next step
is the transformation validation in which we need
to determine the goodness of these. In general
goodness is defined by some kind of score which
shows what is the percentage of overlap between
the two clouds (usually called alignment or fit-
ness score). The key to successful registration
is to adjust well the acceptance threshold of the
goodness score. Defining a goodness score and its
acceptance threshold are not trivial tasks. There
are several characteristics need to be consider:
noisiness and density of the input clouds, object
occlusions in the scene cloud.

IV. PROPOSED METHOD
As mentioned previously, we assume a scene point cloud
that cannot fit into the memory of a single server and thus
the application of existing in-memory template matching
methods are not feasible. To solve this problem at large
scale, we propose a DBMS-based pipeline consisting of the
following steps (see Figure 1):

1) Data preprocessing

a) Outlier detection and normal vector computations
(Section IV-A)

b) Keypoint detection (Section IV-B)
c) Generating feature descriptors (Section IV-C)

2) Correspondence estimation (Section IV-E)
3) Transformation estimation (Section IV-F)

The proposed pipeline consists of online and offline
phases. The offline phase includes the preprocessing of the
scene point cloud: the detection of keypoints that capture the
most informative points of the cloud that reflect the main

76896 VOLUME 9, 2021



D. Varga et al.: Template Matching for 3D Objects in Large Point Clouds Using DBMS

FIGURE 1. An overview of the proposed DBMS-based template matching pipeline.

structure of the scene data properly, and the computation
of feature descriptors for keypoints moving the point cloud
from 3D to a high dimensional feature space. Note that in
addition to the raw 3D points all the results of the offline
phase are also stored in the database and used to accelerate
the online processing. In the online phase, a query cloud is
given as an input. Then all the previous steps are applied to
the query point cloud to get a uniform representation in the
feature space. Finally, the correspondence and transforma-
tion estimations are carried out to answer the query. In this
section, we detail the various building blocks of the proposed
template matching pipeline and the DBMS-related aspects
of its implementation. In other works where the problem
definition is similar to ours, the authors divide the offline and
online phases differently. Namely, considering the template
point cloud processing as a offline step and the scene cloud
processing as a online step [3].

A. OUTLIER DETECTION AND NORMAL
VECTOR COMPUTATIONS
Different point clouds can be captured by devices with
various noise properties and thus may have quite different
characteristics that should be taken into account during the
preprocessing phase. Awidely usedmetric in the literature for
characterizing point clouds is the approximated point cloud
resolution (pcr). It averages the distances between each point
and its nearest neighbor in point cloud. Many preprocessing
algorithms (e.g., normal estimation, feature description) use
pcr to determine their internal parameters. Note that pcr can
be misleading if the typical distance between a point and its
nearest neighbor is not uniform. To avoid this, the standard
deviation of nearest neighbor distances from pcr can be taken
into consideration.

Since different capturing techniques and devices add some
level of noise to the point cloud, our pipeline starts with
applying a simple noise filter first. In our case, it iterates over
all of the points in the data set, and for each point locally

fits a plane on its neighborhood which can be defined with
a radius or the number of nearest neighbors. The algorithm
removes outlier points that are farther from the fitted plane
than a predefined adjustable threshold. This simple mech-
anism can easily remove isolated points, but the threshold
needs to be set carefully to avoid filtering out important parts
such as corners in the data set. This step can be omitted if the
input point cloud is not affected by significant noise.

As a second step, the normal vectors, or simply normals,
for all points in the cloud needs to be calculated. Similarly
to the previous step, the neighborhood of each point in the
data set is fitted by a plane, and the perpendicular vector
is considered as the normal vector at that point. The radius
parameter, which determines the magnitude of the neighbor-
hood, is crucial and has a significant impact on the final
result.

Finding the right radius parameters is difficult. We need a
radius for the normal estimation and for the feature descrip-
tion too. The values of these parameters strongly depends on
the characteristics of the input point cloud, such as density,
size, resolution of the capturing device, etc. One solution
could be performing grid search on the parameter space [10].
Another solution is to make these parameters depend on
the pcr or the diameter of the point cloud, and to choose a
multiple of these [3]. Despite the problemswith pcr explained
above we decided to choose the latter solution.

After the normal vector was calculated, its orientation
should be determined. The normal orientation is a well-
known and difficult problem, and many solutions have been
proposed in the past few years [11]. The problem is that even
two adjacent points in a point cloud may have opposite nor-
mal directions. Since feature descriptors [12] generally used
for template matching are very sensitive to normal orienta-
tions, global consistency needs to be ensured. For this reason,
the proposed pipeline applies the well-proven algorithm of
Hoppe et al. [13] that uses minimum spanning trees to reach
globally consistent orientation.

VOLUME 9, 2021 76897



D. Varga et al.: Template Matching for 3D Objects in Large Point Clouds Using DBMS

FIGURE 2. Scene cloud: (a) The indoor dataset (b) Random keypoints (red) in the indoor cloud (c) Color space based on the first
3 dimension (according to the eigenvectors belonging to the three largest eigenvalues).

In the following sections, we assume that a good quality
point cloud is loaded into the database. A point cloud has
good quality if it is not affected by noise and the typical
distance between a point and its nearest neighbor is uniform
(fixed resolution). If it is not the case, as with one of our data
set used for evaluation, the noise filtering method mentioned
previously can be combined with voxel grid filtering to solve
the density problem. The voxel grid filter creates a grid in
the euclidean space. After applying the filter, every non-
empty grid element called voxel is replaced by a single point
(centroid or medoid) representing all the points situated in the
voxel.

B. KEYPOINT DETECTION
Since we assume a huge scene point cloud, sub-sampling
is essential to reduce the computational complexity of the
pipeline. Most of the existing approaches for point cloud
matching or registration apply techniques for selecting inter-
esting points [14] that are often referred to as keypoints.
Numerous keypoint detection algorithms have been pub-
lished in recent years, some of them are hand-crafted [15],
[16], but the most recent ones apply the concept of deep
learning [17], [18]. The goal of keypoint detection is to select
unique and important points that capture the main character-
istics of the entire point cloud, and thus matching algorithms
can work with the reduced number of keypoints instead of the
whole point cloud.

For this purpose, we carried out experiments with the
state-of-the-art keypoint detection methods, but none of them
worked reliably enough to be used as the basis of indexing
nor produced consistent results with from the data sets used
in this paper. The main challenge posed by our pipeline is that
it includes a clustering step that does not tolerate sparse key-
points these methods generally result in. However, the ran-
dom keypoint selection proved to be suitable for our template
matching pipeline. Note that the selected points are not real
keypoints since they are not particularly interesting points,
but this technique is good for sub-sampling. Depending on
the input point cloud, and based on our experiences selecting
2-5% of all the points as keypoints is enough for successful

matching. Since keypoint selection should not only be applied
on the scene data set but the query data set as well, random
selection has the advantage of fast execution. Figure 2 depicts
one of the data sets we use for testing. Figure 2/(a) shows all
the points of the point cloud while Figure 2/(b) illustrates the
keypoints provided by random sampling from the same data
set. One can observe that the keypoints marked by red points
capture the key character of the original data set.

In contrast, Vock et al. [3] use a different approach.
To reduce the potential sample candidates, they detect edge
points, and consider only these to make transformation
hypothesis. In our experiments, using edge detection instead
of random keypoints resulted is slightly better matching prob-
abilities, Unfortunately, edge detection has too high compu-
tational cost to keep the online processing times low enough.

C. FEATURE DESCRIPTION
Keypoints result in a compact representation of the original
point cloud. To compensate the information loss caused by
the sub-sampling, for each keypoint we calculate a feature
vector describing its local context within a predefined neigh-
borhood. To determine the neighborhood size, a practical rule
of thumb is to use the multiple of pcr to set the radius, but the
scale of the point cloud also needs to be taken into account
to get meaningful feature vectors. Feature vectors can then
be used for measuring the similarity between two keypoints
(e.g., if we have a corner point in the query point cloud,
we can find similar corner points in the scene point cloud).
There are many existing approaches for calculating feature
descriptors in 3D point clouds. According to recent survey
papers [19], [20] we have chosen the Fast Point Feature His-
togram (FPFH) method [12] that results in descriptive feature
vectors of only 33 dimensions and is computationally effi-
cient. According to the comparative evaluations it provides a
good balance between matching accuracy and computational
efficiency.

However, 33 dimensions for each keypoint is too high
to get efficient query speed in the database. Accord-
ing to Prakhya et al., Principal Component Analysis
reduce the dimensionality of the 3D descriptor and retains

76898 VOLUME 9, 2021



D. Varga et al.: Template Matching for 3D Objects in Large Point Clouds Using DBMS

FIGURE 3. Query cloud: (a) The box object which is on the table in the indoor dataset (b)
Random keypoints in the box cloud (c) Color space based on the first 3 dimension.

its descriptiveness [21]. Therefore the proposed pipeline
applies Principal Component Analysis (PCA) for dimen-
sion reduction of the feature space. After PCA we selected
the eigenvectors for the 5 largest eigenvalues, reducing the
33 dimensions of the feature space to 5. Figure 2/(c) illustrates
the three largest principal components in the color-space.
Here, the color-space means that the red, green and blue color
ingredients correspond to the values of the first, second and
third principal components normalized into interval [0, 1],
respectively. Note that in this figure we use the entire point
cloud for better illustration, but in the pipeline the features are
only stored for the keypoints. One can observe that the three
largest principal components can solely distinguish edges,
corners and planes. Figure 3 depicts the same for a simple
box object: (a) the raw 3D point cloud, (b) selected keypoints
in the cloud, and (c) the points colored with the three largest
principal components.

For a similar purpose, Vock et al. [3] used a 4-dimensional
point-pair feature vector, instead of a feature descriptor
for every point. The use of PCA is not required for a
4-dimensional feature vector, but generating all point pairs
for the template cloud would have been more expensive.

D. DATABASE PREPARATION
The Generalized Search Tree (GiST) [22], as its name sug-
gests, is a template index structure that is an abstraction
of search trees such as the well-known B-tree or R-tree.
The GiST framework is implemented in PostgreSQL DBMS.
It allows to build an index over a column with user defined
types for which the so-called support functions required
for the index structure and the related algorithms are also
implemented. Using these functions, the GiST framework
provides other important methods for the tree, such as search,
insert, etc. By creating a so-called operator class1 within Post-
greSQL, it can be indicated that a GiST framework is used
and it can be specified which support functions are associated
with the custom data type. In addition, the operators can be
listed here which are indexable, that is, if these are included

1See https://www.postgresql.org/docs/current/sql-createopclass.html and
https://www.postgresql.org/docs/current/xindex.html

in certain clauses (usuallyWHERE clauses) of an SQL query,
the GiST can help in speeding up the evaluation.

Both 3D points and feature vectors are stored in the form
of cube data type2 in PostgreSQL DBMS. This data type
with several useful operators represents multidimensional
points or cubes. For our purpose, themost important operators
are operator @> checking if a cube contains another cube, and
operator <-> that determines Euclidean distance between
two cubes. A Generalized Search Tree (GiST) index operator
class is also implemented over cube values which can be
applied to the former operator in WHERE clauses, and to the
latter operator inORDER BY clauses, and thus it can speed up
the search for nearest neighbors. The GiST implementation
of the cube extension can be considered as the regular R-
tree for multidimensional cubes [23]. It is interesting to note
that Pointcloud extension of PostgreSQL DBMS3 can also
be used for storing point cloud data. In contrast to the flat
table model we use in our pipeline, points are assigned to
blocks that can then be used to create an index on spatial data.
However, it is shown in [24] that block-based approaches
have high computational overhead (especially constructing
and decoding blocks) in most of the use cases. Furthermore,
the Pointcloud extension with PostGIS integration also sup-
ports the regular R-tree indexing.4 From our perspective,
there is no essential difference between the cube extension
and the Pointcloud extension. In the proposed pipeline the
DBMS follows the flat table model.

Accordingly, all the 3D points of scene point cloud are
stored in table scene_points_table (id number,
coords cube) while the feature vectors, for those of
them that are keypoints, in table scene_keypoints_
table (p_id number, feats cube) where
column p_id is a foreign key to id of table scene_
points_table. To accelerate the k Nearest Neighbor
(k-NN) join operation, GiST index structures are built
on top of scene_points_table on column coords
and of scene_keypoints_table on column feats,
respectively. For query point cloud, we also create two
tables, table query_points_table (id number,

2https://www.postgresql.org/docs/current/cube.html
3https://github.com/pgpointcloud/pointcloud
4https://postgis.net/workshops/postgis-intro/indexing.html

VOLUME 9, 2021 76899



D. Varga et al.: Template Matching for 3D Objects in Large Point Clouds Using DBMS

FIGURE 4. (a) Keypoints which remained after the knn-join (b) Keypoints after the DBSCAN clustering (green: good cluster points, red: bad
cluster points) (c) Transformed clouds based on transformations created by minimum weight matching.

coords cube) and table query_keypoints_table
(p_id number, feats cube) with GiST index
structures for similar purposes. (Note that in table query_
points_table, the transformed query point cloud is
stored before the final refinement step using the ICP method,
see below.)

E. CORRESPONDENCE ESTIMATION
A stored function get_feat_neighbors has been cre-
ated to execute k-NN join operation between the scene point
cloud (scene_keypoints_table) and the query point
set (query_keypoints_table). It returns a ‘virtual’
table in which each tuple is in the form of (qf_id int,
sf_id int, nn_idx int) where
• qf_id identifies a query point,
• sf_id identifies a scene point,
• nn_idx represents the rank of the scene point among
the nearest neighbors of the query point in the feature
space.

Note that the function get_feat_neighbors iterates
over all the records of query_keypoints_table in a
loop and finds k nearest neighbors of feats of a given
record, using the metric operator <-> in ORDER BY clause
and LIMIT k clause to take benefit of the GiST. Otherwise if
the above-mentioned loop is omitted and ‘real’ join is applied,
the query optimizer of PostgreSQL may use sequential scan.

After the k-NN joinwe perform aDBSCANclustering [25]
on all scene keypoints from the previously returned virtual
table. DBSCAN is a density-based spatial clustering, and we
use it with Euclidean norm. One of themost important param-
eter of the algorithm is the ε (epsilon). It defines a distance
which is used to get the points’ neighborhood. Basically, this
parameter decides which points belong to the same cluster.
Since we prefer one cluster per object, keypoints cannot be
farther from each other than ε. This is the reason why we
cannot use the well-known keypoint detectors that provide
spare keypoints that in many cases are farther than the ε
threshold. The DBSCAN step computes a set of clusters,
whose keypoints are very similar to the keypoints in the query
point cloud.

After the k-NN join operation and DBSCAN, to discover
the best correspondence set between keypoints of the query
point cloud and a cluster, we construct a bipartite graph
(Vs,Vq,E) over the keypoints such that each node of vertex
set Vs (Vq) represents a scene keypoint of the cluster (query
keypoint). There is an edge e with weight we between a
node sn of Vs and a node qn of Vq if and only if the feature
vector of the scene point represented by sn is the wth

e nearest
neighbor of the feature vector of the query point represented
by qn, as illustrated in Figure 5. Note that the value of
we can be between 1 and k . To find a minimum-weight
matching, we use the Hungarian algorithm [26]. (Finding the
best feature matching based onminimum-weight matching of
bipartite graph is not a new idea, a similar approach can be
seen in [27].)

F. TRANSFORMATION ESTIMATION
Now, we have a correspondence set between every cluster
and the query point cloud. To obtain the transformations,
the [28] method is used, calculating a transformation matrix
matching the two point clouds. This matrix is then used to
create a transformed query point cloud that is stored in table
query_points_table. Figure 4 illustrates the result of
these transformations. As you can see, the query point cloud
does not fit perfectly into the occurrences of the object in
the scene cloud. Usually, the initial transformation which
based on the correspondence set doesn’t achieve perfect fit.
Therefore, we have to refine the transformation using an
accurate point set registration method [9].

For refining the transformation, our pipeline applies a
well-known iterative method, called Iterative Closest Point
(ICP) [29]. The goal of ICP is to minimize the distance
between two point clouds. The algorithm works with two
point clouds as input, and computes a transformation that
matches the two cloud. The algorithm consists of 3 steps:
(1) for each point from one point cloud it searches for its
nearest neighbor from the other point cloud. (2) the algorithm
estimates a transformation which minimize a metric error,
usually the sum of squared distances between point pairs
from the previous step. (3) it applies the transformation to the

76900 VOLUME 9, 2021



D. Varga et al.: Template Matching for 3D Objects in Large Point Clouds Using DBMS

TABLE 1. Datasets used in the evaluation. The indoor dataset contains many outlier points, thus in the preprocessing step many points was removed. The
last column shows how many times an object occurs in the corresponding scene cloud.

FIGURE 5. Minimum weight matching of bipartite graph. Red nodes:
keypoints in the query cloud. Grey nodes: keypoints in a scene cloud
cluster. There is an edge between a red and a gray node if the feature
vector of the gray point is in the k neighborhood of the red point’s feature
vector. The weight of the edge is 1 if the gray node the first nearest
neighbor, the weight is k if the gray node the kth nearest neighbor. In the
figure, the two red lines will be selected as correspondences.

point cloud, then iterates.We can set the maximum number of
iteration, or a threshold for the error, which tells the algorithm
when to stop.

Nowadays, there aremany improved ICP variants and other
registration methods exists [30]. Some works have shown
that it is difficult to study the convergence properties of ICP
variants, because their cost function changes from iteration to
iteration, while in case of other methods the convergence to
a fixed point is guaranteed [31]. Because ICP has remained
a widely used method and is easy to implement, we decided
to use it in our work, and we have chosen the point-to-plane
ICP variant [32].

Because of the in-memory algorithm of ICP, the use of the
whole scene point cloud would not be efficient. Therefore,
we cut the environment of the transformed query point cloud
from the scene point cloud, using database tables (scene_
points_table and query_points_table), GiST on
column coords and operator @>. To define the cut,

we create a bounding box around the transformed query
point cloud, and then extend it. To do this, we multiply
the diameter of the bounding box with a parameter, called
diametercoefficient . The higher the diametercoefficient ,
the more time the ICP needs. But if the diametercoefficient
is too low, the ICP cannot give a good transformation. After
we cut the environment from the scene point cloud, based
on this extended bounding box, ICP is executed on the cut
environment and the transformed query point cloud. Finally,
ICP refines transformations for every environment-query pair
consisting of a limited number of points.

V. RESULTS
Experiments are performed on an instance of PostgreSQL
10.12 DBMS, running on a single virtual machine (Intel(R)
Core(TM) i7-7700 CPU @ 3.60GHz (4 Cores) with 11GB
RAM) with Ubuntu 18.04.4 LTS OS.

A. EVALUATION
For evaluation we use two data sets described in Table 1.
The first is the ‘‘RGB-D Scenes Dataset v2’’ [33] which
consists many scenes containing furniture (chair, sofa, table)
and objects (cup, box). This data set is good for testing,
because it has many outlier points and the density of the
point clouds also varies. Thus, it can test the robustness of
the proposed template matching pipeline. The indoor scene
point cloud contains the query object three times.

The other is the TLESS data set [34]. It consists of 20 object
meshes. We selected 6 objects from it, and put it on a plane
using the MeshLab software. We put one of the objects on
the table 6 times with varying pose (Figure 7/a). After that
we used a tool from the Point Cloud Library [35] called
‘‘mesh2pcd’’ which can convert a CAD model to a point
cloud using ray tracing operations. This gave us a point cloud
which also contains noise. The TLESS scene point cloud
contains the query object six times. Figure 7/b shows us the
result of template matching with using the TLESS data set.

Note that we have not run our method on datasets which do
not fit in thememory of our test bed. To do this wewould need
massive parallelization of feature descriptor computation on
GPU because the high cost of it. In this work we did not focus
on that.

When the whole process is over we have the final trans-
formations, but not all clusters may have found the correct
object. At this point, we can separate the clusters into two
classes: true positives and false positives. We call a cluster

VOLUME 9, 2021 76901



D. Varga et al.: Template Matching for 3D Objects in Large Point Clouds Using DBMS

FIGURE 6. (a) The environment of the query cloud in the scene cloud (b) Final registration result (after ICP).

FIGURE 7. (a) The CAD model of the simulated dataset with 6 object occurences (b) Found object occurences in simulated point cloud.

true positive, if its keypoints are on a real object occurrence.
Otherwise, the cluster is a false positive. To do this separation,
we look at the overlap ratios in Table 2, which shows the
percentage of overlap between the query clouds and the scene
cloud.

We say that a point cloud fully overlaps with another point
cloud, if every point from the first cloud have a neighbor
from the other point cloud within a given distance threshold.
This distance threshold is also the multiple of pcr , like many
other parameters. In our experiments we used the double
of pcr . Other works use similar approaches. The method of
Vock et al. generate many transformation hypotheses and
fast hypotheses validation is essential for them. Therefore,
they use a fast voxel-based approach to estimate a goodness
score.

Based on our experiments, if a cluster is true positive, then
its overlap ratio will be higher than 85%, but in the most cases
90% is also gives good results (e.g. for the indoor data set we
got higher overlap ratio than 90% in all true positive cases,
but for the simulated data set, we got 89,5% in 1 out of 6 true

TABLE 2. Overlap ratios for clusters before and after transformation
refinement using ICP. The false positive clusters are aggregated while the
true positive clusters (real object occurrences) have a number in their
names. The data shows that before ICP refinement true positive clusters
already have a higher overlap ratio than false positive clusters. This
difference increased further after ICP refinement.

positive clusters). After we separated the clusters, we need to
remove the false positive clusters from the result.

76902 VOLUME 9, 2021



D. Varga et al.: Template Matching for 3D Objects in Large Point Clouds Using DBMS

FIGURE 8. The performance of k-NN join operation.

It would be great if we could distinguish between true
positive and false positive clusters before ICP. Unfortunately,
it is not a trivial task. It can easily happen that a false positive
cluster has a larger overlap ratio, than a true positive cluster’s
overlap ratio after the initial transformation. This occurs if
the scene cloud contains very similar objects to the query
cloud, but these are not real occurrences. A solution could be
filtering out the clusters after the initial transformation and
before the ICP refinement with a high threshold, but it would
exclude many true positive clusters too. For the data sets that
we used, we can give a threshold which can separate between
true positive and false positive clusters before the ICP. But for
a completely new data set it is difficult to predict a definitely
good value, even if it exists.

B. THE PERFORMANCE OF k-NN JOIN OPERATION
Figure 8 depicts the performance of k-NN join operation. The
curve shows logarithmic behavior at low k due to GiST usage
and linear behavior at high k because presumably (almost)
all index pages are accessed for each query keypoint but
index structure is small to fit in main memory so it is cached
therefore time cost of the functionget_feat_neighbors
is dominated by the cost of LIMIT k clause which is linear
on k . The most interesting values of k are the little ones
because it is likely that the query object does not occur many
times in scene point cloud. For this measurement, we used a
random data set which contains 100,000 scene keypoints and
10,000 query keypoints because we do not expect larger data
set of a contiguous space. As we can see in Table 1, in fact,
it could be smaller. (For the sake of completeness, we also
tried this measurement with smaller and larger data sets but
these had the same tendencies.) Note that if data set contains,
for example, points of a whole building, the search can be
parallelized.

C. SCALING SCENE POINT CLOUD SIZE
In this section, we scale the data size of scene point cloud
up by a factor of 2 and 4 to examine our method in terms
of both elapsed time and storage requirements. The number
of occurrences of the template point cloud is always three
in the scene point cloud and the number of the potentially
overlapping points is essentially the same between template
point cloud instances. The increase in the data size applies to
the other parts of the scene point cloud. Time-cost measure-
ments can be split into offline and online phases. (The offline
phase means that the related steps can be performed with the
knowledge of the scene point cloudwithout the template point
cloud. For the online phase, the elapsed times of those steps
are calculated which are related to template point cloud.) The
elapsed times of the offline steps are the followings:

1) loading the source file of the scene point cloud into
memory to calculate keypoints and feature descriptors,

2) determination of the random keypoints,
3) calculating the feature descriptors,
4) storing all the 3D points of scene point cloud in a table

and the feature descriptors, for those of them that are
keypoints, in another table, furthermore, building index
structures of the tables (a B-tree over the primary key
and GiST index structures over the 3D points and the
feature descriptors).

The online steps include the following time costs:

0) preprocessing steps which are the same preprocessing
steps like on the scene point cloud (see the offline steps)

1) performing k-NN join query between the tables of the
scene and template feature descriptors, respectively

2) executing DBSCAN clustering on all scene keypoints
from the result set of the k-NN join query

3) finding minimumweight matching per cluster based on
nn_idx (see Sec. IV-E)

4) performing initial transformation based on correspon-
dences which are selected by minimum weight match-
ing

5) determination of the context of the transformed point
cloud in the scene point cloud (retrieve scene points
from the database which are enclosed by the enlarged
bounding box of the transformed point cloud)

6) executing ICP to register the template point cloud into
the previously mentioned context.

Figure 9 shows the offline time costs. One can observe that
the most time-consuming part is the calculation of feature
descriptors. It should also be noted that determining key-
points can generally take much longer, but this is negligible
for our method, since random selection of keypoints is the
fastest way. Furthermore, it should be noted that we compute
the feature descriptors for all points, because we project
the space of the original feature descriptors into a lower
dimensional space using PCA, in order to achieve a better
utilization of storage. Creating tables and indices takes a
similar amount of time as the current calculation of the feature
descriptors.

VOLUME 9, 2021 76903



D. Varga et al.: Template Matching for 3D Objects in Large Point Clouds Using DBMS

FIGURE 9. Scaling plots of the offline time costs. It shows that the most time-consuming parts are the calculation of feature
descriptors and table / index creations.

FIGURE 10. Scaling plots of the online time costs. The top panel shows the smaller time-consuming parts. The bottom panel
shows that the minimum weight matching and ICP method take more amount of time by two orders of magnitude than the time
costs in the top panel.

Turning to online time costs, identifying the point cloud
context within scene point cloud obtained by the initial trans-
formation based on correspondences between the keypoints
is the most time-consuming step in Figure 10 (a) and (b).

A box query is executed on the scene point table using the
GiST index structure which is built on top of the table on
the 3D points to retrieve data of this context. The larger the
scene point cloud is, the more time-consuming this query is

76904 VOLUME 9, 2021



D. Varga et al.: Template Matching for 3D Objects in Large Point Clouds Using DBMS

FIGURE 11. Scaling plots of the storage requirements. The GiST index structures of the points require the most space.

(cf. GiST scaling in Figure 11). The time cost of k-NN join
is not so pronounced at the given sizes but it also depends on
the paging technique used by the DBMS. Further studies on
the k-NN join can be found in Section V-B.
Minimum weight matching and ICP method take more

amount of time by two orders of magnitude than the
time costs mentioned by the previous paragraph, therefore
these steps are examined independently of the previous
ones. Applying ICP method to each point cloud context
within scene point cloud obtained by initial transformations,
Figure 10 (c) and (d) show that the larger the scene point
cloud is, the longer the total run time of ICP step is. To do
this, it should first be stated that the more points the scene
point cloud contains, the more clusters DBSCAN clustering
is expected to result because the more likely that the feature
descriptors of the template keypoints can join such feature
descriptors which are not in template point cloud occurrences
of the scene point cloud. (Of course, if there were no random
keypoints, then the situation would be different, for example,
there were no correspondence candidates located on the floor
etc.) Our method tries to transform template point cloud for
each cluster and ICP commonly takes much longer in the
‘‘hopeless’’ cases because false positive cluster usually con-
tains few keypoints. This explains the relationship between
the size of the scene point cloud and the total run time
of ICP step. Further investigation showed that, for a given
cluster, the Pearson’s correlation coefficient of the number of
correspondence candidates and the elapsed time of minimum
weight matching is 0.96196 (p-value: 8.7636 · 10−6), more
precisely, the matching runs are scaling cubically with the
number of candidates in the cluster. Obviously, true positive
clusters are expected to have many more matching candidate
point pairs, therefore the running time is significantly more
for these clusters than for false positive clusters. It is also
important, when the size of the scene point cloud increases,
then the total time of matching decreases because our experi-
ences selecting 5%of all the points as keypoints but the occur-
rence number of the template point cloud is fixed, therefore

fewer and fewer keypoints fall into true positive clusters. This
explains the results.

Figure 11 gives an idea of the scaling of storage require-
ments. The GiST index structures require the most space,
the storage requirement of the scene points is comparable to
this, and the other needs are dwarfed.

D. FUTURE WORK
One can see that some parts of the proposed template match-
ing pipeline (e.g., k-NN join) can take advantage of databases.
The DBSCAN clustering could also run in a database, but as
far as we know, currently, there is no DBSCAN implemen-
tation for three dimensional data in PostgreSQL. Our future
plan includes its implementation for 3D points. Note that in
our prototype pipeline, DBSCAN has been executed outside
the database.

According to the evaluation results, our method is robust
to noise, but we did not test it with partially overlapping
point clouds or with point clouds from different capturing
sensors.

One of the biggest challenges is to find the right parameters
for the algorithms: radius for normal estimation, radius for
feature description, k parameter of k-NN join, ε parameter of
DBSCAN, diametercoefficient for bounding box extension,
and threshold to distinguish between true positive and false
positive clusters. Almost all of these parameters depends
on the characteristic of input point clouds. Many of these
parameters can be calculated automatically when we get to
know the query cloud, but it is difficult to give good values
before knowing the density, scale, and noisiness of it. Impor-
tant to note that good results are achievable even without
the optimal parameters, usually at the cost of online runtime
increase. A well-known problem is that if two query objects
are too close in the scene point cloud, DBSCAN clustering
may recognize it as only one cluster. Thus, the method can
only find one object from the two. Further work is needed to
solve this problem and automatically determine the correct
parameters.

VOLUME 9, 2021 76905



D. Varga et al.: Template Matching for 3D Objects in Large Point Clouds Using DBMS

Finally, our most important plan is to test the our method
with really large input clouds, and compare it with similar
methods [3].

VI. CONCLUSION
In this paper, we introduced a template matching pipeline
that exploits the benefits of DBMS, enabling to process
large scene point clouds that is not possible with existing
in-memory solutions. Several phases of our method can be
executed in the database (e.g., k-NN join, DBSCAN). The
performance of our PostgreSQL-based prototype implemen-
tation has been evaluated with simulated and real-world
data sets. To the best of our knowledge, this is the first
study that combines the template matching pipeline with
databases.

Typical real-time applications expect sub-second or few
seconds long response times. One can note that our pipeline
does not fulfill this requirement in its current form.We have to
note that the main focus of our work is not on real-time query
processing but on how large point cloud data sets should be
stored and how template matching can be supported by a
DBMS. In Section V-C, we have introduced the time costs
of the different steps but, on the one hand, this evaluation
has been carried out on a normal desktop computer, and
thus high performance servers are likely to result in shorter
execution times. On the other hand, the components of the
pipeline have not necessarily been selected in terms of speed.
For example, ICP provides good accuracy but its execution
time is too long for real-time applications with the applied
settings. If an approximate transformation is enough, then the
number of iterations can be maximized in the ICP. Additional
acceleration can be introduced by, e.g., using a parallelized
version of ICP.

As with many other feature-based registration pipelines,
we used an iterative method (Iterative Closest Point - ICP) for
refining the initial transformation. Therefore, the accuracy of
the resulting transformations depends on ICP and its param-
eters. For this reason, we think that it is not worth comparing
the results from this point of view. Based on our evaluation,
we can say that our method can solve the template matching
problem, it is robust to noise, and the results look promising
to be applicable to large point clouds.

REFERENCES
[1] A. Nüchter and K. Lingemann. (2020). Robotic 3D Scan Repository.

Universität Osnabrück, Jacobs University Bremen, Julius-Maximilians-
Universität Würzburg. Last Accessed: Mar. 03, 2020. [Online]. Available:
https://kos.informatik.uni-osnabrueck.de/3Dscans

[2] K. Lai, L. Bo, X. Ren, and D. Fox, ‘‘A large-scale hierarchical multi-view
RGB-D object dataset,’’ inProc. IEEE Int. Conf. Robot. Autom., May 2011,
pp. 1817–1824.

[3] R. Vock, A. Dieckmann, S. Ochmann, and R. Klein, ‘‘Fast template match-
ing and pose estimation in 3D point clouds,’’ Comput. Graph., vol. 79,
pp. 36–45, Apr. 2019.

[4] P. van Oosterom, O. Martinez-Rubi, M. Ivanova, M. Horhammer,
D. Geringer, S. Ravada, T. Tijssen, M. Kodde, and R. Gonçalves, ‘‘Mas-
sive point cloud data management: Design, implementation and execu-
tion of a point cloud benchmark,’’ Comput. Graph., vol. 49, pp. 92–125,
Jun. 2015.

[5] R. Cura, J. Perret, and N. Paparoditis, ‘‘A scalable and multi-purpose point
cloud server (PCS) for easier and faster point cloud data management and
processing,’’ ISPRS J. Photogramm. Remote Sens., vol. 127, pp. 39–56,
May 2017.

[6] T. Meyer and A. Brunn, ‘‘3D point clouds in PostgreSQL/PostGIS for
applications in GIS and geodesy,’’ in Proc. 5th Int. Conf. Geographical
Inf. Syst. Theory, Appl. Manage., vol. 1, 2019, pp. 154–163.

[7] S. Hinterstoisser, V. Lepetit, N. Rajkumar, andK.Konolige, ‘‘Going further
with point pair features,’’ in Computer Vision—ECCV (Lecture Notes in
Computer Science). Cham, Switzerland: Springer, 2016, pp. 834–848.

[8] U. Castellani and A. Bartoli, ‘‘3D shape registration,’’ in 3D Imag-
ing, Analysis and Applications. Cham, Switzerland: Springer, Jan. 2012,
pp. 353–411.

[9] B. Bellekens, V. Spruyt, R. Berkvens, R. Penne, and M. Weyn, ‘‘A bench-
mark survey of rigid 3d point cloud registration algorithms,’’ Int. J. Adv.
Intell. Syst., vol. 1, pp. 118–127, Jun. 2015.

[10] D. Varga, S. Laki, J. Szalai-Gindl, L. Dobos, P. Vaderna, and B. Formanek,
‘‘On fast point cloud matching with key points and parameter tuning,’’
in Pattern Recognition, S. Palaiahnakote, G. S. di Baja, L. Wang, and
W. Q. Yan, Eds. Cham, Switzerland: Springer, 2020, pp. 498–511.

[11] S. Ochmann and R. Klein, ‘‘Automatic normal orientation in point
clouds of building interiors,’’ 2019, arXiv:1901.06487. [Online]. Avail-
able: http://arxiv.org/abs/1901.06487

[12] R. B. Rusu, N. Blodow, and M. Beetz, ‘‘Fast point feature histograms
(FPFH) for 3D registration,’’ in Proc. IEEE Int. Conf. Robot. Autom.,
May 2009, pp. 3212–3217.

[13] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle, ‘‘Sur-
face reconstruction from unorganized points,’’ ACM SIGGRAPH Comput.
Graph., vol. 26, no. 2, pp. 71–78, Jul. 1992.

[14] D. Holz, A. E. Ichim, F. Tombari, R. B. Rusu, and S. Behnke, ‘‘Registration
with the point cloud library: A modular framework for aligning in 3-D,’’
IEEE Robot. Autom. Mag., vol. 22, no. 4, pp. 110–124, Dec. 2015.

[15] W. Prawira, E. Nasrullah, S. R. Sulistiyanti, and F. X. A. Setyawan, ‘‘The
detection of 3D object using a method of a Harris corner detector and
Lucas–Kanade tracker based on stereo image,’’ in Proc. Int. Conf. Electr.
Eng. Comput. Sci. (ICECOS), Aug. 2017, pp. 163–166.

[16] D. G. Lowe, ‘‘Distinctive image features from scale-invariant keypoints,’’
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, Nov. 2004.

[17] J. Li and G. H. Lee, ‘‘USIP: Unsupervised stable interest point detection
from 3D point clouds,’’ inProc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2019, pp. 361–370.

[18] Z. J. Yew and G. H. Lee, ‘‘3DFeat-Net: Weakly supervised local 3D
features for point cloud registration,’’ in Proc. Eur. Conf. Comput. Vis.
(ECCV), 2018, pp. 607–623.

[19] X.-F. Han, S.-J. Sun, X.-Y. Song, and G.-Q. Xiao, ‘‘3D point cloud
descriptors in hand-crafted and deep learning age: State-of-the-art,’’ 2018,
arXiv:1802.02297. [Online]. Available: http://arxiv.org/abs/1802.02297

[20] Y. Guo, M. Bennamoun, F. Sohel, M. Lu, J. Wan, and N. M. Kwok,
‘‘A comprehensive performance evaluation of 3D local feature descrip-
tors,’’ Int. J. Comput. Vis., vol. 116, no. 1, pp. 66–89, Jan. 2016.

[21] S. M. Prakhya, B. Liu, W. Lin, K. Li, and Y. Xiao, ‘‘On creating low
dimensional 3D feature descriptors with PCA,’’ in Proc. IEEE Region 10
Conf. (TENCON), Nov. 2017, pp. 315–320.

[22] M. J. Hellerstein, F. J. Naughton, and A. Pfeffer, ‘‘Generalized search trees
for database systems,’’ in Proc. 21th Int. Conf. Very Large Data Bases.
San Francisco, CA, USA: Morgan Kaufmann, 1995, pp. 562–573.

[23] A. Borodin, S. Mirvoda, I. Kulikov, and S. Porshnev, ‘‘Optimization of
memory operations in generalized search trees of postgresql,’’ in Beyond
Databases, Architectures and Structures. Towards Efficient Solutions for
Data Analysis and Knowledge Representation, S. Kozielski, D. Mrozek,
P. Kasprowski, B. Małysiak-Mrozek, and D. Kostrzewa, Eds. Cham,
Switzerland: Springer, 2017, pp. 224–232.

[24] H. Liu, P. van Oosterom, M. Meijers, and E. Verbree, ‘‘Management of
large indoor point clouds: An initial exploration,’’ ISPRS-Int. Arch. Pho-
togramm., Remote Sens. Spatial Inf. Sci., vol. 4, pp. 365–372, Sep. 2018.

[25] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, ‘‘A density-based algo-
rithm for discovering clusters a density-based algorithm for discovering
clusters in large spatial databases with noise,’’ in Proc. 2nd Int. Conf.
Knowl. Discovery DataMining. Menlo Park, CA, USA:AAAI Press, 1996,
pp. 226–231.

[26] H. W. Kuhn, ‘‘The Hungarian method for the assignment problem,’’ Nav.
Res. Logistics Quart., vol. 2, nos. 1–2, pp. 83–97, Mar. 1955.

76906 VOLUME 9, 2021



D. Varga et al.: Template Matching for 3D Objects in Large Point Clouds Using DBMS

[27] Y. Pan, B. Yang, F. Liang, and Z. Dong, ‘‘Iterative global similarity points:
A robust coarse-to-fine integration solution for pairwise 3D point cloud
registration,’’ in Proc. Int. Conf. 3D Vis. (3DV), Sep. 2018, pp. 180–189.

[28] R. Hartley and A. Zisserman,Multiple View Geometry in Computer Vision.
Cambridge, U.K.: Cambridge Univ. Press, 2nd ed., 2004.

[29] P. J. Besl and N. D. McKay, ‘‘A method for registration of 3-D shapes,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 14, no. 2, pp. 239–256,
Feb. 1992.

[30] F. Wang and Z. Zhao, ‘‘A survey of iterative closest point algorithm,’’ in
Proc. Chin. Autom. Congr. (CAC), Oct. 2017, pp. 4395–4399.

[31] Y. Tsin and T. Kanade, ‘‘A correlation-based approach to robust point set
registration,’’ in Computer Vision—ECCV, T. Pajdla and J. Matas, Eds.
Berlin, Germany: Springer, 2004, pp. 558–569.

[32] S. Rusinkiewicz and M. Levoy, ‘‘Efficient variants of the ICP algorithm,’’
in Proc. 3rd Int. Conf. 3-D Digit. Imag. Model., 2001, pp. 145–152.

[33] K. Lai, L. Bo, and D. Fox, ‘‘Unsupervised feature learning for 3D scene
labeling,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2014,
pp. 3050–3057.

[34] T. Hodan, P. Haluza, S. Obdrzalek, J. Matas, M. Lourakis, and X. Zabulis,
‘‘T-LESS: An RGB-D dataset for 6D pose estimation of texture-less
objects,’’ in Proc. IEEE Winter Conf. Appl. Comput. Vis. (WACV),
Mar. 2017, pp. 880–888.

[35] R. B. Rusu and S. Cousins, ‘‘3D is here: Point cloud library (PCL),’’ in
Proc. IEEE Int. Conf. Robot. Autom., May 2011, pp. 1–4.

DÁNIEL VARGA received the M.Sc. degree in
computer science from Eötvös Loránd University,
Budapest, in 2017, where he is currently pur-
suing the Ph.D. degree with the Department of
Information System, Faculty of Informatics. His
research interests include 3-D point cloud pro-
cessing related topics: triangulation, point cloud
matching, and pose estimation.

JÁNOS MÁRK SZALAI-GINDL received the
M.Sc. degree in mathematics from the Budapest
University of Technology and Economics and
the Ph.D. degree from Eötvös Loránd Univer-
sity, Budapest, in 2020. He wrote his dissertation
on data-intensive methods for managing scientific
data. He currently works as an Assistant Professor
with the Department of Information System, Fac-
ulty of Informatics, Eötvös Loránd University. His
main research interests include scientific databases

and data science. He has recently participated in multiple research projects
in those fields.

BENCE FORMANEK received the degree in elec-
trical engineering from the Budapest University
of Technology, in 1998, and the Ph.D. degree in
information science and technology in the area of
compressed video transcoding algorithms from the
University of Miskolc, in 2013. He was a Research
Fellow with the Multimedia Group, Matáv PKI,
and worked on digital television related projects
at CableWorld Ltd. He currently works as a Senior
Researcher with Ericsson Research, Budapest. He

focuses on the problems of AR related services in cloud environment.

PÉTER VADERNA received the Ph.D. degree in
physics from the Physics of Complex Systems
Department, Eötvös Loránd University, Budapest,
in 2008, in the area of traffic modeling in commu-
nication networks. He currently works as a Senior
Researcher with Ericsson Research, Budapest. He
also focuses on AI in network analytics and also
emerging technologies, such as AR/VR that can
potentially be involved in various business areas
of telecommunication.

LÁSZLÓ DOBOS received the Ph.D. degree in
physics from Eötvös Loránd University, Budapest,
Hungary, in 2012. He is currently an Assistant
Professor with the Department of Physics of Com-
plex Systems, Eötvös Loránd University. His main
research interests include scientific databases,
point cloud databases, and astrophyisics. He par-
ticipates in multiple research projects in those
fields.

SÁNDOR LAKI (Member, IEEE) received the
M.Sc. and Ph.D. degrees in computer science
from Eötvös Loránd University, in 2007 and
2015, respectively. He is currently an Assis-
tant Professor with the Department of Informa-
tion Systems, Eötvös Loránd University. He has
authored more than 40 peer-reviewed articles and
demo articles, including publications at IEEE
JOURNAL ON SELECTED AREAS IN COMMUNICATIONS,
ToN, INFOCOM, ICC, and SIGCOMM. His

research interests include active and passive network measurement, traffic
analytics, programmable data planes, and their application for new network-
ing solutions.

VOLUME 9, 2021 76907


