
RESEARCH ARTICLE

Nucleophosmin1 and isocitrate

dehydrogenase 1 and 2 as measurable

residual disease markers in acute myeloid

leukemia
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Abstract

Monitoring measurable residual disease (MRD) in acute myeloid leukemia (AML) plays an

important role in predicting relapse and outcome. The applicability of the leukemia-initiating

nucleophosmin1 (NPM1) gene mutations in MRD detection is well-established, while that of

isocitrate dehydrogenase1/2 (IDH1/2) mutations are matter of debate. The aim of this study

was to investigate the stability of NPM1 and IDH1/2 mutations at diagnosis and relapse ret-

rospectively in 916 adult AML patients. The prognostic value of MRD was evaluated by

droplet digital PCR on the DNA level in a selected subgroup of patients in remission. NPM1

re-emerged at relapse in 91% (72/79), while IDH1/2 in 87% (20/23) of mutation-positive

cases at diagnosis. NPM1 mutation did not develop at relapse, on the contrary novel IDH1/2

mutations occurred in 3% (3/93) of previously mutation-negative cases. NPM1 MRD-positiv-

ity after induction (n = 116) proved to be an independent, adverse risk factor (MRDpos 24-

month OS: 39.3±6.2% versus MRDneg: 58.5±7.5%, p = 0.029; HR: 2.16; 95%CI: 1.25–3.74,

p = 0.006). In the favorable subgroup of mutated NPM1 without fms-like tyrosine kinase 3

internal tandem duplication (FLT3-ITD) or with low allelic ratio, NPM1 MRD provides a valu-

able prognostic biomarker (NPM1 MRDpos versus MRDneg 24-month OS: 42.9±6.7% versus

66.7±8.6%; p = 0.01). IDH1/2 MRD-positivity after induction (n = 62) was also associated

with poor survival (MRDpos 24-month OS: 41.3±9.2% versus MRDneg: 62.5±9.0%, p =

0.003; HR 2.81 95%CI 1.09–7.23, p = 0.032). While NPM1 variant allele frequency

decreased below 2.5% in remission in all patients, IDH1/2 mutations (typically IDH2 R140Q)

persisted in 24% of cases. Our results support that NPM1 MRD even at DNA level is a reli-

able prognostic factor, while IDH1/2 mutations may represent pre-leukemic, founder or sub-

clonal drivers.
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Introduction

Acute myeloid leukemia (AML) is an aggressive hematological malignancy with a rapidly

evolving treatment paradigm. Although the majority of patients remain incurable, long-term

remissions can be achieved in roughly one-third of these patients. The identification of prog-

nostic markers bears outstanding relevance for optimizing treatment strategy. Measurable

residual disease (MRD) after induction therapy and before hematopoietic stem cell transplan-

tation is an independent, post-diagnosis prognostic indicator of relapse and survival. The

application of molecular genetics and multiparametric flow cytometry are recommended for

monitoring. Requirements for a reliable molecular genetic MRD marker are the following: (i)

mutation burden fluctuates in parallel with leukemic tumor burden: present at disease onset,

disappearing in remission and re-emerging at relapse, (ii) available method with the capability

of achieving high sensitivity [1–3].

Nucleophosmin1 (NPM1) mutations are among the most frequently detected genetic alter-

ations in AML (present in 25–35% of primary AML) defining a separate disease entity. NPM1
frameshift mutations result in altered protein termination, loss of nuclear localization signals,

and consequential abnormal cytoplasmic localization of the mutant protein [4–6]. Isocitrate

dehydrogenase 1 and 2 (IDH1 and IDH2) mutations occur in 7–14% and 8–19% of AML cases

respectively. The gain-of-function mutations result in the production of an oncometabolite

with consequential hypermethylation, gene expression alterations and impaired hematopoietic

differentiation [4, 7].

NPM1 alterations were reported as definite leukemia-founder mutations and optimal MRD

markers. On the other hand contradictory data exist, whether IDH1and IDH2 mutations rep-

resent pre-leukemic, or dominant clone mutations, therefore their value in MRD monitoring

is not well established [3, 8]. In our study, we aimed to correlate NPM1 and IDH1 and IDH2
mutational variant allele frequencies at diagnosis, remission and relapse to investigate the

potential application of these mutations in MRD monitoring.

Material and methods

Patients

The study included 916 adult patients (449 males/467 females, median age at diagnosis 54

years; range: 16–94), consecutively diagnosed with AML between January 2001 and June 2020

in our Institute (Department of Hematology and Stem Cell Transplantation, Central Hospital

of Southern Pest National Institute of Hematology and Infectious Diseases, Budapest, Hun-

gary). In this patient cohort 253 patients were NPM1, 68 IDH1 and 94 IDH2 mutations positive

(74 patients carried both NPM1 and IDH1/2 mutations). A significant proportion of patients

81% (n = 746/916) received curative treatment, out of which 26% (n = 176/746) was treated by

allogeneic hematopoietic stem cell transplantation (HSCT). MRD monitoring was retrospec-

tively evaluated in a selected subgroup of 116 NPM1 (51 male/65 female, median age at diagno-

sis 48 years), and 62 IDH1/2 positive patients (23 male/39 female, median age was 49 years).

The inclusion criteria for the MRD monitored subgroup were the following: (i) curative che-

motherapy; (ii) morphologic leukemia-free state (MLFS) after induction [1]; (iii) available

DNA sample at diagnosis, after induction, and/or before HSCT. Patients with palliative ther-

apy, death in aplasia or death from indeterminate cause, no MLFS after 2 courses of intensive

induction treatment; unavailable DNA sample, or patients with rare undetectable NPM1 or

IDH1/2 mutation were excluded from MRD evaluation. MRD was determined after induction

and one month before HSCT if DNA samples were available. Data from AML patients diag-

nosed between 2001 and 2009 have already been reported in an earlier study [9] and IDH1/2
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data between 2001–2018 were presented in a Hungarian report [10]. Data collection was per-

formed retrospectively. Definitions of fms-like tyrosine kinase 3 internal tandem duplication

(FLT3-ITD) low and high allelic ratio, MLFS, overall survival (OS) and relapse-free survival

(RFS) were described by European LeukemiaNet (ELN) 2017 recommendations [1]. The study

was in accordance of the Declaration of Helsinki and was approved by the Institutional Review

Board of Central Hospital of Southern Pest National Institute of Hematology and Infectious

Diseases. Written informed consent was provided by all patients.

Molecular genetic methods

Genomic DNA and RNA were isolated from bone marrow samples drawn at diagnosis, remis-

sion and relapse. Screening for hotspot mutations were performed from genomic DNA, at the

time points of diagnosis and repeatedly at relapse by fragment analysis in case of NPM1
(NPM1 diagnosis n = 916, relapse n = 161 if DNA was available); [11], and by high-resolution

melting (HRM) or allele specific PCR in case of IDH1/2 (diagnosis n = 842, relapse n = 116 if

DNA was available) [9]. Positive cases were monitored with droplet digital PCR (ddPCR) after

induction therapy (NPM1 n = 116; IDH1/2 n = 62; double positive = 33), before HSCT (1–30

days before; NPM1 n = 38; IDH1/2 n = 22), if DNA was available at that time point. Mutant

NPM1 RNA expression was also tested at diagnosis and after induction therapy (n = 39).

Diagnosis and follow-up samples of NPM1 as well as IDH1 and IDH2 positive AML patients

were investigated by ddPCR. For NPM1 mutation detection primer and probe sequences are

summarized in S1 Table [12–14]. NPM1 type-A (c.860_863dupTCTG, p.Trp288CysfsTer12)

specific reverse primer was described by Gorello et al. [13, 15]. A degenerate R primer (type-

N) reported by Mencia-Trinchant et al. [14] was applied to detect NPM1 mutations at the

same position with different nucleotide insertions (c.860_863dupNNNN, p.Trp288Cysf-

sTer12, referred as NPM1 type-N mutation in this study). GAPDH was used as the reference

gene for the assay for DNA [16], and ABL1 for RNA [17]. Reactions were performed using

Supermix for Probes (no dUTP) (BioRad), 900 nM of each primer, 250 nM of each probe, 100

ng DNA or 240 ng cDNA per well. For genomic DNA, assays were designed by Bio-Rad for

the detection of the most common IDH1/2 mutations (IDH1 R132C ID: dHsaMDV2010053,

R132H ID: dHsaMDV2010055 and IDH2 R140Q ID: dHsaMDV2010057, R172K ID:

dHsaMDV2010059). The PCR program started with an initial denaturation at 98˚C for 10

min, 40 cycles of denaturation at 94˚C for 30 sec, annealing at 55˚C (for DNA) and at 60˚C

(for RNA) for 60 sec followed by enzyme deactivation at 98˚C for 10 min. The QX200 Droplet

Digital PCR System and QuantaSoft Software (Version 1.7.4.0917, BioRad) were used for the

evaluation of the results.

The ddPCR measurements were acceptable if: (i) reference copies or total copies> 32,000, (ii)

total droplet count>15,000; (iii) empty droplets> 100. MRD samples were measured in dupli-

cate wells to achieve optimally more than 4.5-log sensitivity (at least 32,000 copies of reference

gene) [18]. The ddPCR measurements were also performed in 20–35 mutation negative controls

to determine the limit of blank (LoB = meannegative samples + 1.645x standard deviation [SD]) and

to determine the limit of detection (LoD = meannegative samples + 3.3×SD) [19, 20]. Variant allele

fraction (VAF) lower, than 2.5% correspond to<5% (pre)leukemic cells. Samples taken during

MLFS (bone marrow blasts<5%; absence of blasts with Auer rods; absence of extramedullary dis-

ease) displaying>2.5% VAF were categorized as persisting preleukemic clones.

Statistical analysis

Categorical variables were compared by the Fisher’s exact test, continuous variables by Mann-

Whitney tests. Kaplan-Meier method with log-rank statistics were used to calculate OS and
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RFS [1]. After induction OS were calculated from the time point of diagnosis, RFS from remis-

sion irrespective from performing HSCT. Regarding pre-transplant MRD monitoring, compari-

sons of OS and RFS were performed from the time point of HSCT. Following univariate

analysis, age, cytogenetics, FLT3-ITD allelic ratio [1], NPM1, white blood cell count (WBC) at

diagnosis, and MRD status were included in a Cox proportional hazard model for OS and RFS.

Hazard ratios (HR) and 95% confidence interval (95%CI) values were calculated. In order to

identify the cut off discriminating between low and high MRD burden groups, HRs for OS were

compared at six different limits (0.05%; 0.1%; 0.2%; 0.5%; 1% and 2%) for NPM1 type-A and

type-N separately and combined [21]. P values below 0.05 were considered as statistically signifi-

cant. For the statistical analysis SPSS Statistics version 22 (Armonk, NY) was applied.

Results

Occurrence of NPM1, IDH1/2 mutations in the total AML cohort

This study included 916 adult AML patients (S2 Table). Cytogenetic results were available for

94% (n = 861) of patients: favorable (n = 136; 16%), intermediate (n = 507; 59%) and adverse

(n = 218; 25%) ELN 2017 cytogenetic risk categories were identified. NPM1 mutation occurred

in 28% (n = 253/916), FLT3-ITD in 25% (n = 226/916); FLT3 tyrosine kinase domain muta-

tions (FLT3-TKD) in 8% (n = 71/910); IDH1 in 8% (n = 68/842) and IDH2 in 11% (94/842).

IDH1 R132H associated with NPM1 positivity more commonly than other IDH1 R132 codon

mutations: 90% (n = 27/30) versus 26% (n = 10/38), p<0.0001. Also IDH2 R140Q co-occurred

with NPM1 in 49% (n = 37/76), while R172K never associated (p<0.0001).

In the NPM1-positive cohort, 211 patients were treated with curative intent, out of which

remission (MLFS) was reached in 174 cases (Fig 1). The stability of NPM1 mutation during

disease evolution was studied with 79 paired NPM1 mutant samples drawn at diagnosis and

relapse. The NPM1 mutation re-emerged at relapse in 91% of NPM1 positive cases (n = 72/79).

Time period from diagnosis till relapse was not significantly longer in cases where NPM1 was

undetectable at relapse compared to cases with persistent NPM1 mutation at relapse [median

7.1 month (range: 0.1–172.2 month) versus 6.6 month (range: 2.2–152.9 month) respectively,

p = 0.46]. All seven patients with clonal NPM1 regression had normal karyotype at the time of

diagnosis; one patient out of five with karyotyping available at relapse had clonal evolution (tri-

somy 8). None of our NPM1 negative AML cases gained NPM1 mutation positivity at relapse,

Fig 1. Clinical characteristics of NPM1 positive AML patients. aRemission was defined as morphologic leukemia-

free state (MLFS) after induction. bDNA not available at the time point of relapse.

https://doi.org/10.1371/journal.pone.0253386.g001
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among the 82 NPM1 negative patients, where samples at diagnosis and relapse were available

at both time points.

In the IDH1/2-positive cohort (n = 162), 132 patients were treated with curative intent, out

of which remission (MLFS) was reached in 90 cases (Fig 2). IDH1/2 mutations were undetect-

able at relapse in 13% of the IDH1/2-positive cohort with available DNA (n = 3/23, 1 IDH1
R132C, 1 IDH2 R140Q and 1 IDH2 R172K). Time from diagnosis till relapse was not proven

to be significantly longer in cases where IDH1/2 was undetectable at relapse compared to cases

with persistent IDH1/2 mutation at relapse [median 7.4 month (range: 2.2–11.4 month) versus

8.6 month (range: 0.83–57.2 month) respectively, p = 0.65]. Interestingly in three (IDH1
R132H: n = 1; IDH2 R140Q: n = 2) out of 93 IDH1/2 negative AML cases where diagnosis and

relapse samples were both available, IDH1/2 mutations appeared only at relapse. These cases

were re-evaluated by the more sensitive ddPCR method at diagnosis and VAF (0–0.23%) was

under the detection limit of HRM and/or allele specific PCR in each case.

The applicability of ddPCR methods

NPM1-positive patients screened by capillary electrophoresis at diagnosis were retrospectively

typed with type-A and type-N primers using ddPCR. Out of 200 AML patients (53 samples were

not available) 97% (n = 194) was proved to be NPM1 type-A or type-N and not more than 3%

(n = 6) could not be detected with type-N primer [14] (S3 Table). IDH1 or IDH2 mutations were

screened by HRM and allele-specific PCR (S4 Table). Out of the 68 IDH1 positive AML patients

39% (n = 27) was IDH1 R132C, 46% (n = 30) IDH1 R132H, 15% (n = 11) IDH1 R132G/L/S/P. In

case of IDH2 positive AML, 81% (n = 76) harbored IDH2 R140Q and 19% (n = 18) IDH2
R172K. In our patient cohort, 93% (151/162) IDH1/2 mutation positive patients carried an

IDH1/2 variant detectable with ddPCR. Interestingly, IDH1 R132H was associated with NPM1
type-A mutation in 48% (n = 13/27), while other IDH1 R132 codon mutants and IDH2 R140Q

co-occurred with NPM1 type-A mutation in 70% (n = 33/47; p = 0.08; S5 Table).

NPM1 MRD monitoring

The LoD for NPM1 type-A ddPCR was lower than type-N ddPCR both in DNA and RNA set-

tings (S6 Table). NPM1 mutant VAF values in DNA and NPM1 mutant expression levels in

Fig 2. Clinical characteristics of IDH1 and IDH2 positive AML patients. aRemission was defined as morphologic

leukemia-free state (MLFS) after induction. bDNA not available at relapse. cDNA not available at diagnosis for IDH1/2
testing.

https://doi.org/10.1371/journal.pone.0253386.g002
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RNA were considered as MRD negative if below 0.01% (type-A) or below 0.05% (type-N). In

case of NPM1, 174 NPM1 positive cases reached MLFS after induction, MRD monitoring

could not be performed in 5 cases due to technical limitations (NPM1 mutation could not be

detected by type-A or type-N primers), and in 53 cases due to non-available DNA. Basic char-

acteristics such as gender, age at diagnosis, induction therapy, HSCT, and outcome (death in

aplasia or in indeterminate cause, remission, relapse, cytogenetic and molecular genetic data)

of NPM1 positive and MRD monitored patients were included in S3 Table. In 116 NPM1
MRD monitored patients, NPM1 mutant VAF was reduced below 2.5% in all patients in MLFS

after induction.

We examined the OS and RFS of 90 AML patients who have NPM1 type-A mutation and

further 26 patients who were monitored with type-N NPM1 ddPCR from DNA. The median

NPM1 VAF at diagnosis was 45.7% (range: 11.5–49.3%), while after induction therapy was

0.06% (range: 0–2.5%). Out of the 90 patients with type-A NPM1, 35 patients were MRD-nega-

tive, and 55 MRD-positive. Favorable outcome measures were observed in MRD negative

compared to MRD positive patients for NPM1 type-A (24-month OS: 50.2±8.9% for negative

versus 27.7±6.5% for positive, p = 0.010; and 24-month RFS: 40.2±8.6% versus 15.8±5.1%

p = 0.009, S1 Fig). MRD-positive patients were further divided into MRD-low and MRD-high

burden subgroups. In our patient cohort, NPM1 VAF 0.2% was considered as the limit to dis-

criminate between low and high burden: 28 patients were classified into the MRD low category

(ranging from 0.01 to 0.2% NPM1 mutant allele burden), and 27 patients in the MRD high cat-

egory (above 0.2%). As expected even within the MRD positive subgroup, high allele burden

cases showed a tendency to more adverse outcome measures (24-month OS: 40.6±10.3% for

low versus 16.1±7.4% for high MRD, p = 0.088; and 24-month RFS: 19.4±7.8% versus 12

±6.5%; p = 0.107, S1 Fig). Analyses were also performed for NPM1 aggregate types-A and -N,

and similar results were obtained, (24-month OS: 58.5±7.5% for negative versus 39.3±6.2% for

positive, p = 0.029; and 24-month RFS: 48.3±7.5% versus 27.8±5.6%, p = 0.019, Fig 3). The dif-

ference did not reach the level of significance within the MRD positive group (24-month OS:

47.6±9.4% for low versus 32.6±8.0% for high, p = 0.250; and 24-month RFS: 29.3±8.2% versus

26.5±7.6%, p = 0.372, Fig 3). NPM1 type-A and -N MRD positivity proved to be an indepen-

dent risk factor in multivariate analysis beside age at diagnosis, cytogenetics and FLT3-ITD
allele burden, and white blood cell (WBC) count above 100.000 per microliter at diagnosis

(OS: HR 2.16 95%CI 1.25–3.74, p = 0.006; RFS: HR 2.21 95%CI 1.32–3.68, p = 0.002)

(Table 1).

Fig 3. Probability of overall survival and relapse free survival according to NPM1 MRD after induction. On both

panels (A: overall survival; B: relapse free survival), the outcome of NPM1 MRD-negative (MRDneg VAF<0.01–0.05%

depending on NPM1 mutation type) and MRD-positive (MRDpos VAF>0.01–0.05%) subgroups are shown with the

associated p1 value. The NPM1 MRD-positive subgroup was further divided in MRD low-positive (MRDlow

VAF = 0.01–0.2%) and MRD high-positive (MRDhigh VAF> 0.2%) subgroups, and compared with p2 values.

https://doi.org/10.1371/journal.pone.0253386.g003
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High allelic ratio of FLT3-ITD at diagnosis (categorized according to the ELN 2017 risk

stratification) is a well-documented adverse risk factor in AML. In the favorable subgroup of

mutated NPM1 without FLT3-ITD (FLT3-ITDneg) or with low allelic ratio (FLT3-ITDlow), the

presence NPM1 MRD provided a valuable prognostic biomarker (NPM1 MRDneg versus

MRDpos 24-month OS: 66.7±8.6% versus 42.9±6.7%, p = 0.010; RFS: 60±8.9% versus 31.1

±6.2%, p = 0.006). NPM1 MRD did not influence survival in the FLT3-ITDhigh subgroup.

NPM1 MRD negative and FLT3-ITD high allele burden resulted similar survival measures to

NPM1 MRD positive patients (Fig 4).

Out of the 38 patients who underwent allo-HSCT for MRD monitoring with the NPM1
mutation type-A (n = 27) and type-N (n = 11), pre-HSCT sample was available in 32 (24 type-

A and 8 type-N). NPM1 MRD negativity before allo-HSCT proved to be favorable prognostic

factor, OS after HSCT was significantly longer in MRD negative compared to positive patients

(24-month OS MRDneg: 74.7± 9.8% versus MRDpos: 16.2±14.6%, p = 0.012; Fig 5).

Similarly to genomic DNA two or three log reduction was observable in mutant NPM1
RNA expression (NPM1/ABL1, n = 39 patients) [at diagnosis: median 610.8% (range: 124.3–

2882.4%), after induction: 1.0% (range: 0–398%)]. Despite the low number of RNA samples,

high mutant NPM1 expression after induction correlated with unfavorable outcome

(24-month OS mutant NPM1 expression <1%: 55.2±12.9% versus mutant NPM1 expression

>1% 20.0±11.9%, p = 0.005; and 24-month RFS: 51.6%±12.5% versus 12±7.9% respectively;

Table 1. Multivariate analysis of NPM1 MRD status after induction.

Overall Survival (n = 116) Relapse Free Survival (n = 116)

Hazard ratio (95% CI) P Hazard ratio (95% CI) P

NPM1 MRD positivitya 2.16 (1.25–3.74) 0.006 2.21 (1.32–3.68) 0.002

Age (per year) 1.02 (1.00–1.04) 0.019 1.02 (1.00–1.04) 0.053

Cytogeneticsb 1.50 (0.86–2.63) 0.155 1.62 (0.94–2.82) 0.085

FLT3-ITDc 1.75 (1.19–2.56) 0.004 1.74 (1.23–2.46) 0.002

WBC >100.000/μL 0.88 (0.50–1.56) 0.656 0.93 (0.54–1.58) 0.775

aNPM1 MRD positivity was defined as VAF>0.01–0.05% depending on mutation type.
bCytogenetics coded as normal karyotype (reference), other intermediate and adverse risk.
cFLT3-ITD coded in three categories as wild type (reference), low and high allelic ratio.

Abbreviations: 95%CI: 95% confidence interval; FLT3-ITD: fms-like tyrosine kinase 3 –internal tandem duplication; MRD: measurable residual disease; NPM1:

nucleophosmin1; WBC: white blood cell count at diagnosis.

https://doi.org/10.1371/journal.pone.0253386.t001

Fig 4. Overall survival and relapse free survival according to NPM1 MRD stratified by FLT3-ITD allelic ratio.

Based on the ELN 2017 genetic risk stratification, NPM1 positive patients were categorized in to favorable (FLT3-

ITDneg/low) and intermediate (FLT3-ITDhigh) subgroups. On both panels (A: overall survival; B: relapse free survival),

further subgroups were established according to NPM1 MRD after induction. NPM1 MRD negativity was defined as

VAF<0.01–0.05% depending on mutation type.

https://doi.org/10.1371/journal.pone.0253386.g004
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p<0.001). We investigated parallel RNA and DNA-based NPM1mut ddPCR methods from 39

samples after first induction therapy from 39 patient who have both DNA and RNA samples.

The assay sensitivity proved to be higher on RNA samples. Altogether 46% of the RNA samples

that displayed NPM1mut expression (median: 0.1%; range: 0.01–5.1%) were detected as nega-

tive in the matching DNA samples (<0.01%). RNA assay (NPM1mut expression) proved to be

more sensitive (median: 1.3-log; range: 0.0–2.78-log) compared to DNA assay (NPM1mut

VAF) in samples with concomitant positivity both on RNA and DNA level (S2 Fig).

IDH1/2 MRD monitoring

The LoB for IDH1/2 mutation detection was 0.06–0.08% and the LoD was 0.09–0.12% (S6

Table). In general, VAF below 0.2% for each IDH1/2 form was considered as negative. In case

of 90 IDH1/2 positive patients in MLFS after induction, MRD monitoring could not be per-

formed in 8 cases with IDH1 R132G/L/S/P/ and in 20 cases with lacking DNA samples. Basic

characteristics of IDH1/2 positive and MRD monitored patients were included in S4 Table.

We observed that IDH1/2 VAF in morphologic leukemia free state was not reduced below

2.5% in 15 out of 62 cases (24%, 10 IDH2 R140Q, 3 IDH2 R172K, 1 IDH1 R132H and 1 IDH1
R132C). Seven cases were NPM1 positive (6 IDH2 R140Q and 1 IDH1 R132H) at diagnosis but

NPM1 mutational burden was reduced below 2.5% in remission. Regarding the outcome of

patients with persisting IDH1/2 mutation: 9 patients relapsed and subsequently died, 2 patients

alive after HSCT, 3 patients alive in complete remission after 12 months follow up and 1

patient died without relapse.

In our analyses, the survival of IDH1 or IDH2 MRD-negative patients was significantly bet-

ter than that of MRD-positive patients (24-month OS MRDneg: 62.5±9% versus MRDpos: 41.3

±9.2%, p = 0.003; 24-month RFS: 45.0±9.3% versus 38.8±9.6% respectively, p = 0.027, Fig 6).

Fig 5. Overall survival according to NPM1 MRD measured before HSCT. NPM1 MRD negativity before HSCT was

defined as VAF<0.01–0.05% depending on mutation type.

https://doi.org/10.1371/journal.pone.0253386.g005
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In multivariate analysis, IDH1/2 MRD positivity was proved to be an independent risk factor

for survival besides age, cytogenetics, FLT3-ITD, NPM1 and WBC (OS: HR: 2.81 95%CI: 1.09–

7.23, p = 0.032, RFS: HR: 2.80 95%CI: 1.15–6.82, p = 0.023, Table 2).

In allo-HSCT cases, pre-HSCT samples were available in 21 out of 22 patients (10 IDH1
and 11 IDH2). IDH1/2 MRD negativity (VAF<0.2%) before allo-HSCT did not reach statisti-

cal significance (24-month OS MRDneg: 92.3±7.4% versus MRDpos 68.6±18.6%, p = 0.149).

IDH1/2 MRD below 2.5% influenced significantly survival (24-month OS: MRD<2.5% 87.8

±8.1% versus MRD>2.5% 50.0±25.0% before allo HSCT, p = 0.015; Fig 7).

Discussion

The serial acquirement of somatic mutations in myeloid clone(s) was described as the multi-

step pathogenesis of AML. Several lines of evidence prove that NPM1 mutations are responsi-

ble for the definitive acute leukemic transformation, therefore considered as leukemia founder

mutations: (i) NPM1 mutations are completely absent in the population without hematological

malignancies even at a higher age [22–24]; (ii) NPM1 mutations cannot be detected in AML

patients months or years before the manifestation of AML [25, 26]; (iii) NPM1 mutations

occur rather rarely (approximately 2–3%) in preleukemic myeloid malignancies such as

myelodysplastic syndrome (MDS) or in myelodysplastic/myeloproliferative neoplasm

Fig 6. Overall survival and relapse free survival according to IDH1/2 MRD after induction. On both panels (A:

overall survival; B: relapse free survival) IDH1/2 MRD negativity defined as VAF<0.2% and MRD positivity as

VAF>0.2%.

https://doi.org/10.1371/journal.pone.0253386.g006

Table 2. Multivariate analysis of IDH1/2 MRD status after induction.

Overall Survival (n = 62) Relapse Free Survival (n = 62)

Hazard ratio (95% CI) P Hazard ratio (95% CI) P

IDH1/2 MRD positivitya 2.81 (1.09–7.23) 0.032 2.80 (1.15–6.82) 0.023

Age per year 1.03 (0.99–1.06) 0.126 1.02 (0.99–1.05) 0.256

Cytogeneticsb 1.98 (0.90–4.33) 0.089 2.36 (1.07–5.21) 0.034

FLT3-ITDc 1.00 (0.42–2.38) 0.994 1.06 (0.49–2.28) 0.889

NPM1 1.62 (0.57–4.58) 0.364 2.26 (0.82–6.25) 0.115

WBC >100.000/ul 1.17 (0.49–2.78) 0.727 1.04 (0.45–2.43) 0.922

aIDH1/2 MRD positivity was defined as VAF>0.2%.
bCytogenetics coded as normal karyotype (reference), other intermediate and adverse risk.
cFLT3-ITD coded in three categories as wild type (reference), low and high allelic ratio.

Abbreviations: 95%CI: 95% confidence interval; IDH1/2: isocitrate dehydrogenase 1/2; FLT3-ITD: fms-like tyrosine kinase 3 –internal tandem duplication; MRD:

measurable residual disease; NPM1: nucleophosmin1; WBC: white blood cell count at diagnosis.

https://doi.org/10.1371/journal.pone.0253386.t002
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(MDS/MPN), which are mainly characterized by the progression to overt AML [27]; (iv)

NPM1 mutations were not present in preleukemic hematopoietic stem cells [28, 29]. Our

observation that NPM1 VAF decreased below 2.5% in all cases with morphologic leukemia-

free state, also proved that NPM1 mutations do not occur in the preleukemic state. (v) A fur-

ther proof that NPM1 mutations harbor leukemia-initiating properties is the high reappear-

ance rate of NPM1 in relapse, which was demonstrated as high as 86–100% in several clinical

observations [30–39]. The long observational period in our study allowed us to detect late

AML relapses. In line with previous studies less than 10% of our NPM1 mutation positive

cases relapsed as wild type NPM1 AML. The loss of NPM1 mutation in our patient cohort was

not associated with longer remission before relapse, which was suggested by several previous

studies [31, 32]. Although our study did not investigate the spectrum of preleukemic muta-

tions, the persistence of IDH2 R140Q mutation was observed in a single case with NPM1-

mutation loss relapse 13 month after diagnosis.

Contradictory data exist in the literature, whether IDH1 and IDH2 mutations are preleuke-

mic or AML founder mutations. Several studies suggest IDH1/2 mutations as epigenetic modi-

fiers as preleukemic events. (i) In large scale populational screening studies for clonal

hematopoiesis of indeterminate potential (CHIP) mutations, IDH2 R140 mutations were

extreme rarely detected in elderly individuals (IDH2 R140Q/W: 0.014%, four out of 29562

individuals) [22]. (ii) IDH1 and IDH2 mutations were detectable as premalignant, high-risk

gene mutations years before the diagnosis of AML, but not in age-matched controls (8%;

n = 15/188; three IDH1 R132C/H/G and 12 IDH2 R140 positive individuals with a median of 7

years before AML diagnosis) [26]. (iii) IDH1 and IDH2 mutations are also rarely present in

preleukemic myeloid malignancies: 0.8–4% in chronic phase MPN, 4–14% in MDS, but its fre-

quency increases up to 20–25% in blast phase transformation [40–43]. (iv) IDH1 and IDH2
mutations were detectable in preleukemic hematopoietic stem cells [28, 29]. The comparison

of VAF values suggested that IDH1 and IDH2 mutations were more likely to develop before

NPM1 mutations [6]. The persistence of IDH1/2 mutations (especially IDH2 R140Q) in remis-

sion was observed in 7–39% of AML cases in the literature, [19, 44–46] which is in line with

our study (24% of IDH1 or IDH2 mutations were detectable in complete remission with a

higher than 2.5% VAF, 67% of persisting mutations was IDH2 R140Q). The high mutational

load in remission is a direct proof of preleukemic origin of the somatic mutation. This phe-

nomenon in case IDH1/2 mutations is not as frequent as in case of DNMT3A, TET2, ASXL1
gene mutations, where reported rates vary between 51–82% [2, 47–49], (v) At relapse both

IDH1/2 gene mutations showed a relatively high stability (86–88% reported in publications,

87% in our study) similar that of NPM1 mutation [31]. (vi) In IDH1/2 mutation negative

AML, the emergence of IDH1 or IDH2 mutations at relapse was observed in 10% in our study,

Fig 7. Probability of overall survival for IDH1/2 MRD before HSCT. On panel A, IDH1/2 MRD negativity before

HSCT was defined as VAF<0.2%, on panel B as 2.5%.

https://doi.org/10.1371/journal.pone.0253386.g007
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which suggests the subclonal, late origin of these mutations. Interestingly, there is a usual

mutation order in AML pathogenesis, but some mutations might appear both early and late

events [31, 50].

A recent meta-analysis proved that lower MRD was consistently associated with improved

outcome independently from applied method, sample source or sampling time of the assess-

ment [51]. Regarding molecular genetic detection techniques, like quantitative PCR, digital

PCR and next generation sequencing are extensively applied for MRD detection. High assay

precision and reproducibility make ddPCR particularly suitable for MRD monitoring, which

was reported in connection with several oncohematological drivers [52–56]. Individual assay

designs make the quantification of multiple NPM1 mutations challenging, but the application

of degenerated primers allows the simultaneous detection of multiple NPM1 mutations affect-

ing the same localization (c.860_863dupNNNN) [14]. Our data and other studies also sup-

ported, that less than 5% of NPM1 mutations affects nucleotides at different positions [11, 38,

57].

Although consensus exists about the importance of NPM1 MRD; broad range of heteroge-

neity was displayed concerning thresholds discriminating between low- and high-risk MRD.

Studies comparing mutant NPM1 transcript levels parallel in bone marrow (BM) and periph-

eral blood (PB) samples identified strong correlation, but an average of 1-log higher sensitivity

in BM [21, 34, 38, 57–61]. In line with this observation, 3-log reduction of NPM1mut/ABL1
transcript level was pointed as favorable prognostic indicator in BM, [21, 59, 60] but 4-log

reduction was required in PB after induction therapy [57, 58]. In our study, bone marrow sam-

ples were processed. As NPM1mut expression is highly abundant, greater sensitivity (median:

1.3 log, range: 0–2.78 log in our study) was achieved on RNA level than on DNA. NPM1mut

RNA expression level detection for MRD monitoring is recommended in the literature [13,

38]. Shayegi et al. investigated that 1% NPM1mut/ABL1 expression corresponds to 0.016%

NPM1mut VAF or 1 in 32000 cells (1.8 log difference between RNA and DNA levels) [60].

These data suggested that NPM1mut MRD screening should be performed on RNA expression,

but in case of RNA unavailability, highly sensitive DNA methods can substitute. The applied

cut-off for MRD negativity in our study (NPM1 type-A: 0.01% and type-N: 0.05% on DNA

level) corresponds approximately to 1% NPM1mut/ABL1 expression level. We were unable to

test large number of RNA samples, which is a major limitation of our retrospective study. Ivey

et al. [57] demonstrated that RNA-MRD positivity in PB after induction (2 cycles) corre-

sponded to higher cumulative incidence of relapse (MRC17 trial 3-year CIR: 82% versus 30%),

similarly Balsat et al. [58] (ALFA-0702 trial: 2-year CIR: 55% versus 21%); Hubmann et al. [62]

less than 3log-reduction in BM RNA-MRD (AMLCG 1999, 2004 and 2008 trial: 2-year CIR

77.8% versus 26.4%,); Kapp-Schwoerer et al. [34] less than 3-log10 BM or PB RNA-MRD

(AMLSG 09–09 trial 4-year CIR BM: 60% versus 28.5%; PB: 62.5% versus 33.9%). On the

DNA level, we also observed that MRD positivity (less than 3log reduction) was associated

with adverse outcome, and DNA-MRD after induction therapy is capable to identify high-risk

NPM1mut patients.

The co-occurrence with FLT3-ITD was recognized as an adverse factor in NPM1 mutant

AML, due to the highly proliferative nature of the leukemic clone with ITD [38, 63]. Although

NPM1 mutation was referred as favorable or intermediate ELN prognostic categories depend-

ing on the presence of FLT3-ITD with high mutational load [1]. Recently, the reclassification

of ELN prognostic criteria identified high FLT3-ITD load as adverse risk irrespective of NPM1
mutation status [64]. Allogeneic HSCT in first complete remission is not recommended in

favorable risk AML, on the other hand relapsed NPM1-positive cases have adverse outcome

[65]. We observed that the measurement of NPM1 MRD was capable to identify high risk

patients even in the favorable risk NPM1 positive AML without high ITD load. NPM1 MRD
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negativity (NPM1mut VAF<0.01–0.05% after induction) with high FLT3-ITD allele burden at

diagnosis showed similarly adverse survival to NPM1 MRD positive patients.

Molecular MRD measurements serve not only prognostic, but may influence therapy. In

case of persistent MRD, HSCT consolidation improved survival over chemotherapy [66]. In

ELN 2017 favorable risk NPM1mut AML subgroup, molecular failure (defined as NPM1mut/

ABL1>0.05% after consolidation or NPM1mut reappearance after molecular response; which

affected 40% of NPM1mut cases) served as indication for allogeneic HSCT in first complete

remission. MRD-guided approach involving early intervention resulted in improved outcome

(two-year OS: 85% for HSCT-treated patients with molecular failure and 39% for patients with

hematological relapse) [67]. For elderly or unfit patients, azacitidine was reported to prevent

or delay hematological relapse in MRD-positive AML [68].

Our data investigating pre HSCT NPM1mut MRD are in good concordance with other stud-

ies with similar MRD time-point assessment: pre HSCT MRD negativity predicts favorable

outcome after HSCT [21, 66, 69–71]. Detection of MRD-positivity before HSCT guide thera-

peutic choices during conditioning and graft versus host disease prevention, e. g. preferably T-

cell repleted versus T-cell depleted transplant [21]; preferably myeloablative versus reduced

intensity conditioning [72]. MRD measurements can even guide targeted FLT3-inhibitor ther-

apy identifying patients who benefit mostly [73].

The role of MRD-monitoring is well-documented in case of NPM1, but data are scarce

about IDH1 and IDH2 mutations. We applied BioRad-designed mutation detection reagents

on BioRad QX200 Droplet Digital PCR System, but interestingly we were not able to reach as

high sensitivity as in case of NPM1. Similar technical limits (LoD: 0.2%) were reported in a

previous study applying the same detection [19]. Our data also supported the preleukemic

nature of IDH1/2 mutations, but the persistence of IDH1/2 mutations (VAF>2.5%) in com-

plete remission was associated with adverse outcome, higher chance of relapse or the develop-

ment of myelodysplasia [19, 44]. The presence of a preleukemic clone in morphologic

leukemia-free remission was generally reported to associate with inferior survival compared to

patients without persisting oncogenic mutations [74, 75]. On the other hand, persistent

DNMT3A, TET2, ASXL1 mutations were not connected with higher relapse rate and several

reports described long-term remission even with high VAF [2, 47–49]. The frequency of per-

sistent IDH1/2 mutations in remission was reported as high as 7–39% depending on the VAF

cut -off (1–5%) or on the applied chemotherapy [2, 19, 44, 45], which was similar to our obser-

vation (24%). In line with previous publications [19, 44, 45], our data also indicated that per-

sisting IDH1/2 mutations in remission were associated with adverse prognostic impact.

Currently no guidelines exist whether pre-emptive therapeutic interventions (such as HSCT or

IDH1/2 inhibitors) could reduce relapse rate or improve survival in case of persisting IDH1/2
mutations in remission. The combination of IDH1 or IDH2 inhibitors with intensive chemo-

therapy in newly diagnosed AML might improve mutation clearance, although no compara-

tive data exist with or without the inhibitors [76].

In summary, we investigated a considerably large number of AML patients systematically

over a long time, the limitation of our study is the retrospective study design and the heteroge-

neous treatment protocols applied during the observational period. Our results support that

NPM1 MRD even at DNA level is a reliable prognostic factor. On the other hand, IDH1/2
mutations may represent pre-leukemic, founder or subclonal drivers, still IDH1/2 MRD may

also identify high risk AML. As MRD represents a biological continuum, special detailed

guidelines are required to establish proper thresholds for the initiation of pre-emptive

therapies.
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S2 Table. Cytogenetic and molecular genetic characteristics of 916 AML patients. Abbrevi-

ations for S2–S5 Tables: DNR&AraC: standard daunorubicin&cytarabine regimen; FLT3-ITD:

fms-like tyrosine kinase internal tandem duplication, FLT3-TKD: fms-like tyrosine kinase tyro-

sine kinase domain, HSCT: hematopoietic stem cell transplantation, IDH: isocitrate dehydro-

genase, MLFS: morphologic leukemia-free state, MRD: measurable residual disease, NPM1
mutation type not available�: patients with palliative treatment or with missing DNA samples

were not further evaluated for NPM1 mutation type.
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S3 Table. Cytogenetic and molecular genetic characteristics of NPM1 positive AML

patients.
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S4 Table. Cytogenetic and molecular genetic characteristics of IDH1 and IDH2 positive

AML patients.
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S5 Table. Baseline characteristics of NPM1 and IDH1/2 positive AML patients.
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S6 Table. Descriptives of the applied ddPCR methods. Abbreviations: LoB: limit of blank,

LoD: limit of detection.

(XLSX)

S1 Fig. Probability of overall survival and relapse free survival according to NPM1 type-A

MRD after induction. On both panels (A: overall survival; B: relapse free survival), the out-

come of NPM1 type-A MRD-negative (MRDneg VAF<0.01%) and MRD-positive (MRDpos

VAF>0.01%) subgroups are shown with the associated p1 value. The NPM1 type-A MRD-pos-

itive subgroup was further divided in MRD low-positive (MRDlow VAF = 0.01–0.2%) and

MRD high-positive (MRDhigh VAF> 0.2%) subgroups, and compared with p2 values.

(TIF)

S2 Fig. Comparison of DNA and RNA based NPM1 mutation MRD detection after induc-

tion. DNA based method describes the variant allele frequencies of mutant NPM1 (NMP1mut/

GAPDH ratio), while RNA method showed the NPM1 RNA mutation expression (NPM1mut/

ABL1). RNA samples that displayed NPM1mut expression and VAF negativity in the are

marked with the grey continuous lines (18 samples, 46%). Samples with at least 0.5 log higher

RNA expression level with detectable mutant NPM1 allele frequency on DNA level are shown

with black dashed lines (19 samples, 49%). Only two samples (black continuous lines, 5%)

showed equivalent NPM1mut RNA expression and DNA allele burden.

(TIF)
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Writing – review & editing: Petra Kövy, Hajnalka Andrikovics.
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31. Cocciardi S, Dolnik A, Kapp-Schwoerer S, Rücker FG, Lux S, Blätte TJ, et al. Clonal evolution patterns

in acute myeloid leukemia with NPM1 mutation. Nat Commun. 2019; 10(1):2031. https://doi.org/10.

1038/s41467-019-09745-2 PMID: 31048683

32. Höllein A, Meggendorfer M, Dicker F, Jeromin S, Nadarajah N, Kern W, et al. NPM1 mutated AML can

relapse with wild-type NPM1: persistent clonal hematopoiesis can drive relapse. Blood advances. 2018;

2(22):3118–25. https://doi.org/10.1182/bloodadvances.2018023432 PMID: 30455361

33. Jain P, Kantarjian H, Patel K, Faderl S, Garcia-Manero G, Benjamini O, et al. Mutated NPM1 in patients

with acute myeloid leukemia in remission and relapse. Leukemia & lymphoma. 2014; 55(6):1337–44.

https://doi.org/10.3109/10428194.2013.840776 PMID: 24004182

34. Kapp-Schwoerer S, Weber D, Corbacioglu A, Gaidzik VI, Paschka P, Krönke J, et al. Impact of gemtu-

zumab ozogamicin on MRD and relapse risk in patients with NPM1-mutated AML: results from the

AMLSG 09–09 trial. Blood. 2020; 136(26):3041–50. https://doi.org/10.1182/blood.2020005998 PMID:

33367545
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