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Abstract—As cobots become more popular in manufacturing,
the close cooperation between the robot and the human operator
becomes more complex. This paper proposes a method for opti-
mizing the robot’s work pace by interactive bacterial evolutionary
algorithm. One of the main contributions is the interactivity of the
optimization via the operator’s feedback. Beside the operator’s
subjective evaluation, heart rate signals are also measured. The
paper focuses mainly on the concept of this method tested with
the help of some volunteers. Preliminary tests show that the
algorithm is able to find comfortable configurations with less
then 1% of them evaluated.

Index Terms—human-robot interaction, ergonomics, work
pace, bacterial evolutionary algorithm, cobot

I. INTRODUCTION

The evolution of robots and also robotics has already taken
a huge step since the first appearence of the word “Robot” in
Karel Capek’s science-fiction play Rossum Universal Robots
in the beginning of the 20th century. Robots make our lives
more and more convenient in many aspects. Industrial robotics
evolved a lot since the first introduction of Robert C. Devol’s
Unimate to nowadays [1]. Currently a new kind of robot and
with it a new kind of field in science is rising. Cooperative
robotics, shortly cobotics, is the field of robots developed
for realizing cooperation with human operators. The safety
requirements are much higher for a cobot than for an industrial
robot. The details can be found in the standards dealing with
this topic [2] [3] [4].

In such a situation, where a robot has a close cooperation
with the operator new factors become more important. For an
ergonomic cooperation the robot needs to adjust its behavior
in such a way that the operator can get to an optimal stress
level in order to achieve the flow experience during work. Such
experience is achieved when the individual is focusing mainly
on the task which they have self-confidence in and no internal
(fatigue etc.) or external (fear from the robot etc.) factors are
disturbing [5].

In close cooperation between human and robot, caused by
the new situation, there are multiple external factors from
the operator’s perspective which can be regulated and better
conditions can be realized at the workplace by a sophisticated
program from the robot side. The behavior of the robot can
be described by the following parameters: the velocity of
the movement between two points; the acceleration of the
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movement; the time of immobility at one point; and the
trajectory between two points. These factors can change the
operator’s work pace as well, which is important for achieving
high performance for a longer period of time.

An optimal work pace is essential and different for every
individual. For a person with a higher skill level in the process
the same work pace can lead to boredom which can cause
loss in the performance through mental stress. On the other
hand, for a less skilled person experiencing the same work
pace, the working process can be exhausting, also leading to
performance loss. Fatigue is a human factor which plays an
immediate role in manufacturing quality deficit rates [6].

Thus, the optimization of the cobot’s work pace is a crucial
task for realizing a smooth cooperation between the robot
and the human. Evolutionary algorithms such as the Bacterial
Evolutionary Algorithm (BEA) [7] can be utilized for this
purpose. It is important to consider the feedback from the
human as well. Hence, we propose an interactive algorithm
which considers the subjective evaluation of the human about
the process and a physical parameter calculated from the heart
rate changes of the human. The novelties of this paper are the
slightly modified bacterial evolutionary algorithm, its usage in
an interactive framework, and its application for the work pace
optimization of cobots.

The structure of the paper is as follows. Section II introduces
the problem via the implemented scenario and explains the
experimental setup. In Section III the proposed algorithm
is described. Section IV presents the experimental results.
Conclusions are drawn in Section V.

II. PROBLEM STATEMENT

The science of dealing with cobots and human-robot in-
teractions became more and more important recently. Cobots
occupy increasingly more space as their abilities are evolving.
However, most of the cobot applications are low-level tasks
as [8] states, meaning that there is a huge need for the
development of ergonomic human-robot interaction (HRI) and
teaching according to [9]. In [10] a KUKA iiwa cobot was
used as a “Third hand” which is similar in functionality to
the freedrive mode of the UR robots. In [11] a Kinect sensor
based system capable of answering the operator’s requests was
implemented. The need of ergonomic interaction methods in
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(source: webofknowledge.com databases)

HRI is high and artificial intelligence can be a key element
in the search as the trend can be seen in Fig. 1. Robots with
cognitive and optimizational skills inside can be the leaders
of future manufacturing, where both the operators’ and the
employers’ side will be more satisfied. Using the interaction
between the human and the robot as one of the inputs for the
optimization is a primary contribution of this paper. The main
goal is to enable the system to optimize the cycletime in a way
that is ergonomic and has a low level of disturbance during
the process.

A. The Implemented Scenario

As an initial test, a simple situation with a hand-in task
was designed where the objective was to improve the working
conditions. The layout of the simple scenario is shown in
Fig. 2. A cooperative robot is handing over plastic workpieces
for validation. The operator is instructed to pick up the plastic
workpiece and try to fit it on a counterpiece. After the
check the operator puts the workpiece aside and waits for the
upcoming one.

Three variables are needed in this simplified scenario as
illustrated in Fig. 2, where A, B and their 10 cm lifted
copies are the dedicated points in space, and T values are
the correspoding times the robot’s movements take. Vertical
movements have a fixed timing of 0.5 seconds, while three
other parameters are selected to describe the adaptive part of
the work schedule. The first variable T'forwarq describes the
time when the robot is handing over the workpiece into the
working area. The second variable Tpqckwarg 1S the returning
time of the robot. The third variable T};. describes how
much time the robot waits until it reaches out for a new
workpiece. Each variable is in the range of [0.2;2) seconds
with a 0.1 second resolution. Thus, each variable has 18 valid
values. In this oversimplified scenario we end up having 183
combinations for the setup of such movements, which adds
up to a total of 5832. It can be easily concluded that solving
this in a brute-force manner is not effective. In addition,
when this concept is switched to a real world interpretation,
the complexity of this problem increases further. The brute-
force method of fine-tuning the parameters becomes almost
impossible. Fortunatelly, artificial intelligence methods can be
used here to create a setup quickly. Therefore, we propose
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Fig. 2. Layout of the simple scenario
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a bacterial evolutionary algorithm using interactive fitness
function to optimize these variables.

B. Experimental Setup

In the experiments a UR3e collaborative robot was used
as a manipulator with a 3D printed hand with one finger
open. The used camera was a Basler ACA800-510UC with an
objective with focal length of 6 mm and a PC installed. The
workpieces used in the experiments were plastic bottlecups
and the counterpiece was a plastic bottle. The camera was
adjusted in the way that the cups can be easily seen. Hough
circle search [12] was used to determinate the position of
the circles. To get an easy callibration routine, homogenous
coordinate transformation, with 4 predefined point-pairs was
used to transfer the cups’ positions to the robot’s coordinate
system. A working cycle is complete when the camera does
not see any cups waiting to be delivered. Five cups were used
in one cycle. The block diagram is depicted in Fig. 3.

As inputs for the BEA the following data were used. A
simple feedback typed in by the experimenter is the first of
these. This number is based on the feedback of the operator on
a scale of 1 to 10, where the number represents the subjective
feeling of the operator regarding the overall satisfaction of the
cycle both in terms of work pace and the robot’s behavior. Here
1 means the least satisfied and 10 means the most satisfied
answer. Heart rate signals were also measured as an input
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Fig. 4. Measured and processed ECG signal during an experiment (blue:
measured ECG signal; orange: approximation of QRS place; red crosses: R
maxima)
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Fig. 5. R-R distances during the experiment

since differences in the heart rate can indicate mental stress
or fright. For this purpose a Polar H10 sportbelt was used.
A measurement during the experiment is illustrated in Fig. 4.
The cycletime is also used as an input.

After processing the ECG signals the R-R distances are
calculated as an input for the algorithm. One of the results
of this calculation during the experiment is shown in Fig. 5.

To make sure that the worker accomodates to the new setup
we used five repetitions of the task. This takes around 1.5
minutes which is usually long enough for the heart rate to
adapt to the newly experienced work pace. This length of each
trial is also needed for the human collaborator to be able to
determine their satisfication with the behavior of their robotic
assistant.

III. PROPOSED ALGORITHM

As a proposed algorithm for this experiment a bacterial
evolutionary algorithm is applied. An advantage of this kind
of algorithm compared to others is its fast convergence within
a few function calls, as observed in [13].

In BEA a population of candidate solutions evolves from
generation to generation [7]. Each individual (bacterium) is a
possible solution for the optimization problem. First, an initial
population is created randomly. Then, until the maximum
generation number is reached two operators are executed after
each other. The bacterial mutation operates on each bacterium
one by one. First, a number of clones of the original individual
are generated. Then, the same random segment is changed
randomly in each clone except one which is left unmutated.
After this, the best clone transfers the mutated segment to
the other clones. Then, this process is repeated for the other
yet unmutated segments of the clones. After the final step the
best clone is kept and the rest of the clones are discarded. The
other operator is the gene transfer which operates on the entire
population. First, the individuals are ordered according to their
fitness value. Then, a random individual is selected from the
superior half of the population, which will be the source
bacterium; and another random individual is selected from the
inferior half of the population, which will be the destination
bacterium. After this, the source bacterium transfers a random
segment of its chromosome to the destination bacterium. Then,
the population is reordered and this process is repeated until
the predefined number of infections is reached. After that, the
algorithm continues with the bacterial mutation step.

In this research the bacterial mutation operator is modified
a little. Instead of applying it to each individual in the popu-
lation, the operator is applied by a given probability to each
individual. The other novelty is the interactive characteristic
of the algorithm which is realized in the fitness calculation.
In interactive evolutionary algorithms the fitness value of the
individuals is determined by a human [14]. In this research
we combine the human’s subjective evaluation with other
objective, measurable values in the fitness calculation.

The evaluation of the above mentioned 5832 combinations
is a huge task, which is why a guided search is used. The
algorithm is running through 3 generations with 5 individuals.
The probability of bacterial mutation is 0.2 for each bacterium.
In the bacterial mutation 3 mutated clones are used. In each
generation 3 infections are executed in the gene transfer
operation. This results in 41 fitness calls calculating with the
expected value of the mutation. This means that the algorithm
is able to find a satisfactory suboptimal solution (see Section
IV-B) evaluating only approximately 0.7% of the configuration
space.

The fitness evaluation of the individuals is calculated by
Equation (1), which contains the subjective feeling of the
configuration, realizing the interactivity between the cobot
and the human operator. The subjective feeling is an integer
value between 1 (worst) and 10 (best). Equation (1) also
includes two pieces of measurable information; the difference
of the reference measurement from the mean R-R distances
proportionalized to the reference measurement and multiplied
by —10, and the cycletime divided by —2 to encourage shorter
work cycles, boosting productivity. The higher the fitness the
better the individual. Presuming that the heart rate of the
volunteers does not change dramatically (more than 50%), the
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Fig. 6. Inverted 2D Rastrigin function

fitness values should be in the range of [—7,9.7]. During the
optimization it is guaranteed that the best fitting individual
will be kept, due to the behavior of the two executed bacterial
operators.

RR,.; —RR CT
RRycy 2

Here SF is the subjective feeling points given by the volunteer,
RR,.; is the reference R to R distance measured before the
experiment, RR is the mean of the R to R distances, CT is
the cycletime which is equal to the sum of the three variables
to be OPtimiZed, CT = Tforwa'r‘d + Thackward + Tidie-

fitness = SF — 10 D

IV. EXPERIMENTAL RESULTS
A. Benchmark using Rastrigin Test Function

The validation of the algorithm is performed on a bench-
mark function, the two-dimensional Rastrigin function illus-
trated in Fig. 6. The continuous domain of the search space
is [-5.12,5.12] x [—5.12,5.12]. The property of this function
is the huge amount of local minima it has, thus, it is difficult
to find the global optimum, therefore it is commonly used for
testing similar algorithms.

For testing the algorithm by the Rastrigin function, the algo-
rithm parameters are as follows. The number of generations
is 100; the number of individuals is 20; the probability of
mutation is 0.2; 3 mutated clones and 10 infections are used
in the bacterial mutation and in the gene transfer operations,
respectively. The fitness evolution is depicted in Fig. 7.

B. Work Pace Optimization

When solving the work pace optimization problem a human
operator is involved in the evolutionary process. A picture of
the experiment can be seen in Fig. 8 where the operator is
acomplishing the task in cooperation with the robot.

The results of three experiments (three human operators)
are presented in Figs. 9, 10, 11. All of them can verify
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Fig. 7. Fitness curve of optimization over the 2D Rastrigin problem
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Fig. 9. Fitness function during the experiment process with the first volunteer
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Fig. 11. Fitness function during the experiment process with the third
volunteer

that the result is in the range of 80 — 99%, (referring to
the theoretical maxima of fitness with at most 50% R-R
distance change as 100%) with evaluating less than 1% of all
possible values in the search space. Notice that the proposed
probabilistic bacterial mutation does not necessarily occur
in every generation, therefore in our measurements only 32
fitness calls were needed instead of the expected value of
fitness calls, which is 41 for the given parameters. It can be
seen that the algorithm “stucks” from time to time at certain
points which could be the result of unsuccessful infections or
mutations without improvement. Based on the results it can
be stated that a smooth cooperation between the robot and the
human could be realized with near-optimal working pace in
all the three motion segments of the manipulator according to
the subjective feeling of the human and the measured heart
rate.

V. CONCLUSIONS

In this paper an interactive bacterial evolutionary algorithm
with probabilistic mutation rate was proposed for solving the
work pace optimization problem. In the fitness evaulation
subjective feeling is used based on the human operator’s
feedback and physically measured heart rate information as
well. The proposed method could realize a smooth cooperation
between the human and the robot.

In the future work we will attempt to use additional infor-
mation in the human’s feedback such as verbal information
which could possibly be described by fuzzy sets, and other
types of sensory information for the better measurement of
the stress level of human operators.
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