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PERTURBATIONS OF SURJECTIVE HOMOMORPHISMS

BETWEEN ALGEBRAS OF OPERATORS ON BANACH SPACES

BENCE HORVÁTH AND ZSIGMOND TARCSAY

Abstract. A remarkable result of Molnár [Proc. Amer. Math. Soc., 126 (1998),
853–861] states that automorphisms of the algebra of operators acting on a sep-

arable Hilbert space are stable under “small” perturbations. More precisely,
if φ, ψ are endomorphisms of B(H) such that ‖φ(A) − ψ(A)‖ < ‖A‖ and ψ

is surjective, then so is φ. The aim of this paper is to extend this result to a
larger class of Banach spaces including ℓp and Lp spaces, where 1 < p < ∞.

En route to the proof we show that for any Banach space X from the
above class all faithful, unital, separable, reflexive representations of B(X)
which preserve rank one operators are in fact isomorphisms.

1. Introduction and statement of main results

It is a well known corollary of the Carl Neumann series that if ψ and φ are
endomorphisms of a Banach algebra, and ψ is an automorphism with ‖ψ − φ‖ <
1/‖ψ−1‖, then φ is an automorphism too. Motivated by this fact, Molnár proved in
[25] that in fact a sharper version of this result holds for B(H), the C∗-algebra of
bounded linear operators on a separable Hilbert space H. More precisely, he showed
in [25, Theorem 1] that if φ, ψ : B(H) → B(H) are algebra homomorphisms such
that ψ is surjective and ‖ψ(A)−φ(A)‖ < ‖A‖ for each non-zero A ∈ B(H), then φ is
also surjective. Let us remark here that ψ and φ are automatically continuous, and
their surjectivity implies their injectivity, as shown in the proof of [25, Theorem 1],
for example. The main tool in Molnár’s proof is a previous, deep result of his from
[24].

The purpose of this paper is to extend [25, Theorem 1] for a large class of
(non-hilbertian) Banach spaces; see Theorem 1.2. En route to this we shall prove a
theorem about certain faithful representations of B(X), where X is a Banach space

The corresponding author B. Horváth acknowledges with thanks the funding received from
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from the same class; see Theorem 1.1. We believe this result to be of independent
interest, since the study of faithful, separable representations of B(X) goes back to
the seminal work of Berkson and Porta in [4]. Our main results are the following:

Theorem 1.1. Let X and Y be non-zero Banach spaces such that Y is separable
and reflexive. Assume X satisfies one of the following:

(1) X = Lp[0, 1], where 1 < p <∞; or
(2) X is a reflexive Banach space with a subsymmetric Schauder basis.

Let φ : B(X) → B(Y ) be a continuous, injective algebra homomorphism. If Ran(φ)
contains an operator with dense range, and φ maps rank one idempotents into rank
one idempotents, then φ is an isomorphism.

From the above theorem we will deduce a generalisation of [25, Theorem 1] :

Theorem 1.2. Let X and Y be Banach spaces as in Theorem 1.1. Let ψ, φ : B(X) →
B(Y ) be algebra homomorphisms such that ψ is surjective. If

‖ψ(A)− φ(A)‖ < ‖A‖(1.1)

for each non-zero A ∈ B(X), then φ is an isomorphism.

As one might expect, there is no hope for Theorem 1.1 to hold in general for
arbitrary Banach spaces X and Y . To be precise, we prove the following:

Proposition 1.3. Let X be a Banach space such that B(X) has a character. Let Z
be any non-zero Banach space. There is a continuous, injective algebra homomor-
phism φ : B(X) → B(X ⊕ Z) with φ(IX) = IX⊕Z which maps rank one operators
into rank one operators but φ is not surjective.

In particular, let X be the pth James space Jp (where 1 < p < ∞) or the
Semadeni space C[0, ω1]. There is a continuous, injective algebra homomorphism
φ : B(X) → B(X) with φ(IX ) = IX which maps rank one operators into rank one
operators but φ is not surjective.

The necessary terminology will be explained in the subsequent sections.
The paper is structured as follows. Section 2 contains a brief overview of the

concepts and notation needed to understand the paper. In Section 3 we develop
some auxiliary tools which will feature heavily in our arguments later. Section 4
is devoted to the proofs of Theorems 1.1, 1.2 and Proposition 1.3. We conclude
Section 4 with some remarks about the possibility of weakening the assumptions in
Theorem 1.1.

2. Preliminaries

The notation and terminology used throughout this paper are standard.

2.0.1. Numbers and sets. The first infinite cardinal is denoted by ℵ0 and we refer
to the cardinal 2ℵ0 as the continuum. If X is a set, then P(X) denotes its power
set, and |X | denotes the cardinality of X . If X and Y are sets, then Y X is the set
of functions from X to Y .

Let Γ be a set. A family F ⊆ P(Γ) is called almost disjoint if for any distinct
A,B ∈ F the set A∩B is finite. There exists an almost disjoint family of continuum
cardinality consisting of infinite subsets of the natural numbers. For a proof we refer
the reader to e.g. [2, Lemma 2.5.3].
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2.0.2. Ultrafilters, ultralimits. If F is a filter on a set X and U is an ultrafilter on
X with F ⊆ U , then we say that U extends F . As a corollary of Zorn’s Lemma any
filter can be extended to an ultrafilter.

Let X be a topological space and let x ∈ X . Let (xi)i∈I be a family of elements
of X and let U be an ultrafilter on I. If (xi)i∈I converges to x along U , then we will
denote this by x = limi→U xi. Let X be a compact Hausdorff space, and let (xi)i∈I

be a family of elements of X . If U is an ultrafilter on I, then the ultralimit limi→U xi
exists and it is unique (see e.g. [1, Lemma 1.5.9]). If X and Y are topological spaces
and f : X → Y is a continuous function, then limi→U xi = x implies limi→U f(xi) =
f(x).

There is a standard way of connecting convergence in a topological space with
convergence along certain ultrafilters. Let I be a directed set. We define Ai = {j ∈
I : j ≥ i} for every i ∈ I. Then the set

Ford = {S ∈ P(I) : Ai ⊆ S for some i ∈ I}

is easily seen to be a filter on I, called the order filter.
Let X be a topological space and let (xi)i∈I be a family of elements of X which

converges to x ∈ X . If U is an ultrafilter on I with Ford ⊆ U , then x = limi→U xi.

2.1. Background material on Banach spaces and Banach algebras. In this
paper all Banach spaces and Banach algebras are assumed to be complex.

2.1.1. The dual space and the weak∗ topology. If X is a Banach space, then for its
dual space we write X∗. In the following 〈·, ·〉 denotes the natural duality pairing;
that is, 〈x, f〉 = f(x) whenever x ∈ X and f ∈ X∗. The weak∗ topology on X∗ is
denoted by σ(X∗, X).

2.1.2. Operators on Banach spaces. The identity operator on a vector space X is
denoted by IX . If X and Y are normed spaces, then B(X,Y ) denotes the normed
space of bounded linear operators from X to Y . We denote B(X,X) simply by
B(X). For T ∈ B(X,Y ) its adjoint is denoted by T ∗. If Z is a linear subspace
of X , then for T ∈ B(X,Y ) we denote the restriction of T to Z by T |Z; clearly
T |Z ∈ B(Z, Y ).

Let X and Y be normed spaces. Let y ∈ Y and let f ∈ X∗. We define y ⊗ f by
(y ⊗ f)(x) = 〈x, f〉y. It is clear that y ⊗ f ∈ B(X,Y ) is rank one with ‖y ⊗ f‖ =
‖y‖‖f‖, whenever y ∈ Y and f ∈ X∗ are non-zero.

Two Banach spaces X and Y are said to be isomorphic if there is a linear
homeomorphism between X and Y ; it will be denoted by X ≃ Y .

2.1.3. Banach algebras, idempotents. By an isomorphism of Banach algebras A and
B we understand that there is an algebra homomorphism between A and B which
is also a homeomorphism. This will also be denoted by A ≃ B.

In an algebra A an element p ∈ A is an idempotent if p2 = p. Two idempotents
p, q ∈ A are orthogonal if qp = 0 = pq. We say that two idempotents p, q ∈ A are
algebraically Murray–von Neumann equivalent or simply equivalent, and denote it
by p ∼ q, if there exist a, b ∈ A such that ab = p and ba = q. For idempotents
p, q ∈ A we write p ≤ q whenever pq = p = qp. Clearly ≤ is a partial ordering on
the set of idempotents of A.

We recall a folklore result, a stronger version of which was proved by Zemánek
in [30, Lemma 3.1]. A self-contained elementary proof can be found in [8, Lemma
2.8].
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Lemma 2.1. Let A be a unital Banach algebra. Let p, q ∈ A be idempotents with
‖p− q‖ < 1. Then p ∼ q.

Let X be a Banach space. Two idempotents P,Q ∈ B(X) are said to be almost
orthogonal if PQ and QP are finite-rank operators.

The following lemma is well-known; see for example [19, Lemma 1.4].

Lemma 2.2. Let X1 and X2 be Banach spaces. Let P ∈ B(X1) and Q ∈ B(X2) be
idempotents. Then Ran(P ) ≃ Ran(Q) as Banach spaces if and only if there exist
U ∈ B(X2, X1) and V ∈ B(X1, X2) with P = UV and Q = V U . In particular,
when X1 = X2 we have P ∼ Q if and only if Ran(P ) ≃ Ran(Q).

2.1.4. Ideals of operators on Banach spaces. Let X and Y be Banach spaces. Let
T ∈ B(X,Y ). Then T is a finite-rank operator if Ran(T ) is finite-dimensional.
The symbol F(X,Y ) stands for the set of finite-rank operators on X . It is well
known that F is the smallest operator ideal in the sense of Pietsch; see for example
[26, Theorem 1.2.2]. In an infinite-dimensional Banach space X , F(X) is always a
proper, non-closed, two-sided ideal.

The symbol A(X,Y ) stands for the (operator) norm-closure of F(X,Y ). It is
clear that A(X) is the smallest closed, proper, non-zero, two-sided ideal in B(X).
An element of A(X,Y ) is called an approximable operator. The set of compact
operators from X to Y is denoted by K(X,Y ). It is known that K is a closed
operator ideal such that A ⊆ K.

2.1.5. Schauder bases in Banach spaces. Let X be a Banach space with Schauder
basis (bn)n∈N. Then fn ∈ X∗ and Pn ∈ B(X) denote the corresponding nth co-
ordinate functional and projection, respectively, for all n ∈ N. It is standard that
(Pn)n∈N converges to IX in the strong operator topology. In particular, (Pn)n∈N is
uniformly bounded by the Banach–Steinhaus Theorem. We remark in passing that
if a Banach space X has a basis, then A(X) = K(X).

Recall that if (bn)n∈N is an unconditional basis in X , then for any A ⊆ N

PA : X → X ; x 7→
∑

n∈A

〈x, fn〉bn(2.1)

defines a bounded linear idempotent operator on X and the family (PA)A∈P(N) is
uniformly bounded. A basis (bn)n∈N of X is called subsymmetric if it is an un-
conditional basis and the basic sequence (bσ(n))n∈N is equivalent to (bn)n∈N for
every strictly monotone increasing function σ : N → N. We note that the natural
bases for c0 and ℓp (where 1 ≤ p < ∞) are subsymmetric; see [2, Section 9.2]. For
p ∈ [1,∞)\{2} the space Lp[0, 1] does not have a subsymmetric basis; see [29, Chap-
ter II, Theorem 21.1 on p. 568]. In fact, L1[0, 1] does not even have an unconditional
basis by [2, Theorem 6.3.3].

The following well known fact can be found, for example, in the monograph of
Lindenstrauss and Tzafriri. We refer to the paragraph after [21, Definition 3.a.2].

Proposition 2.3. Let X be a Banach space with a subsymmetric basis (bn)n∈N.
For any strictly monotone increasing function σ : N → N the map

Sσ : X → X ; x 7→
∑

n∈N

〈x, fn〉bσ(n)(2.2)

is an isomorphism onto its range.
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We recall that a Schauder basis (bn)n∈N for a Banach space X is shrinking if the
sequence of coordinate functionals (fn)n∈N associated with (bn)n∈N is a Schauder
basis for X∗. Any Schauder basis in a reflexive Banach space is shrinking (see [29,
Chapter II, Example 4.3 on p. 278]). Clearly ℓ1 and L1[0, 1] cannot have shrinking
bases since their dual spaces are non-separable.

2.2. Dual Banach algebras and approximate identities. For our definition
of a dual Banach algebra we follow [7, Sections 1 and 2] and [27, Chapter 5]. Let
B be a Banach algebra and let X be a Banach space such that B and X∗ are
isometrically isomorphic as Banach spaces. We say that B is a dual Banach algebra
with predual X if multiplication on B (henceforth identified with X∗ as a Banach
space) is separately σ(X∗, X) - to - σ(X∗, X) continuous. We remark in passing
that this latter condition is equivalent to saying that the image Ran(κX) of the
canonical embedding κX : X → X∗∗ is a sub-B-bimodule of B∗. See [7, Lemma 2.2].

If X is a Banach space, then the projective tensor product of X and X∗ is
denoted by X⊗̂πX

∗. For background information on the projective tensor products
of Banach spaces we refer the reader to [9] and [28].

The following result is taken from [27, Example 5.1.4]:

Lemma 2.4. Let X be a reflexive Banach space. Then there is an isometric iso-
morphism between B(X) and (X⊗̂πX

∗)∗ given by

〈x ⊗ f,A〉 = 〈Ax, f〉

for any x ∈ X, f ∈ X∗ and A ∈ B(X). Moreover, B(X) is a dual Banach algebra
with predual X⊗̂πX

∗.

Let A be a Banach algebra. A net (eγ)γ∈Γ in A is a bounded left (respectively,
right) approximate identity if supγ ‖eγ‖ < ∞ and limγ eγa = a (respectively,
limγ aeγ = a) for every a ∈ A. A net (eγ)γ∈Γ is a bounded approximate identity
(b.a.i.) if it is a bounded left and right approximate identity.

The following is an immediate consequence of [6, Theorem 2.9.37].

Corollary 2.5. Let X be a Banach space with a Schauder basis. Then the sequence
of coordinate projections (Pn)n∈N is a bounded left approximate identity for K(X).
If X has a shrinking basis, then (Pn)n∈N is a bounded approximate identity for
K(X).

3. Some auxiliary results

Let X be a Banach space. Let (fi)i∈I be a family of elements of the topological
space (X∗, σ(X∗, X)). Let U be an ultrafilter on I such that the ultralimit of (fi)i∈I

along U with respect to the topology σ(X∗, X) exists in X∗. This limit will be
denoted by w*-limi→U fi.

Lemma 3.1. Let B be a dual Banach algebra. Let (qγ)γ∈Γ be a bounded net in B
such that limω qωqγ = qγ in norm for any γ ∈ Γ. Then p = w*-limγ→U qγ ∈ B
exists and defines an idempotent whenever U is an ultrafilter on Γ which extends
the order filter.

Proof. Let U be an ultrafilter on Γ which extends the order filter. By the Banach–
Alaoglu Theorem p = w*-limγ→U qγ ∈ B is well-defined. We show that p ∈ B is
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idempotent. As multiplication on B is separately weak∗ continuous, we have

pqγ =
(
w*-lim
ω→U

qω

)
qγ = w*-lim

ω→U
qωqγ = qγ (for all γ ∈ Γ),

because limω→U qωqγ = qγ in norm. Consequently,

p2 = p

(
w*-lim
γ→U

qγ

)
= w*-lim

γ→U
pqγ = w*-lim

γ→U
qγ = p.

This shows that p is an idempotent as claimed. �

The following lemma has many “folklore” variations (see e.g. [4, Lemma 2.23]).
Rather than hunt for a reference which states Lemma 3.2 exactly in the form
suitable for our purpose, we shall prove the result here.

Lemma 3.2. Let X be a reflexive Banach space. Let (Qn)n∈N be a bounded, mono-
tone increasing sequence of idempotents in B(X). Then there exists an idempotent
Q ∈ B(X) such that (Qn)n∈N converges to Q in the strong operator topology.

Proof. Let U be a free ultrafilter on N. We show first that there exists an idempotent
Q ∈ B(X) such that (Qn) converges to Q along U in the weak operator topology.
Let X⊗̂πX

∗ be the predual of B(X) as in Lemma 2.4. According to Lemma 3.1,
Q = w*-limn→U Qn is a well-defined idempotent operator in B(X). It remains to
show that limn→U 〈Qnx, f〉 = 〈Qx, f〉 for any x ∈ X and f ∈ X∗. This is a simple
calculation:

〈Qx, f〉 = 〈x⊗ f,Q〉 = lim
n→U

〈x⊗ f,Qn〉 = lim
n→U

〈Qnx, f〉.

We show that (Qn) converges to Q in the strong operator topology. Firstly let us
observe that QnQ = Qn for any n ∈ N. Indeed, for any z ∈ X and f ∈ X∗ we have

〈QnQz, f〉 = 〈Qz,Q∗
nf〉 = lim

i→U
〈Qiz,Q

∗
nf〉 = lim

i→U
〈QnQiz, f〉 = 〈Qnz, f〉,

thus proving QnQ = Qn. A similar argument shows QQn = Qn for all n ∈ N.
Let us now fix x ∈ X . Clearly Qnx ∈ conv{Qmx : m ∈ N} for any n ∈ N. There-
fore Qx = w-limn→U Qnx with Mazur’s Theorem (see e.g. [23, Theorem 2.5.16])
implies that Qx ∈ conv{Qmx : m ∈ N}, where the closure is taken with respect
to the norm topology of X . Let us fix ε > 0. There exist a finite set Γ ⊆ N and
(λj)j∈Γ in [0, 1] such that ‖Qx−

∑
j∈Γ λjQjx‖ < ε/(K+1). Let N = max(Γ), then

Qn(
∑

j∈Γ λjQj) =
∑

j∈Γ λjQj for any n ≥ N . Consequently for each n ≥ N :

‖Qx−Qnx‖ ≤
∥∥∥Qx−

∑

j∈Γ

λjQjx
∥∥∥+

∥∥∥Qn

(∑

j∈Γ

λjQjx−Qx
)∥∥∥

<
ε

K + 1
+K

ε

K + 1
= ε.

This shows that (Qnx) converges to Qx in X as required. �

Lemma 3.3. Let A be a Banach algebra. Let J E A be a closed, two-sided ideal
with a b.a.i. (eγ)γ∈Γ. Let B be a unital, dual Banach algebra. Suppose ψ : A → B is
a continuous algebra homomorphism. If U is an ultrafilter on Γ which extends the
order filter, then:

(1) p = w*-limγ→U ψ(eγ) ∈ B is an idempotent;
(2) pψ(c) = ψ(c) = ψ(c)p for all c ∈ J ;
(3) pψ(a) = pψ(a)p = ψ(a)p for all a ∈ A;
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(4) the map

θ : A → B; a 7→ (1B − p)ψ(a)(1B − p)(3.1)

is a continuous algebra homomorphism with θ|J = 0.

Proof. (1) Since we have limγ ψ(eγ)ψ(eω) = limγ ψ(eγeω) = ψ(eω) and similarly,
limγ ψ(eω)ψ(eγ) = limγ ψ(eωeγ) = ψ(eω) for any ω ∈ Γ, the statement follows from
Lemma 3.1.

Before we proceed we observe that for any a ∈ A

pψ(a) =

(
w*-lim
γ→U

ψ(eγ)

)
ψ(a) = w*-lim

γ→U
ψ(eγ)ψ(a) = w*-lim

γ→U
ψ(eγa).(3.2)

(2) Let us fix c ∈ J . Then from (3.2) and the fact that (eγ) is a b.a.i. for
J we obtain pψ(c) = w*-limγ→U ψ(eγc) = ψ(c). An analogous argument shows
ψ(c)p = ψ(c).

(3) Let us fix a ∈ A. Since eγa ∈ J for any γ ∈ Γ, it follows from (2) that
ψ(eγa) = ψ(eγa)p = ψ(eγ)ψ(a)p. From this and (3.2) we obtain

pψ(a) = w*-lim
γ→U

ψ(eγa) = w*-lim
γ→U

ψ(eγ)ψ(a)p =

(
w*-lim
γ→U

ψ(eγ)

)
ψ(a)p = pψ(a)p.

A similar argument shows ψ(a)p = pψ(a)p.
(4) It is clear that θ is a bounded linear map. Let us first fix a ∈ A. From (3) we

have ψ(a)p = pψ(a)p and hence

θ(a) = ψ(a)− ψ(a)p− pψ(a) + pψ(a)p = ψ(a)− pψ(a).(3.3)

From the above, another application of (3), and the fact that ψ is an algebra
homomorphism it follows that θ is multiplicative. Finally, it is straightforward from
(2) that θ|J = 0. �

Before we proceed let us recall some basic probability-theoretic background
and terminology. In the brief exposition below we follow Fremlin’s book [12, Sec-
tions 254J–254R].

Remark 3.4. We consider the the probability space ({0, 1},P({0, 1}), µ) where µ is
the “fair coin” probability measure, i.e., µ({0}) = 1/2 = µ({1}). Let ({0, 1}N,Λ, ν)
denote the product of the family

(
({0, 1},P({0, 1}), µ)

)
n∈N

of probability spaces.

The measure space ({0, 1}N,Λ, ν) is isomorphic to ([0, 1],A, λ), where λ is the
Lebesgue measure restricted to [0, 1]. Consequently, for all p such that 1 ≤ p <∞,
the Banach spaces Lp({0, 1}

N,Λ, ν) and Lp([0, 1],A, λ) are isometrically isomorphic
(see also [2, page 125]).

For any S ⊆ N let us define

πS : {0, 1}
N → {0, 1}S; (xn)n∈N 7→ (xn)n∈S

and

ΛS =
{
A ∈ Λ: A = π−1

S [πS [A]]
}
.

The set ΛS is a σ-subalgebra of Λ. In the case when S is an infinite subset of N, it fol-
lows that ({0, 1}N,ΛS , ν|ΛS

) is isomorphic to ([0, 1],A, λ). Thus Lp({0, 1}
N,ΛS, ν|ΛS

)
and Lp([0, 1],A, λ) are isometrically isomorphic as Banach spaces, where 1 ≤ p <
∞. On the other hand, if S is a finite subset of N, then Lp({0, 1}

N,ΛS, ν|ΛS
) is a



8 BENCE HORVÁTH AND ZSIGMOND TARCSAY

finite-dimensional Banach space; this follows easily from the fact that ΛS is a finite
set in that case.

The above technique is well known among experts in Banach space theory. We
refer the interested reader to [17] for a more sophisticated approach.

Part (2) of the following result we learned from William B. Johnson, and it forms
part of ongoing joint work between W. B. Johnson, N. C. Phillips and G. Schecht-
man. With their kind permission we give our version of the proof here.

Proposition 3.5. Let X be a Banach space such that one of the following two
conditions is satisfied.

(1) X has a subsymmetric Schauder basis; or
(2) X = Lp[0, 1] where 1 ≤ p <∞.

Then B(X) admits a bounded set Q of commuting, almost orthogonal idempotents
such that |Q| = 2ℵ0 and Ran(P ) ≃ X for every P ∈ Q.

Proof. We take an almost disjoint family D of continuum cardinality consisting of
infinite subsets of N.

(1) Suppose X has a subsymmetric Schauder basis (bn) with coordinate func-
tionals (fn). Let Q = {PN}N∈D, where for N ∈ D

PNx =
∑

n∈N

〈x, fn〉bn (for all x ∈ X)

defines an idempotent in B(X). Clearly PNPM = PN∩M = PMPN has finite rank
for distinct N,M ∈ D. Also, Ran(PN ) ≃ X for every N ∈ D due to Proposition 2.3.
The set Q is bounded by the second paragraph in Section 2.1.5.

(2) In the notation of Remark 3.4, for every N ∈ D we consider the conditional
expectation operator

E(·|ΛN ) : Lp({0, 1}
N,Λ, µ) → Lp({0, 1}

N,Λ, µ); f 7→ E(f |ΛN ).(3.4)

By [2, Lemma 6.1.1], for any N ∈ D the bounded linear operator E(·|ΛN ) is a norm
one idempotent with range Lp({0, 1}

N,ΛN , µ|ΛN
). In particular Ran(E(·|ΛN )) is

isomorphic to Lp([0, 1],A, λ) for each N ∈ D. It follows from [12, Theorem 254Ra]
that for any two distinct N,M ∈ D

E(·|ΛN )E(·|ΛM ) = E(·|ΛN∩M ),

where Ran
(
E(·|ΛN∩M )

)
= Lp({0, 1}

N,ΛN∩M , µ|ΛN∩M
) is finite-dimensional.

Let T : Lp([0, 1],A, λ) → Lp({0, 1}
N,Λ, µ) be an isomorphism. Let PN = E(·|ΛN )

and QN = T−1PNT for all N ∈ D. Then QN ∈ B(Lp[0, 1]) is idempotent with
Ran(QN ) ≃ Ran(PN ) and thus

Ran(QN ) ≃ Ran(PN ) = Lp({0, 1}
N,ΛN , µ|ΛN

) ≃ Lp([0, 1],A, λ).

Since Ran(QNQM ) is finite-dimensional for distinct N,M ∈ D we obtain that the
set Q = {QN}N∈D satisfies all of our requirements. �

The following fact is standard; we leave its proof to the reader.

Lemma 3.6. Let X be a Banach space. Let {Qi}i∈I be a bounded set of mutually
orthogonal, non-zero idempotents in B(X). Then for the density of X we have
dens(X) ≥ |I|.
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Remark 3.7. Let A be an algebra, let J E A be a two-sided ideal. If p, q ∈ A are
idempotents with p ∼ q, then p ∈ J if and only if q ∈ J . Indeed, let a, b ∈ A be
such that ab = p and ba = q. Hence p = p2 = abab = aqb and similarly q = bpa.

The following proposition is a dichotomy result about separable representations
of B(X) for certain Banach spaces X , in the sense of Berkson and Porta [4]. In
particular, Proposition 3.8 generalizes their result [4, Corollary 6.16].

Proposition 3.8. Let X be a Banach space such that one of the following two
conditions is satisfied.

(1) X has a subsymmetric Schauder basis; or
(2) X = Lp[0, 1] where 1 ≤ p <∞.

Let Y be a separable Banach space. Let θ : B(X) → B(Y ) be a continuous algebra
homomorphism. Then θ is either injective or θ = 0.

Proof. Assume towards a contradiction that θ is not injective and θ 6= 0. In par-
ticular K(X) ⊆ Ker(θ). By Proposition 3.5, B(X) admits a bounded set {Pi}i∈I of
commuting, almost orthogonal idempotents such that |I| = 2ℵ0 and Ran(Pi) ≃ X
for each i ∈ I. We claim that {θ(Pi)}i∈I is a bounded set of mutually orthogonal,
non-zero idempotents of continuum cardinality in B(Y ). To see this, we observe first
that θ(Pi)θ(Pj) = θ(PiPj) = 0 for each distinct i, j ∈ I, as PiPj ∈ K(X) ⊆ Ker(θ).
Now observe that θ(Pi) is non-zero for each i ∈ I. Indeed, IX /∈ Ker(θ) as θ is
non-zero. Since Ran(Pi) ≃ X , in view of Lemma 2.2 this means Pi ∼ IX for all
i ∈ I. Thus by Remark 3.7 we obtain Pi /∈ Ker(θ) for all i ∈ I. This shows the
claim. But now with Lemma 3.6 we obtain dens(Y ) ≥ 2ℵ0 , a contradiction. �

4. Proof of the main results

4.1. The proof of Theorem 1.1. We are now in position to prove our main result.
Before we get to it, let us mention that the techniques below are akin to those
employed by Molnár to Hilbert spaces in [24]. Some of these techniques go back
to at least Johnson’s seminal work on approximately multiplicative maps between
Banach algebras in [16].

Proof of Theorem 1.1. Since Y is reflexive, from Lemma 2.4 we know that B(Y ) is
a dual Banach algebra with predual Y ⊗̂πY

∗.
If X has a subsymmetric basis, let this be denoted by (bn). If X = Lp[0, 1],

where 1 < p < ∞, then (bn) denotes the Haar basis. In both cases (fn) stands
for the sequence of coordinate functionals associated to (bn). As X is reflexive, it
follows from Corollary 2.5 and the comment after Proposition 2.3 that the sequence
of coordinate projections (Pn) is a b.a.i. for K(X).

Since (φ(Pn)) is a bounded, monotone increasing sequence of idempotents in
B(Y ) it follows from Lemma 3.2 that there exists an idempotent P ∈ B(Y ) such
that (φ(Pn)) converges to P in the strong operator topology. We show that in fact
P = IY . To this end we consider the map

θ : B(X) → B(Y ); A 7→ (IY − P )φ(A)(IY − P ).

By Lemma 3.3 the map θ is a continuous algebra homomorphism with θ|K(X) = 0.
Due to separability of Y , Proposition 3.8 yields θ = 0. By the assumption, we can
take T ∈ B(X) such that φ(T ) has dense range. Consequently

0 = θ(T ) = (IY − P )φ(T )(IY − P ) = (IY − P )φ(T )
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by (3.3). So (IY − P )|Ran(φ(T )) = 0 and Ran(φ(T )) is dense in Y , hence P = IY .
Let x0 ∈ X be such that ‖x0‖ = 1, and choose f0 ∈ X∗ such that 〈x0, f0〉 = 1 =

‖f0‖. As φ is injective, we can pick y0 ∈ Y ∗ with ‖y0‖ = 1 such that φ(x0⊗f0)y0 6= 0.
Thus we can define the non-zero map

S : X → Y ; x 7→ φ(x ⊗ f0)y0

which is easily seen to be linear and bounded. We observe that

SA = φ(A)S (for all A ∈ B(X)).(4.1)

Indeed, fix A ∈ B(X) and x ∈ X . Then

φ(A)Sx = φ(A)φ(x ⊗ f0)y0 = φ(A(x ⊗ f0))y0 = φ(Ax ⊗ f0)y0 = SAx.

In the following we show that S is an isomorphism.
We observe that S is injective. For assume in search of a contradiction it is not;

let x ∈ X satisfy Sx = 0 and ‖x‖ = 1. Let f ∈ X∗ be such that 〈x, f〉 = 1 = ‖f‖.
Then in view of (4.1) we have

0 = φ(z ⊗ f)Sx = S(z ⊗ f)x = S(〈x, f〉z) = Sz (for all z ∈ X).

Thus S = 0, a contradiction.
We show that S has closed range. To this end, let (xn) be a sequence in X such

that (Sxn) converges to some y ∈ Y . Let x ∈ X be non-zero. As S is injective, we
have Sx 6= 0. Thus we can choose h ∈ Y ∗ with 〈Sx, h〉 = 1. Let f ∈ X∗ be arbitrary
fixed, then by (4.1) we have

〈xn, f〉Sx = S(x⊗ f)xn = φ(x ⊗ f)Sxn (for all n ∈ N).

Hence 〈xn, f〉Sx→ φ(x⊗f)y ∈ Y and therefore 〈xn, f〉 → 〈φ(x⊗f)y, h〉. As f ∈ X∗

was arbitrary, this shows that (xn) is a weak Cauchy sequence in X . Since X is
reflexive, it is weakly sequentially complete (see e.g. [5, Chapter V, Corollary 4.4]),
hence (xn) converges weakly to some x′ ∈ X . As S is weakly continuous, Sxn → Sx′

weakly in Y . But (Sxn) converges in norm to y ∈ Y , so it also converges to y weakly.
By uniqueness of the weak limit Sx′ = y.

It remains to show that that S has dense range. Clearly bn ⊗ fn ∈ B(X) is
a rank one idempotent, hence by the assumption φ(bn ⊗ fn) ∈ B(Y ) is a rank
one idempotent too for each n ∈ N. Let un ∈ Y and hn ∈ Y ∗ be such that
φ(bn ⊗ fn) = un ⊗ hn and 〈un, hn〉 = 1. Recall that (φ(Pn)) converges to IY in the
strong operator topology, consequently

x = lim
n→∞

φ(Pn)x =

∞∑

i=1

φ(bi ⊗ fi)x =

∞∑

i=1

(ui ⊗ hi)x =

∞∑

i=1

〈x, hi〉ui (for all x ∈ X).

This shows X = span{un : n ∈ N}. To conclude the proof, it suffices to show that
un ∈ Ran(S) for each n ∈ N. This essentially follows from (4.1), as

Sbn = S(bn ⊗ fn)bn = φ(bn ⊗ fn)Sbn = (un ⊗ hn)Sbn = 〈Sbn, hn〉un(4.2)

for each n ∈ N. Injectivity of S implies that Sbn is non-zero, hence 〈Sbn, hn〉 6= 0
by (4.2). Therefore un ∈ Ran(S) indeed.

Thus (4.1) amounts to

φ(A) = SAS−1 (for all A ∈ B(X)),

which proves that φ is an isomorphism. �
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Example 4.1. Each of the following spaces is reflexive and has a subsymmetric
basis, hence satisfies the conditions of Theorem 1.1 (2):

(a) The sequence spaces ℓp, where 1 < p <∞ (see Section 2.1.5);
(b) every reflexive Orlicz sequence space lM with Orlicz function M satisfying

the ∆2-condition lim supt→0M(2t)/M(t) < ∞ (see [20, Propositions 4.a.4
and 3.a.3]);

(c) every Lorentz sequence space d(w, p), where p > 1, w = (wn)n∈N is non-
increasing, w1 = 1, limn→∞ wn = 0 and

∑∞

n=1 wn = ∞ (see [20, Proposi-
tions 4.e.3 and 1.c.12]).

Remark 4.2. In the proof of Theorem 1.1 the cornerstone of our argument is that
X has uncountably many complemented subspaces, each of which is isomorphic toX
itself, but any two have a finite-dimensional intersection. We hope that Remark 4.6
at the end of the paper sheds some light on why this phenomenon might be essential.

4.2. The proof of Theorem 1.2. In the following let X and Y be arbitrary non-
zero Banach spaces, and let ψ, φ : B(X) → B(Y ) be algebra homomorphisms such
that ‖ψ(A)− φ(A)‖ < ‖A‖ for each non-zero A ∈ B(X).

With an application of the triangle inequality we arrive at the simple but useful
estimate

‖ψ(A)‖ ≤ ‖ψ(A)− φ(A)‖ + ‖φ(A)‖ < ‖A‖+ ‖φ(A)‖.(4.3)

Similarly we obtain ‖φ(A)‖ < ‖A‖+ ‖ψ(A)‖. In particular, these estimates imme-
diately yield that φ is continuous if and only if ψ is continuous.

Lemma 4.3. Let P ∈ B(X) be a norm one idempotent. Then P ∈ Ker(φ) if and
only if P ∈ Ker(ψ). Consequently, ψ is injective if and only if φ is injective.

Proof. Assume P ∈ Ker(φ). Then it follows from (4.3) that ‖ψ(P )‖ < ‖P‖ = 1. As
ψ(P ) ∈ B(Y ) is an idempotent, this is equivalent to saying ψ(P ) = 0. The other
direction follows analogously.

In order to show the “consequently” part suppose contrapositively that ψ is not
injective. Let x ∈ X be such that ‖x‖ = 1. Pick an f ∈ X∗ with 〈x, f〉 = 1 = ‖f‖.
Hence x⊗f ∈ F(X) is a norm one idempotent. In particular x⊗f ∈ Ker(ψ), which
by the first part of the lemma is equivalent to x ⊗ f ∈ Ker(φ). This shows that
φ is not injective. Similarly, one obtains that injectivity of ψ implies injectivity of
φ. �

Proposition 4.4. Let P ∈ B(X) be a norm one idempotent. Then Ran(ψ(P )) ≃
Ran(φ(P )). If ψ is surjective, then φ(IX ) = IY . Moreover, if ψ is an isomorphism,
then Ran(φ(P )) ≃ Ran(P ).

Proof. As ‖P‖ = 1, the estimate ‖ψ(P )−φ(P )‖ < 1 and Lemma 2.1 imply ψ(P ) ∼
φ(P ). In view of Lemma 2.2 this is equivalent to saying Ran(ψ(P )) ≃ Ran(φ(P )).

Suppose ψ is surjective, then ψ(IX) = IY . Indeed, this immediately follows as
ψ(IX)A = A = Aψ(IX) for each A ∈ B(Y ). Therefore

‖IY − φ(IX )‖ = ‖ψ(IX)− φ(IX )‖ < 1,

which by the Carl Neumann series implies that φ(IX ) is invertible in B(Y ). As
φ(IX) is an idempotent, φ(IX) = IY must hold.

Suppose ψ is an isomorphism. By Eidelheit’s Theorem (see [11, Theorem 2])
there is an isomorphism S ∈ B(X,Y ) such that ψ(A) = SAS−1 for each A ∈
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B(X). In particular, (SP )(PS−1) = SPS−1 = ψ(P ) and (PS−1)(SP ) = P imply
(with Lemma 2.2) that Ran(P ) ≃ Ran(ψ(P )). By the first part of the proposition
Ran(φ(P )) ≃ Ran(P ) follows. �

From this point on, we assume that the properties prescribed by the conditions
of Theorem 1.1 hold for the Banach spaces X and Y , and ψ : B(X) → B(Y ) is
assumed to be surjective. We recall that due to the deep automatic continuity
result of B. E. Johnson [15], any surjective homomorphism between algebras of
operators of Banach spaces is automatically continuous (see e.g. [6, Theorem 5.1.5]
for a detailed proof).

Outfitted with Theorem 1.1 and the results above, we can now prove Theo-
rem 1.2.

Proof of Theorem 1.2. We first observe that ψ is automatically injective. Indeed, Y
is non-zero, hence ψ is non-zero, since it is surjective. By Proposition 3.8 it follows
that ψ is injective.

Thus by Lemma 4.3, φ is injective too. Continuity of ψ and (4.3) imply that φ is
continuous. Furthermore, from Proposition 4.4 we conclude that φ(IX ) = IY (which
witnesses that Ran(φ) contains an operator with dense range), and φ preserves rank
one idempotents. Hence Theorem 1.1 applies. �

4.3. The proof of Proposition 1.3. In each of the following examples, B(X) has
a character. In examples (1)–(3) this character is shown explicitly and in example
(4) the character is obtained from a commutative quotient of B(X). We remark in
passing that the list below is not intended to be comprehensive.

Example 4.5. Each of the following spaces X is such that B(X) has a character:

(1) X = Jp where 1 < p < ∞ and Jp is the pth James space, since by [10,
Paragraph 8] B(X) has a character whose kernel is W(X), the ideal of
weakly compact operators (see also [18, Theorem 4.16]);

(2) X = C[0, ω1], where ω1 is the first uncountable ordinal, since by [10, Para-
graph 9] B(X) has a character (see also [22, Proposition 3.1]);

(3) X = XGM is the hereditarily indecomposable Banach space constructed by
Gowers and Maurey in [14], since B(X) has a character whose kernel is
S(X), the ideal of strictly singular operators ;

(4) X = G, where G is the Banach space constructed by Gowers in [13], since
B(X)/S(X) ≃ ℓ∞/c0, as shown in [18, Corollary 8.3].

Proof of Proposition 1.3. Let χ : B(X) → C be a character. Let Z be a non-zero
Banach space, and consider the map

φ : B(X) → B(X ⊕ Z); T 7→

[
T 0
0 χ(T )IZ

]
.

From χ(IX) = 1 it is immediate that φ(IX) = IX⊕Z . As χ is a norm one algebra
homomorphism, it readily follows that φ is a norm one algebra homomorphism too.
The map φ is clearly injective. Let x0 ∈ X and f0 ∈ X∗ satisfy 〈x0, f0〉 6= 0. As χ is
a character of B(X) and F(X) is the smallest non-trivial, two-sided ideal of B(X),
we have x0 ⊗ f0 ∈ F(X) ⊆ Ker(χ). Thus

φ(x0 ⊗ f0) =

[
x0 ⊗ f0 0

0 0

]
=

[
x0
0

]
⊗

[
f0
0

]
,
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from which it also follows that φ maps rank one operators into rank one operators.
Finally, it is obvious that φ cannot be surjective.

The second part of the proposition is an immediate corollary of Examples 4.5
(1)–(2), the first part of the proposition with the choice Z = C, and the fact that
X ≃ X ⊕ C. Although the latter is certainly well-known, for completeness we give
the details:

(1) Let X = Jp, where 1 < p < ∞. Recall that the James space is one-
codimensional in its bidual and it is isometrically isomorphic to its bidual (see
e.g. [2, Theorem 3.4.6]). Consequently X ≃ X∗∗ ≃ X ⊕ C.

(2) Let X = C[0, ω1]. As X has a complemented copy of c0 (see [3, Proposi-
tion 3.2]), and of course c0 ≃ c0 ⊕ C, we conclude X ≃ X ⊕ C. �

Remark 4.6. In light of Proposition 1.3 and Example 4.5 let us make a few remarks
about possible weakenings of the conditions in Theorem 1.1. In the following Y =
X ⊕ C.

• Let X = XGM . It is shown [14] that XGM is reflexive and has a Schauder
basis, and hence Y is separable and reflexive. This shows that in Theo-
rem 1.1, the conditions on X cannot be weakened to “X is reflexive and
has a Schauder basis”.

• Let X = G. It is shown in [13] that G has an unconditional Schauder basis,
hence Y is separable. This shows that in Theorem 1.1, the conditions on
X and Y cannot be weakened to “X has an unconditional basis and Y is
separable”.
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Bence Horváth: Institute of Mathematics, Czech Academy of Sciences, Žitná 25, 115 67
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