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Abstract

In this paper we propose a centralized control method for routing
and scheduling a fleet of autonomously guided vehicles that serves online
transportation requests. Our method maintains a central schedule, which
is revised each time a vehicle finishes its current transportation task or
a new transportation request arrives. The main benefit of the central
schedule is that it ensures provably conflict-free control of a large fleet of
vehicles on almost any layout, and permits optimization taking all the ve-
hicle routes and schedules into account at the same time. We pay special
attention to parking vehicles which may block the way of the moving ve-
hicles, and our method inserts pull-off routes for them. The schedules are
improved by various strategies, such as reducing the delays by swapping
the order of the vehicles crossing the same lane, or elimination of loops in
the vehicle routes created by pull-offs. We demonstrate the capabilities of
our method by a series of computational tests, in which we also compare
our mechanism to a recent conflict-free centralized method which is also
designed for handling online requests.

1 Introduction

Autonomously guided vehicles (AGVs) are widely used in modern manufactur-
ing systems, and they are the source of several challenging research problems
as well. In this paper, we deal with the high level control of a fleet of AGVs,
and our goal is to ensure conflict-free operation while serving transportation re-
quests arriving over time. A somewhat neglected, but very important measure
of the performance of a control system is the total delay or tardiness of serv-
ing the requests. However, to our best knowledge, this performance measure
is dealt with in the scientific literature mostly in off-line problems, where the
transportation requests are known a-priori, see e.g., Murakami (2020).
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Specifically, we focus on problems of the following kind. There is a fleet of
AGVs to serve pickup-and-delivery requests that arrive online. Fulfillment of a
request consists of one or two stages: (i) an AGV has to be sent to the pickup
station of the request, unless one is already waiting there, and after the item
is loaded, (ii) the AGV transports it to the delivery station, where the item is
unloaded from the AGV. It is assumed throughout the paper that the AGVs
can move only on some pre-selected corridors, which is quite common in densely
built-in factories and warehouses. These corridors help to avoid accidents with
people, but they do not exclude the possibility of different conflict situations
among the vehicles.

While avoiding physical collisions is not too difficult today (by appropriate
sensors and hardware that stops a vehicle if it is too close to an obstacle or
to another vehicle), guaranteeing that each request gets served is much harder.
There are two main types of conflicts that may prohibit the serving of requests:
deadlocks (when some vehicles cannot move), and live locks (when some vehi-
cles get into an infinite loop of movements). The resolution of these conflict
situations, if they occur, usually requires expensive human intervention. Auto-
matic avoidance of conflicts can be achieved by a sophisticated control system,
where we distinguish two main types: centralized and decentralized ones. In a
centralized system, a central unit communicates with the vehicles, and carries
out various complex tasks, such as path planning, or motion coordination of
the vehicles. In case of large layouts, path planning and motion coordination
are usually performed separately to reduce the complexity (see e.g., Draganjac
et al. (2016)), which is typically the main drawback of centralized systems.

The main advantage of the decentralized control systems are the elimination
of heavy computational tasks, and responsiveness to ad-hock traffic situations,
and to changes in the environment. In such a system, the vehicles plan their
own routes without any central unit. The main drawback of a decentralized
system is the higher chance of emerging conflict situations. Many papers (see
Section 2) deal with detecting and solving newer and newer types of conflicts,
see Figure 1 for some examples. The first three types are quite well-known, and
there are several (even decentralized) approaches to deal with them. In the last
one, there is a full room (i.e., there is no place for more AGVs), and another
AGV needs to get into this room through the only narrow corridor. Solving
such a conflict is usually problematic for a decentralized system, while it is
easier to avoid, or solve for a centralized one. Decentralized systems guarantee
only a local solution, i.e., the way of resolving one conflict may lead to a new
conflict situation, and resolving that to another conflict situation, etc. Another
drawback of the decentralized systems is the lack of global optimization of costs
related to total travel distances, and delays in serving the requests. To sum
up, according to our knowledge, currently there is no decentralized method that
guarantees a global conflict-free control of the vehicles, specifically, when the
number of the vehicles is large, or the layout is complex (e.g., there is only a
narrow corridor connecting two rooms, or if the layout has a tree-like structure).

We propose a centralized approach guaranteeing conflict-free operation of a
large fleet of vehicles. The main advantages are as follows:
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Figure 1: Examples for conflicts. Boxes are vehicles, the gray vehicles are
parking. Facing conflict (A), intersection conflict (B), node occupancy conflict
(C), and full small room conflict (D).

• The created plans are conflict-free, i.e., with appropriate control, no dead-
lock or live lock may occur. The conflict-freeness of plans is guaranteed
by their structure.

• Our method does not require the identification or classification of possible
conflict situations. Thus, it can handle all of the examples in Figure 1 at
once, and many others.

• We can handle idle blocking vehicles, and unlike most other papers, vehi-
cles with common target locations. While resolving these issues, no further
conflicts are created.

• Our approach supports the optimization of plans, and we describe a method
based on local search.

• We have only very mild assumptions on the layout, and we permit both
one-way and bidirectional corridors. Thus, our method can handle most
layout types that occur in practice.

• Our approach requires only low computational time, thus it avoids the
main drawback of centralized methods. It scales up well with the number
of AGVs, and the size of the network.

• It outperforms the method of Ma lopolski (2018) with respect to average
tardiness of the requests, and to a new performance measure, introduced
in this paper.

The new performance measure describes the operation of the system dur-
ing the whole time horizon, and it is able to compare different problems, and
methods in the future in a more proper way than the standard measures such as
average tardiness. Our method is compared to the method of Ma lopolski (2018),
which, according to our knowledge, is the only complete method so far. All of
our benchmark data, and result files are freely available from the authors. We
note that this paper does not apply a sophisticated method for task allocation
(for such a method we refer to e.g., Györgyi and Kis (2019)), since our main

3



goal is to determine a conflict-free schedule and execution where the average
tardiness of the requests is minimal.

The paper Ma lopolski (2018) claims that, the static methods (that find
routes in advance and cannot react dynamically to traffic conditions) devel-
oped hitherto, are suitable for small transportation systems, but admits the
great potential in this area. Our approach is a new attempt in this direction.

In Section 2 we briefly overview the related literature. In Section 3, we give
a detailed problem statement. Then, in Section 4, we describe our method in
detail, and prove that under proper execution, it is conflict-free. In Section 5,
we present our benchmark data, and computational results. We conclude the
paper in Section 6.

2 Literature review

There is a long, detailed review in Ma lopolski (2018) on the different approaches,
classifying the papers according to various attributes. Based on this review, we
provide brief explanation of the theoretical foundations and classifications of
the topic. We emphasize the most relevant articles from the literature, and also
concentrate on recent results.

The simplest classification is based on the layout of the considered prob-
lem. Several papers deal with conflict-free routing on specific layouts, like a
grid (mesh), or a loop. Grids describe networks at warehouses or container
terminals, where the layout contains regular blocks. For such a layout, the de-
centralized methods of Rong (2017), Liu et al. (2017), and Zhang et al. (2018)
detect more and more types of conflicts (like intersection conflict, catching-up
conflict, node occupancy conflict, etc.), and provide solution algorithms to avoid
them, but they do not guarantee the avoidance of newer conflicts. Central-
ized methods are also considered for such layouts, see e.g., Banaszak and Krogh
(1990), Ghasemzadeh et al. (2009), Bocewicz et al. (2014), Cardarelli et al.
(2017).

If the layout does not have any specific attributes (i.e., it is conventional),
then there is no chance to list the possible types of conflicts and deal with them
one-by-one. Another important question is whether the system allows only
unidirectional paths on narrow corridors or not. Allowing bidirectional paths
increases the throughput while using a smaller number of vehicles, however,
it also increases the number, and the types of possible conflicts Egbelu and
Tanchoco (1986). For further results, see e.g., Daniels (1988), Taghaboni-Dutta
and Tanchoco (1995), Draganjac et al. (2016), or Ma lopolski (2018).

Another classification scheme is based on the type of solving algorithms. We
distinguish static, time-window based, and dynamic methods. Static solution
algorithms mainly require very strong assumptions, like the branch-and-bound
procedure of Daniels (1988), where the network model permits that several
vehicles wait at the nodes. Without strong assumptions (except that the final
destination of all vehicles must be distinct), some theoretical methods could be
applied, such as those for solving the pebble motion problem on a graph, which
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generalizes the classic 15-puzzle. In this problem, there is a graph, and there
are pebbles on some nodes of the graph (at most one pebble on each node). It is
feasible to move a pebble to a neighboring node if it is empty, and the objective
is to reach a given final configuration of the pebbles by a series of feasible moves.
It can be decided in polynomial time whether it is possible or not Kornhauser
et al. (1984). This problem can be adapted to solve any control problems without
conflicts, namely, the vehicles are the pebbles that move among the nodes of
a graph which represents the layout. However, this result is theoretical, and
it does not consider e.g., the due dates of the transportation requests, and it
does not permit that two vehicles have a common destination. The method of
Ma lopolski (2018) is also theoretical, but it is designed for conflict-free control
of AGV systems. It assumes that each vehicle has a dedicated depot node,
where it cannot block the route of any other vehicle, see the Appendix for more
details.

There are other centralized conflict-free methods with slightly more practical
relevance like Miyamoto and Inoue (2016), Murakami (2020), and Zhong et al.
(2020), which formulate the problem as a mixed-integer linear programming
(MILP) problem, and then solve it by an exact method or by a heuristic. These
methods require large computation times, thus the presented instances of the
first two papers contain at most three AGVs, while the latter paper works on a
layout with a couple of edges and nodes. Consequently, they cannot be applied
in an online setting where the requests arrive online. Another drawback is that
they assume the same distance among the neighboring nodes, hence, the size of
the underlying graph may be very large in practical applications. The method
of Ryan (2008) partitions the map into subgraphs of known structure with entry
and exit restrictions to reduce the computational times, thus it can deal with
instances with 10 or even 20 vehicles. Nevertheless, this method sometimes fails,
thus it needs another mechanism (with more computational time) as a backup.

Time-window based solution approaches. In the series of articles Möhring
et al. (2005); Gawrilow et al. (2008); Stenzel (2008); Gawrilow et al. (2012), an
application for a container terminal is described. These papers use a so-called
time-expanded graph in which arcs are labeled with time intervals dedicated to
vehicles. When seeking a new route for a vehicle, only the free time windows of
the arcs can be used. However, this approach does not deal with the problem
of blocking parking vehicles (e.g., if there is a parking vehicle in the final node
of a route, then there is no feasible solution unless the blocking vehicle gets a
pull-off route), which is a common problem in applications Bruno et al. (2000);
Kim and Park (2009). Unfortunately, the computational results of Gawrilow
et al. (2012) are confidential, so we get no details about the performance of the
method.

Dynamic methods. These methods can modify the route of a vehicle based
on real time traffic information. For more details, see e.g., Taghaboni-Dutta and
Tanchoco (1995), Bartlett et al. (2014), or articles where the dynamic approach
is combined with time-windows (e.g., Gawrilow et al. (2008), Smolic-Rocak et al.
(2009)).

The third possible classification is based on the control mechanism, which
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can be centralized or decentralized, see Section 1. There are methods like Digani
(2016) with a partly centralized, partly decentralized approach: similar to Ryan
(2008), it partitions the layout into disjoint zones, and then applies a central
database to store traffic data which facilities the high level planning of the
routes of the vehicles between the zones. Within the zones, the vehicles plan
their own paths while communicating with each other. This method can bound
the number of the vehicles within each zone, thus decreasing the chance of
conflicts between them.

There are several ways to model the layout or the movements of the vehicles.
Most of the cited articles use a graph representation of the layout, i.e., the
intersections are represented by nodes and the corridors by edges. We would
like to note that several articles use Petri nets for modeling some aspects of the
problem. For instance, Petri nets can describe the usually fixed routes of the
vehicles, and they help to identify conflicts, or to decide the order of vehicle
movements, e.g., in Zeng et al. (1991) colored Petri nets are used for detecting
conflicts. They can also be applied for analyzing control mechanisms, e.g.,
Castillo et al. (2001). However, for route planning usually additional techniques
are needed, which work directly on the network representation of the problem.
We are not aware of results that use Petri nets for resolving conflicts due to
idle vehicles, or vehicles with a common destination. E.g., Wu and Zhou (2001)
excludes idle vehicles, and Nishi and Maeno (2010) deals with fixed routes and
requires that each vehicle has a unique start and destination points.

We will apply some ideas from scheduling theory, see e.g., Blazewicz et al.
(2019). In particular, in a no-wait job-shop scheduling problem each job is a
chain of operations, where each operation requires one machine, and when some
operation, except the last one, of a job completes, the next operation must start
immediately, see e.g., Samarghandi (2019) and the references in it. However, in
the classical no-wait job-shop model, the processing times of the jobs are fixed,
and each resource can process only one job at a time. In contrast, as we will
see in Section 4, in our schedules the operations have no fixed processing times,
those requiring the same resource may overlap in time, and they have to meet
additional conditions which are unknown in no-wait job-shop scheduling.

3 Problem statement

In this section we describe the most important ingredients and modeling assump-
tions about the AGV system for which in Section 4 we propose a conflict-free
and efficient control mechanism.

The physical environment in which the AGVs move consists of one or more
production halls or yards, divided into corridors by the placement of machining
centers and storage units. So it is a network of narrow and wide streets which
meet at intersections. A narrow street has a single lane, where the vehicles
cannot overtake or bypass each other, while a wide street has two or more
parallel lanes, but the vehicles cannot switch lanes. The traffic in a single
lane can be one-way (the direction of traffic is fixed and does not change), or

6



Figure 2: Example for a graph representation of a simple factory layout. The
red nodes represent stations, and the green ones the parking places. The arrows
indicate the directed edges.

bidirectional (traffic may pass in both directions, but not at the same time).
This permits e.g., that in parallel lanes traffic may pass simultaneously in both
directions. There are some special locations, so-called stations, where the AGVs
stop for pickup and drop-off, and parking places, where idle vehicles may wait for
the next request. Stations may be located near machining centers and storage
units for loading/unloading parts or pallets, while parking places are typically
at the end of blind paths, but any other location can be designated as a parking
place. Stations may serve as parking places as well, and we emphasize that
parking places are not dedicated to vehicles in our approach. There are some
mild rules for selecting the parking places, see Assumptions 1 and 2 below.

After these preliminaries, we can formally describe our problem. The most
important problem data are the set of vehicles V, the set of (online) requests
R, and a mixed graph G = (N,A) which describes the layout. The nodes in
N represent the stations, the intersections of the lanes, and the parking places.
The undirected arcs in A correspond to lanes with bidirectional traffic, while
directed arcs model one-way lanes, see Figure 2. However, parallel edges (two
edges connecting the same pair of nodes) are not allowed. The intersection of
wide streets, where several lanes meet, are modeled by several nodes and edges
among them. Finding a good graph representation of a factory or warehouse is
out of scope, this paper assumes that the graph is fixed in advance.

We have only two simple assumptions on G:

Assumption 1. Both G, and the graph obtained from G by removing the nodes
corresponding to the parking places are strongly connected1.

Assumption 2. The number of the parking places is at least one more than the
number of the vehicles.

1A mixed graph is strongly connected if there is a path from any node u to any other node
v such that each arc of the path is either undirected, or its direction is aligned with that of
the path.
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In most practical applications, both assumptions hold, or easy to achieve. A
notable exception is when G is just a cycle, without any pendant nodes.

Each vehicle in V has an initial location, and they have common maximum
speed (on straight routes and in bends), maximum acceleration, and physical
dimensions. The minimum safety distance between any two vehicles is also
given. Each vehicle can transport only one item at a time. The vehicles obey
some physical constraints during their movements:

P1) As the vehicles move, they respect the maximum speed (i.e., they cannot
go faster), the maximum acceleration, and the safety distance.

P2) There can be at most one vehicle in any intersection or in any station
simultaneously.

P3) The vehicles can neither overtake one another, nor go in the opposite di-
rection simultaneously in the same lane.

P4) Changing direction in lanes is not allowed.

We define a capacity for each g ∈ N ∪ A. For the nodes g ∈ N , c(g) := 1,
whereas for an edge g ∈ A, c(g) is the maximum number of vehicles that can
reside in the corresponding lane, when both end nodes are occupied by a vehicle,
while respecting the safety distance between the vehicles. An edge g is short if
c(g) = 0, otherwise it is long .

The vehicles have to serve a sequence of requests R, which are not known
a-priori, but arrive one-by-one over the time horizon, e.g., a working day. Each
request r ∈ R has an arrival or announcement time ar, and prescribes the
transportation of a single item (part or pallet) from one station to another.
A request r is determined by its pickup and delivery stations, pickup time er
(loading cannot start before er), duration of loading and unloading, and due
date dr. We emphasize that the problem is online, i.e., each request r ∈ R
becomes known only after its announcement time ar. Typically, ar < er < dr
hold.

A vehicle serves a request r if it loads the corresponding item at the pickup
station of the request (but not earlier than er), then carries it to the delivery
station, and finally unloads the item. A request is finished if the item is unloaded
at the delivery station. We assume that once an item is loaded, it cannot be
unloaded until the AGV carrying it stops at the delivery station.

The solution of the problem is a schedule of the vehicles on the nodes and
edges of G. The schedule consists of operations, where each operation repre-
sents either going through a lane (edge), or crossing an intersection (node),
loading/unloading at a station (node), or waiting at a location (node). Each
vehicle has a routing (sequence of operations), and for each node or edge, those
operations that require it are totally ordered. A schedule is not static, it evolves
over time, and even scheduled vehicle movements can be replaced by another
ones. A more formal definition of schedules will be given in Section 4.1. A
schedule of the vehicles is feasible, if

8



• each request is served by a vehicle, while the load operation of the request
is started not sooner than the pickup time of the request, and

• it can be physically realized while respecting P1-P4.

If a request r is finished at time point t then the tardiness of r is Tr :=
max{0, t − dr}. If Tr = 0 then r is served on time, otherwise, it is tardy. The
objective is to find a feasible schedule (over time) of the vehicles where the
average tardiness

∑
r∈R Tr/|R| is minimized.

4 Description of our method

In this section we give a detailed description of our techniques. Firstly, we give
a high level overview in Section 4.1, then we describe schedules in Section 4.2,
which constitute the main data structure manipulated by the various algorithms.
In Section 4.3 we explain how the schedules are updated with new requests,
or when some AGV is delayed, and in Section 4.4 we propose a local search
procedure for improving the schedules. Finally, in Section 4.5 we briefly sketch
a schedule execution mechanism to be implemented in the AGVs.

4.1 Overview

Our method maintains a feasible schedule (defined in Section 4.2) and if new
requests arrive, and there is at least one free vehicle (or a vehicle become avail-
able and there is at least one unprocessed request), the schedule is updated so
that the vehicles serve the assigned requests. We mention right at this point
that even if there is a free vehicle when a new request arrives, maybe the system
waits until another vehicle becomes free (after serving a request), if that vehicle
can do the job with a smaller delay.

Our method performs the following steps each time a request is finished, or
a new request arrives:

1. Assignment of AGVs to transportation requests. There is at most one
request assigned to each AGV at a time. If a new request is announced or
an AGV becomes available (it has finished its previous request) we invoke
a simple assignment algorithm:

(i) Put the unassigned requests in increasing pickup time (er) order;

(ii) If there is no unassigned request or each AGV has a request, then
STOP;

(iii) Let r be the first unassigned request;

(iv) For each AGV without a request, determine the time point when it
can arrive to the pickup location of r. Assign r to the AGV with the
smallest value. Go to Step 1ii).
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2. Planning and replanning of the AGVs. Once a request is assigned to a
vehicle, two routes in the network has to be selected: (1) from the vehicle’s
last location in the schedule to the pickup station of the request, and (2)
from the pickup station to the delivery station. Then, both routes have
to be scheduled. The consistency of the schedule will ensure that no
deadlock may occur. A detailed description of (re)planning can be found
in Section 4.3.

3. Improve the schedule. After each rescheduling we invoke a procedure for
improving the schedule, see Section 4.4 for details.

In the above procedure, the control of AGVs is missing, as it runs indepen-
dently of the above planning process, and separately in each AGV, for details
see Section 4.5.

4.2 Schedules

A resource is a node or a long edge of the layout graph G = (N,A) (short
edges have no corresponding resources). An operation of a vehicle v represents
either going through a long edge, or a node, or the loading / unloading of a
request at a node. We say that v occupies a resource, if its center is located
in the corresponding physical space (intersection/station for nodes and lane
for edges). A schedule S specifies for each vehicle v ∈ V a routing (sequence of
operations) L(v) = (op(v, 1), . . . , op(v, last(v)) along with the required resources
µ(v, i) ∈ N ∪ A, 1 ≤ i ≤ last(v), and also for each resource g ∈ N ∪ A, a
sequence L(g) = (op(v1, i1), . . . , op(vlast(g), ilast(g))) specifying a total order of
those operations that require g, i.e., µ(vk, ik) = g for 1 ≤ k ≤ last(g). In
addition, each operation op(v, i) has a time interval [ts(v, i), te(v, i)] specifying
when v occupies the resource µ(v, i). Let pmin(v, i) be the minimum time needed
for vehicle v to perform op(v, i). Clearly, ts(v, i) + pmin(v, i) ≤ te(v, i).

A schedule is feasible if it admits a feasible realization, i.e., the vehicles can
move precisely as the schedule prescribes it while respecting the timing of the
operations and the physical constraints P1-P4 of Section 3. Our next goal is to
characterize feasible schedules. Let OP = ∪v∈VL(v) be the set of all operations,
and we define the partial order ≺µ⊂ OP × OP such that op(v, i) ≺µ op(v′, j)
if and only if µ(v, i) = µ(v′, j) and op(v, i) precedes op(v′, j) in the sequence
L(µ(v, i)). Recall that each resource g has a capaciy c(g). The following rules
must be observed:

S1) For each vehicle v, µ(v, 1) and µ(v, last(v)) must be node resources (the
vehicles’ routes start and end on nodes of the layout graph), and for any
pair of distinct vehicles v and v′, µ(v, 1) 6= µ(v′, 1), and µ(v, last(v)) 6=
µ(v′, last(v′)).

S2) For each vehicle v, and 1 ≤ i < last(v), µ(v, i) and µ(v, i + 1) cannot be
both edge resources. If µ(v, i) is a node and µ(v, i+ 1) is an edge, then (a)
µ(v, i) must be one of the end nodes of µ(v, i + 1), or vice versa, and (b)
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µ(v, i+ 2) 6= µ(v, i). If µ(v, i) and µ(v, i+ 1) are both node resources, then
these two nodes must be connected by a short edge of the layout graph.

S3) For any pair of consecutive operations op(v, i), op(v, i+1) of a vehicle v the
following hold:

• If there exist op(v′, j), op(v′, j+1) ∈ OP such that op(v, i) ≺µ op(v′, j)
and µ(v, i+ 1) = µ(v′, j + 1), then op(v, i+ 1) ≺µ op(v′, j + 1).

• If there exist op(v′, j), op(v′, j+1) ∈ OP such that op(v, i) ≺µ op(v′, j+
1) and µ(v, i+ 1) = µ(v′, j), then op(v, i+ 1) ≺µ op(v′, j).

S4) For each operation op(v, i), ts(v, i) + pmin(v, i) ≤ te(v, i) and if i < last(v),
then ts(v, i+1) = te(v, i). For each sequence L(g) = (op(v1, i1), . . . , op(vlast(g), ilast(g))),
(g ∈ N ∪ A), ts(vk, ik) < ts(vk+1, ik+1), te(vk, ik) < te(vk+1, ik+1) for
1 ≤ k < last(g), and te(vk, ik) ≤ ts(vk+c(g), ik+c(g)) for each 1 ≤ k ≤
last(g)− c(g).

The condition S1 is a technical assumption to facilitate the localization of ve-
hicles, it says that each vehicle has a distinct start node and a distinct end
node. Condition S2 expresses the structure of vehicle routings, and guarantees
P4. This rule describes that the vehicles can move only between neighboring
nodes and edges and cannot turn around on any of the edges. Note also that
if two nodes are connected by a short edge, then the short edge has no cor-
responding operation in the routings of the vehicles. Condition S3 is derived
from P3 and P1, see Figure 3 for an illustration. The first part of this con-
dition excludes the possibility of overtaking (i.e., if a vehicle starts to use a
resource earlier than another vehicle, then it is impossible that the second ve-
hicle ends the usage of this resource earlier than the first vehicle), while the
second guarantees that if a vehicle moves e.g., from a node to an edge, then
no other vehicle can move in the opposite direction simultaneously. Finally,
the timing relations in S4 are natural and follow from P3, except possibly the
last relation te(vk, ik) ≤ ts(vk+c(g), ik+c(g)). On node resources, it ensures that
each intersection/station is occupied by at most one vehicle at a time, cf. P2.
On edge resources, it allows at most c(g) vehicles to occupy the same edge g
simultaneously, which may be a bit restrictive, but surely guarantees that the
schedule can be realized in the physical environment.

To facilitate the computation of ts(v, i) and te(v, i), we define event graphs.
An event graph D̃ = (Ñ , Ã) is defined with respect to the routings L(v), v ∈ V,
and operation orders L(g), g ∈ N ∪ A, where Ñ contains a start event s(v, i)
and an end event e(v, i) for each operation op(v, i). The set of arcs Ã comprises
routing arcs for the vehicles, and ordering arcs for resources. The routing arcs
are as follows: for each start event s(v, i), Ã contains the arcs (s(v, i), e(v, i)),
and if i < last(v), then also (s(v, i), s(v, i + 1)), and (s(v, i + 1), e(v, i)), see
Figure 4 for an illustration.

For each resource g, the set Ã contains the arcs (s(vk, ik), s(vk+1, ik+1)) and
(e(vk, ik), e(vk+1, ik+1)) for 1 ≤ k < L(g), and the arcs (e(vk, ik), s(vk+c(g), ik+c(g)))
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(A)

op(v, i) op(v′, j)

op(v, i + 1) op(v′, j + 1)

µ

µ
(B)

op(v, i) op(v′, j + 1)

op(v, i + 1) op(v′, j)

µ

µ

(C)

op(v, i) op(v′, j)

op(v, i + 1)op(v′, j + 1)

µ

µ

(D)

op(v, i) op(v′, j + 1)

op(v, i + 1)op(v′, j)

µ

µ

Figure 3: Illustration of condition S3): (A) and (B) represent feasible subgraphs,
while (C) and (D) violate the condition. The wavy arrows indicate ≺µ, while
a straight arrow always points to the consecutive operation on a routing of a
vehicle.

s(v, i) e(v, i)

s(v, i+ 1) e(v, i+ 1)

Figure 4: Vehicle edges for two consecutive operations of vehicle v.

for each 1 ≤ k ≤ last(g)−c(g), cf. condition S4. See Figure 5 for an illustration.

Proposition 1. If an event graph has no directed cycles, then a timing of the
events can be computed such that they satisfy S4.

The proof can be found in the Appendix.
We say that a schedule is proper if it satisfies conditions S1-S3, and the

associated event graph has no directed cycles. In fact, by Proposition 1, proper
schedules also satisfy condition S4.

4.3 Planning and replanning

In this section we describe how the current schedule is updated if a new request
is assigned to an AGV, see Section 4.1. The current schedule describes a route
for each vehicle to serve its current request, if any, but it does not contain the
operations for finished requests.

The update of a schedule consists of two steps. First, we delete most of the
operations (except the next few operations of each vehicle), and then we insert
the new and the old routes into this schedule in some order, see below. Prelimi-
nary computations have confirmed that it is a better strategy than augmenting
the current schedule with new requests only.
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s(v1, i1)

e(v1, i1)

s(v2, i2)

e(v2, i2)

s(v3, i3)

e(v3, i3)

s(v4, i4)

e(v4, i4)

Figure 5: Ordering edges (first type: solid, second type: dashed) and some
vehicle edges (dashdotted) for four consecutive usage of some edge resource g.

Before we cut back the schedule, for each vehicle v we freeze the operations
of the route L(v) from the beginning until v reaches the second node of the
layout graph from its current position. Then, we delete most of the unfrozen
operations with the following procedure:

Procedure Cut-back
Input: schedule with some frozen operations.
Output: new schedule graph

1. While there is a node resource g, such that the last member op(vlast(g), ilast(g))
of L(g) is not the last operation of L(vlast(g)), and the next operation of
vlast(g) is neither finished, nor frozen, perform the following step:

2. Delete each operation in L(vlast(g)) after op(vlast(g), ilast(g)).

Proposition 2. The schedule we get after procedure Cut-back, is feasible.

Proof. For each v 6= v′ ∈ V, µ(v, last(v)) 6= µ(v′, last(v′)) holds after cut back,
thus condition S1 holds. Deleting some operations from the end of the routes
yields a schedule respecting S2-S3. Finally, apply Proposition 1.

Note that in the procedure Cut-back , the freezing of operations is temporary
only.

Now we show how to extend the shortened schedule so that the AGVs fulfill
their assigned requests. In the following, a shortest path in the layout graph G
from some node ns to another node ne is a shortest path among all the paths
which do not contain a parking place as an internal node, i.e., only ns or ne may
be parking places on the paths. Such a path always exists by Assumption 1.
We add the unscheduled requests one-by-one:

Algorithm Reschedule
Input: current schedule, set of vehicles with unscheduled requests
Output: augmented schedule

1. Choose an unscheduled request r with an earliest due date.

2. If v is the AGV assigned to r, and µ(v, last(v)) equals the pickup location
of r, or v has loaded the request, then we determine a shortest path in
the layout graph from µ(v, last(v)) to the delivery station of r. Invoke
procedure Insert Path to insert the corresponding sequence of operations
into the schedule.
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3. Otherwise, invoke Insert Path for a shortest path from µ(v, last(v)) to the
pickup station of r, and for a shortest path from the pickup station to the
delivery station of r.

4. If there is at least one unscheduled request left, go to step 1.

The next procedure schedules the vehicles. The input is a vehicle v∗ and
a path P ∗ from µ(v∗, last(v∗)) to a final destination node of the layout graph.
Scheduling a pair (v∗, P ∗) consists of the generation of a sequence of operations
corresponding to the nodes and edges of P ∗, and appending them to the current
schedule, i.e., new operations are always appended after the last operation of
each resource, and that of the route of v∗. However, if some node g on the path
P ∗ is blocked by a vehicle v′ 6= v∗, i.e., g = µ(v′, last(v′)) ∈ P ∗, then at first v′

must get a pull-off route to a parking place of the layout graph. To complicate
things, the way of v′ may be blocked as well by another vehicle v′′, so that v′′

should get a pull-off route first, etc. It may also happen that v∗ blocks the
pull-off route of a v 6= v∗, thus v∗ itself must pull-off to some parking place to
free the way for v. However, this can occur only once, see Proposition 4.

Procedure Insert Path
Input: current schedule, vehicle v∗, and a path P ∗ in the layout graph for

v∗

Output: new schedule

1. Let V ′ = ∅ be the set of vehicles that require a pull-off route, L′ = ∅ (it
will be the set of the possible parking places), vehicle v̄ = v∗, path P̄ = P ∗

(the ’actual’ vehicle and route).

2. Find blocking vehicles: extend V ′ with the set of vehicles v′ 6= v̄ such that
µ(v′, last(v′)) ∈ P̄ .

3. Schedule (v∗, P ∗) if v∗ is not blocked, i.e., V ′ = ∅. Freeze every event of
the schedule graph, except events of the pull-off routes. Invoke procedure
Cut-back , and STOP.

4. If v̄ is not blocked, i.e., for any v ∈ V\{v̄}, µ(v, last(v)) /∈ P̄ , then schedule
the pull-off route P̄ for the blocking vehicle v̄. Delete v̄ from V ′.

5. If v∗ has got a pull-off route in step 4, then let P̂ be a shortest path from
µ(v∗, last(v∗)) to the last node of P ∗ and invoke procedure Insert Path
for (v∗, P̂ ), and STOP.

6. Collect all parking places of the layout graph where a vehicle can be sent,
i.e., let L′ be the set of parking places such that `′ is not an end node of
P ∗, and for any v ∈ V, µ(v, last(v)) 6= `′.

7. Select a vehicle to pull-off: for each v ∈ V ′, let Pv be a shortest path
among the paths from µ(v, last(v)) to any parking place ` ∈ L′. Let v̄, P̄
be such that P̄v̄ is a shortest path among the Pv, v ∈ V ′. Go to step 2.

14
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Figure 6: The initial state (A), the state after the pull-off of v∗ (B), and the
final state (C).

The following example illustrates both the difficulties and the solution algo-
rithm on a small layout graph.

Example 1. Consider the layout graph in Figure 6. Let n1, n2, n3, and n7

be parking places, and n7 a station as well. There are 3 vehicles, v1, v2 and
v∗ located initially at the nodes n6, n4 and n5, respectively. All vehicles are
idle, and v∗ gets a request so that it has to move to n7, thus it gets a path
P ∗ = (n5, n6, n7). Since v1 blocks v∗ on P ∗, it must get a pull-off route first,
i.e., V ′ = {v1} after the first iteration. The closest parking place to n6 is n3

(apart from the n7 which is an end node of P ∗), thus P̄ = (n6, n5, n4, n3) in
step 7. Both v∗ and v2 blocks v1, thus we add them to V ′, and the new (v̄, P̄ ) will
be (v2, (n4, n3)). No vehicle blocks v2, thus we can schedule it along P̄ . Then,
we refresh v̄ to v∗, P̄ to (n5, n4, n1) (because n1 is the closest parking place not
in P ∗), and schedule it, because no vehicle blocks it. Since v∗ has got a pull-off
route, the algorithm invokes itself for (v∗, (n1, n4, n5, n6, n7)).

After that, only v1 blocks v∗ and it can be sent to n2, then the algorithm can
schedule (v∗, (n1, n4, n5, n6, n7)).

First we prove the soundness of the Insert Path procedure.

Lemma 1. Suppose the current schedule is proper and let v ∈ V be a vehicle,
and P a path in the layout graph from µ(v, last(v)) to a node such that for any
v′ ∈ V\{v}, µ(v′, last(v′)) /∈ P . Then scheduling (v, P ) yields a proper schedule.

Proof. Since for any v′ ∈ V \ {v}, µ(v′, last(v′)) /∈ P , node µ(v, last(v)) in
the updated schedule is different from any µ(v′, last(v′)) for v′ ∈ V \ {v}, thus
condition S1 holds. Since we insert each new operation after all the already
scheduled operations on each resource, the other two conditions are also satisfied,
and no directed cycle is created in the event graph.

Proposition 3. If the current schedule is proper, then the Insert Path procedure
returns a proper schedule.
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Proof. Observe that whenever the Insert Path procedure inserts a new path P
for some vehicle v into the current schedule, then (v, P ) satisfies the conditions
of Lemma 1.

Now we turn to computational complexity.

Proposition 4. Procedure Insert Path is of polynomial time complexity on any
input.

Proof. Let v∗ be a vehicle, d∗ any node of the layout graph, and P ∗ a path from
µ(v∗, last(v∗)) to d∗. Suppose Insert Path is invoked on the input (v∗, P ∗) and
the current schedule.

First, we prove that the procedure cannot get stuck at step 7, i.e., if V ′ 6= ∅,
then L′ 6= ∅. If V ′ 6= ∅, then there is a blocking vehicle in d∗, or in a node
of the layout graph which is not a parking place. It means that the number
of those vehicles v with µ(v, last(v)) being a parking place node of the layout
graph different from d∗ is at most |V| − 1. Since the number of the parking
places is greater than |V| (see the Assumption 2), there is at least one parking
place different from d∗ which is not the last location of any vehicles, i.e., L′ 6= ∅.

Now, we prove that the procedure invokes itself at most once, and each
vehicle gets a pull-off route at most once. Let (ṽ, P̃ ) be an arbitrary pair the
procedure tries to schedule. Since P̃ is a shortest path in the layout graph, it
can visit a parking place only in its first or last node. The first node of P̃ is
µ(ṽ, last(ṽ)), thus there is no vehicle v 6= ṽ such that the first node of P̃ is
µ(v, last(v)). The last node of P̃ is d∗, or a parking place `′ of the layout graph
such that µ(v′, last(v′)) 6= `′ for all v′ ∈ V. To sum up, if µ(v, last(v)) is a
parking place of the layout graph different from d∗ for a vehicle v 6= ṽ, then v
cannot block P̃ .

If the procedure schedules a pull-off route for a vehicle v, then µ(v, last(v))
will be a parking place different from d∗, thus the procedure schedules a pull-off
route for each vehicle at most once, and after that it remains in the parking
place except the vehicle v∗. If vehicle v∗ gets a pull-off route, then at step 5 the
procedure invokes itself. During this second invocation, v∗ cannot block any
vehicles, hence, it moves only once, to d∗.

At each iteration, the procedure either schedules a pull-of route for a vehicle,
or adds some blocking vehicles to V ′ (except the last iteration). Since the
procedure deletes a vehicle v from V ′ only if it schedules a pull-off route for v,
the procedure has at most O(|V|) iterations. The running time of an iteration is
polynomial in the size of the input, hence we have proved the proposition.

The results of this section boil down to the following statement.

Theorem 1. When applied to a proper schedule, the Reschedule algorithm de-
livers a proper schedule in polynomial time.
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4.4 Improvement of schedules

In this section we describe two methods for improving a schedule. The two
methods are invoked repeatedly until they cannot improve the schedule.

Before describing the procedures in detail, recall the procedure Cut-back,
which can be used to drop non-frozen events from a schedule. We also need some
more definitions. A loop in a route of a vehicle v is a subsequence of operations
op(v, i), . . . , op(v, j) such that 1 ≤ i < j ≤ last(v), and µ(v, i) = µ(v′, j) is the
same node resource. Clearly, a loop may be eliminated if it contains neither the
load nor the unload operation of a request served by v internally (at some posi-
tion strictly between i and j). By eliminating some loops, a schedule improves
as the vehicles move less. Another option is to decrease the delays in a sched-
ule. We say that the operation op(v, i) is delayed if ts(v, i)+pmin(v, i) < te(v, i).
Suppose i < last(v), then ts(v, i + 1) = te(v, i). Therefore, the delay may be
caused by delaying the end of op(v, i). Hence, to eliminate the delays, we may
try to move the operation op(v, i + 1) to some other position on the resource
µ(v, i + 1). The delays will be reduced repeatedly within a local search proce-
dure. Firstly, we describe the complete method:

Procedure Improve Schedule
Input: current schedule
Output: updated schedule

1. Freeze all the non pull-off operations, and cut-back the schedule.

2. Invoke the Loop Elimination procedure.

3. Decrease the delays of the operations by the Local-Search procedure.

4. If no changes occurred in the second or third steps, then STOP; otherwise
proceed with step 1.

The main idea of the Loop Elimination procedure is that it identifies sub-
routes of the vehicles starting and ending on the same node and not containing
internally the pickup or the delivery operation of the request being served.

Procedure Loop Elimination
Input: current schedule
Output: updated schedule

1. For each vehicle v perform the steps 2)-4).

2. Freeze the operations of v until it reaches the second node from its current
position, and let op(v, i) be this operation.

3. For each k = i to last(v)−1 and k = j+1 to last(v) perform the following:

4. If µ(v, j) = µ(v, k) is the same node resource, and the subsequence L′ =
(op(v, j), . . . , op(v, k)) does not contain a load or unload operation in-
ternally, then remove L′ \ {op(v, k)}, and test if the remaining schedule

17



S

op(v′, j − 1) op(v, i + 1)

op(v, i)op(v′, j)

S′

op(v′, j − 1)op(v, i + 1)

op(v, i) op(v′, j)

Figure 7: Example for Swap and Propagate, the operations in same line require
the same resource. After the swapping order of op(v, i) and op(v′, j), we also
need to swap the order of op(v, i+ 1) and op(v′, j − 1) (cf., Figure 3 (D)).

satisfies S1)-S3). If it does not, then reinsert L′ \ {op(v, k)}, and proceed;
otherwise STOP.

Local search is a general technique to improve partial or complete solutions
of an optimization problem, see e.g., Michiels et al. (2007). The main idea is
that we define a a neighborhood of the current solution, and then pick a neigh-
bor with a better objective function value than the current one. In our case the
solutions are feasible schedules. For a schedule S, the set of critical operations
are those op(v, i) such that i > 1, and op(v, i− 1) is delayed, see above. For
each critical operation op(v, i), we obtain a neighbor by swapping op(v, i) with
its immediate predecessor on its resource. Clearly, swapping only these two
operations may yield a schedule graph which does not satisfy the conditions
S1)-S4). To remedy this, the swaps must be propagated by the following:

Procedure Swap and Propagate
Input: schedule S and operation op(v, i)
Output: schedule S ′ in which op(v, i) is swapped with it resource predecessor

in S

1. Swap op(v, i) with its immediate resource predecessor op(v′, j).

2. Let H := {op(v, i− 1), op(v, i+ 1)}, and K := {op(v′, j− 1), op(v′, j + 1)}
(omit those operations which do not exist).

3. For each pair (o, o′) ∈ H ×K perform the following:

4. If o and o′ require the same resource, and o precedes (not necessarily im-
mediately) o′ on the common resource, then move o′ right after o. Invoke
Procedure Swap and Propagate on the current schedule graph, and o′.

The procedure tries to ensure the condition S3). Notice that each pair of
operations is swapped only at most once, and thus the procedure terminates in
polynomial time in the size of S. See Figure 7 for illustration.

The following simple local search based method is used to decrease the total
delays of the operations of a schedule. Briefly, it invokes repeatedly Swap and
Propagate on the actual schedule and one of its critical operations, until a fea-
sible schedule is obtained with a smaller sum of delays.
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Procedure Local Search
Input: schedule S
Output: schedule S∗

1. Let S∗ := S.

2. Let td∗ be the sum of the delays of the operations in S∗ with respect to
its timing. Let tdbest =∞ and Sbest the empty schedule.

3. For each critical operation op of S∗ in turn, do the following:

4. Let S ′ := S∗. Invoke the Swap and Propagate procedure on S ′ and op,
and let Ssw be the resulting schedule.

5. If Ssw represents a feasible schedule, and the total delay of it is smaller
than tdbest, then replace Sbest with Ssw, and update tdbest to the total
delay of Sbest. Proceed with Step 4 if there is an unprocessed critical
operation.

6. If tdbest < td∗, replace S∗ with Sbest, and proceed with Step 2, otherwise
STOP.

Since the objective function must decrease in every major iteration of the
Local Search procedure, it terminates in a finite number of steps.

4.5 Execution mechanism

It is mandatory that the vehicles faithfully follow the schedule to ensure deadlock-
free execution. Therefore, before a vehicle v moves to a node from an edge, it
has to check that other vehicles scheduled to pass before v have already visited
the node. If not, v has to wait until the other vehicles pass. In practice, vehicles
may ask the central controller if there is any vehicle to wait for before moving
to a node.

As for edges, the vehicles can move to an edge as soon as they can while
respecting the safety distance. Moreover, they have to wait far enough from the
other end of the edge so that they do not block the way of other vehicles crossing
the node before them (those vehicles arrive from and proceed to different edges).

When a vehicle leaves a node or an edge, then the corresponding operation
is marked ”finished”.

5 Computational results

In this section we compare our method to that of Malopolski Ma lopolski (2018),
which is also a centralized method that also guarantees collision free routing
of the vehicles. Moreover, we analyze how the load of the system affects its
performance in terms of meeting the due dates of the requests.

In our computational tests we have used different layouts and request gen-
eration schemes. The instance files and the detailed results are freely available
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Table 1: The main features of the layouts. * indicates delivery stations are the
same as pickup stations.

Layouts # pickup stations # delivery stations # vehicles

A 7 30 10
B 8 8 8
C 36 36* 6

from the authors. In Sections 5.1 and 5.2 we describe the layouts and request
generation schemes, respectively. Then, we summarize our results in Section 5.3.

5.1 Layouts and vehicles

We have examined three different layout graphs that model some typical factory,
and warehouse topologies, see Figure 8. Layout A has a block structure with
several parallel streets, in B there are two rooms connected by a narrow corridor,
while layout C has a tree-like structure. In layouts A and B, each station is
either a pickup or a delivery station, while in C, there are universal stations
where the requests can start as well as end.

The number of the vehicles for each layout is derived from its size. The
characteristics of the layouts along with the number of vehicles are summarized
in Table 1. Note that our method does not require so many parking places in
the layout graphs, these are introduced only because the method of Ma lopolski
(2018) requires that each vehicle has a separate depot node, and depot nodes
must be different from stations.

5.2 Requests

A request contains the coordinates of the pickup and delivery stations, its an-
nouncement time ar, earliest pickup time er, and due date dr. The pickup and
the delivery station of a request is determined randomly (with a uniform distri-
bution) among the pickup and the delivery stations. The pickup and delivery
station of a request cannot coincide.

The pickup time of a request is a random number within the time horizon
of 1000 time units. The announcement time of each request r is determined by
ar = max{0, er − L}, where L is the estimated average service time, i.e., the
expected value of the distance of the pickup station and the delivery station of
a request, divided by the maximum speed of the vehicles. The due date of a
request is determined by the following expression: dr = er + tL+ tpd+ tUL+ 60,
where tL is the loading time, tpd is the estimated time required for a vehicle to
get from the pickup station to the delivery station (i.e., if the vehicle does not
have to wait due to traffic), and tUL is the unloading time. In all of our tests,
tL and tUL are set to 2 time units. The minimum time for serving the requests
is extended by 60 time units to enlarge the time window of on-time delivery.
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(A)

(B)

(C)

Figure 8: The three layouts, A, B and C. The initial location of a vehicle is
denoted by an ’x’, a pickup node by a black square, and a delivery node by a
red square (except in the third layout, where each pickup node serves also as a
delivery node). Undirected edges are green, directed edges are red or blue.
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For each layout, we have generated instances with two different number of
requests, as determined by the following expression:⌊

TimeHorizon · |V|
avgServT ime · α

⌋
,

where TimeHorizon is the length of the time horizon (set to 1000), |V| is the
number of the vehicles (different for each layout), avgServT ime is the average
time required to serve a request (from loading to unloading, different for each
layout), and factor α ∈ {2, 3} determines the overload of the system.

For each layout we have generated 100 instance files for both number of
requests, giving a total of 600 problem instances.

5.3 Comparison to the method of Malopolski

We have implemented our method and the method of Malopolski in the Java
programming language along with the improvement techniques. We have run
both methods with, and without the improvements of Section 4.4. For our
method, we have also considered the case, when we omit step 2 (Loop Elimi-
nation) from Procedure Improve Schedule, and we just apply the local search
procedure during the improvement. There is a short summary on the Malopol-
ski method in the Appendix. The tests were run on a computer with i9-7960X
CPU @ 2.80GHz, 16 cores 4x NVIDIA GeForce RTX 2080Ti, and Debian 9
Linux operating system. The entire simulation procedure was quite fast for any
method and any instance file, it required approximately 5-15 seconds.

There are several important measures for an AGV system, firstly we focus
on average tardiness,

∑
r∈R Tr/|R|, of the requests. Table 2 summarizes the

results, where each number is an average over 100 instances of the average
tardiness of the requests. The standard deviations are in parenthesis. The
columns determine the Layouts, the number of the requests (both for of α = 3
and α = 2 for each layout), and the five methods, where ’+impr’ denotes the
usage of Procedure Improve Schedule, while ’+LS’ denotes the usage of the local
search heuristic only.

The results show that our method clearly outperforms that of Malopolski,
which does not provide any comparable results without the improvement pro-
cedures. The Local Search and the Improve Schedule Procedure help a lot in
general, but in case of Layouts B and C, our method has better results even
without any improvement procedures than that of Malopolski with improve-
ments. In all cases, the best results are obtained by our method when all
improvement procedures are active, where the average tardiness is negligible
when α = 3 (when the number of the requests is relatively small). However, if
α = 2, then the results show that the system is overloaded for all methods.

Tables 3 and 4 present the average empty and loaded travel distances, and
times, respectively. The results show that our method not always use the short-
est routes between the pickup and delivery stations unlike the method of Mal-
opolski, which always does (see loaded travel distances). However, we do not
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Table 2: Average tardiness: average values (and standard deviations) over 100
instances of the average tardiness of the requests.

Layouts # req Malopolski Malopolski Our Our Our
+ impr +LS +impr

A 98 1556.57 8.23 24.16 0.51 0.03
(967.72) (12.50) (26.27) (1.77) (0.26)

147 2585.60 137.16 231.10 78.07 20.61
(1580.83) (104.11) (157.17) (67.05) (23.99)

B 85 1641.88 77.74 45.88 2.47 0.19
(953.36) (64.89) (41.28) (5.16) (0.69)

127 2628.42 328.24 264.49 115.21 51.33
(1530.00) (222.35) (176.78) (90.22) (48.21)

C 79 1039.87 47.69 2.47 0.05 0.01
(659.43) (45.81) (4.53) (0.21) (0.03)

119 1874.22 299.88 126.54 34.78 14.54
(1153.18) (203.52) (96.96) (34.54) (18.09)

have to add long routes to the depot nodes after finishing the requests, thus we
gain more on the empty distances than we lose on the loaded distances. Table 3
also shows that the different improvement methods slightly reduce the total
travel distances in almost all cases, except the loaded travel distances under the
Malopolski method, where there is no chance for reduction.

The travel times in Table 4 are not merely the travel distances divided by
the speed of the vehicles, because they include all the delays caused by waiting.
This is why the loaded travel times can be shorter in case of our method than
that of the Malopolski mehtod, even if the loaded travel distances are always
shorter in case of the Malopolski method. The reason for this phenomenon is
due to our strategy of deleting all routes first before scheduling new requests into
the schedule, see Section 4. Notice also the very significant improvement in the
travel times in case of the ’Malopolski+impr’ method. In particular, the empty
travel times become much shorter, because the Improve Schedule procedure in
many cases cuts back the empty travel to the depot node and unifies it with
the route to the pickup station of the next request of a vehicle. However, even
after the improvement, the Malopolski method still requires significantly more
empty travel time than our method.

We have introduced a new measure that can describe the operation of a sys-
tem during the time horizon more accurately. For each instance, we partitioned
the requests into 10 (almost) equal size sets Di ⊂ R (i = 1, . . . , 10) by the
deciles of the set of pickup times (a number which is not smaller than (10 · i)%
of the elements of the set {er : r ∈ R}, but not larger than (100 − 10 · i)%
of the elements of the set). For each Di, we determine the average lateness
(
∑
r∈Di

(tr − dr)/|Di|, where tr is the finish time of r), and then, we take the
average over the 100 instances. This measure shows how the average lateness
changes during the time horizon, and it is able to give a good guess on the
average lateness, if the time horizon is longer (and the rate of the number of the
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Table 3: Travel distances: average values over 100 instances of the average
empty (e), and loaded (l) travel distances of the vehicles.

Layouts # req Malopolski Malopolski Our Our Our
+ impr +LS +impr

A 98 e 506.15 485.18 399.72 402.62 371.15
l 292.68 292.68 366.56 349.28 311.86

147 e 754.93 675.74 540.02 522.53 473.41
l 440.02 440.02 596.35 569.20 490.61

B 85 e 570.40 497.25 410.98 415.20 387.32
l 289.31 289.31 360.60 348.17 311.75

127 e 847.16 719.47 549.27 534.16 495.47
l 430.07 430.07 583.42 563.68 486.74

C 79 e 468.13 415.15 323.55 320.52 309.56
l 278.94 278.94 308.82 304.41 291.90

119 e 702.66 612.41 452.59 446.73 431.53
l 420.02 420.02 497.29 488.25 450.83

Table 4: Travel times: average values over 100 instances of the average empty
(e), and loaded (l) travel times of the vehicles.

Layouts # req Malopolski Malopolski Our Our Our
+ impr +LS +impr

A 98 e 3648.97 695.05 567.68 573.67 604.45
l 426.47 301.85 464.02 363.57 321.57

147 e 5543.82 867.00 678.27 575.13 528.89
l 638.69 457.79 803.18 607.17 516.60

B 85 e 3661.27 829.18 600.24 572.00 598.08
l 453.27 341.44 482.93 380.09 333.78

127 e 5428.02 1185.35 710.27 604.43 564.18
l 679.55 516.37 828.45 642.69 549.44

C 79 e 2794.61 771.41 572.19 579.12 591.67
l 298.86 324.58 375.27 321.31 305.88

119 e 4322.53 1125.06 602.08 523.82 513.81
l 450.07 498.35 655.32 530.48 485.38

requests, and the length of the time horizon does not change). Figure 9 depicts
the results for layout C, but similar figures could be depicted for the other two
layouts as well.

The 10 points on the horizontal axis corresponds to D1, . . . , D10, and the
figure depicts the average of average lateness of the requests in Di over 100
instances for different solution methods. The figure does not depict the results
of the method of Malopolski without improvements, because it would obscure
the differences among the other solution methods. In case of 79 requests, we
can see that our method is able handle them even without local search. If we
do not use local search then the system needs the extra 60 time units to finish
the requests on time, however, approximately 10 time units are enough, if we
apply the local search heuristic as well. In contrast, for the Malopolski method
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Figure 9: The average lateness of D1, . . . , D10 in case of layout C and 79 requests
(left), and 119 requests (right).

with improvements, the unserved requests accumulate as the time passes, which
leads to increasing delays (i.e., the system is overloaded).

For the benchmark instances with 119 requests, the system is overloaded
for each method, since the delays increase as the time passes. Observe the
difference in the steepness of the curves: this indicates how fast the number of
the unserved request increases at any moment.

6 Final remarks

In this paper we have summarized our method for suboptimal and conflict-
free AGV control. Our solution is suboptimal for the total tardiness objective
function with respect to the due dates of the requests served by the vehicles. It
is conflict-free, since under mild assumption, it guarantees that all vehicles can
serve their requests. We have performed a series of experiments to assess the
performance of the method, and compared it to another complete method from
the literature, proposed quite recently. We emphasize that the transportation
requests are not known in advance, but they arrive on-line. There are three
main novelties in our approach: (i) the planning of the routes of the vehicles
already ensures a conflict-free execution, provided the vehicles follow the plan,
(ii) the schedule improvement strategies that can significantly decrease the travel
distances and delays, and (iii) the consideration of conflict-free routing and the
minimum tardiness objective together, in the same problem. The very low
computational time of our method indicates that it can scale up well with the
size of the problem.

As a continuation, we want to extend our method to vehicles of capacity
more than one, i.e., a vehicle may visit a number of different pickup points
before delivering an item, the only limitation is its capacity. However, in such
a problem, task assignment is even more important, and there is no generally
accepted good method for the online multiple pickup and delivery problem with
vehicle capacities.
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Appendix

Timing of event graphs

The following property will be useful when computing a timing of a schedule.

Proposition 5. If an event graph D̃ = (Ñ , Ã) does not contain a directed cycle,
then for any pair of events s(v, i+ 1), e(v, i) ∈ Ñ , D̃ does not contain a directed
path from s(v, i+ 1) to e(v, i) which avoids the arc (s(v, i+ 1), e(v, i)) ∈ Ã, nor
a directed path from e(v, i) to s(v, i+ 1).

Proof. By contradiction, suppose there is a path P in D̃ from s(v, i + 1) to
e(v, i), which does not contain the arc (s(v, i + 1), e(v, i)) ∈ Ã. Then at some
point P must return to a start event s(v′, i′) on µ(v, i) and use only ordering
arcs to reach e(v, i). Then s(v′, i′) is either equal to s(v, i), or precedes it. Since
the start events constitute a chain on each resource, it follows that in either case
s(v, i) can be reached from s(v, i + 1) by a directed path P ′. Extending P ′ by
the arc (s(v, i), s(v, i+ 1)) ∈ Ã, we get a directed cycle in D̃, a contradiction.

Finally, a directed path from e(v, i) to s(v, i+ 1) along with the arc (s(v, i+
1), e(v, i)) would yield a directed cycle, again a contradiction.

Consider a feasible schedule and the corresponding event graph D̃ = (Ñ , Ã).
First of all, we assign a length len(a) to each arc a ∈ Ã. Let len(s(v, i), e(v, i)) =
pmin(v, i), and if i < last(v), then also len(s(v, i), e(v, i+ 1)) = pmin(v, i). Fur-
ther on, let len(s(vk, ik), s(vk+1, ik+1)) = len(e(vk, ik), e(vk+1, ik+1)) = δmin,
where δmin is the minimum time needed to cover the safety distance between
two vehicles. The length of all other arcs is 0.

We define the timing t : Ñ → Q as follows. We visit the events of D̃ in
a special topological order, namely, for each v ∈ V and 1 ≤ i < last(v), we
unify the pair of events e(v, i), s(v, i + 1) ∈ Ñ , and drop the self loop created
by the arc (s(v, i + 1), e(v, i)) ∈ Ã. Since this unification does not induce any
directed cycles by Proposition 5, the resulting digraph has a topological order
as well. We process the events in this order, where e(v, i) is always processed
right after s(v, i+1) provided the latter operation exists. Let ∗(v, i) be the next
unprocessed event.

• If ∗ = s, and s(v, i) has no predecessor at all, then we set t(s(v, i)) to
the current time unless it is the start of loading some request r, and er is
larger than the current time, in which case we set t(s(v, i)) := er.

• If ∗ = s, and s(v, i) has some predecessors, then t(s(v, i)) is the maximum,
over all the edges a = (ω, s(v, i)) ∈ Ã, of the quantities t(ω) + len(a), and
also of er, if s(v, i) represents the start of loading request r.

• If ∗ = e, then t(e(v, i)) is the maximum, over all the edges a = (ω, e(v, i)) ∈
Ã, of the quantities t(ω) + len(a).

Note that even if the topological order of the schedule graph is not unique, its
canonical timing is so. Now we are ready to prove Proposition 1.
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Proof of Proposition 1. An event graph contains all the arcs that correspond to
the temporal relations of condition S4. As we have just seen, if the event graph
does not contain a directed cycle, then the timing of the events can be computed
by standard methods. Moreover, for any pair of events e(v, i), s(v, i + 1) ∈ Ñ ,
t(e(v, i)) = t(s(v, i + 1)). Consequently, the timing t computed for the event
graph immediately gives an interval [ts(v, i), te(v, i)] for each operation op(v, i) ∈
OP satisfying S4, namely, let ts(v, i) := t(s(v, i)) and te(v, i) := t(e(v, i)).

The method of Malopolski (Ma lopolski (2018))

The method of Malopolski assumes that each vehicle has a dedicated depot
node (’parking place’) which cannot block the route of any other vehicle. The
vehicles always start and end their transportation tasks at their depot nodes.
It is also assumed that each lane is bidirectional, but the method can be easily
generalized to one-way lanes as well (but the corresponding network graph has
to be strongly connected).

If a transportation request is assigned to a vehicle, then the operations cor-
responding to three paths are inserted into the schedule: (i) from the depot
node of the vehicle to the pickup node of the request; (ii) from the pickup node
to the delivery node of the request; and (iii) from the delivery node to the depot
node of the vehicle. All three paths are shortest paths between the given nodes.
The schedules are represented by time-extended networks, like in e.g., Gawrilow
et al. (2008). However, already scheduled operations are never rescheduled, and
new operations are always appended to the end of the schedule (after all op-
erations scheduled previously). The construction of the schedules ensures that
they are feasible.

Our Loop Loop Elimination Procedure can be combined with the Malopolski
method easily: if the route from the delivery node of a request to the depot node
of the vehicle performing it, and the route from the depot of that vehicle to the
pickup node of its next request contains a common node, then our procedure
eliminates the operations corresponding to the loop containing the common node
of the two routes and the depot node of the vehicle, provided that the resulting
schedule is feasible. Moreover, our Local Search procedure may decrease some
delays by swapping the order of some operations.
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