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Dedicated to Seppo Hassi on the occasion of his 60th birthday

1 Introduction

In his profound paper (von Neumann, 1931), J. von Neumann introduced the concept of the adjoint
of a densely defined possibly unbounded operator J : K → H between two Hilbert spaces as the
operator J∗ : H → K, having the domain

dom J∗ = {g ∈ H : ∃k′ ∈ K such that (Jk | g) = (k | k′) ∀k ∈ dom J},

by setting
J∗g := k′, g ∈ dom J∗.

Although the adjoint operator behaves nicer than the original one (because it is always closed), it is
not necessarily densely defined. An essential question arises therefore: when is the domain dom J∗

a dense subspace ofH? Von Neumann himself gave an elegant answer to that question. Namely, he
proved that J∗ is densely defined if and only if J is a closable operator. Moreover, in that case the
second adjoint J∗∗ of J exists and it is equal to the closure J of J :

J = J∗∗.

At the same time, J∗∗J∗ and J∗J∗∗ are positive self-adjoint operators in the Hilbert spaces H and
K, respectively. Note also that we have

dom (J∗∗J∗)1/2 = dom J∗ and dom (J∗J∗∗)1/2 = dom J∗∗

on the domains, and

ran (J∗∗J∗)1/2 = ran J∗∗ and ran (J∗J∗∗)1/2 = ran J∗

on the ranges. Here, for a given positive self-adjoint operator A, A1/2 denotes the unique positive
self-adjoint square root of A; see, e.g., (Sebestyén & Tarcsay, 2017).

However, if J is not closed, then J∗J and JJ∗ are not self-adjoint operators in general. In fact,
it is not even clear whether those operators are densely defined, and therefore it is also a non-
trivial question whether they have any positive self-adjoint extensions at all. From classical works
by Friedrichs, Kreı̆n, and von Neumann, we know that a densely defined positive and symmetric
operator may be extended to a positive self-adjoint operator, see, e.g., (Friedrichs, 1934; Kreı̆n,
1947; von Neumann, 1931). In that case, there exist two distinguished self-adjoint extensions AN
and AF of any positive symmetric operator A, such that

AN ≤ AF ,
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and every positive self-adjoint extension Ã of A is between AN and AF : AN ≤ Ã ≤ AF . The
smallest extension AN of A is called the Kreı̆n-von Neumann extension, while the largest extension
AF of A is called the Friedrichs extension.

The problem of the existence of positive self-adjoint extensions has its relevance even in the non-
densely defined case. Although the Friedrichs extension exists only for a densely defined operator,
the smallest extension always exists if there exists any extension, see, e.g., (Sebestyén & Stochel,
1991) and also (Sebestyén & Stochel, 2007; Hassi, 2004).

In the present paper we revise the main result Theorem 1 of Sebestyén & Stochel (1991) and give
some new characterizations for a not necessarily densely defined positive symmetric operator to
admit positive self-adjoint extensions. More specifically, in Section 2 we collect some new properties
for an operator to be closable. Based on this new characterization of closability, we establish in
Section 3 the correct version of the "duality theorem" stated in Jorgensen, Pearse & Tian (2018:
Theorem 5). In Section 4 we give a short proof of the fact that the "modulus square" operator T ∗T
of any densely defined operator T always has a positive self-adjoint extension, cf. (Sebestyén &
Tarcsay, 2012: Theorem 2.1). At the same time, we shall see that this is not the case with TT ∗; that
operator might be even non-closable. However, we are going to establish necessary and sufficient
conditions for the extendibility of TT ∗. In particular, our construction of the Kreı̆n-von Neumann
extension in Section 4 will be used to exhibit a counterexample to (Jorgensen, Pearse & Tian, 2018:
Theorem 5). Finally, in Section 5 we treat the problem of the existence of the Friedrichs extension
of a densely defined positive symmetric operator. In particular, we discuss there the case when the
Friedrichs extension of the operator T ∗T is identical with T ∗T ∗∗.

2 Closable operators

Let J be a densely defined operator between the real or complex Hilbert spaces K andH. Note that
J is closable if for each sequence (gn)n∈N ⊂ dom J , such that gn → 0 and Jgn → h, it follows
that h = 0. On the other hand, a profound theorem by von Neumann tells us that J is closable if and
only if J∗ is densely defined, that is,

(dom J∗)⊥ = {0}.

In the following theorem, we give an extension of von Neumann’s result and collect some new
characteristic properties for an operator J to be closable. For further characterizations of closability
and closedness, see, e.g., (Popovici & Sebestyén, 2014; Sebestyén & Tarcsay, 2016; 2019; 2020).

Theorem 2.1. Let J be a densely defined operator between the real or complex Hilbert spaces K
andH. Then the following properties are equivalent:

(i) J is closable;

(ii) (dom J∗)⊥ = {0};

(iii) (dom J∗)⊥ ∩ (ran J)⊥⊥ = {0};

(iv) (dom J∗)⊥ ⊆ ran (I + JJ∗).
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Proof. (i)⇒ (ii) Consider a vector h ∈ (dom J∗)⊥, then

(0, h) ∈
{
{−J∗k, k} : k ∈ dom J∗

}
= G(J).

Since J is closable, this implies h = 0.

(ii)⇒ (iii) This implication is trivial.

(iii) ⇒ (i) Consider a sequence (gn)n∈N ⊂ dom J such that gn → 0, and Jgn → h. Then
h ∈ ran J = (ran J)⊥⊥. On the other hand, for every f ∈ dom J∗

(f |h) = lim
n→∞

(f | Jgn) = lim
n→∞

(J∗f | gn) = 0,

which means that h ∈ (dom J∗)⊥. Consequently, h = 0 by (ii) and therefore J is closable.

(ii)⇒ (iv) This implication is clear.

(iv)⇒ (ii) We are going to show that dom J∗ is dense in H. To this aim, take g ∈ (dom J∗)⊥. By
(iv), there exists h ∈ dom JJ∗ such that g = h+ JJ∗h. In particular, h ∈ dom J∗ and one has

0 = (g |h) = (h+ JJ∗h |h) = (h |h) + (JJ∗h |h) = ‖h‖2 + ‖J∗h‖2,

so that h = 0. This implies that g = 0 and therefore (iv) implies (ii).

3 Duality theorems

Let H1 and H2 be Hilbert spaces with a common vector subspace D. In Jorgensen, Pearse & Tian
(2018: Theorem 5) a necessary and sufficient condition is stated for the existence of a positive and
self-adjoint operator ∆ onH1 with the duality property

(∆ϕ |ψ)1 = (ϕ |ψ)2, ϕ, ψ ∈ D,

cf. also (Jorgensen & Pearse, 2016: Theorem 4.1). Unfortunately, there is a simple but serious
error in their proof and the statement itself is not true in that form either (a counterexample will be
exhibited in Example 4.2 below). In Theorem 3.3 we are going to establish the correct form of that
statement. Its proof depends on the following lemma.

Lemma 3.1. LetH andK be Hilbert spaces and let J : K → H be a densely defined linear operator
between them. Then the following three statement are equivalent:

(i) ran J ⊆ dom J∗;

(ii) J is closable and dom J ⊆ dom J∗J∗∗;

(iii) there exists a positive self-adjoint operator A in K such that dom J ⊆ dom A and

(Ag | k) = (Jg | Jk), g, k ∈ dom J. (3.1)
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Proof. (i)⇒ (ii) Since ran J ⊆ dom J∗, it follows that

(ran J)⊥⊥ ⊆ (dom J∗)⊥⊥ = H	 (dom J∗)⊥,

and, consequently,
(dom J∗)⊥ ∩ (ran J)⊥⊥ = {0}.

Applying Theorem 2.1 we see that J is closable. On the other hand, ran J ⊆ dom J∗ implies that
dom J = dom J∗J ⊆ dom J∗J∗∗.

(ii)⇒ (iii) If J is closable, then A := J∗J∗∗ is a positive self-adjoint operator inH, and by (ii) one
has dom J ⊆ dom A. On the other hand,

(Ag | k) = (J∗J∗∗g | k) = (J∗∗g | J∗∗k) = (Jg | Jk),

for every g, k ∈ dom J .

(iii) ⇒ (i) Suppose that A is a positive operator with dom J ⊆ dom A which satisfies (3.1). Let
k ∈ dom J be arbitrary, then for every g ∈ dom J

(Jg | Jk) = (Ag | k) = (g |Ak),

which implies Jk ∈ dom J∗. Therefore, ran J ⊆ dom J∗.

Remark 3.2. Let J be a closed operator. Then the inclusion

dom J ⊆ dom J∗J∗∗ (3.2)

is only possible if J is continuous and everywhere defined onH1, see, e.g., (Tarcsay, 2012: Lemma
2.1). This suggests that Lemma 3.1 is only relevant if J is a closable but not a closed operator.

The erroneous observation in the proof of (Jorgensen, Pearse & Tian, 2018: Theorem 5) is that (3.2)
holds true provided that both J and J∗ are densely defined. This makes it necessary to provide
the following correct version of (Jorgensen, Pearse & Tian, 2018: Theorem 5), which can also be
considered as a noncommutative version of the Lebesgue-Radon-Nikodym decomposition theorem.

Theorem 3.3. Let H1 and H2 be real or complex Hilbert spaces which contain a common linear
manifold D as a vector space. Suppose that D is dense inH1 and set

D∗ :=
{
h ∈ H2 : ∃Ch ≥ 0 such that |(ϕ |h)2| ≤ Ch‖ϕ‖1 ∀ϕ ∈ D

}
.

Then the following two conditions are equivalent:

(i) D ⊆ D∗ inH2;

(ii) there exists a positive self-adjoint operator ∆ inH2 such that D ⊆ dom ∆ inH1 and

(∆ϕ |ψ)1 = (ϕ |ψ)2, ϕ, ψ ∈ D. (3.3)

Proof. Let J be the operator from D ⊆ H1 to H2 defined by the identification Jϕ := ϕ, ϕ ∈ D.
Then J is a densely defined operator such that its adjoint J∗ has domain D∗: dom J∗ = D∗. The
desired equivalence follows now from Lemma 3.1.
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4 Von Neumann’s problem on positive self-adjoint extendibility

Given a positive symmetric operator A in a real or complex Hilbert space K, the question arises
whether there exists a positive self-adjoint extension of A. If the operator in question is densely
defined, then we know from classical papers by Friedrichs, Kreı̆n, and von Neumann that the operator
has a positive self-adjoint extension, see (Friedrichs, 1934; Kreı̆n, 1947; von Neumann, 1931); cf.
also (Ando & Nishio, 1970; Arlinskiı̆ et al., 2001; Prokaj & Sebestyén, 1996a;b; Schmüdgen, 2012).
However, uniqueness of the extension occurs only in the very special case when the operator in
question is essentially self-adjoint. In all other cases, the set of positive self-adjoint extensions is an
operator interval [AN , AF ], whereAN is the smallest (the so-called Kreı̆n-von Neumann) extension,
while AF is the largest (the so-called Friedrichs) extension of A. Recall that the partial ordering
among the set of positive self-adjoint operators is given by

A ≤ B ⇐⇒ (I +B)−1 ≤ (I +A)−1.

Equivalently, by means of the square roots, one has A ≤ B if and only if

dom B1/2 ⊆ dom A1/2 and ‖A1/2k‖2 ≤ ‖B1/2k‖2, ∀k ∈ dom B1/2.

The problem of the existence of positive self-adjoint extensions has its relevance even in the non-
densely defined case, and was treated in detail by Sebestyén & Stochel (1991), see also (Sebestyén
& Stochel, 2007; Hassi, 2004).

In the next result we revise (Sebestyén & Stochel, 1991: Theorem 1) on the existence of the Kreı̆n-
von Neumann extension of a positive and symmetric operator A. In this case it is convenient to
introduce the linear space D∗(A) by

D∗(A) := {k ∈ K : sup {|(Ag | k)| : g ∈ dom A, (Ag | g) ≤ 1} < +∞}. (4.1)

Theorem 4.1. Let A be a positive and symmetric operator on a real or complex Hilbert space K.
Then the following statements are equivalent:

(i) D∗(A) as in (4.1) is dense in K;

(ii) for every sequence (gn)n∈N ⊂ dom A and k ∈ K such that

(Agn | gn)K → 0 and Agn → k,

it follows that k = 0;

(iii) there exist a Hilbert space E and a densely defined linear operator V : K → E such that
dom A ⊆ dom V , (V (dom A))⊥ = {0}, and

〈V g, V h〉E = (Ag |h)K, g ∈ dom A, h ∈ dom V ; (4.2)

(iv) there exists a positive self-adjoint extension of A.

If any, and hence all, assertions of (i)-(iv) are satisfied, then there exists the smallest positive exten-
sion AN of A.
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Proof. (i)⇒ (ii) Assume that (Ag | g) = 0 for some g ∈ dom A. Then sup |(Ag, k)| < ∞ for all
k ∈ D∗(A), which implies (Ag, k) = 0. Since D∗(A) ⊆ K is dense by (i), it follows that Ag = 0.

This means that
〈Ag,Ah〉E := (Ag |h)K, g, h ∈ dom A, (4.3)

defines an inner product on ran A. Denote by E the completion of that space and consider the natural
inclusion operator JA : E ⊇ ran A→ K,

JA(Ag) := Ag ∈ K, g ∈ dom A. (4.4)

Clearly, ran A forms a dense linear manifold in E by definition, so that JA is densely defined. On
the other hand, one has

dom J∗A = D∗(A), (4.5)

thanks to the identities

(JA(Ag) |h)K = (Ag |h)K, g ∈ dom A, h ∈ K,

and
〈Ag,Ag〉E = (Ag | g)K, g ∈ dom A.

From (4.5) and (i) we see that J∗A is densely defined and therefore JA is closable. From this it
follows that A fulfills (ii).

(ii) ⇒ (iii) Note that the condition in (ii) implies that (4.3) defines an inner product. With the
notation as in the proof of the implication (i) ⇒ (ii), (ii) expresses that the canonical inclusion
operator JA : E → K is closable. Its adjoint J∗A : K → E is therefore a densely defined operator
such that

〈J∗Ag,Ah〉E = (g | JA(Ah))K = (g |Ah)K = 〈Ag,Ah〉E , g, h ∈ dom A,

whence we conclude that
J∗Ag = Ag ∈ E , g ∈ dom A. (4.6)

As a conseqence, J∗A provides a factorization for A in the sense of (iii):

〈J∗Ag, J∗Ah〉E = 〈Ag, J∗Ah〉E = (Ag |h)K, g ∈ dom A, h ∈ D∗(A). (4.7)

Moreover, by (4.6) we see that

J∗A(dom A) = {Ag : g ∈ dom A},

where the right-hand side is dense in H by definition. Hence, V := J∗A satisfies all requirements of
(iii).

(iii)⇒ (iv) Let V : K → E be a densely defined closable operator satisfying the properties in (iii).
By (4.2) we conclude that V g ∈ dom V ∗ for every g ∈ dom A and that

V ∗V g = Ag, g ∈ dom A. (4.8)

This means that dom V ∗ includes the dense set V (dom A), and therefore V is closable. Moreover,
by (4.8) we see that A ⊂ V ∗V ⊂ V ∗V ∗∗, i.e., the positive self-adjoint operator V ∗V ∗∗ extends A.



Acta Wasaensia 171

(iv) ⇒ (i): Let B be a positive self-adjoint extension of A. Then for every k ∈ dom B1/2 and
g ∈ dom A with (Ag | g) ≤ 1, we obtain that

|(Ag | k)| = |(Bg | k)| = |(B1/2g |B1/2k)|

≤ ‖B1/2g‖‖B1/2k‖ = (Ag | g)1/2‖B1/2k‖ ≤ ‖B1/2k‖,

whence k ∈ D∗(A). This implies that

dom B1/2 ⊆ D∗(A), (4.9)

where the former subspace is dense in K. Hence, D∗(A) is dense in K, i.e., (i) holds.

Finally, let any, and hence all, assertions of (i)-(iv) be satisfied. First note that the operator JA
defined in (4.4) is closable by (i). Hence, from (4.6) and (4.7) it follows that

AN := J∗∗A J∗A (4.10)

is a positive self-adjoint extension of A. Furthermore we have

D∗(A) = dom J∗A = dom (J∗∗A J∗A)1/2 (4.11)

and the density of ran A inH implies for every k ∈ D∗(A) that

‖(J∗∗A J∗A)1/2k‖2K = ‖J∗Ak‖2E
= sup

{
|〈Ag, J∗Ak〉E |2 : g ∈ dom A, 〈Ag,Ag〉E ≤ 1

}
= sup

{
|(JA(Ag) | k)K|2 : g ∈ dom A, (Ag | g)K ≤ 1

}
= sup

{
|(Ag | k)K|2 : g ∈ dom A, (Ag | g)K ≤ 1

}
.

Next we show thatAN as in (4.10) is the smallest self-adjoint extension ofA. Let thereforeB be any
positive self-adjoint extension of A. Since the positive self-adjoint operator B has no proper self-
adjoint extension, applying the above construction forB, we infer thatB = J∗∗B J∗B . By the inclusion
(4.9) we have dom B1/2 ⊆ dom A

1/2
N , see (4.10) and (4.11), and from the above calculation we

obtain that, for every k ∈ dom B1/2,

‖A1/2
N k‖2 = ‖(J∗∗A J∗A)1/2k‖2 = sup

{
|(Ag | k)|2 : g ∈ dom A, (Ag | g) ≤ 1

}
≤ sup

{
|(Bg | k)|2 : g ∈ dom B, (Bg | g) ≤ 1

}
= ‖(J∗∗B J∗B)1/2k‖2K = ‖B1/2k‖2K.

Hence AN ≤ B, as it is stated.

As was mentioned in the previous section, the statement of (Jorgensen, Pearse & Tian, 2018: Theo-
rem 5) is not correct, as with the notation used in Theorem 3.2, they assert that the existence of the
positive self-adjoint operator ∆ satisfying (3.3) is equivalent to D∗ being dense inH2. Based on the
preceding theorem and its proof, it will be shown by a counterexample that their assertion is not true
in general.

Example 4.2. Consider an unbounded positive self-adjoint operator A in a Hilbert space K and set

D := ran A.
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Denote by E the "energy space" associated with A and by J the corresponding inclusion operator
J : E ⊇ ran A→ K as in the proof of Theorem 4.1. Then D is a common vector subspace of E and
K such that D ⊆ E is dense. Furthermore,

D∗ :={k ∈ K : ∃Ck ≥ 0 such that |(ϕ | k)2
K| ≤ Ch‖ϕ‖2E ∀ϕ ∈ D}

={k ∈ K : ∃Ck ≥ 0 such that |(Ah | k)2
H| ≤ Ck(Ah |h)K ∀h ∈ dom A},

from which we conclude that
D∗ = D∗(A) = dom J∗,

so D∗ ⊆ K is dense. Suppose that the conclusion of (Jorgensen, Pearse & Tian, 2018: Theorem 5)
is true, then by that theorem the density of D∗ in K implies that there exists a positive self-adjoint
operator ∆ : E → E , D ⊆ dom ∆, such that

〈∆ϕ,ϕ〉E = (ϕ |ϕ)K, ϕ ∈ D.

From this we conclude that

(J(Ah) |Ak)K = (Ah |Ak)K = 〈Ah,∆(Ak)〉E , h ∈ dom A,

which in turn means that Ak ∈ dom J∗ and J∗(Ak) = ∆(Ak). As a consequence we see that
ran A ⊆ dom J∗, and since dom A ⊆ dom J∗ holds true as well, we obtain that

K = dom A+ ran A ⊆ dom J∗.

So J∗ is an everywhere defined bounded operator on K, and therefore so is A = J∗∗J∗. This is in
contradiction to the assumption that A is an unbounded operator.

Thanks to a classical result of J. von Neumann (von Neumann, 1931) we know that T ∗T and TT ∗

are positive self-adjoint operators whenever T is densely defined and closed. In Sebestyén & Tarcsay
(2014) we proved the converse of that statement: if both T ∗T and TT ∗ are self-adjoint then T is
necessarily closed, see also (Gesztesy & Schmüdgen, 2019) and (Sandovici, 2018) for the case of
linear relations. This means that if T is not closed (or not even closable), then either T ∗T or TT ∗ (or
even both) fail to be self-adjoint. In fact, TT ∗ might even be non-closable; however, surprisingly,
T ∗T behaves well. Namely, it was proved in Sebestyén & Tarcsay (2012: Theorem 2.1) that T ∗T
always has a positive self-adjoint extension. We provide a short proof of that result.

Theorem 4.3. Let T : K → H be a densely defined linear operator between the real or complex
Hilbert spaces K andH. Then T ∗T has a positive self-adjoint extension.

Proof. Consider the positive symmetric operator A := T ∗T . We are going to show that

dom T ⊆ D∗(A).

Indeed, for g ∈ dom A and k ∈ dom T , we have

|(Ag | k)|2 = |(T ∗Tg | k)|2 = |(Tg |Tk)|2 ≤ (Tg |Tg)(Tk |Tk)

= (T ∗Tg | g)(Tk |Tk) = (Ag | g)(Tk |Tk).

Hence D∗(A) is dense in K. Thus A has by Theorem 4.1 a positive self-adjoint extension.
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In the next result we deal with the positive extendibility of TT ∗.

Theorem 4.4. Let T : K → H be a densely defined operator between the real or complex Hilbert
spaces K andH. Then the following two statements are equivalent:

(i) TT ∗ has a positive self-adjoint extension;

(ii) T |domT ∩ ranT∗ is a closable operator.

Proof. The positive symmetric operator A := TT ∗ has a positive self-adjoint extension if and only
if it satisfies condition (ii) of Theorem 4.1. That is, according to that result, T ∗T has a positive
self-adjoint extension if and only if for every sequence (hn) ⊂ dom TT ∗ and every vector f ∈ H
the conditions

(TT ∗hn |hn) = ‖T ∗hn‖2 → 0 and TT ∗hn → f,

imply that f = 0. Evidently, this is equivalent to the closability of the restriction of T to the set
ran T ∗ ∩ dom T .

In the following example, we show that TT ∗ may have a bounded positive self-adjoint extension in
some cases even if T is not even closable.

Example 4.5. Let K be a separable Hilbert space and consider two orthonormal bases in it

{en,m : n,m ∈ N} and {fn : n ∈ N}.

Let us define the operator T on the vectors en,m by setting

Ten,m := mfn, n,m ∈ N,

and then extend it by linearity to dom T := span {en,m : n,m ∈ N}. It follows from this definition
that dom T ∗ = {0}. In order to see this, observe that for z ∈ dom T ∗ and n ∈ N we have

(z | fn) =
1

m
(z |Ten,m) =

1

m
(T ∗z | en,m),

for any m ∈ N. Letting m→∞ gives that (z | fn) = 0 and, hence, z = 0. Consequently, T is non-
closable (in fact, T is a maximal singular operator), but A = 0 is a (bounded) positive self-adjoint
extension of TT ∗.

The previous example demonstrated that TT ∗ can behave nicely even though T is singular. However,
as the following example illustrates, there exists an operator T such that TT ∗ is non-closable.

Example 4.6. Consider a maximal singular operator T in a Hilbert spaceK, that is, an operator such
that dom T ∗ = {0} (take e.g. the operator T from Example 4.5). Consider the following operator

J : K ⊇ dom T → K×K, Jg := {g, Tg}.

Then it is easy to verify that dom J∗ = K × dom T ∗ = K × {0}, and J∗{k, 0} = k. In particular,
dom JJ∗ = dom T × {0}, and

JJ∗{g, 0} = {g, Tg}, g ∈ dom T.
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Furthermore, we claim that J is not closable. Indeed, take any nonzero k ∈ K, then there exists a
sequence (gn)n∈N in dom T such that gn → 0 and Tgn → k. Then

JJ∗{gn, 0} = {gn, T gn} → {0, k},

which means that JJ∗ may not be closable.

Theorem 4.7. Let T : K → H be a densely defined closable linear operator, such that

dom T ⊆ ran T ∗. (4.12)

Then T ∗∗T ∗ agrees with the Kreı̆n-von Neumann extension of TT ∗.

Proof. Denote by E the completion of ran TT ∗ under the inner product

〈TT ∗h, TT ∗f〉 := (TT ∗h | f) = (T ∗h |T ∗f), h, f ∈ dom TT ∗.

By the construction of the proof of Theorem 4.1, the Kreı̆n-von Neumann extension of TT ∗ is of the
form J∗∗J∗, where J is the natural inclusion operator from E ⊇ ran TT ∗ intoH:

J(TT ∗h) := TT ∗h, h ∈ dom TT ∗.

Note that by (4.12) we have the identity dom T = {T ∗g : g ∈ dom TT ∗}. Consequently,

dom (J∗∗J∗)1/2 = dom J∗ = D∗(TT ∗)

=
{
h ∈ H : sup

{
|(TT ∗f |h)| : f ∈ dom TT ∗, ‖T ∗f‖2 ≤ 1

}
< +∞

}
= dom T ∗ = dom (T ∗∗T ∗)1/2.

At the same time we have that

‖(J∗∗J∗)1/2h‖2 = ‖J∗h‖2E
= sup

{
|〈TT ∗f, J∗h〉2| : f ∈ dom TT ∗, ‖T ∗f‖2 ≤ 1

}
= sup

{
|(T ∗f |T ∗h)|2 : f ∈ dom TT ∗, ‖T ∗f‖2 ≤ 1

}
= ‖T ∗h‖2,

for every h ∈ dom T ∗. We have therefore proved that T ∗∗T ∗ ≤ J∗∗J∗, and since J∗∗J∗ is the
smallest positive self-adjoint extension of TT ∗, we obtain that T ∗∗T ∗ = J∗∗J∗.

5 The Friedrichs extension

A densely defined positive symmetric operator A on a real or complex Hilbert space K always has a
positive self-adjoint extension. Indeed, the generalized Schwarz inequality

|(Ag |h)|2 ≤ (Ag | g)(Ah |h), g, h ∈ dom A

implies that dom A ⊆ D∗(A) and, therefore, A admits a positive self-adjoint extension according
to Theorem 4.1. In particular, by the same theorem, the Kreı̆n-von Neumann extension AN of A
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exists. In that case it is known that the so-called Friedrichs extension, that is, the largest positive
self-adjoint extension, exists as well. Using the procedure described in Theorem 4.1, we prove the
existence of the Friedrichs extension. Our method is very similar to that of Prokaj & Sebestyén
(1996a), but somewhat simpler.

Theorem 5.1. LetA be a densely defined positive symmetric operator in the real or complex Hilbert
space K. Then there exists the largest positive self-adjoint extension AF of A.

Proof. Let us recall the construction of the proof of Theorem 4.1 and consider the energy Hilbert
space E and the inclusion operator JA : E ⊇ ran A→ K defined by

JA(Ag) := Ag, g ∈ dom A.

By (4.5) we have dom J∗A = D∗(A) ⊇ dom A, and therefore we may consider the restriction QA
of J∗A to dom A, i.e.,

QA := J∗A|domA.

By (4.6),
QAg = Ag ∈ E , g ∈ dom A.

On the other hand, from QA ⊂ J∗A we get J∗∗A ⊂ Q∗A and Q∗∗A ⊂ J∗A, whence it follows that
AF := Q∗AQ

∗∗
A is a positive self-adjoint extension of A. We claim that AF is the largest among

the set of all positive self-adjoint extensions of A. Indeed, let B ⊃ A be any positive self-adjoint
extension of A. Repeating the above process we apparently have B = Q∗BQ

∗∗
B . Then

dom (Q∗AQ
∗∗
A )1/2 = dom Q∗∗A = dom QA

= {k ∈ K : ∃(kn)n∈N ⊂ dom A, kn → k, (A(kn − km) | kn − km)→ 0},

and, accordingly,

dom (Q∗BQ
∗∗
B )1/2 = {k ∈ K : ∃(kn)n∈N ⊂ dom B, kn → k, (B(kn − km) | kn − km)→ 0}

⊇ {k ∈ K : ∃(kn)n∈N ⊂ dom A, kn → k, (A(kn − km) | kn − km)→ 0}

= dom (Q∗AQ
∗∗
A )1/2.

Finally, for k ∈ dom (Q∗AQ
∗∗
A )1/2 ⊆ dom (Q∗BQ

∗∗
B )1/2, take (kn)n∈N ⊂ dom A such that

kn → k and (A(kn − km) | kn − km)→ 0,

then QAkn → Q∗∗A k in E , and hence

‖(AF )1/2k‖2 = (Q∗AQ
∗∗
A )1/2k‖2 = ‖Q∗∗A k‖2E = lim

n→∞
‖QAkn‖2E = lim

n→∞
(Akn | kn).

Moreover, since B ⊃ A,

‖B1/2k‖2 = ‖(Q∗BQ∗∗B )1/2k‖2 = lim
n→∞

(Bkn | kn) = lim
n→∞

(Akn | kn).

As a consequence we see that AF ≥ B, as desired.

Theorem 5.2. Let T : K → H be a densely defined linear operator satisfying

ran T ⊆ dom T ∗. (5.1)
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Then T is closable and the Friedrichs extension of the positive symmetric operator T ∗T is equal to
T ∗T ∗∗:

(T ∗T )F = T ∗T ∗∗. (5.2)

Proof. Condition (5.1) guarantees, according to Lemma 3.1, that T is closable. Hence, T ∗∗ exists
and T ∗T ∗∗ is a positive self-adjoint extension of T ∗T , thanks to von Neumann, see (Schmüdgen,
2012: Proposition 3.18). Our duty is therefore to establish identity (5.2). To this end we need only
to prove the domain inclusion

dom (T ∗T )
1/2
F ⊇ dom (T ∗T ∗∗)1/2, (5.3)

because we know that dom (T ∗T )
1/2
F ⊆ dom (T ∗T ∗∗)1/2 and that

‖(T ∗T )
1/2
F k‖2 = ‖(T ∗T ∗∗)1/2k‖2, k ∈ dom (T ∗T )

1/2
F ,

see the proof of Theorem 5.1. First we note that

dom (T ∗T ∗∗)1/2 = dom T ∗∗ = {k ∈ K : ∃(kn)n∈N ⊂ dom T, kn → k, Tkn − Tkm → 0}.

Recalling the proof of Theorem 5.1, let us denote by E the "energy space" associated with T ∗T , that
is, the completion of ran T ∗T endowed with the inner product

〈T ∗Tk, T ∗Tf〉 := (Tk |Tf), k, f ∈ dom T ∗T.

Consider the operator Q : K → E given by dom Q = dom T ∗T = dom T ,

Q(T ∗Tk) := T ∗Tk ∈ E , k ∈ dom T,

then we have (T ∗T )F = Q∗Q∗∗, again according to the proof of Theorem 5.1. Consequently, the
domain dom (T ∗T )

1/2
F can be described as follows:

dom (T ∗T )
1/2
F = dom (Q∗Q∗∗)1/2 = dom Q∗∗

= {k ∈ K : ∃(kn)n∈N ⊂ dom T, kn → k, ‖T ∗Tkn − T ∗Tkm‖2E → 0}
= {k ∈ K : ∃(kn)n∈N ⊂ dom T, kn → k, ‖Tkn − Tkm‖2K → 0}

= dom T ∗∗ = dom (T ∗T ∗∗)1/2.

This proves identity (5.3) and therefore (T ∗T )F = T ∗T ∗∗, as is claimed.
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