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Abstract— In this work a fault-detection algorithm for air-
craft position measurements is proposed using redundant sensor
information during landing scenarios. The real flight data which
is used in the course of the development and testing phase was
collected in the framework of the VISION EU H2020 research
project. The aircraft’s position measurements were provided
by an onboard GPS unit with SBAS correction, an Inertial-
Barometric-Camera sensor fusion based ESKF algorithm and
a simulated ILS unit which was modeled in a Matlab/Simulink
environment. The simulated ILS values were generated with
the use of the real SBAS position measurements. Taking the
properties of the data sets into account a simple threshold
and voting logic based fault detection algorithm was proposed.
Corrupted ILS and SBAS measurements were artificially gener-
ated with real fault properties. Category I Precision Approach
requirements are considered to test the error models and the
developed fault-detection algorithm. Considering the real flight
data the threshold and voting logic parameters were tuned
accordingly. For testing the developed algorithm a Monte-Carlo
simulation was constructed to test the efficiency of the algorithm
with different parameter sets. Finally, the results are compared
to the Category I requirements focusing on the Integrity risk,
Continuity risk and Time-To-Alert specifications.

I. INTRODUCTION

Aerospace applications require a certain level of redun-
dancy ([12], [18]) as the mandatory levels of safety can only
be achieved by redundant systems. Considerable number of
research is carried out in the field of using the visual infor-
mation as a redundant source in aerospace applications such
as [3] and [14]. The latter considers the visual information as
the third redundant source of the aircraft’s position besides
the GPS and the ILS (Instrumental Landing System) during
landing scenarios. Different methods are considered in order
for the redundant sources to provide the required levels of
the safety ([12], [18], [10], [6]). Filtering out the corrupted
sensory information can be achieved by using redundant
systems. Measuring the same variable with an N number
of independent sensors and assuming that among them M
sensors can operate with a satisfactory level of accuracy,
then the faulty unit can be found by using suitable algorithms
such as voting logics or statistical methods. By pairing up the
measurements of the redundant sensors and applying a score
system based on the deviation between the pairs, the faulty
sensor can be ruled out. Existing voting logic algorithms
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include the two out three method where it is assumed
that out of three working sensors two can provide accurate
information. Profiting from the measurements of the camera
sensor has been a topic of interest in several fields. Equipping
the aircraft with a visual sensor gives another source of
information regarding the aircraft’s position during final
approach scenarios. As it was mentioned, with 3 independent
sensors the voting logic based fault detection algorithm can
be implemented. Excessive research can be found on the
subject of developing voting logic algorithms. For similar
sources [17], [1] uses binary values which represent exact
voting. In [9], [8] dissimilar sources are used for the voting
logic algorithm which represent inexact voting. Dissimilar
noise levels can make the threshold selection challenging
as in ([10], [6]). One possible way to overcome this is
the application of a soft voting with properly tuned Fuzzy
sets ([6]) however, that method does not directly consider
the information about signal noise levels. In [15] and [16]
GPS,Vision and Barometric sensor information is used in a
tightly coupled Error-State Kalman Filter (ESKF) estimator
and the fault detection is handled in the framework of the
ESKF system.

The current work continues a research that was presented
in [4] as an IFAC World Congress 2020 conference paper.
In that work three simulated sensor sources are considered
(GPS, ILS, Vision) with different outputs and noise levels.
That research considered the different noise intensity levels
of the sensors and aimed to provide a Z-test-based two out
of three (2oo3) voting logic for dissimilar sensor sources
and compare it to conventional thresholding method for the
positioning of a landing aircraft. The simulated sensor units
in [4] had different noise intensity levels. The uncertainty
of the pure Camera measurements greatly surpass the noise
levels of the ILS and GPS units. Therefore, the use of the
statistical method was required.

This paper aims to further improve the results that were
presented in [4] by using real flight data obtained in the
framework of the VISION EU H2020 research project.
During the test flights the aircraft was equipped with a
GPS unit, an Inertial Measurement Unit (IMU), a Baromet-
ric sensor and a Camera sensor. Considering the available
data, a Camera-IMU-Barometric based ESKF algorithm was
constructed which complements the GPS measurements. For
the third source of information a Simulink based ILS unit
was chosen. Parting from the simulation the ESKF greatly
improves the noise levels of the Camera sensor which results
in the soruces having relatively similar noise characteris-
tics. In this study the sources are loosely coupled as each



Fig. 1. Septfonds runway and VISION K-50 test aircraft

source provides position information about the aircraft in an
independent manner. The goal of the paper is to provide
reliable and simple fault detection algorithm for position
measurements without the necessity to specify the sources.
Due to those facts a simple threshold and voting logic based
algorithm is proposed.

The structure of the article is as follows: Section II
introduces the sensor units that were used during the flight
data collection. Section III presents the error models that
are used to corrupt the nominal measurements. Section IV
summarizes the Category I Precision Approach requirements
which are utilized for examining the error models and the
results of the testing phase. In section V the fault detection
algorithm is detailed considering the voting logic algorithm
and threshold selection. Finally, section VII concludes the
paper.

II. SENSOR UNITS

The real flight data which is used in the course of the
development and testing phase was collected in the frame-
work of the VISION EU H2020 research project. The flight
data sets were collected at a runway in Septfonds, France
during the summer of 2019 with the specifically developed
K-50 test aircraft. Eight test flights were performed but two
of them provided corrupted flight data. Therefore only six
sufficient data sets are available for the purpose of testing
the developed algorithm. The test aircraft and the Septfonds
runway can be seen in Figure 1. During the test flights
the aircraft was equipped with several sensor units in order
to collect the necessary measurements for future testing
and simulation scenarios. The onboard system recorded the
measurements from the GPS, IMU, Barometric and Camera
sensors. During the test flights, the sensors operated with
different sampling frequencies. The IMU and the SBAS
unit ran at 50Hz and 20Hz respectively. The camera had
higher processing times with 10Hz. Although the barometric
sensor had similar sampling frequency as the IMU unit, the
provided values are quantized. Thus new values arrive with
an effective frequency of approximately 2Hz. The problem
of the different sampling frequencies will be addressed in
the sequel.

A. IMU-Camera-Barometric sensor based ESKF filter

In a different study of the authors which is submitted
and currently under revision in Elsevier Control Engineer-
ing Practice, an ESKF algorithm was proposed for aircraft
state estimation during landing scenarios assuming unknown
runway sizes. The ESKF algorithm fuses the measurements
of the Inertial Measurement Unit, the Barometric sensor and
the Camera sensors to obtain the desired states of the aircraft
which includes position, velocity, orientation, possible sensor
biases and the width of the unknown threshold line. The
obtained position values from that study are used in this
work as an independent source. The filter was constructed
in a way that it provides the position values in a Runway
relative system.

In the ESKF framework the filter’ prediction process
operates with the IMU’s freqeuncy, while the correction
step is executed when new Camera information becomes
available. Therefore, the sampling frequency for the the
ESKF algorithm matches the frequency of the IMU unit.

B. GPS measurements using SBAS correction

During the test flight, the GPS measurements were cor-
rected by a Satellite Based Augmentation System (SBAS)
that greatly improves the precision of the GPS measurements.
[5] gave a detailed presentation about GBAS/SBAS systems.
The presentation declares that the SBAS and Ground Based
Augmentation System (GBAS) technology is ready to be
applied in automated landing as it meets the precision
requirements. Therefore, the SBAS technology can be con-
sidered accurate enough for autopilot systems. [13] provide
research on GNSS with augmentation systems such as SBAS
which is considered as the successor of the ILS regarding
precision levels.

From the available sensory information the SBAS cor-
rected GPS unit can provide standalone position and velocity
information. The position values are provided as Latitude-
Longitude-Altitude values while the velocity measurements
are recorded as horizontal and vertical speed values with a
corresponding heading angle to clarify the direction of the
aircraft. The LLA measurements are then transformed into
Runway relative position values using the necessary trans-
formations. Similarly, the recorded horizontal and vertical
velocity values were transformed into the Runway frame.

Since the SBAS unit has a sampling frequency of 20Hz
a numerical integration method was used to match the
sampling frequency of the ESKF filter with 50Hz. As it was
mentioned the SBAS provides the velocity of the aircraft
and with that additional information the NED position values
between SBAS measurements can be approximated using the
following formula:

P(t +∆tP) = P(t)+V (t) ·∆tP (1)

Where P(t + ∆tP) is the approximated position value
between two measurements. According to the sampling
frequencies of the ESKF and the SBAS units, ∆t can be
assumed as 0.01s, 0.02s, 0.03s or 0.04s. Therefore the values



Fig. 2. SBAS measurement propagation for 50Hz

obtained by the numerical integration can be considered
accurate. Figure 2 illustrates the process where the red
signal refers to the original SBAS values while the green
line represents the predicted SBAS values between the two
original measurements.

C. Insturmental Landing System

The ILS uses radio waves to guide the incoming aircraft
onto the runway. The ILS measures the aircraft’s position
in terms of deviation from the glideslope and localizer refer-
ences. The localizer provides information about the aircraft’s
horizontal position with respect to the runway, while the
deviation from the nominal 3◦ glideslope is the vertical offset
from the designated landing slope.

Unfortunately, in the framework of the VISION EU H2020
research project, the test aircraft and the airport were not
equipped with an ILS sensor, therefore no real ILS measure-
ments are available for this study. During the development
phase, in order to solve this problem the ILS measurements
were simulated in a Matlab/Simulink environment with the
SBAS measurements as input variables. That way the the ILS
sensor’s information depends on the SBAS measurements.
Important to note that, if no offset weighs on the measure-
ments then the only difference between the ILS and SBAS
signals is the dissimilar Gaussian noise which weighs on the
measurements.

Therefore, the signals can be decomposed to a nominal
and error components. Assuming that the ILS would provide
reasonably accurate measurements, then the nominal part of
the SBAS and the ILS would be similar. Using that fact, the
above mentioned problem was countered by applying a cubic
smoothing spline for the SBAS measurements. That way the
additional Gaussian noise that distorts the SBAS signal can
be removed and the nominal part of the SBAS measurement
mostly recovered. Lastly, additional noise is added to the
nominal part. The noise values that are added in that model
were acquired using real ILS characteristics and parameters
by [2] in the VISION project.

The following conversion is used to obtain the deviation
in the glideslope and localizer references from the SBAS
measurements:

dYloc =−YRWY

dZgld =−ZRWY − (−XRWY + ttd) · tanγ
(2)

Where XRWY , YRWY and ZRWY refer to the position data from
the SBAS unit in the mentioned runway relative coordinate

system, γ is the glide slope angle while ttd is the distance
of the touchdown point from the runway threshold. dYloc is
the localizer deviation and dZgld is the glide deviation (both
considered in meter unit). After the conversion additional
noise is added to the signals.

In order to compare the different outputs of the GPS, ILS
and ESKF systems some common parameters are needed.
The ESKF provides position information in a runway relative
system while the SBAS yields LLA coordinates as output.
Finally, the ILS measures the deviation from the glideslope
and localizer references. During the development phase, it
was decided that the applied common parameters should
be the values provided by the ILS. Therefore, outputs of
the other systems have to be transformed into the common
format.

III. SIMULATED ERROR MODES

The sensory information from the data sets are considered
nominal. In order to test the algorithm with inaccurate mea-
surements, the data sets were corrupted using the Simulink
simulation. In every simulated error scenario additional bias
and/or noise values were added to the nominal signals. In
case of the ILS system the simulated error model is comes
from measurements of real landing scenarios (by Electronic
Navigation Research Institute, Japan (ENRI)). The model
assumes an object to be placed near the runway which causes
perturbation in the ILS system. The ILS fault generation
algorithm has two modes in total in accordance with the
position of the interfering object. The simulated error values
depend on the distance of aircraft and the runway’s threshold.
The two ILS error models are denoted as ENRI1 and ENRI2
modes in the context of this paper.

The GPS error simulation block again from ENRI has five
error modes in total. The modes include the SBAS system
operating with only four satellites, SBAS with ionospheric
perturbation and three GPS modes such as regular, four
satellite and large range error modes. The mentioned GPS
error modes are denoted as SBAS2, SBAS3, SBAS-1, SBAS-
2 and SBAS-3 respectively in the context of this paper. The
inputs of the error model includes the position of the aircraft,
the position of the receiver station and the date of the flight.
The magnitude of deviation from the nominal mode varies
between the different modes.

In case of the ESKF measurement two possible error
scenarios were considered. Firstly, a loose horizontal camera
mounting was considered which corrupts the known relation
between the Camera and Body systems and therefore has a
negative impact on the position estimations. It was assumed
that the magnitude of the camera angle error scales with the
aircraft’s acceleration. However, due to the characteristics
of the ESKF estimator the corrupted camera angles were
filtered out and appeared in the Yaw angle estimations while
the position values were slightly affected.

Figure 3. shows that the perturbation which affects the
mounting of the camera in the Body coordinate system
appears in the Yaw angle estimation. As it can be seen,
correcting the estimated Yaw angles with the angle error
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Fig. 3. Camera angle perturbation for ESKF error scenario

values, the corrected measurements follow the reference
values.

Another attempt was made by perturbating the input values
from the IMU unit. By jamming the IMU unit, the input
acceleration values were not updated in the ESKF. However,
showing the robustness of the filter, the position estimations
were slightly affected, and the corrupted acceleration values
appeared in the form of acceleration bias.

Due the robustness of the ESKF estimator, it was decided
that only the ILS and GPS error modes will be be used in
the framework of this paper.

IV. REQUIREMENTS

As aerospace applications are safety critical, certain re-
quirements are need to be met during landing scenarios in
order to ensure the safety of the aircraft and its environment.
Existing Category I Precision Approach requirements are the
following:

Horizontal Accuracy = 16m, Vertical Accuracy = 4m,
Integrity risk = 1 − 2 · 10−7 per approach, Time − To −
Alert = 6s and Continuity risk = 1−8 ·10−6 per 15s.

In the next step of development phase, the mentioned error
modes were examined with respect to the Horizontal and
Vertical accuracy values to determine which error modes
breach the safety requirements. As it was mentioned, six
data sets are available from the test flights. Figures 4. and
5 display the perturbated data sets. Each case of flight data
were corrupted with every available error mode (five modes
for the GPS, and two modes for the ILS values). The figures
show that only the SBAS error modes breach the Category I
requirements and the violation is isolated to the glide modes.
The perturbated ILS values are well below the Category
I accuracy limits for both localizer and glide cases. Due
to those facts, the aim of the fault detection algorithm is
to determine the faults which violate the defined accuracy
values. Hence in this study the focus is to identify the
possible faults in the SBAS measurements.

The mentioned Integrity and Continuity risk values equal
the possibilities for the False Alarm and Missed detection
similarly to [7]:
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PFA = P(data > T HS|no error) ·P(no error) (3)
PMD = P(error > Limit)P(data < T HS|error)P(error) (4)

Where PFA is the probability of a false alarm, while PMD is
the probability of a missed detection scenario. In aerospace
applications P(no error) is the probability of a fault free
flight and its value is assumed as P(no error) = 1. On
the other hand, P(error) represent the possibility of an
error scenario such as satellite failures and its value is
known in advance. P(data > T HS|no error) is defined as
the probability of the measurement exceeding the specified
threshold limit in an error free scenario. The likelihood of
the measurement being lesser than the threshold is defined
as P(data < T HS| error). During the development phase
the goal is to minimize the P(data > T HS|no error) and
P(error > Limit) probabilities in order to reduce the number
of false alarms and missed detections. That goal can be
achieved by applying a voting logic algorithm and estab-
lishing a sufficient threshold.

V. THRESHOLD AND VOTING LOGIC BASED FAULT
DETECTION ALGORITHM

The first step in implementing the simple thresholding
algorithm is to find a nominal noise threshold for each
system. In real life applications the real position values
are unknown therefore pairwise comparison of system out-
puts should be done. The pairings are compared to their
respective threshold values in order to detect outliers and
faulty scenarios. In this paper for the thresholding method
the following sensor pairings are considered: SBAS-ILS pair
(SvsI), ESKF-SBAS pair (EvsS) and ILS-ESKF pair (IvsE).
As the SBAS error models contain stochastic processes a
Monte-Carlo simulation was carried out in order to find
satisfactory threshold values for the sensor pairings. After
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obtaining sufficient amount of data, the threshold values can
be selected by using the Cumulative distribution functions of
the pairings as it can be seen in Figures 6 and 7.

Violation of a pair indicates that a pairing exceeds the
predefined threshold value. However, the violation can be
caused by a sudden spike or outlier in the measurements. To
counter that phenomenon before the threshold selection and
the pairwise comparison of the signals, a recursive mean
formula was applied to the measurement for the sake of
decreasing the effects of the noise values which are distorting
the signals. The following formula was used for calculating
the recursive mean:

µt =
t−1

t
·µt−1 +

1
t
· xt (5)

Another solution for countering spikes in the data is to
apply up-down counters. For each subsystem there is an
assigned count value which monitors the performance of that
subsystem. As the glide (gld) and localizer (loc) positions are
handled separately six up-down counter values are defined as
SBASgld , ILSgld , CAMgld , SBASloc, ILSloc and lastly CAMloc.
However, as it was stated in IV., in this study the focus is to
determine faults in the SBAS glide subsystem, as the other
error modes fall below the specified requirements.

Upon violation of the threshold limits, a specified rule
system is applied with the following rules:

1) If all three pairings stay below the thresholds all
of the count values are decreased by the downcount
parameter if they are non-zero.

2) If only one pair exceeds the given threshold there is no
way to determine which one of the two sub-systems is
defective so the count values dont change, except the
third one is decreased by the downcount parameter.

3) If two pairs exceed the given threshold the sub-system
which is featured in both can be considered the one
causing the error. In that case the algorithm increases
the count of that system by an upcount parameter while
decreases the other two.

4) As a worst case scenario, if all the pairings exceed
their nominal thresholds, all three of the count values
will be increased.

The parameters of the voting logic algorithm are the
UPcount, DOWNcount and ENDcount values. The mentioned
Time-To-Alert requirement in section IV aids the tuning of
the voting logic parameters.
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SvsE SvsI EvsI Up Down End
Batch Nr1. 5.3m 4m 4m 10 5 100
Batch Nr2. 3.3m 3.78m 4.5m 2 1 100
Batch Nr3. 3.3m 3.78m 4.5m 2 1 200
Batch Nr4. 4.3m 3.78m 4.5m 2 1 200
Batch Nr5. 5.1m 3.78m 4.5m 2 1 100
Batch Nr6. 5.3m 3.78m 4.5m 2 1 100

TABLE I
MONTE CARLO TEST CAMPAIGN PARAMETERS

VI. REAL FLIGHT DATA BASED MONTE CARLO
SIMULATION

The developed fault detection algorithm was tested with
the mentioned real flight data with simulated error modes. As
it was stated the error models contain stochastic processes
therefore a Monte Carlo simulation testing was designed
in order to thoroughly analyze the developed process. The
threshold selection and the voting logic algorithm was de-
tailed in Section V. During the Monte Carlo test campaign
different test batches were considered with various Threshold
limits and different voting logic parameters. As the algorithm
operates at a frequency of 50Hz, the Time-To-Alert time-
span can be calculated by the following formula: End

U p ·0.02s.
Which results in 0.2s, 1s and 2s for the batches.

Table I. shows the parameters for the Monte Carlo simula-
tion. SvsE, SvsI and EvsI refer to the applied threshold values
between the subsystem in case of the glide comparison.
While Up, Down and End indicate the specification for the
voting logic algorithm.

Table II. displays the results of the Monte Carlo simulation
campaign for the different batches. The correct decision ratio
falls between 94−98%, while a clear trade-off can be seen

Correct False Alarm Missed det
Batch Nr1. 94.01%(1461) 0.45%(7) 5.53%(86)
Batch Nr2. 97.7%(1565) 1.31%(21) 0.99%(16)
Batch Nr3. 97.7%(1313) 0.97%(13) 1.33%(18)
Batch Nr4. 96.3%(1502) 0.898%(14) 2.82%(44)
Batch Nr5. 95.02%(1699) 0.17%(3) 4.81%(86)
Batch Nr6. 95.1%(1712) 0.17%(3) 4.81%(85)

TABLE II
MONTE CARLO TEST CAMPAIGN RESULTS



1 2 3 4 5 6 7 8 9 10

Time-To-Alert [s]

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

T
T

A
 p

ro
b

a
b

il
it

y
 [

-]

Time-To-Alert probabilites

Batch1

Batch2

Batch3

Batch4

Fig. 8. Batch 6 Time-To-Alert occurrences

Integrity risk Continuity risk TTA
Batch Nr1. 1.152 ·10−7 4.5 ·10−3 0.2s
Batch Nr2. 0.21 ·10−7 13.1 ·10−3 1s
Batch Nr3. 0.28 ·10−7 9.7 ·10−3 2s
Batch Nr4. 0.59 ·10−7 8.98 ·10−3 2s
Batch Nr5. 1.001 ·10−7 1.7 ·10−3 1s
Batch Nr65. 0.984 ·10−7 1.7 ·10−3 1s

TABLE III
RESULTS COMPARED TO THE CAT I REQUIREMENTS

between the false alarm and missed detection ratios. Higher
threshold values and increased Time-To-Alert period result in
increased number of missed detection, while lower threshold
and decreased TTA parameters raise the number of false
alarms.

In Section IV the Category I requirements were summa-
rized which included Integrity and Continuity risk probabili-
ties. Worst case Integrity risk occurs when PMD = P(error >
Limit)P(data < T HS|error)P(error) reaches its maxima. As
it was discussed P(error > Limit) equals 1 and P(data <
T HS|error) equals the Missed detection ratio in Table II.
In this paper SBAS faults are considered as the ILS error
models does not exceed the specified Alert Limit values.
The probabilities for the internal SBAS error modes can be
found in [11]. The highest error mode probability is when
the SBAS correction malfunctions and only the regular GPS
mode operates correctly (SBAS-1 mode). Hence in this study
the worst case P(error) corresponds to the probability of
an internal SBAS error. An internal SBAS error can occur
due to several reasons such as clock failures (excessive
acceleration), low signal power, ephemeris error, signal de-
formation failure, code carrier divergence. Each threat has
a P(error) = 10−4 per one hour, which translates into a
cumulative P(error) = 5 ·10−4 per one hour. Projecting that
value for a 15 sec interval results in P(error) = 2.083 ·10−6

per 15sec.
Figure 8 shows the probability for the Time-To-Alert

values in case of the faulty scenarios. It displays that the
6s TTA limit is satisfied in more than 97% of the fault
scenarios for Batch 6. Table III. shows that the Integrity
risk requirement is satisfied for all tested threshold values
and voting logic parameters. Since in every batch there are
some false alarm, the continuity risk remains higher than
the specified requirement. In order to reach the desired level

of continuity the thresholds need to be increased which
would cause more miss detection and as a result the integrity
risk would exceed the desired levels.From a safety critical
standpoint, surpassing the continuity risk would result in
increased number of aborted landings. However, in case of
an SBAS error in a 2 out of 3 voting logic system the other
2 sources are assumed to operate sufficiently and such the
final approach maneuver can continue.

VII. CONCLUSIONS

In this work two statistical algorithms are presented to pro-
vide reliable fault detection of aircraft position measurements
from redundant sensor information during final approach.
The aircraft’s position can be determined via ILS, GPS with
SBAS correction and an Error State Kalman Filter which
incorporates the measurements of an Inertial Measurement
Unit, Barometric and Camera sensors. The SBAS and ESKF
measurements were collected in a real flight test, while the
ILS was simulated based on the smoothed SBAS readings
in a Matlab/Simulink environment. Real fault characteristic
based error models are introduced which are used to corrupt
the nominal measurements. Category I Precision Approach
requirements are presented to develop and tune the threshold
and voting logic based fault detection algorithm. The Monte
Carlo test campaign showed that the Integrity risk and Time-
To-Alert requirements are achievable for every parameter
set while the continuity risk exceeds the required levels off
safety.
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