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Abstract: The main aim of this paper is to demonstrate the benefit of the application of
highperformance computing techniques in the field of non-linear science through two
kinds of dynamical systems as test models. It is shown that high-resolution, multi-
dimensional parameter scans (in the order of millions of parameter combinations) via
an initial value problem solver are an efficient tool to discover new features of
dynamical systems that are hard to find by other means. The employed initial value
problem solver is an in-house code written in C++ and CUDA C software
environments, which can exploit the high processing power of professional graphics
cards (GPUs). The first test model is the Keller–Miksis equation, a non-linear oscillator
describing the dynamics of a driven single spherical gas bubble placed in an infinite
domain of liquid. This equation is important in the field of cavitation and sonochemistry.
Here, the high-resolution parameter scans gave us the opportunity to lay down the
basis of a non-feedback technique to control multi-stability in which direct selection of
the desired attractor is possible. The second test model is related to a pressure relief
valve that can exhibit a special kind of impact dynamics called grazing impact. A fine
scan of the initial conditions revealed a second focal point of the grazing lines in the
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initial-condition space that was hidden in previous studies.

Response to Reviewers: Dear Editor,

please find enclosed our revised manuscript entitled

"High-performance GPU computations in nonlinear dynamics: an efficient tool for new
discoveries"

by Ferenc Hegedüs, Peter Krähling, Werner Lauterborn, Robert Mettin and Ulrich
Parlitz, that we would like to resubmit for publication in Meccanica.

We thank both reviewers for their positive and constructive comments. In the revised
manuscript text blocks printed in blue indicate new text while in red (and in brackets)
we left obsolete text reviewer 2 referred to from the previous version of the manuscript.
This red text represents deleted text (please delete it during final production!).

With kind regards, on behalf of all co-authors,

  Ulrich Parlitz

Specific response:

Reviewer #1:
In this paper, the proposal of novel efficient computing method which can be widely
used in the area of nonlinear dynamics and even in other branches of science, is
demonstrated. The novelty of this concept consist in combining the so-called (by
authors) "brute force" technique with high processing power of professional graphics
cards. The efficiency of proposed computing procedure has been verified on the
examples of two dynamical systems. The results of these numerical experiments
shown that this technique allows one to discover of a new focal point of the grazing
lines. Undoubtedly, these outcomes are important and original effects of this work.
In general the manuscript is well written. The introduction and description of the
problem are clear and they can attract reader's interest. References are well-chosen
and their number is sufficient to cover the recent research in the topic under
consideration. The effects of the research and conclusions of this article can be treated
as interesting from scientific point of view. Concluding, in my opinion this paper can be
interested for the readers of Meccanica, so I recommend it for publication in the
present form

Dear Reviewer, we would like to thank you the effort put into our manuscript, for the
very kind review and for the acceptance of our paper in its present form.
 
Reviewer #2:
The submitted manuscript is very good. I highly recommend it for publishing.
Please check the comments in the attached document.

Dear Reviewer, we would like to thank you to take your time and read/revise our
manuscript. We extended the manuscript according to your suggestions. Below we
summarize the changes in the manuscript marked by blue colour.

Section 3, first paragraph, second sentence:
"I do not see the purpose of this sentence. Low reputation comes from the volatility for
low resolutions (omits or gives erroneous results) and large computational
requirements for higher resolutions. Moreover, brute force approach requires new
computations for any parameter change, so the analytical solutions is preferred where
it exists. In many cases, especially in 4D and more, it is the only way to examine
dynamics of nonlinear systems."
Thank you for your remark, the sentence has been reworked.

Section 3, second (last) paragraph:
"The mentioned GPU has 4608 single precision cores and IVP is considered a SIMD
operation, it seams to me that 50 times-wise is low speed-up in comparison to 4-core
CPU. Would authors be kind to give more information about the computational setting
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(type of parallelism used - data/task) to clarify 50 times-wise speed-up."
This part of the manuscript is extended according to the Reviewer’s suggestion.
However, it has to mentioned that the GPU actually has only 2880 single precision
cores and even less (960) double precision computing cores. In our case the double
precision cores are relevant. Moreover, the comparison of the number of the cores is
not a suitable indicator to estimate the speed-up. One has to inspect the peak
theoretical double precision performance that was 1707 GFLOPS for the GPU and 115
GFLOPS for the CPU. In this sense the 50 times faster GPU code is reasonable. The
speed-up is also depending on how efficiently a code can exploit the peak performance
(this is beyond the scope of the present paper). In our recent experience it highly
depends on the problem itself; thus, 50 times speed-up is an estimate only for a
specific problem (now highlighted in the manuscript).

Section 5, first paragraph:
"It is very unlikely that all attractors in the system will be discovered by taking into
account only 10 random initial conditions (per single parameter settings). This might be
practical for 2D/3D state-spaces. For high-dimensional state-spaces (4D and more) it
takes much more initial conditions to discover all (or at least major) attractors."
This part of the paper is slightly extended. We did not aim to seek for all the attractors
but only for the most relevant ones that are enough to draw meaningful conclusions.

Section 5, second paragraph:
"What when the transients are much shorter or longer?" and
"32 points on Poincaré section for last 32 periods?"
These issues are clarified in this paragraph, see the corresponding blue text. The
number of needed transient iterations (2048) and the additional 8192 iterations were
set according to some preliminary test calculations and with some safety factor. Yes,
the last 32 iterations were used to obtain the Poincaré sections.

Section 5, Figure 1, and third paragraph:
"Those plots show the periodicity of the attractor with the highest period? What about
the multi-stability - where are the other attractors (if they exist of course)?"
In the Figure caption and in the related text it is clarified now that in case of co-
existence, the highest period is plotted.

Section 7, last paragraph:
"Those computations in Matlab with CPU are also brute-force, no? (just a lower
resolution). Therefore, in my opinion authors should acknowledge also the
CPU+Matlab as brute force and refer to their work as "HPC/GPU brute fore approach"
We agree and we emphasised that the mentioned MATLAB + CPU computation is
meant to be “brute force” here, see the blue text in the paragraph. However, we
decided not to distinguish “brute force” technique performed on a GPU or a CPU.
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Ferenc Hegedűs · Péter Krähling · Werner
Lauterborn · Robert Mettin · Ulrich Parlitz

Received: date / Accepted: date

Abstract The main aim of this paper is to demonstrate the benefit of the application of high-
performance computing techniques in the field of non-linear science through two kinds of
dynamical systems as test models. It is shown that high-resolution, multi-dimensional pa-
rameter scans (in the order of millions of parameter combinations) via an initial value prob-
lem solver are an efficient tool to discover new features of dynamical systems that are hard to
find by other means. The employed initial value problem solver is an in-house code written
in C++ and CUDA C software environments, which can exploit the high processing power
of professional graphics cards (GPUs). The first test model is the Keller–Miksis equation, a
non-linear oscillator describing the dynamics of a driven single spherical gas bubble placed
in an infinite domain of liquid. This equation is important in the field of cavitation and sono-
chemistry. Here, the high-resolution parameter scans gave us the opportunity to lay down
the basis of a non-feedback technique to control multi-stability in which direct selection of
the desired attractor is possible. The second test model is related to a pressure relief valve

Ferenc Hegedűs
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2 Ferenc Hegedűs et al.

that can exhibit a special kind of impact dynamics called grazing impact. A fine scan of the
initial conditions revealed a second focal point of the grazing lines in the initial-condition
space that was hidden in previous studies.

Keywords High-performance computing · GPU programming · Non-linear dynamics ·
control of multi-stability · Keller–Miksis equation · impact dynamics · grazing impact

1 Introduction

Non-linear dynamics has received a lot of attention since the discovery of the chaotic Lorenz
attractor [1]. It opened Pandora’s box that led to a series of further discoveries of other phe-
nomena such as, additional kinds of bifurcations [2,3], multi-stability and its control [4–8],
various routes to chaos and its control [9–13], transient chaotic behaviour [14,15] or the
characterisation of non-linear resonance phenomena [16–21], to name a few. Investigating
a large number of classical low-dimensional equations, the above mentioned phenomena
turned out to be universal features of non-linear systems. The corresponding emerging theo-
ries still play an important role in the qualitative understanding of many real-life phenomena
in a large variety of scientific fields, for instance, in climate dynamics [22], social sciences
[23], neurobiology [24], fluid dynamics [25], mechanical engineering [26] or in laser physics
[27].

Although the aforementioned studies are important, they are carried out usually on
low-dimensional systems by performing investigations only in low-dimensional parameter
spaces or in the local flow of the state space. That is, they require relatively low computa-
tional resources compared to an up to date personal computer. However, in order to explore
the complex bifurcation structure in parameter space with high resolution [28–32], the nec-
essary computational power can increase by orders of magnitude. For instance, even in a
two dimensional parameter plane — employing an initial value problem solver (IVP) with a
resolution of 1000×1000 — the computational requirements are increased by three orders
of magnitude compared to conventional 1D bifurcation plots with the same resolution of
1000. Not to mention if other important, “secondary” control parameters are involved or the
application of several initial conditions is mandatory (e.g. to investigate multi-stability). The
total number of the parameter combinations can easily blow-up to tens or even hundreds of
millions; for instance, see our recent paper about control of multi-stability [4].

At first, it might seem impractical to try to solve a two-dimensional problem with high-
resolution IVP computations, since many clever techniques exist (e.g. the pseudo-arclength
continuation using a boundary value problem solver (BVP) [33]) that can explore the evo-
lution of bifurcation points even in two dimensions fast and easily. Indeed, in this way,
valuable information can be obtained about the bifurcation structures [4,20,34–37]. Never-
theless, these techniques need an already found orbit to initiate the computation. Moreover,
they are usually not capable to find a new set of co-existing solutions. Thus, the BVP compu-
tations are always combined with IVP simulations, see the aformentioned references. In the
present paper, we demonstrate that the application of parameter scans with quite high reso-
lution using IVP solvers can be the source for new ideas and discoveries. For this purpose,
computations are carried out on two quite different test models, for details see Sec. 2.
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High-performance GPU computations in non-linear dynamics 3

2 The history of the choice of the test models

The first test model is the periodically excited Keller–Miksis equation that is a second order
ordinary differential equation describing the radial pulsation of a single spherical gas bubble
placed in an infinite domain of liquid [38]. During the radial oscillation of the bubble, due
to the external forcing, its contraction phase can be so rapid (collapse) that the tempera-
ture inside can reach thousands of degrees of Kelvin inducing chemical reactions [39–41].
Therefore, this model is extensively used in the field of sonochemistry [42–51] to estimate
the collapse strength and the chemical yield of a single bubble. In one of our previous papers
[4], we extended the investigation to dual-frequency driving using two harmonic compo-
nents in the external excitation. Therefore, the number of control parameters was increased
to four: two driving amplitudes and two driving frequencies (for simplicity, the phase shift
between the components was assumed to be zero). Our purpose was to investigate the effect
of dual-frequency driving on the dynamics and the collapse strength of a bubble. The main
strategy was to create high-resolution bi-parametric maps in the parameter plane of the am-
plitudes at several fixed frequency pairs. However, during the evaluation of the results, due
to the high resolution of the parameter space, special features of the bifurcation structure
could be observed. They helped to reveal that with a special choice of the frequencies, spe-
cific periodic orbits can be smoothly transformed into each other; for instance, a period-2
and a period-3 attractor. This observation inspired us to develop a non-feedback technique to
control multi-stability, in which direct selection of the desired attractors is possible. To the
best knowledge of the authors, such a technique was not proposed in the literature before.
The present study presents the procedure of the discovery of the technique via an extension
of our original work [4].

The second test model (adapted from [52]) describes the dynamics of a pressure relief
valve that can exhibit impact dynamics. It is a system of three first-order ordinary differential
equations. Our main purpose was to test the special features of the numerical GPU code for
non-smooth dynamical systems and reproduce some of the results presented in the original
paper [52]. For some additional information about the code, the reader is referred to Sec. 3.
There is a special type of impact called grazing impact related to the oscillation of the valve
body. It means that the valve body approaches the valve seat, makes contact with the valve
seat with zero velocity and then moves away from the seat. At a specific parameter set,
the sets of initial conditions from which the pressure relief valve exhibit grazing impact
are called grazing lines. They have a focal point in the initial condition space, at which an
impacting Shil’nikov-like orbit exist. The grazing lines are computed by means of a BVP
solver in the paper of Hős and Champneys [52], which was a cumbersome task that needed
special care due to the discontinuous trajectories caused by the impact dynamics. According
to the personal communication with the authors, the assembly of their MATLAB code took
weeks. Comparing their grazing lines with our GPU accelerated IVP solver, the simulation
time is reduced from a couple of hours to seconds. Moreover, the high-resolution scan of the
initial conditions revealed a second focal point of the grazing lines that had been overlooked
before.

It must be stressed, that in both cases, the original objective was to investigate the col-
lapse strength of a single bubble or to reproduce some results corresponding to a pressure
relief valve. The aforementioned discoveries are the “side effects” of the computations of
high-resolution multi-dimensional parameter/initial condition scans.
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4 Ferenc Hegedűs et al.

3 The GPU accelerated solver: MPGOS

The usage of an IVP solver performing high-resolution parametric scans is sometimes called
the “brute force” technique. (It usually has a low reputation in the sense that tuning up the
number of the parameters, their resolution and the number of the initial conditions is not a
difficult task.) It is easy to tune up the number of the parameters, their resolution and the
number of the initial conditions; however, to write efficient computer code to do the task
within a reasonable time is far from obvious. It is especially true in our case, as we intend
to employ the high processing power of professional graphics cards (GPUs). It is not trivial
how to use their massively parallel hardware architecture and distribute the workload evenly
to tens of thousands of parallel threads.

The developed program package (also used here) is called Massively-Parallel-GPU-
ODE-Solver (MPGOS) written in C++ and CUDA C software environments and capable to
distribute the tasks to multiple GPUs. It supports explicit solvers: the classic Runge–Kutta
solver with fixed time-stepping, and the adaptive Runge–Kutta–Cash–Karp method with
embedded error estimation of orders 4 and 5. During the simulations of the present study,
the adaptive solver is used. Event handling is also incorporated into the program package. It
is mandatory to be able to detect the impact in case of the pressure-relief-valve test model. In
addition, with specialized user-defined functions, it is possible to manipulate the trajectories
by the user after every successful time step or event detection during the GPU computations.
In this way, the impact law can be immediately applied upon the detection of an impact and
the integration can be continued. Thus, it is not necessary to stop the integration or perform
expensive memory transactions to apply the impact law via the CPU. (The code is quite effi-
cient, a simulation is approximately about 50 times faster on an Nvidia GTX GeForce Titan
Black card than on a four-core Intel Core i7-4790 CPU (using double precision floating
point arithmetic)). The code is quite efficient, a simulation is approximately about 50 times
faster on an Nvidia GTX GeForce Titan Black card (1707 GFLOPS peak performance) than
on a four-core Intel Core i7-4790 CPU (115 GFLOPS peak performance) using double pre-
cision floating point arithmetic. The parallelisation strategy in the GPU code follows the
“per-thread” approach; that is, to each GPU thread, a different instance of the investigated
system is associated having different initial conditions or parameter sets. In the case of the
CPU code, the different instances of the system were distributed amongst the CPU cores via
the OpenMP application programming interface (API). A single CPU core solved a single
instance of a system at a time. It must be emphasised that the proposed speed-up is an es-
timation using the Keller–Miksis equation introduced in Sec. 4; the achievable factor in the
reduction of the runtime can highly depend on the investigated ODE system (handling of
special events like impact, or the number of the evaluation of transcendental functions or
divisions). The detailed description of the code is beyond the scope of the present paper;
however, it has to be stressed that such a fast and efficient solver was the key to achieve the
aforementioned discoveries. For more details, the interested reader is referred to the official
website of the program package: www.gpuode.com or to its GitHub repository [53]. It is
free to use under an MIT license and it has a detailed manual [54] with tutorial examples.
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High-performance GPU computations in non-linear dynamics 5

4 Mathematical model of the dual-frequency driven single bubble

The first test model is the Keller–Miksis equation [38]) describing the radial pulsation of a
single spherical bubble placed in an infinite domain of liquid. The equation reads as(

1− Ṙ
cL

)
RR̈+

(
1− Ṙ

3cL

)
3
2

Ṙ2 =

(
1+

Ṙ
cL

+
R
cL

d
dt

)
(pL− p∞(t))

ρL
, (1)

where R(t) is the time dependent bubble radius. The values of the material properties of the
employed liquid (water) are cL = 1497.3m/s (sound speed) and ρL = 997.1kg/m3 (density).
According to the general, dual-frequency treatment, the pressure far away from the bubble,

p∞(t) = P∞ +PA1 sin(ω1t)+PA2 sin(ω2t +θ), (2)

is the sum of a static ambient pressure, P∞, and periodic components with pressure ampli-
tudes PA1 and PA2, angular frequencies ω1 and ω2, and with a phase shift θ . The connection
between the pressures at the bubble interface can be written as

pG + pV = pL +
2σ

R
+4µL

Ṙ
R
, (3)

where the total pressure inside the bubble is the sum of the partial pressures of the non-
condensable gas, pG, and the vapour, pV = 3166.8Pa at ambient temperature of 25 oC. The
surface tension is σ = 0.072N/m and the liquid kinematic viscosity is µL = 8.902−4 Pas.
The gas inside the bubble obeys a simple polytropic relationship

pG =

(
P∞− pV +

2σ

RE

)(
RE

R

)3γ

, (4)

where the polytropic exponent γ = 1.4 (adiabatic behaviour), the equilibrium bubble radius
is RE = 10 µm and the static pressure is P∞ = 1bar.

System (1)-(4) is written into a dimensionless form by introducing the dimensionless
variables

τ =
ω1

2π
t, (5)

y1 =
R

RE
, (6)

y2 = Ṙ
2π

REω1
. (7)

The equations are rearranged in order to minimize the number of its coefficients. The final
form is

ẏ1 = y2, (8)

ẏ2 =
NKM

DKM
, (9)

where

NKM = (C0 +C1y2)

(
1
y1

)C10

−C2 (1+C9y2)−C3
1
y1
−C4

y2

y1
−
(

1−C9
y2

3

) 3
2

y2
2

− (C5 sin(2πτ)+C6 sin(2πC11τ +C12))(1+C9y2)

− y1 (C7 cos(2πτ)+C8 cos(2πC11τ +C12)) , (10)
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6 Ferenc Hegedűs et al.

and
DKM = y1−C9y1y2 +C4C9. (11)

For completeness and reproducibility, the coefficients are summarised below

C0 =
1

ρL

(
P∞− pV +

2σ

RE

)(
2π

REω1

)2

, (12)

C1 =
1−3γ

ρLcL

(
P∞− pV +

2σ

RE

)
2π

REω1
, (13)

C2 =
P∞− pV

ρL

(
2π

REω1

)2

, (14)

C3 =
2σ

ρLRE

(
2π

REω1

)2

, (15)

C4 =
4µL

ρLR2
E

2π

ω1
, (16)

C5 =
PA1

ρL

(
2π

REω1

)2

, (17)

C6 =
PA2

ρL

(
2π

REω1

)2

, (18)

C7 = RE
ω1PA1

ρLcL

(
2π

REω1

)2

, (19)

C8 = RE
ω1PA2

ρLcL

(
2π

REω1

)2

, (20)

C9 =
REω1

2πcL
, (21)

C10 = 3γ, (22)

C11 =
ω2

ω1
, (23)

C12 = θ . (24)

The angular frequencies ω1 and ω2 are normalized by the linear, undamped eigenfre-
quency [55]

ω0 =

√
3γ(P∞− pV )

ρLR2
E

− 2(3γ−1)σ
ρLR3

E
= 340kHz (25)

of the unexcited system that defines the relative frequencies as

ωR1 =
ω1

ω0
, (26)

ωR2 =
ω2

ω0
. (27)

4.1 The global Poincaré section

Due to the dual-frequency driving, the external forcing is not purely harmonic. In Eq. (10),
the two dimensionless angular frequencies are 2π and 2πC11, here C11 = ω2/ω1 = ωR2/ωR1
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High-performance GPU computations in non-linear dynamics 7

is the frequency ratio. The corresponding periods are T1 = 1 and T2 = 1/C11 =ωR1/ωR2. For
simplicity, the relative phase shift between the harmonic components is set to θ =C12 = 0.
During the computations, the main control parameters are the pressure amplitudes while
the frequency combinations are kept fixed. The ratio of the employed frequency pairs are
always rational; thus, the dual-frequency driving is still periodic (quasiperiodic forcing is
excluded). This period T , which is the smallest common multiple of T1 and T2 can be used
as the global Poincaré section of the system. That is, the trajectories are sampled at time
instances τn = n ·T (n = 0,1,2, . . .).

5 The discovery of a non-feedback technique to directly control multi-stability

In order to represent the dynamical properties of a bubble in a four-dimensional parameter
space, our strategy is to compute high-resolution bi-parametric plots with the pressure ampli-
tudes PA1 and PA2 as control parameters applying fixed relative frequency pairs (ωR1, ωR2).
The pressure amplitudes are varied between 0 and 5bar with 501, uniformly distributed val-
ues. (In order to explore the co-existing attractors, 10 randomly chosen initial conditions are
used.) In order to explore the co-existing attractors, 10 randomly chosen initial conditions
are used. In our experience, it was enough to find the most relevant attractors to draw mean-
ingful conclusions. Thus, a single bi-parametric computation consists of approximately 2.5
million initial value problems. In the first part of the investigation, the relative frequencies
are selected from the following set of values:

1
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1
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,

1
1
,

2
1
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1
,

5
1
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10
1
. (28)

Bi-parametric computations are performed at every possible relative frequency combination,
meaning a total number of 36 frequency pairs (taking into account the symmetry property
of the driving). In order to explore the subharmonic resonance region in more detail, an
additional series of simulations were performed with every possible combination of the
frequency values

2
1
,

3
1
,

4
1
· · · 9

1
. (29)

This means 22 additional high-resolution bi-parametric plots (taking into account again the
symmetry property and the already computed pairs of frequencies during the first computa-
tion period). Thus, the overall number of the solved initial value problems is approximately
145 millions.

(At each parameter combination, the first 2048 iterations are regarded as transients and
discarded.) At each parameter combination, the first 2048 iterations are regarded as tran-
sients and discarded. Then the system is integrated further by additional 8192 iterations to
achieve convergence of averaged quantities like the Lyapunov exponent or the winding num-
ber. One iteration means the integration of the system from 0 to the period of the excitation
T , see Sec. 4.1. To avoid code complexity, the numbers of the iterations mentioned above are
the same for all instances of the initial value problems being solved, and they are turned out
to be enough according to our preliminary calculations. Thus, the convergence of the tran-
sients and the average quantities are not monitored. Besides the aforementioned averaged
quantities, the period, the maximum bubble radius expansion and the subsequent minimum
bubble radius (important to calculate the collapse strength of the bubble oscillation) are also
stored. (Furthermore, 32 points of the Poicaré section are also recorded.) Furthermore, 32
points of the Poincaré section of the last 32 iterations are also recorded. From the various
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8 Ferenc Hegedűs et al.

quantities, only the period and the points of the Poincaré section are used in the present
study.

Fig. 1 Periodicity diagram of bi-parametric plots with pressure amplitudes as control parameters at different
relative frequency pairs. The colour code represents the highest period (up to period-6) found at a given
parameter set. Inside the black domains, there are chaotic solutions or obits having period higher than six. In
the case of co-existing attractors, only the highest period is plotted.

Figure 1 shows four typical bi-parametric periodicity diagrams at different relative fre-
quency combinations. The colour code represents the maximum period up to period-6 found
at a given parameter set. Chaotic oscillations or orbits with periodicity higher than six oc-
cupy the black regions. In the case of co-existing attractors, only the highest period is plotted.
Keep in mind that the axes in the figures represent single frequency driving since one of the
pressure amplitudes is zero in these cases. The bifurcation structure in many of such dia-
grams shows extreme complexity, where it is hard to find a clear regularity in the bifurcation
patterns, see e.g. the upper panels of Fig. 1. However, at specific frequency combinations,
bridge shaped structures appear connecting periodic segments from the vertical axis to the
horizontal axis, or vice-versa. Such bifurcation structure can be clearly seen in the bottom
panels of Fig. 1. Consequently, periodic orbits of single frequency driving at different rela-
tive frequencies can be transformed into each other via a temporary dual-frequency driving.
The bottom-left panel of Fig. 1 is investigated in more detail in the following to give an
in-depth description of the phenomenon.

Figure 2 shows a 3D representation of the period-1 orbits (yellow and gray surfaces)
corresponding to relative frequencies ωR1 = 4 and ωR2 = 3, where the second component of
the points of the Poincaré section Π(y2) is presented as a function of the pressure amplitudes
PA1 and PA2. Keep in mind that the global Poincaré section is chosen according to the period
of the dual-frequency driving T that is different from the period of the individual components

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
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T1 and T2. For the present frequency combination, T = 4, T1 = 1 and T2 = 4/3 ≈ 1.333 in
terms of the dimensionless time τ . That is, the simulation defines every orbit as period-1
that repeats itself after every ∆τ = 4. Therefore, for single frequency driving using ωR1 = 4
(T = 4T1), all period-1 and period-4 orbits are treated as period-1 solutions in the dual-
frequency simulations. Similarly, in case of single frequency driven system with ωR2 = 3
(T = 3T2), all period-1 and period-3 orbits are regarded as period-1 solutions if the dual-
frequency Poincaré map is applied. For an exhaustive discussion of the “period reduction”
described above, the reader is referred to our previous paper [4].

Fig. 2 The second component of the Poincaré section Π(y2) of the period-1 orbits versus the pressure-
amplitude parameter plane of the dual-frequency driving.

Let us summarise the colour code in Fig. 2. The red curves represent period-3 orbits
using a single frequency Poincaré map if only the second frequency component is active
(ωR2 = 3, PA1 = 0). The green curves represent period-4 orbits of single frequency driving
(again using a single frequency Poincaré map) with relative frequency ωR1 = 4 (PA2 = 0).
Finally, the yellow and grey surfaces and both the red and green curves are the second
components of the Poincaré section of period-1 orbits corresponding to the dual-frequency
driving (as already discussed above). The surfaces are presented with different colours (yel-
low and grey) only for the better visibility. It can be clearly seen how these surfaces make
connections between the period-3 and period-4 orbits related to different relative frequency
values. That is, these two kinds of orbits can be transformed into each other via a temporary
dual-frequency excitation.

Although the above-described orbits are related to different relative frequency values,
a special kind of control of multi-stability can be achieved in this way if the period-3
(red curves) and the period-4 (green curves) attractors have overlapping domains in the
frequency-amplitude parameter plane in case of single frequency driving. However, the
transformation works well even if such overlapping domains do not exist. Thus, one can
still drive the system from one attractor to another regardless of their co-existence. Observe
that such a control technique is a non-feedback method, but the direct selection of the de-
sired attractor is also possible. Up to now, this was possible only by the feedback control
techniques [6]. A thorough discussion of the advantages and the drawbacks can be found
in our already mentioned previous work [4]; however, only for the transformation between

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



10 Ferenc Hegedűs et al.

period-2 and period-3 orbits. Therefore, the results presented here indicate that the control
technique can be generalised for other pairs of periodic orbits.

It must be emphasized that the high-resolution, multi-dimensional parameter scans have
played a vital role in the discovery of the new non-feedback control technique. Since not
all the bi-parametric plots show even the sign of the transformation possibility (see e.g. the
top panels of Fig. 1), it is very likely that investigating only a few frequency combinations
or using coarse resolutions for the pressure amplitudes, we might have missed the special
bifurcation structure that led to the discovery. Moreover, as the total number of parameter
combinations is of the order of a hundred million, the high-performance GPU computing
was a prerequisite of this success.

6 Mathematical model of the pressure relief valve exhibiting impact dynamics

The second test case describes the behaviour of a pressure relief valve that can exhibit impact
dynamics. The dimensionless governing equations are adopted from [52] and are written as

ẏ1 = y2, (30)

ẏ2 =−κy2− (y1 +δ )+ y3, (31)

ẏ3 = β (q− y1
√

y3), (32)

where y1 and y2 are the displacement and the velocity of the valve body, respectively. The
pressure relief valve is attached to a reservoir chamber in which the dimensionless pressure
is y3. The fixed parameters in the system during the computations are as follows: κ = 1.25
is the damping coefficient, δ = 10 is the precompression parameter, β = 20 is the compress-
ibility parameter and q = 0.3 is the dimensionless flow rate.

In Eqs. (30)-(32), the zero value of the displacement (y1 = 0) means that the valve body
is in contact with the seat of the valve. If the velocity of the valve body y2 has a non-zero,
negative value at this point, the following impact law is applied:

y+1 = y−1 = 0, (33)

y+2 =−ry−2 , (34)

y+3 = y−3 (35)

That is, the velocity of the valve body is reversed by the Newtonian coefficient of restitution
r = 0.8 that approximates the loss of energy of the impact.

7 The discovery of a new focal point of grazing lines

During the oscillation of the valve body of a pressure relief valve, it can exhibit impact
dynamics (the valve body is in contact with the valve seat) that can be categorised as follows.
The transversal impact has a non-zero velocity during the impact (y2 < 0); that is, it is a
“normal” impact. Whereas, the so-called grazing impact occurs when the impact happens
with a zero velocity (y2 = 0). In this case, the impact law has no real effect as the valve body
only touches the valve seat. Figure 3 shows the y1 component of two trajectories that exhibit
impacts (y1 = 0). The red dots denote the grazing impacts. The simulations are stopped
at the next impact. In both cases, the initial conditions for the first two components are
y10 = 0 and y20 = 0.4. The only difference is in the third initial condition: y30 = 8.66 and
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High-performance GPU computations in non-linear dynamics 11

y30 = 8.58 depicted also in the figure. The employed parameter set is summarized in Sec. 6.
The grazing impact can also be labelled (for a specific initial condition) according to how
many transversal impacts there were before. Thus, in Fig. 3, the grazing impacts are denoted
as G0 (zero transversal impact) and G2 (two transversal impacts).

Fig. 3 Time series exhibiting transversal and grazing impacts applying different initial conditions. The graz-
ing impacts are marked by the red dots.

From a theoretical point of view, the generalization of the grazing impacts to the y20−
y30 initial condition plane is an interesting problem. The first component of the initial con-
dition is always set to y10 = 0. In this way, G(k) denotes a set of points in the y20−y30 initial
condition plane, which leads to a grazing impact after k transversal impacts. Throughout this
paper, we shall call such a set of points as grazing lines of order k. The first seven grazing
lines computed by Hős and Champneys [52] are shown in the bottom-right panel of Fig. 4.
Their strategy was to use a BVP solver and to employ the pseudo-arclength continuation
technique to follow the path of the curves initiated from the results of an IVP solver. This
formalism is quite complex, as for a single BVP, one needs to define sub-BVPs for each of
the k+1 number of segments divided by the impacts. These are coupled via the impact law
for the internal connections. At one side of the full-BVP, the grazing condition, while at the
other side of the full-BVP, the condition y1 = 0 has to be prescribed. Furthermore, the time
instances of the intermediate transversal impacts need to be tracked properly as well. The
main drawback of this approach is that for different values of k, a different set of BVPs has
to be set up and solved. These are the main reasons that the total computational time of a
single grazing line was as high as several hours (according to personal communications with
the authors). In addition, the implementation of the solver took weeks. The main outcome
of the results is that the grazing lines are organized as spirals with a single focal point; and
at this focal point, a Shil’nikov-like orbit exists with impacts, see again [52].

Another way to compute the grazing lines is to take an IVP solver (like our GPU ac-
celerated solver), solve the system forward in time, stop the integration after k+1 impacts
and register the velocity of the endpoint y2E . If this velocity is zero, the corresponding ini-
tial condition lies on a grazing line of order k denoted as G(k). With a fine resolution of
the set of initial conditions in the y20− y30 plane, the grazing lines can be drawn easily by
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Fig. 4 Grazing lines computed by the GPU accelerated IVP solver (colour-coded panels) and the BVP solver
with the pseudo-arclength continuation technique (bottom-right panel, reprinted with permission from Hős
and Champneys [52]). The pure white colour represents the zero value of velocity of the valve body of an
impact (grazing impact). The pure red colour means the velocity of 1.5m/s or higher. Between 1.5m/s and
0m/s, the transition is uniform in the colour code.

creating a contour plot of the y2E value. Theoretically, the zero iso-lines shall represent the
corresponding grazing line.

The G(1) curve computed with our GPU-ODE solver is presented in the top-left panel
of Fig. 4 via a white-red colour-coded plot. Here the integrations are stopped at the second
impact (k+1=2). The resolution of the initial conditions is 1024× 1024 and the total com-
putation time is merely 4s. The pure white colour represents the zero value of y2E . The pure
red colour means y2E > 1.5m/s. Between 1.5 > y2E > 0, the transition is uniform in the
colour code. Interestingly, the zero values always lie at a discontinuity, see the jump in the
colour code labelled by G(1) in the top-left panel of Fig. 4. Accordingly, the grazing lines
can be easily identified as a jump in the value of y2E . In this sense, the task can be reduced to
an edge detection problem; this is beyond the scope of the present study. The computations
corresponding to the G(2) and G(5) curves are shown in the top-right and bottom-left panels
of Fig. 4, respectively. In the case of G(2), a second focal point already appears in the initial
condition plane which was not observed in the BVP computations of Hős and Champneys
[52]. The two focal points are also connected with an additional G(2) curve. Interestingly,
the G(1) curve also appears as a discontinuity in the y2E values; however, in either sides
y2E 6= 0. Therefore, this curve can be seen only as a “pale” dark red-light red transition.
The reason for the non-zero velocity is that the integration is stopped at the third impact for
G(2) instead of at the second one required for the detection of G(1). Nevertheless, an edge
detection algorithm can find both the G(1) and G(2) curves from a single computation with
k = 2. The grazing lines corresponding to k = 5 are presented in the bottom-left panel in
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Fig. 4. Similarly, as in the case of k = 2, all the previous grazing lines (k = 1 . . .4) are visible
in the figure making it extremely complex. Thus, to detect the edges properly, a suitably
fine resolution is necessary. This is not a problem in our case, as a single computation with
one million initial conditions takes only a couple of seconds. Observe that in the bottom-left
panel, no further focal points are discovered apart from the second one.

In summary, high-resolution scans of the initial conditions using our GPU accelarated
IVP solver has revealed an additional feature (second focal point) of the grazing lines in
the y20− y30 initial condition plane. This shows that fast “brute force” scanning is nowa-
days able to discover features otherwise not visible or overlooked — here by the available
BVP approach. At first sight, high-performance computation seems to be exaggerated. Even
without using GPUs, the above “brute force” computations can be done within a few hours
using MATLAB on a CPU. However, the main message here is that considering the usage
of a “brute force” approach can lead to unexpected discoveries. Although in this specific
example, high-performance computing is not really mandatory, in general, to obtain results
within reasonable time for a detailed “brute force” computation, the applications of high-
performance GPU (and/or CPU) clusters is usually a must.

8 Summary

In this paper, the efficacy of “brute force” technique combined with high-performance GPU
computing is demonstrated through two test cases. The first model, the Keller–Miksis equa-
tion, is related to the scientific topic of sonochemistry and bubble dynamics. Apart from
mapping the dynamics of bubbles to obtain approximated information about their chemical
activity, the bifurcation structure of the high-resolution plots led to a discovery of a new
technique to control multi-stability. The second model describes the behaviour of a pressure
relief valve that can exhibit non-smooth impact dynamics. Results in the literature revealed
that the grazing lines — computed via a boundary value problem solver — in the initial
condition plane are organized around a spiral hub. The high-resolution scans of the initial
conditions using our GPU accelerated initial value problem solver led to the discovery of
a new focal point of the grazing lines. In summary, “brute force” technique can play an
important role in many fields of sciences, including non-linear dynamics.

In general, the prerequisite to employ high-resolution parameter scans is a fast solver.
If high computational capacities are required, a natural choice is the usage of CPU clus-
ters that are available in many research institutes. The advantage of this approach is that
highly optimised libraries are available for CPUs. However, GPUs have outstanding com-
putational capacity/price ratio, which makes them a good alternative over CPUs. Although
the parallelisation strategy for parameter scans seems to be straightforward (assign a GPU
thread to each parameter combination) and libraries supporting solution of ODEs on GPUs
are already available, still there can be many special issues resulting in a large performance
drop.

For instance, the extremely slow CPU-GPU memory transactions need to be avoided by
all costs. This can be a cumbersome task for example for systems with impact dynamics,
where thousands of parallel threads (each having its own instance of the ODE with a specific
parameter combination) can encounter an impact at any time. What should the programmer
do if a single thread is impacting? He/she can stop the whole computation, apply the impact
law on that specific thread and continue the integration process. This can be quite inefficient
if the programmer has to involve CPU computations (depending on the interface and data
structure of the package used), and there is always an overhead to restart the simulation
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as well. Thus, an efficient solver has to be able to detect impact (via event handling) and
manipulate the trajectory immediately “on the fly” on the GPU for each thread selectively.

There can be several other issues that may have a negative effect on code performance
if GPUs are involved. Thus, tuning up the number of the parameters is easy, but a fast and
efficient GPU solver usually needs a clever implementation. Such a detailed discussion is
beyond the scope of the present study. Nevertheless, our GPU code is designed to efficiently
address the majority of these issues. For more details, the reader is again referred to the
manual of the program package [54] and to its website www.gpuode.com or to its GitHub
repository [53].
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