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aDepartment of Hydrodynamic Systems
Faculty of Mechanical Engineering

Budapest University of Technology and Economics

Abstract

In this paper, two scenarios for the formation of shrimp-shaped domains [1] are pre-

sented. The employed test model is the Keller–Miksis equation that is a second order,

harmonically forced nonlinear oscillator describing the dynamics of a single spherical

gas bubble placed in a liquid domain. The results have shown that with an increasing

dissipation rate (liquid viscosity), shrimp-shaped domains are evolved within the com-

plex structure of each subharmonic resonances in the amplitude-frequency parameter

plane of the external forcing. The mechanism is the coalescence and interaction of two

pairs of a period-doubling and a saddle-node codimension-two bifurcation curves.

Keywords: shrimp-shaped domains, GPU programming, bifurcation structure, high

dissipation rate, Keller–Miksis equation, bubble dynamics

1. Introduction

The rapidly increasing computational capacities have opened the way to examine

bifurcation structures of various systems in many fields of sciences in multi-dimensional

parameter space [2, 3, 4, 5, 6, 7, 8, 9, 10]. For example, based on the shooting method,

several high-resolution studies have revealed the existence of shrimp-shaped domains5

(SSD) in bi-parametric planes [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. They are

a special class of codimension-two isoperiodic stable structures (ISS) [18], and they

turned out to be an efficient “tool” to handle multi-stability [22] and to control chaos
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[21, 23].

The bifurcation structure of a typical SSD is presented in Fig. 1 in a two-dimensional10

parameter plane (the physical meaning of the parameters are unimportant here). In the

upper panel, the periods of the found attractors are shown up to period-6 computed by

an initial value problem solver. In the bottom panel, the skeleton of the underlying SSD

is presented via co-dimension two bifurcation curves computed by a boundary value

problem solver. The solid and dashed curves are saddle-node (SN) and period doubling15

(PD) bifurcations, respectively. The skeleton of an SSD can always be characterised as

follows. It consists of a U-shaped SN curve bounding the SSD from one side, an SN

curve inside having a co-dimension two cusp bifurcation and two crossing PD curves.

Observe that the two sides of the PD bifurcations approach to different SN curves. The

formation of such two-dimensional SSD structures are in the main focus of the present20

study. For a detailed categorisation of their structure, see also paper [14].

The presence of shrimps were first identified in a discrete-time system [11]; namely,

in the Hénon-map. Bonatto et. al [1] successfully found these domains also in a

continuous-time CO2 laser system, studied also experimentally by Arecchi et. al [24].

Later, the existence of SSDs in different systems were reported [12]; and revealed their25

organization along straight lines [14, 19], around spiral hubs [25, 26] or as zig-zag

patterns [27] indicating the extremely high complexity of the underlying bifurcation

structure.

The majority of the studies in the literature use solely the shooting method via em-

ploying a suitable initial value problem solver. The shrimp-shaped domains, however,30

usually emerge inside large chaotic domains (this is the main reason they are also called

isoperiodic stable structures), and in case of multi-stability and without the proper fil-

tering of the results, they can be “buried” by the co-existing chaos [22]. Another way

to properly identify SSDs is to use a numerical continuation technique [28], and trace

the bifurcation curves composing the skeleton of the shrimps [18, 29].35

With such an approach, Klapcsik et. al [22] successfully explored a complete fam-

ily of period-3 SSDs organized in a zig-zag pattern in the amplitude-frequency param-

eter plane of the external forcing of their model. They employed the harmonically

driven Keller–Miksis equation [30, 31] during their computations, which is a second
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Figure 1: The bifurcation structure of a typical shrimp-shaped domain (SSD). Upper panel: periodicity

diagram with periods up to period-6. Lower panel: the skeleton of the SSD composed by saddle-node (SN)

and period doubling (PD) bi-parametric bifurcation curves.

order ordinary differential equation describing the radial dynamics of a single spherical40

gas bubble placed in a liquid domain [6, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41]. The

special property of their system was the very strong dissipation rate originated from

the high viscosity of the liquid domain (glycerine). Interestingly, in our preliminary

results obtained in water having orders of magnitude smaller damping rate, employing

the same mathematical model, the above mentioned SSDs are absent. Consequently,45

the dissipation rate must play a significant role in the formation of SSDs at least in case

of the Keller–Miksis nonlinear oscillator.

The main objective of the present study is to reveal the possible mechanisms of the

formation of SSDs by systematically increasing the viscosity (dissipation rate of the

system) of the used liquid (initially water) via altering the composition of a water-50

glycerine mixture. We found that the skeletons of the studied SSDs in our model
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are always formed via the interaction of two pairs of a period doubling (PD) and a

saddle-node (SN) codimension-two bifurcation curves. The structure of these skeletons

and their corresponding bifurcation curves are described via the well-known winding

number [2, 8, 42] (order of the curves) and compared with the results already presented55

in the literature. In order to successfully achieve the aforementioned goal, the shooting

method and the continuation technique were combined.

2. The mathematical model

The bubble oscillator used for the computations in this paper is the slightly modified

form [31] of the Keller–Miksis equation [30]:(
1− Ṙ

cL

)
RR̈+

(
1− Ṙ

3cL

)
3
2

Ṙ2 =

1
ρL

(
1+

Ṙ
cL

)
(pL− p∞(t))+

R
ρLcL

d (pL− p∞(t))
dt

. (1)

This nonlinear, second order ordinary differential equation describes the time evolution

of the radius R(t) of a spherical bubble. It takes into account the compressibility of the60

liquid domain to the first order; thus, it incorporates sound radiation. The dot stands

for the derivative with respect to time. In Eq. (1), ρL and cL are the density and the

sound speed of the liquid, respectively.

The pressure far away from the bubble is

p∞ = P∞ + pA sin(ωt), (2)

where P∞ is the static or ambient pressure, pA is the pressure amplitude and ω is the

angular frequency of the periodic excitation. The mechanical equilibrium at the bubble

wall can be written as

pG + pV = pL +
2σ

R
+4µL

Ṙ
R
, (3)

where the total pressure inside the bubble is the sum of the partial pressures of the non-

condensable gas content pG and the vapour pressure pV . The pressure at the bubble

wall in the liquid side is pL. The surface tension is σ and the liquid dynamic viscosity

is µL. The gas inside the bubble obeys a simple polytropic relationship:

pG =

(
2σ

RE
− pV +P∞

)(
RE

R

)3n

, (4)
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where RE is the equilibrium radius (size of the bubble) and n is the polytropic exponent.

2.1. The dimensionless equation system65

For the numerical simulations, Eqs. (1)-(4) need to be rewritten into a first order

dimensionless differential equation system. By the introduction of the dimensionless

time τ = tω/(2π), the dimensionless bubble radius y1 = R/RE and the bubble wall

velocity y2 = 2πṘ/(REω), the system can be written as

y′1 = y2,

y′2 =
N
D
,

(5)

where ′ denotes the derivative with respect to τ . After some algebraic manipulation of

the model, the numerator N can be defined as

N =
(

C1 +C2y2

)( 1
y1

)C9

−C3

(
1+C8y2

)
−
(

C4 +C5y2

) 1
y1

−C6

(
1+C8y2

)
sin(2πτ)−1.5

(
1− 1

3
C8y2

)
y2

2−C7 cos(2πτ)y1 (6)

and the denominator D as

D = y1−C8y2y1 +C5C8. (7)

The parameters in Eqs. (6) and (7) are defined as follows

C1 =
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2σ

RE
− pV +P∞

)
/

(
ρLR2

E

(
ω

2π

)2
)

(8)
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/
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2σ

RE
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E
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ρLR2

E

(
ω

2π

)2
)

(13)

C7 = pA/

(
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ω

(2π)2

)
(14)

C8 =

(
REω

)
/

(
2πcL

)
(15)

C9 = 3n. (16)
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Since the angular frequency can vary on a scale of many orders of magnitude, it is

reasonable to normalize it with a suitable reference quantity. Therefore, a dimension-

less relative frequency was used for the computations defined as

ω f =
ω

ω0
, (17)

where ω0 is the linear resonant frequency of the system. According to Brennen [33],

ω0 can be calculated from the following equation:

ω0 =

√
3n(P∞− pV )

ρLR2
E

+
2(3n−1)σ

ρLR3
E
−

4µ2
L

ρ2
LR4

E
. (18)

2.2. Control parameters and material properties of the system

The objective of the present study is to track the evolution of the shrimp-shaped

domains in the parameter plane pA−ω f of the harmonic driving with increasing dissi-

pation rate. Accordingly, the two main control parameters are the pressure amplitude70

pA and the relative frequency ω f of the system. Their values are within the limits

of 0− 100bar and 1− 14, respectively. Observe that most of the applied relative fre-

quency values are well above the main resonance frequency ω f = 1; thus, subharmonic

resonances shall dominate the investigated parameter plane.

The low viscosity (low dissipation rate) reference computation was carried out us-75

ing pure water at constant ambient pressure P∞ = 1bar and at constant ambient tem-

perature T∞ = 25 oC. These ambient quantities specify all the liquid material properties

determined by means of the Haar–Gallagher–Kell equation of state [43]. The calcu-

lated values for this reference case are listed in Table 1. In order to reveal the effect of

the dissipation rate, computations were repeated at several values of the liquid viscosity80

summarized in Table 2. These values were chosen according to the volume fractions of

water glycerin mixtures. However, from the material properties, only the viscosity was

changed to clearly separate the effect of the dissipation. During the computations, the

equilibrium bubble radius (bubble size) was RE = 0.1mm and the polytropic exponent

was n = 1.4 assuming adiabatic state of change and diatomic molecules for the gas85

content.
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Table 1: Liquid properties for pure water calculated at T∞ = 25 oC and at P∞ = 1bar ambient properties by

means of the Haar–Gallagher–Kell equation of state [43].

material property value

pV 3166.8Pa

σ 0.0720N/m

µL 0.00089Pas

ρL 997.064kg/m3

Table 2: Values of the liquid dynamic viscosities used during the computations, calculated via the volume

fraction of the species. [44]

water (L) glycerine (L) µL [Pas]

1 0 0.00089 (pure water)

1 0.8 0.00506

1 1.3 0.0102

1 3.35 0.0498

1 5.2 0.100

1 10.7 0.252

1 26 0.501
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3. The exoskeleton of the subharmonic resonances for pure water

Before the examination of SSDs — similarly to the study of Klapcsik et al. [22]

— the present investigation also starts with the exploration of subharmonic resonances

in the bi-parametric plane of the pressure amplitude pA and relative frequency ω f .90

Throughout this section, computations are performed only for the low viscosity refer-

ence case (pure water, Table 1). Although the employed model is the same as in [22],

the more than three orders of magnitude difference in the liquid viscosity (approxi-

mately ×320) shall result in a structural difference in the subharmonic bifurcation set.

To quickly obtain a picture about the periodic solutions, Sys. (5) is first solved as95

an initial value problem (IVP) applying 25 randomized initial conditions at every pa-

rameter combinations to reveal the co-existing stable states (attractors). The numerical

scheme is the explicit and adaptive Runge–Kutta–Cash–Karp method with embedded

error estimation of orders 4 and 5, the algorithm is adapted from [45]. Both the absolute

and relative errors are 10−10. The data for the first 2048 iterations are regarded as ini-100

tial transients and discarded. One iteration means the integration of the system forward

in time by one cycle of the excitation. After the initial transients, several characteristic

properties of the found attractors are recorded: points of their Poincaré section P(y1)

and P(y2), their period m and their torsion number n. The torsion number n is the aver-

age number of rotations of a neighbouring orbit around a given solution during one of105

its period [42, 46, 47]; and it is an integer number near a bifurcation point. Therefore,

the order of a bifurcation point can be defined via the pair of its torsion number and its

period (n,m), for details see [48]. According to several studies in the literature [8], the

order is turned out to be a very efficient tool for the description of bifurcation structures

demonstrated in the present study as well.110

Out of the several computations, Fig. 2 shows only one typical bifurcation structure

of the stable periodic solutions with the pressure amplitude of the excitation pA as

control parameter at constant relative frequency ω f = 5. Here, the first coordinate

of the Poincaré section P(y1) of the converged solutions is plotted versus the control

parameter varied between 0 and 25 bar with 0.01 bar increment. The present study115

focuses only on the structure of periodic orbits; thus, the chaotic solutions are filtered
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from this figure. All of the periodic attractors emerge via a saddle-node SN bifurcation

except the period-1 orbit, which is originated from the equilibrium solution P(y1) = 1

at pA = 0. After some increase of the control parameter, these solutions go through

period-doubling cascades and finally they lose their stability.120
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Figure 2: Bifurcation diagram of the stable periodic solutions at ω f = 5, where the first component of the

Poincaré section P(y1) is plotted as a function of the pressure amplitude pA. The arrows marking the SN and

PD points are subjects of further study. The order of these bifurcation points are marked by SN(n,m) and

PD(n,m), respectively. The box highlights the region where the SN(1,3) solution exists. Chaotic orbits are

omitted from the figure.

The orbits which are the subject of further study are marked by their order SN(n,m)

or PD(n,m), see the arrows pointing to the corresponding bifurcation points. Observe

that the torsion numbers n of these points are always 1; that is, they all belong to the

family of subharmonic resonances of order (1,m), where the period m is between 1 and

9. These subharmonics also exist in the bifurcation structure of Klapcsik et al. [22],125

in spite of the applied high dissipation rate there. The investigation of the higher order

subharmonics (n > 1) are beyond the scope of the present paper. These subharmonics

appear in Fig. 2 as solutions with very high periods. Interestingly, they are completely

absent in the bifurcation structures of Klapcsik et al. [22]; that is, only such higher
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order subharmonics are damped out with increasing liquid viscosity.130

In order to obtain a global overview of the subharmonic resonances in the excitation

parameter plane, the bifurcation points marked in Fig. 2 and their first period-doubling

points in the Feigenbaum cascade are tracked down as a function of the pressure am-

plitude pA and relative frequency ω f . Altogether 8× 2 = 16 bifurcation points are

tracked. This task can be easily done by reformulating the problem into a boundary

value problem (BVP). For a period m solution, the periodic boundary condition is de-

fined as

y(0) = y(mτ0), (19)

where m is the period of the desired solution and τ0 = 1 is the dimensionless period of

the excitation. For these calculations, the AUTO continuation and bifurcation analysis

software was used [28]. For a detailed study on the capabilities of this software, the

reader is kindly referred to the publications [32, 49, 50, 51, 52].

The resulted codimension-two bifurcation curves are summarized in Fig. 3. The135

solid and dashed curves are related to the SN and PD bifurcation points, respectively.

The vertical red line at ω f = 5 shows the parameter range corresponding to Fig. 2.

In Fig. 3, a remarkable U-shaped ordering of the subharmonic structure arise, which

was hidden in the one-dimensional cut shown in Fig. 2. The same U-shaped structures

characterize the subharmonics also in case of high dissipation, see again Ref. [22]. The140

main aim of the following sections is to highlight the differences between the internal

structures of a subharmonic resonance corresponding to high and low liquid viscosities,

and to describe the formation of SSDs.

4. The internal structure of the period-3 subharmonic resonance

With a BVP solver, both stable and unstable solutions can be easily computed.145

Moreover, along a traced bifurcation curve in one-dimension, bifurcation points can

also be detected. Therefore, the BVP solver AUTO used for our computations is a

perfect tool to explore the internal structure of a subharmonic resonance. The strategy

is to calculate several one-dimensional fixed-point curves [53, 54] as a function only

of the relative frequency ω f at fixed pressure amplitudes pA initiated each from the150
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Figure 3: Codimension-two bifurcation curves corresponding to the marked bifurcation points in Fig. 2 and

to their subsequent period-doubling points. The solid and dashed lines are the saddle-node SN and the

period-doubling PD curves, respectively. The red vertical line denotes the parameter range of the compu-

tations presented in Fig. 2. The lower and upper black horizontal lines denote the parameter ranges of the

computations presented in Fig. 4A and B, respectively.

subharmonic resonance curve of order SN(1,3) (see again Fig. 3). The next step is the

computation of all the codimension-two curves (again in the pA−ω f plane) initiated

from the detected SN and PD points in the one-dimensional ω f -sections. With these

steps, the whole internal structure of a subharmonic resonance can be explored.

Figure 4 presents two examples for frequency response curves (ω f -sections) cor-155

responding to the period-3 subharmonic resonance at pressure amplitudes pA = 14bar

(panel A) and at pA = 49bar (panel B). Here the maximum value of the y2 coordinate

of the solution (ymax
2 ) is plotted versus the control parameter ω f . They were calculated

as a function of the relative frequency ω f at fixed pressure amplitudes initiated from

the SN(1,3) curve (purple solid curve in Fig. 3). See also the two black horizontal lines160

in Fig. 3 at pA = 14bar and at pA = 49bar, where these two ω f -section curves lie in

the pA−ω f plane. In both Fig. 4A) and B), the red dashed lines mean unstable so-

lutions, while the black solid segments are the stable orbits. The detected PD and SN
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points are marked by the black crosses and dots, respectively. The arrows point at these

detected bifurcation points indicating their order (n,m). For a better visualization, in165

panel B), only some segments of the curve are shown, and only some of the detected

SN points are highlighted by arrows. The presented solutions have the following main

features. First, the fixed-point curves at a given pressure amplitude are composed by

closed loops. Along them, the bifurcation points appear as SN−SN and PD−PD pairs

sequentially. Second, the regions of the existence of stable segments are really narrow170

because the SN points are always very close to a PD point; therefore, unstable orbits

dominate the whole parameter domain, see also the magnification in panel A). This

means that IVP solvers are really inefficient to obtain a good impression about such an

internal structure. Third, although it is hard to visualize, but with increasing pressure

amplitude, the number of the loops in the bifurcation curves are gradually increasing.175

At pA = 14bar, the number of the SN− SN and PD−PD pairs (and also the number

of the loops) is 6 that increases to 16 at pA = 49bar.

Figure 4: One-dimensional ω f fixed-point diagrams corresponding to the subharmonic resonance of order

SN(1,3) at pressure amplitudes pA = 14bar (panel A) and pA = 49bar (panel B). ymax
2 is the maximum value

of the y2 coordinate of the solution. The red dashed lines are the unstable solutions, while the black solid

segments represent stable orbits. The PD and SN bifurcation points are marked by the black crosses and

dots, respectively. The subfigure in panel A) shows the enlargement of the framed part of the fixed-point

curve.

The internal structure of the period-3 subharmonic resonance can be revealed by

following all the detected SN and PD bifurcation pairs of the ω f -sections in the bi-

parametric plane of the pressure amplitude pA and the relative frequency ω f . The top180
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panel of Fig. 5 shows this complex structure. Here, the continuous and dashed curves

correspond to SN and PD bifurcations, respectively. The solid purple curve is the

SN(1,3) resonance curve, and the dashed one is its corresponding PD curve, compare

also with Fig. 3. The black horizontal lines with black crosses (PD points) and dots

(SN points) are the sections of the frequency response curves shown in Fig 4. Since in185

Fig 4, the consecutive SN and PD points are always very near to each other, in Fig. 5

top, the black dots and crosses almost coincide. Observe how this internal structure

incorporates an increasing number of codimension-two curves with increasing pressure

amplitude. This reflects the increased number of SN and PD points found in Fig. 4B

compared to Fig. 4A. Observe also that the bifurcation curves can always be paired; that190

is, there is always a PD curve moving close to an SN curve, even if they are seemingly

a single curve. To show this, the curve segments in the two rectangles in the top panel

of Fig. 5 are enlarged in Fig. 6, in which the arrows again point at the curves indicating

their bifurcation type and order. The alternating green-orange coloring serves only to

distinguish these SN−PD pairs of bifurcation curves more easily.195

The description of the one-dimensional bifurcation structures, such as shown in

Fig. 4, was discussed in great details in terms of the order of the bifurcation points in

our previous paper, see again Klapcsik et al. [22]. Although that paper is related to a

highly viscous liquid, the description is also valid for the present, low viscosity case

(pure water). Thus, for the details, the interested reader is referred to the aforemen-200

tioned publication. Despite of this similarity, the pattern of the corresponding internal

resonance structure shows important differences. The zig-zag pattern clearly visible in

Fig. 5 of Ref. [22] is totally absent in the internal structure shown in in the top panel of

Fig. 5 of the present study.

Although the effect of the viscosity on the bifurcation structure shall be discussed in205

Sec. 5 in details, in the bottom panel of Fig. 5, the internal structure of the subharmonic

resonance of order SN(1,3) for a much higher viscosity is already included here to

introduce the term zig-zag pattern properly. Comparing the structures of the bifurcation

curves of the two panels, one can clearly see that blocks a) and b) (discussed below)

have no connections at low viscosity (pure water, upper panel), but for high enough210

viscosity (e.g. bottom panel), blocks a) and b) are connected in an alternating manner.
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Figure 5: Top panel: The internal structure of the subharmonic resonance family of order SN(1,3) (purple

solid line, see also 3) at low viscosity (pure water). The horizontal black lines represent the parameter regions

of the bifurcation curves presented in Fig. 4A-B. The areas in the two rectangles are enlarged in Fig. 6. The

arrows show the type and order of the first few bifurcation curves. Bottom panel: the same internal structure

of the subharmonic resonance family of order SN(1,3) at orders of magnitude higher viscosity. The zig-zag

pattern of the bifurcation structure is clearly visible in this case.
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Figure 6: Magnifications of the bifurcation blocks of the predecessors of the shrimp-shaped domains (SSDs)

marked by a) and b) in Fig. 5. The arrows show the type and order of the curves they point to, compare with

Fig. 5.

Such an alteration is called the zig-zag pattern.

Since the “nodes” of the zig-zag blocks were turned out to be the skeleton of the

shrimp-shaped domains (SSDs), see again Ref. [22], the viscosity of the liquid (dis-

sipation rate) has to play an important role in their formation. In the next section,215

this scenario, the “rout to shrimps” shall be discussed in details by varying the liquid

viscosity and monitor the evolution of the codimension-two curves presented in Fig. 5.

Although in the top panel of Fig. 5 the skeletons of SSDs are still missing, their

“predecessors” are already visible shown by the block patterns a) and b). Two mag-

nified examples are presented in Fig. 6 for each cases. Both blocks consist of an SN220

curve having a cusp bifurcation, and a parallel U-shaped (block a) or a looped (block

b) PD curve. These blocks, according to their patterns, are also marked by a) and b)

in the top panel of Fig. 5 where they appear in an alternating order as the bifurcation

curves emerge with increasing pressure amplitude pA.

5. The effect of the viscosity on the internal structure of the period-3 subharmonic225

resonance

To reveal the possible routes to the shrimp-shaped domains via the formation of

the zig-zag pattern, the calculations presented in the previous subsection are repeated

at different dynamic viscosities µL. For the used values of µL, see again Table 2. Al-

though we only show the bi-parametric curves in the pA−ω f plane of the subharmonic230
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resonance family of order SN(1,3), the conclusions drawn are also valid for other sub-

harmonic resonances based on our preliminary calculations. The results of the compu-

tations are summarized in Fig. 7. The color coding of the curves is the same as in case

of Fig. 5.

Figure 7: The codimension-two bifurcation curves of the subharmonic resonance of order SN(1,3) (purple

solid line) at different dynamic viscosities. The color code of the curves is the same as in case of Fig. 5. The

bifurcation curves in the black and purple rectangles are magnified in Figs. 8 and 9, respectively.

With increasing dynamic viscosity µL, two main alterations in the bifurcation struc-235

ture can be recognized. Firstly, all the curves are shifted towards the higher pressure

amplitudes. This is the reason of the extended parameter range of pA in Fig. 7C-F. Ob-

serve that in panel F) only a few curves are left. In this case, the bifurcation curves are
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shifted upward significantly, and only a single block a) is visible. The system was in-

vestigated “only” up to pressure amplitude pA = 100bar; thus, it is possible that block240

patterns a) and b) are gradually disappear with increasing viscosity. However, such

an investigation is beyond the scope of the present paper. Since the main objective is

the formation of SSDs with an increasing dissipation rate that can be clearly recognis-

able in the forthcoming discussions. Secondly, the block patterns a) and b) gradually

approach to and collide with another pair of bifurcation curves initiating a complex245

interaction between two SN−PD pairs, examined in details in Sec. 6. As the viscosity

increases, this phenomenon takes place first with block patterns presented at high pres-

sure amplitudes, and gradually spreads towards the lower amplitude regions forming

the zig-zag pattern already observed in [22]. Compare also the upper panel (absence of

zig-zag pattern) with the lower panel (presence of zig-zag pattern) in Fig. 5, which are250

also the subfigures A) and E) in Fig. 7.
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Figure 8: Resonance curves of block pattern a) creating a shrimp-shaped region as the liquid dynamic vis-

cosity increases from µL = 0.100Pas (top row) to µL = 0.252Pas (bottom row). Panel A) and B) are the

magnifications of the black rectangles in Fig. 7D and E, respectively. Panel C) and D) are the results of an

IVP scan of the parameter areas of panel A) and B), respectively. The color code means the period of the

converged periodic solutions up to period-7. Chaotic solutions are omitted from these panels.

Figures 8 and 9 show two magnified examples of the two different kinds of building
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blocks in the zig-zag pattern (recognised also in Fig. 6) before and after the interaction

of their SN −PD bifurcation curve pairs. Figures 8A and 9A are the magnification

of the black and purple squared domains in Fig. 7D at µL = 0.100Pas, respectively.255

At this viscosity value, these SN−PD pairs are not connected; that is, this phase is

before the interaction of the bifurcation curves and they do not form a SSD. Both

Figs. 8B and 9B show the same bifurcation curves as panel A), but at an increased

dynamic viscosity value at µL = 0.252Pas, see also the black and purple squares in

Fig. 7E, respectively. Here the SN bifurcation curves have exchanged their subsequent260

PD curves at the cusp point of the inner SN curve, and hence, as a consequence of this

interaction, two different shrimp-shaped domains are created, compare Figs. 8B and

9B also with Fig. 1 in Sec. 1 (Introduction).
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Figure 9: Resonance curves of block pattern b) creating a shrimp-shaped region as the liquid dynamic vis-

cosity increases from µL = 0.100Pas (top row) to µL = 0.252Pas (bottom row). Panel A) and B) are the

magnifications of the purple rectangles in Fig. 7D and E, respectively. Panel C) and D) are the results of an

IVP scan of the parameter areas of panel A) and B), respectively.The color code means the period of the

converged periodic solutions up to period-7. Chaotic solutions are omitted from these panels.

Similarly as in case of Fig. 1, IVP scans are also provided in the right column

of both figures. These diagrams show the color coded period (up to period-7) of the265

stable periodic solutions found. Chaotic solutions are again omitted in order to find the
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periodic structures possibly hidden by them. The period-3 and period-6 solutions are

colored light pink and gray, respectively. Color white means that only chaotic solutions

were found. The SN and PD bifurcation curves from panels A) and B) are also depicted

in panels C) and D), respectively. These phase diagrams show that after the interaction270

of the bifurcation curves an isoperiodic domain with period-3 is created inside the

domain bounded by the outer SN and the two crossing PD curves. According to the

orders of the bifurcations curves, the two types of block patterns generate two different

shrimps. This is in good accordance with the description of shrimps in the study of

Medeiros et. al [14], compare Fig. 3b-c therein with the bottom panels of Figs. 8 and275

Fig. 9.

6. The detailed mechanism of the two types of route to shrimps

To see the mechanism behind the formation of the shrimp-shaped domains de-

scribed in the previous subsection, more computations were performed with much finer

increment of the dynamic viscosity µL. Figure 10 shows three stages in the evolution280

of the bifurcation curves corresponding to block pattern a) introduced also in Fig. 8.

The dynamic viscosity increases from stages bottom to top, and takes the values of

0.22Pas, 0.23Pas and 0.24Pas. The black curves indicate the saddle-node bifurcation

curve of order SN(4,3) and its first period-doubling of order PD(7,6). The red and

blue curves are the bifurcations of orders SN(4,3) and PD(9,6), respectively. Observe285

that the two SN resonances have the same order, and they collide approximately at

µL = 0.23Pas indicated by the black dot in Fig. 10. At this critical point, the branches

at the lower branch of the SN curves are interchanged. This is clearly indicated by the

fact that the blue left hand side of the red curve follows the period-doubling curve of or-

der PD(9,6) at µL = 0.22Pas (lower stage), while it follows the black period-doubling290

curve of order PD(7,6) at µL = 0.24Pas (upper stage). Due to the interchange of the

two SN branches, the four bifurcation curves become structurally “bounded” forming

the skeleton of a shrimp-shaped domain. Observe that the upper stage in Fig. 10 have

the same structure (although a bit deformed) as the one presented in the bottom row of

Fig. 8. Further increasing the viscosity up to µL = 0.252Pas this structure is continu-295
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ously deformed into the case presented in Fig. 8B without the change in its topology.

Figure 10: Formation of a shrimp-shaped domain corresponding to block pattern a) identified in Fig. 8.

The dynamic viscosity increases from stages bottom to top, and takes the values of 0.22Pas, 0.23Pas and

0.24Pas. Black solid and dashed curves are the SN(4,3) and PD(7,6) resonance curves, respectively. The

blue dashed and the red solid curves are the PD(9,6) and SN(4,3) resonance curves, respectively.

Since block pattern a) have a significant displacement in the parameter plane with

the alteration of the viscosity, Fig. 10 can focus only on a narrow range of the viscosity

values near the point of the interaction of the bifurcation curves. In order to obtain

a global, good impression of the formation the corresponding SSD, several GPU ac-300

celerated IVP computations were performed similarly to the ones shown already in

Figs. 8C-D and Fig. 9C-D. The viscosity was varied between 0.1Pas and 0.25Pas with

an increment of 0.01Pas. The range of the pA−ω f parameter plane is always adjusted

to centre the interesting bifurcation structure. From the total 16 number of pictures,

an animation is created, in which the approach of the two SN-PD pairs, their merge305

and the formation of an SSD are clearly recognisable. The animation is available as a

downloadable supplementary material of the paper (RouteToShrimp.gif).

Figure 11 shows the evolution of the bifurcation curves corresponding to block pat-

tern b) introduced also in Fig. 9. The presented two stages are related to liquid dynamic

viscosities µL = 0.172Pas (black curves) and µL = 0.173Pas (red curves). Here, the310

SN and PD curves are not distinguished via separate colour codes or line styles. In this

case, the period-doubling bifurcation curves have the same order of PD(7,6), which

collide somewhere between the two viscosity values. The black and red curves are the

states before and after the collision, respectively. Observe how the loop of one of the

PD(7,6) curve breaks up during the collision and interact with the other PD(7,6) curve315
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(the area is encircled with the light green circle). With further increase of the viscosity,

the “neck” between the red curves widens and the shape of this red structure becomes

more recognizable as a shrimp-shaped domain shown in Fig. 9B and D (animation was

not created for this case to save computational resources).

Figure 11: Formation of a shrimp-shaped domain corresponding to block pattern b) identified in Fig. 9.

Liquid dynamic viscosities: µL = 0.172Pas (black curves) and µL = 0.173Pas (red curves). The loop of one

of the PD(7,6) curve breaks up during the collision and interacts with the other PD(7,6) curve.

7. Conclusion320

The subharmonic resonances of the bifurcation structure of order (1,m) of the

Keller–Miksis bubble oscillator was numerically investigated. In the two dimensional

parameter space of the external forcing, the internal structure of the period-3 solu-

tion with order (1,3) was computed by means of initial value problem solver and

boundary value problem solver with numerical continuation method. This inner struc-325

ture is mainly built up by pairs of saddle node (SN) and period-doubling (PD) bi-

furcation curves discussed through Figs. 5, 6 and 7. Results show that the formation

of shrimp-shaped domains is highly dependent on the damping of the system that is

clearly demonstarted via the supplementary material (RouteToShrimp.gif). In case of

the employed model, with the parameters determined for pure water (low viscosity), the330

two dimensional bifurcation structure completely lacks these structures, see the upper

panel of Fig. 5. Increasing the damping parameter (dynamic viscosity) of the system,

two mechanisms for the creation of shrimp-shaped domains were identified, see the

details in Sec. 6. In the first case, two SN curves with the same orders collide and in-
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terchange one of their branches, while in the other case, two PD curves again with the335

same orders collide and form another pair of PD bifurcations. In both mechanism, two

SN-PD pairs interact with each other resulted in a shrimp-shaped domain.
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