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ABSTRACT

A feedforward control technique is presented to steer a harmonically driven, non-linear system between attractors in the frequency–amplitude
parameter plane of the excitation. The basis of the technique is the temporary addition of a second harmonic component to the driving. To
illustrate this approach, it is applied to the Keller–Miksis equation describing the radial dynamics of a single spherical gas bubble placed in
an infinite domain of liquid. This model is a second-order, non-linear ordinary differential equation, a non-linear oscillator. With a proper
selection of the frequency ratio of the temporary dual-frequency driving and with the appropriate tuning of the excitation amplitudes, the
trajectory of the system can be smoothly transformed between specific attractors; for instance, between period-3 and period-5 orbits. The
transformation possibilities are discussed and summarized for attractors originating from the subharmonic resonances and the equilibrium
state (absence of external driving) of the system.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0005424

The governing equations of many physical phenomena are non-
linear. One of the main consequences of non-linearity is the
existence of various types of stable solutions (e.g., equilibrium,
periodic, quasiperiodic, or chaotic) over the parameter space of
the system. At a given parameter combination, many such stable
states might co-exist exhibiting multi-stability. From an appli-
cation point of view, the features mentioned above can cause
unpredictable behavior as the different stable states usually rep-
resent different system performances. Therefore, it is mandatory
to be able to drive a system to a desirable state. The control tech-
nique presented in this paper performs this task for periodic solu-
tions of harmonically excited non-linear oscillators. The main
strength of the method is that direct attractor selection is possible

without the application of feedback on the system. Although
the control procedure is demonstrated only for a specific sys-
tem (Keller–Miksis equation), the generalization of the principles
of the technique for other non-linear systems can significantly
broaden its applicability to a large number of scientific fields in
the future, for instance, in mechanical engineering, chemistry,
laser physics, fluid dynamics, or social sciences, to name a few.

I. INTRODUCTION

In the parameter space of many non-linear systems, different
domains of attractors occur,1–12 as illustrated in Fig. 1. These
domains can overlap in certain parameter regions representing
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FIG. 1. Sketch of domains of attractors in a two-dimensional parameter space.
The different colors represent different families of continuously connected attrac-
tors. The abbreviation ADT stands for the Attractor Domain Targeting technique.

multi-stability. The behavior of the system is usually different from
domain to domain. For instance, chemical reactions can have differ-
ent chemical yields for different attractors.1,11,13 In cardiac models,
the different stable states can represent normal cardiac rhythm or
lethal arrhythmia.14–17 In the case of a large number of coupled sys-
tems (e.g., power grids18), two stable states may display the difference
between synchronous and asynchronous behavior.19–22 Therefore,
the ability to drive a system between domains of stable states is
important to maintain and control its performance. As the domains
do not necessarily overlap each other, this is an extended concept of
control of multi-stability.23–26 The proposed method that is capable
of driving a system smoothly between stable states having distinct
parameter sets is called Attractor Domain Targeting (ADT) tech-
nique throughout the present paper. The arrow between the two
black dots in Fig. 1 represents this method. Note that this specific
problem is a non-trivial task as the attractors represented by the two
black dots may not be connected by a continuous transformation; in
addition, in this example, the “blue” attractor may co-exist with the
“red” one.

The main aim of this study is to present an ADT technique
that works for harmonically driven non-linear oscillators. It is capa-
ble of smoothly steering such a system between periodic domains
of attractors in the amplitude–frequency parameter plane of the
excitation by temporarily adding a second harmonic component
to the driving. The test model to demonstrate this approach is the
Keller–Miksis equation,27 which is a second-order ordinary differ-
ential equation describing the radial dynamics of a single spherical
gas bubble placed in an infinite domain of liquid.28–31 Results show
that with a proper selection of the frequency ratio of the temporary
dual-frequency driving and with the proper tuning of the excita-
tion amplitudes, smooth transformations in the extended parameter
space exist between certain periodic attractors (e.g., between period-
5 and period-3 orbits). The initial and final state of the system during
the control process is a single-frequency driven operation having
distinct frequency values. That is, in both states (initial and final),
different driving amplitudes corresponding to the two frequencies
are zero, but not both of them.

Previously,23 this control method has been demonstrated to
provide a transition between a period-2 and a period-3 orbit

corresponding to the subharmonic resonances of order 1/2 and 1/3,
respectively. Here, we show transformations between stable orbits of
any subharmonic resonance of order 1/n (n = 2, . . . , 9). Moreover,
direct routes from period-1 orbits originating from the equilibrium
of the system (in the absence of external driving) to orbits of sub-
harmonics with order higher than 1/5 (the period is higher than 5)
were also discovered. The advantages and disadvantages of our novel
approach and a brief summary of possible applications are provided
in Sec. V.

II. THE TEST MODEL

The test model employed in the present study is the
Keller–Miksis equation27,30 describing the radial dynamics of a sin-
gle spherical gas bubble placed in an infinite domain of liquid. The
second-order, ordinary differential equation (ODE) reads

(

1 −
Ṙ

cL

)

RR̈ +

(

1 −
Ṙ

3cL

)

3

2
Ṙ2

=

(

1 +
Ṙ
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R
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d
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)

(

pL − p∞(t)
)

ρL

, (1)

where R(t) is the time-dependent bubble radius, the dot stands
for the derivative with respect to time t, and cL = 1497.3 m/s and
ρL = 997.1 kg/m3 are the speed of sound and the density of the liq-
uid, respectively. The pressure pL is the pressure in the liquid at the
interface (without the far field pressure). The pressure far away from
the bubble, p∞(t), represents the external driving of the system. It is
composed of static and periodic components,

p∞(t) = P∞ + PA1 sin(ω1t) + PA2 sin(ω2t + θ). (2)

Here, P∞ = 1 bar is the ambient pressure. The periodic compo-
nents have pressure amplitudes PA1 and PA2, angular frequencies
ω1 = 2π f1 and ω2 = 2π f2, and a phase shift θ according to the
general, dual-frequency case.

The relationship between the pressures inside and outside the
bubble at its interface can be written as

pG + pV = pL +
2σ

R
+ 4µL

Ṙ

R
, (3)

where the total pressure inside the bubble is the sum of the
partial pressures of the non-condensable gas, pG, and the vapor,
pV = 3166.8 Pa. The surface tension is σ = 0.072 N/m and the liq-
uid dynamic viscosity is µL = 8.902−4 Pa s. The gas inside the bubble
obeys a simple polytropic relationship

pG =

(

P∞ − pV +
2σ

RE

)(

RE

R

)3γ

, (4)

where the polytropic exponent is chosen as γ = 1.4 (air, adia-
batic behavior) and the equilibrium bubble radius is RE = 10 µm.
Throughout the paper, the following dimensionless variables are
used:

τ =
ω1

2π
t, (5)

y1 =
R

RE

, (6)
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y2 = Ṙ
2π

REω1
. (7)

The dimensionless ODE of the system is summarized in the
Appendix.

The angular frequencies ω1 and ω2 are normalized by the linear,
undamped eigenfrequency,32

ω0 =

√

3γ (P∞ − pV)

ρLR2
E

−
2(3γ − 1)σ

ρLR3
E

, (8)

of the unexcited system defining the relative frequencies,

ωR1 =
ω1

ω0
, (9)

ωR2 =
ω2

ω0
. (10)

With a bubble size of RE = 10 µm and with the other constants in
(8), the eigenfrequency is ω0 = 340 kHz.

A. The parameter space studied

The investigated parameter space in the case of single-
frequency driving (PA2 = 0) is composed of the pressure amplitude
PA1 and the relative frequency ωR1. The main objective of the single-
frequency driven simulations is to reveal the subharmonic bifur-
cation structure of the system. This is done because the Attractor
Domain Targeting (ADT) technique is demonstrated for periodic
orbits originating from the subharmonic resonances; for details, see
Sec. III. The computation strategy is to perform one-dimensional
scans with an initial value problem (IVP) solver, identify the sub-
harmonic bifurcation structure, detect their bifurcation points, and
follow the path of these points in the pressure–amplitude–relative-
frequency parameter plane by utilizing the boundary value prob-
lem (BVP) solver AUTO.33 These calculations have low computa-
tional resource requirements (only one-dimensional scans and a few
codim-2 bifurcation curves).

For the dual-frequency computations, high-resolution bi-
parametric plots are produced in the (PA1, PA2) plane for several
fixed relative frequency combinations using an IVP solver. For
simplicity, the relative phase shift between the harmonic com-
ponents is set to θ = 0. The resolution of the parameter space
is always 801 × 501 with 10 randomized initial conditions. Thus,
a single plot consists of approximately 4 × 106 of IVPs. Simula-
tions are conducted at every possible frequency combination, where
the relative frequencies are chosen from the following set of val-
ues:

ωR1,2 = 2, 3, 4, . . . , 9. (11)

Taking into account symmetry properties of the possible com-
binations, this means 28 high-resolution bi-parametric plots,
and approximately 112 × 106 IVPs have been solved alto-
gether.

B. The GPU-accelerated initial value problem solver

Due to the resource-intensive computations for the solution of
the IVPs, an in-house code (written in C++ and CUDA C) is used

that is capable of exploiting the high processing power of graphics
processing units (GPUs). The program package is a modular and
general-purpose solver; for implementation details, capabilities, and
performance characteristics, see its website,34 manual,35 and GitHub
repository.36 The employed device here is an Nvidia GeForce GTX
Titan Black card with 1.707 TFLOPS double-precision peak perfor-
mance. The overall computation time of the 112 × 106 IVPs was
only 16.8 h.

C. The global Poincaré section of the single- and

dual-frequency driving

In the case of single-frequency excitation (PA2 = 0), the exter-
nal driving is a purely harmonic function. Substituting Eq. (5) into
Eq. (2), the dimensionless angular frequency of the first harmonic
component is always 2π . Thus, a suitable global Poincaré section can
be easily defined by the period of the driving T1 = 1 (in the dimen-
sionless time co-ordinate τ ). That is, the trajectories are sampled at
time instances τn = n (n = 0, 1, 2, . . .).

For dual-frequency driving, the external forcing is not purely
harmonic. Again, substituting Eq. (5) into Eq. (2), the two dimen-
sionless angular frequencies are 2π and 2π ω2/ω1; here, ω2/ω1

= ωR2/ωR1 is the frequency ratio. The corresponding periods
are T1 = 1 (as in the case of the single-frequency driving) and
T2 = ωR1/ωR2. Keep in mind that the relative phase shift between
the harmonic components is set to θ = 0. The ratio of the employed
frequency pairs is always rational, see Eq. (11); thus, the dual-
frequency driving is still periodic. This period T, which is the small-
est common multiple of T1 and T2, can be used for defining the
global Poincaré section of the dual-frequency driven system. That
is, here, the trajectories are sampled at time instances τn = n · T
(n = 0, 1, 2, . . .). As an example, for ωR1 = 5 and ωR2 = 3, the
periods of the dimensionless dual-frequency driving are T1 = 1,
T2 = 5/3, and T = 5.

It must be stressed that the limiting cases of dual-frequency
simulations in the (PA1, PA2) bi-parametric plane—when one of the
pressure amplitudes PA1 or PA2 is zero—represent single-frequency
driven systems. However, the global Poincaré section still corre-
sponds to the period of T. The consequence is that the periodicity
of the periodic orbits is interpreted differently. For instance, in the
case of the above example, a period-5 attractor (obtained by sam-
pling with T1) in a single-frequency driven simulation with ωR1 = 5
(PA2 = 0) becomes only a period-1 orbit when the dual-frequency
Poincaré section (given by T) is applied because T = 5T1.

III. THE SUBHARMONICS OF SINGLE-FREQUENCY

DRIVING

As the proposed ADT technique is demonstrated for orbits
related to the subharmonic resonances of single-frequency exci-
tation, it is mandatory to explore the corresponding bifurcation
structure. Therefore, first, one-dimensional parameter studies are
performed, where the first component of the Poincaré section 5(y1)

is plotted as a function of the pressure amplitude PA1 at fixed rela-
tive frequencies ωR1. An example can be seen in Fig. 2 with ωR1 = 4.
The pressure amplitude PA1 is varied between 0 bar and 20 bar with

Chaos 30, 073123 (2020); doi: 10.1063/5.0005424 30, 073123-3

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 2. One-dimensional bifurcation structure, where the first component of the Poincaré section 5(y1) is presented as a function of the pressure amplitude PA1 at a
fixed relative frequency ωR1 = 4. The color-coded branches are the orbits (up to period-7) related to the subharmonic resonances of the order 1/p, where p equals the
period numbers P1, . . . , P7 of the orbits. The dimensionless equilibrium (fixed point) of the system without driving (PA1 = 0) is y1E = 1. The labels PD and SN are the
period-doubling and saddle-node bifurcation points, respectively.

an increment of 0.0004 bar. To reveal the co-existing attractors rel-
evant for the ADT technique, five randomized initial conditions
are used at every parameter value. The first 4096 iterations of the
Poincaré map are regarded as initial transient and discarded. One
iteration means the integration of the system by one cycle of the

external driving T1 (single-frequency driving). After the transient,
subsequent 64 points in the Poincaré section are recorded and
presented in Fig. 2.

Figure 2 shows a highly complex bifurcation structure, where
several periodic and chaotic domains exist. Many of these domains

FIG. 3. The subharmonic resonance structure of the system. The color code is the same as in Fig. 2. The solid and dashed lines are saddle-node SN and period-doubling
PD curves, respectively. With the Attractor Domain Targeting (ADT) technique, trajectories of the system can be guided between solutions lying on the thick vertical lines.
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overlap, exhibiting a high degree of multi-stability. This study
focuses on the subharmonic resonances of order (1/p), where
p = 2, . . . , 9 is the period number of the corresponding orbit. Up
to period 7, these structures are highlighted by the color-coded
branches in Fig. 2; their period numbers are denoted as P2, . . . , P7.
The coloring of the period-8 and period-9 attractors is omitted
for better visibility. The period-1 solutions (blue curve, P1) orig-
inating from the equilibrium state of the bubble y1E = 1 will be
referred to in the subsequent discussion. The period-2 bifurca-
tion curve (red) is born through a period-doubling PD point.
All the other subharmonic branches appear via a saddle-node
SN bifurcation. The right end of each colored branch is a PD
point.

The bifurcation points of both sides of the color-coded periodic
branches presented in Fig. 2 are tracked in the (PA1, ωR1) param-
eter plane. The results are shown in Fig. 3, where the color code
is the same as in Fig. 2. Keep in mind that it is still a single-
frequency driven case. The solid and dashed lines are saddle-node
SN and period-doubling PD bifurcation curves, respectively. Below
the dashed dark blue curve (see also the arrows with P1), period-
1 orbits exist. The area between the blue and red dashed curves is
the region of period-2 attractors. In the case of higher periods, the
domains of stable states are bounded by a solid and a dashed curve
with the same color. The arrows with the text mark the period num-
bers of the solutions. The bifurcation curves summarized in Fig. 3
are the subharmonic resonances of the system. Observe that the
period-8 and period-9 subharmonics are shown as thin black lines
(to avoid the overuse of different colors).

The periodic domains presented in Fig. 3 are not connected
in the sense that tuning merely the excitation amplitude PA1 and
the frequency ωR1, the system cannot be driven arbitrarily from one
domain to another. This is also shown in Fig. 2, where the majority
of the color-coded branches are not connected (except the red and
blue curves). Keep in mind that the different stable periodic domains
in the (PA1, ωR1) plane can represent different system performances;
see again Sec. I. Our technique—presented in Sec. IV in detail—is
capable of guiding a trajectory between orbits occurring at parame-
ter values corresponding to the thick vertical lines plotted in Fig. 3.
Once the trajectory is on a specific attractor in a specific domain
(e.g., on a period-6 solution between the yellow curves), it can be
steered within this domain easily by tuning the parameters of the
periodic driving. In this way, control of multi-stability can also be
achieved in the case of overlapping periodic domains.

IV. THE DUAL-FREQUENCY TARGETING TECHNIQUE

The basis of our Attractor Domain Targeting (ADT) technique
to “transform” the system between attractors of different periods
presented by the vertical lines in Fig. 3 is the temporary addition
of a second harmonic component to the driving. This introduces
an additional pair of control parameters: PA2 and ωR2. The fre-
quency ratio ωR1/ωR2 is fixed and must be equal to the ratio of the
periods (or period numbers) of the attractors being transformed.
For instance, for the transformation between the period-5 (P5) and
period-6 (P6) orbits, ωR1/ωR2 = 6/5. Throughout this study, ωR1

is always the higher relative frequency. Observe that the relative
frequency values and the corresponding period numbers of the vertical

lines in Fig. 3 coincide. Therefore, the relative frequency value of, e.g.,
ωR1 = 6, is strongly related to the period-6 orbits on the thick yellow
line. During the control process (tuning of the amplitudes PA1 and
PA2), there is a dual-frequency driving, whereas, at the initial and end
state, the system is driven by a single-frequency with distinct relative
frequency values of ωR1 or ωR2, respectively. There is another kind of
possible transformation: a direct route exists from a period-1 orbit
(located below the blue dashed curve in Fig. 3) to one of the verti-
cal lines if the relative frequency difference is ωR1 − ωR2 = 1 and if
ωR1,2 > 5.

A. Transformation between subharmonics

In order to reveal the transformation possibilities between the
subharmonic resonances (vertical lines in Fig. 3), high-resolution
bi-parametric plots are created with the pressure amplitudes PA1 and
PA2 as control parameters at several fixed relative frequency combi-
nations. According to Eq. (11) and the related discussion, the total
number of frequency combinations is 28. Figure 4 shows four exam-
ples, where the 3D representation of the second component of the
Poincaré section is plotted as a function of the control parameters.
The resolutions of PA1 and PA2 are 801 and 501, respectively. Their
ranges are adjusted according to the upper bound of the vertical lines
in Fig. 3. To find the co-existing attractors, ten randomized initial
conditions are applied.

The color-coded branches in Fig. 4 are periodic orbits using
the period of the single-frequency excitation T1 (if PA2 = 0) or T2

(if PA1 = 0) for defining a global Poincaré section. The projections
of these branches to their control parameter axes in Fig. 4 corre-
spond to the thick vertical lines in Fig. 3. The arrows mark the
period numbers of the solutions. The color-coding is the same as
in Figs. 2 and 3. The dark and light gray points in Fig. 4 are the
period-1 orbits using the period of the dual-frequency driving T for
defining a global Poincaré section. These solutions form surfaces
connecting the colored branches (Fig. 4) in the single-frequency
driven limit cases. Therefore, with the proper tuning of the pressure
amplitudes PA1 and PA2, the system can be smoothly transformed
through the gray surfaces between different periodic orbits of single-
frequency driving. It must be stressed that in these figures, three
different interpretations are employed for the periodicity according
to the definition of the Poincaré section; for the detailed discussion,
the reader is referred back to Sec. II C. It is worth noting that the
bifurcation structure of the dual-frequency driving is quite complex
(see, e.g., Figs. 2 and 3 in our previous study23); therefore, only the
period-1 orbits are presented in Fig. 4 to remain focused and avoid
overcrowded diagrams.

An example of the transformation between a period-4 and a
period-6 attractor is demonstrated via an animation that can be
found as multimedia. The last frame of the animation is presented
in Fig. 5 (Multimedia view). The 3D panel on the left-hand side
of the figure is the second component of the Poincaré section pre-
sented already in Fig. 4(c). Here, the red curve denotes the route of
the transformation. The top panel on the right-hand side shows the
dimensionless bubble wall velocity y2 as a function of the dimension-
less time τ . The light blue, yellow, and black curves are the initial
(period-4), the final (period-6), and the instantaneous solutions
during the transformation, respectively. Since Fig. 5 (Multimedia
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FIG. 4. Transformation surfaces between periodic orbits presented by the thick vertical lines in Fig. 3 via dual-frequency driving. The color-coded branches are periodic
orbits of single-frequency driving (sampled with T1 or T2), where the labels P3, . . . , P7 denote their period numbers. The dark and light gray points are period-1 attractors
of the dual-frequency driving (sampled with T). Subpanels (a), (b), (c), and (d) are related to the frequency combinations of (ωR1,ωR2) = (5, 3), (6, 3), (6, 4), and (7, 5),
respectively.

view) is the last frame of the animation, the yellow and black curves
coincide. The bottom panel on the right-hand side is the signal of
the external driving PA(τ ) (used here as a general notation for both
single- and dual-frequency driving). The thin curve is related to
the initial single-frequency driving (ωR2 = 4, period-4 orbit), while
the thick curve is the instantaneous driving signal of the dual-
frequency transformation that also ends in a single-frequency driven
case (ωR1 = 6, period-6 orbit). The values of the control parameters
of the external driving PA1, ωR1, PA2, and ωR2 are depicted as bold
texts in the top of the figure/animation. Note that only the pressure
amplitudes change during the process. They are updated at every
period of the dual-frequency driving T = 6. The rate of change of
the amplitudes has to be sufficiently small to remain within the basin
of attraction of the solutions.

Although only four examples are shown in Fig. 4, smooth
transformations are possible between any pair of periodic orbits.
Keep in mind that the frequency ratio must be equal to the ratio

of the periods (or period numbers) of the orbits being transformed.
For instance, in Fig. 4(a), the period numbers are 5 and 3, and the
relative frequencies are also ωR1 = 5 and ωR2 = 3, respectively. Note
that not all branches are connected in general. In Fig. 4(a), all the
green branches are connected to one of the purple branches, while
there are purple branches that are not connected to a green branch.
We call this phenomenon partial connectivity. In this sense, the
transformation from period-3 to period-5 orbits is “safe,” but the
transformation in the opposite direction is “non-safe” (it depends
on the initial branch defined by the relative phase in time of the
solution). Naturally, there are period-1 surfaces initiated from these
“orphan” branches; however, they are not presented here to avoid
overcrowding of the figures. As a final remark, the dual-frequency
diagrams can be regarded as connections between one-dimensional
bifurcation structures at different frequencies. Compare the two
vertical thin lines marked as axis1 and axis2 in Fig. 3 with the
dual-frequency case of Fig. 4(d).

Chaos 30, 073123 (2020); doi: 10.1063/5.0005424 30, 073123-6

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 5. The last frame of a transformation between a period-4 and a period-6 attractor via a temporary dual-frequency driving, see also Fig. 4(c). The red curves show the
route of the transformation. The top panel on the right-hand side represents the time series of the dimensionless bubble wall velocities y2, while the bottom panel on the
right-hand side shows the signal of the external driving PA(τ ). Multimedia view: https://doi.org/10.1063/5.0005424.1

B. Direct routes from period-1 orbits

Another possibility to reach one of the subharmonic periodic
domains (period-2 to period-9, vertical lines in Fig. 3) is the direct
route from period-1 orbits. These period-1 solutions exist below the
dashed dark blue codim-2 bifurcation curve shown in Fig. 3; see
also the dark blue solid line in Fig. 2. An example for the direct
route is presented in Fig. 6 produced in the same way as Fig. 4.
The notations, the color-coding, the considerations for the Poincaré
sections, and the periodicities are also the same. The employed fre-
quency combination is ωR1 = 6 and ωR2 = 5. Here, only a particular
period-1 surface (gray) is presented. Its origin is the equilibrium
solution y2E = 0 of the unexcited system; its single-frequency limit
cases are depicted by the period-1 (according to T1 or T2) blue lines.
Interestingly, the surface tears apart, creating a hole near the middle
and extending into an overlapping surface, where one of its sides
is connected to a period-5 branch and the other one is attached
to a period-6 branch. Panels (a) and (b) of Fig. 6 show the same
figure from different angles to visualize that the gray points form
a single, overlapping surface. This example demonstrates the exis-
tence of a direct connection between the period-1 orbits and the
subharmonics.

An example of a direct route transformation between a period-
1 and a period-6 attractor is demonstrated via an animation that
can be found as multimedia. The last frame of the animation is pre-
sented in Fig. 7 (Multimedia view). The structure of the figure is the
same as in the case of Fig. 5 (Multimedia view). The 3D panel on the

left-hand side is a copy of Fig. 6 in another perspective. The red curve
denotes the route of the transformation. Observe that initial and end
states of the transformation have the same (single frequency) param-
eter combination; thus, control of multi-stability is achieved in this
specific example. In the top panel on the right-hand side, the blue,
yellow, and black curves are the initial (period-1), final (period-6),
and instantaneous solutions during the transformation, respectively.
The yellow and black curves coincide since Fig. 7 (Multimedia view)
is the last frame of the animation. The bottom panel on the right-
hand side is the signal of the external driving PA(τ ). There is only
a single curve here as the initial and end states are related to the
same single-frequency driving (ωR1 = 6). The values of the control
parameters of the external driving PA1, ωR1, PA2, and ωR2 are depicted
as bold texts in the top of the figure/animation. Note again that only
the pressure amplitudes are changing during the steering process.
Similarly, as in the case of the previous animation, attention has to
be paid to the speed of change of the pressure amplitudes.

V. DISCUSSION

Table I summarizes the possible transformations between peri-
odic attractors of all frequency combinations up to relative frequen-
cies ωR1,2 = 9. The rows and the columns are related to the high
(ωR1) and low (ωR2) relative frequencies, respectively. Due to the
normalization via Eqs. (9) and (10), the values of ωR1 and ωR2 are
equal to the period numbers of the solutions being transformed.
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FIG. 6. Transformation between period-1 orbits and periodic attractors of the subharmonics. The color-coded branches are periodic orbits of single-frequency driving (sampled
with T1 or T2), where P5 and P6 denote their period numbers. The gray points are period-1 attractors of the dual-frequency driving (sampled with T). Panels (a) and (b) show
the same figure but from a different perspective to properly visualize the gray surface.

The upper half (due to the symmetry property) and the diagonal
(ordinary single-frequency driving) of the table are excluded. The
two numbers in each item of the table define the connectivity num-
bers (c1, c2). The first number c1 describes how many branches are
connected from the attractor with the high period number (high
frequency, ωR1) to at least one branch of the solution with the low
period number (low frequency, ωR2). Since the relative frequencies
are equal to the period numbers (also the number of the branches) of
the solutions being transformed—see the period numbers of the ver-
tical lines in Fig. 3 and their respective relative frequency values—the
transformation from ωR1 to ωR2 is “safe” only when c1 = ωR1. This
condition is fulfilled only in one case discussed below in detail. The
second number, c2, describes connectivity in the opposite direction.
Because c2 = ωR2 in every entry of Table I, the transformation from
a low to a high frequency is always “safe.” That is, all the branches
on the ωR2 side are connected to at least one branch on the ωR1 side.
The label E denotes the transformation possibility directly from the
period-1 attractor.

For the majority of the entries in Table I, without underlining,
the two connectivity numbers are equal. From these, the bold-faced
entries are the cases shown in Sec. IV in Figs. 4 and 6. Note how the
numbers in the table agree with the number of gray surfaces in these
figures. As stated before, these cases have partial connectivity; that is,
the transformation is “safe” only in one direction (since c1 6= ωR1).
The entries with underlining show frequency pairs having differ-
ent connectivity numbers (c1 6= c2). Among them, there is only one
frequency combination having full connectivity: (ωR1, ωR2) = (4, 3)
= (c1, c2); see the sole bold-faced entry with underlining in Table I.
In this case, all the four branches of the period-4 orbits are connected
to one of the branches of the period-3 solutions. This also means that
there must be a branch of the period-3 orbits, which is connected
to at least two branches of the period-4 attractors. This example is
demonstrated in Fig. 8(a). It can be seen that there is a surface that
is torn apart and connects two branches from the period-4 orbits

to a single branch in its period-3 side. This special surface is also
shown in panel (b) from a different perspective for a better view. The
other examples in Table I with underlining (but without bold-faced
highlighting) have such a property that a single branch on one side
is connected to multiple branches on the other side, e.g., frequency
combinations (ωR1, ωR2) = (5, 2) or (ωR1, ωR2) = (8, 5). However, in
these cases, the values of the frequency pairs are not equal to the val-
ues of the connectivity numbers (ωR1, ωR2) 6= (c1, c2), which means
partial connectivity.

In summary, from Table I, one can conclude that the trans-
formation of the trajectories from low to high periodicity is always
“safe.” That is, regardless of the initial branch on the low period
solutions, there always exists a surface that ends on the high period
orbits. Observe that the second numbers in the table are always equal
to the number in the first row (header line) of the same column. The
transformation from high to low periodicity is safe only in the case of
the relative frequency combination ωR1 = 4 and ωR2 = 3. Therefore,
if one intends to drive the trajectory from a high period solution to a
lower one, the pressure amplitude must be tuned down first to reach
the period-1 orbit (see, e.g., Fig. 2), the relative frequency must be
adjusted to ωR = 2, and the pressure amplitude must be tuned up
again to be on the period-2 bifurcation branch presented by the red
vertical line in Fig. 3. From here, the transformation to high peri-
odicities can be initiated that is always safe. Another option is to
adjust the system to a period-1 orbit and use one of the direct routes
(marked by E in Table I) to reach an orbit with periodicity higher
than period 5.

An alternative approach to the presented Attractor Domain
Targeting (ADT) method to drive the system to a desired periodic
orbit is to set up a proper pair of the pressure amplitude, PA1, and
the relative frequency, ωR1, according to Fig. 3. Next, if the system is
on an attractor different from the desired one, existing methods24 for
control of multi-stability can be applied. In order to guarantee that
the trajectory shall settle down to the desired orbit, the application
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FIG. 7. The last frame of a transformation (a direct route) between a period-1 and a period-6 attractor via a temporary dual-frequency driving (see also Fig. 6). The red curve
shows the route of the transformation. The top panel on the right-hand side represents the time series of the dimensionless bubble wall velocities y2, while the bottom panel
on the right-hand side shows the signal of the external driving PA(τ ). Multimedia view: https://doi.org/10.1063/5.0005424.2

of feedback control37–50 is mandatory. However, there are systems
where the application of a feedback control is not possible (as in
the case of acoustic bubble models30,51–61) due to the required con-
tinuous sampling of the solution in the state space or even the
Jacobian of the system. The ADT technique is a non-feedback
method25,62–81 in the sense that no detailed knowledge on the current

TABLE I. Summary of the connectivity numbers c1 and c2 of the different periodic

attractors as a function of the relative frequency combinations. The bold-faced entries

without underlining are the cases presented in Sec. IV in Figs. 4 and 6. The bold--

faced entry with underlining is the sole case with full connectivity shown in Fig. 8. In

general, in the case of entries with underlining, the connectivity numbers are not equal

(c1 6= c2).

ωR2

2 3 4 5 6 7 8

ωR1 2 . . . . . . . . . . . . . . . . . . . . .
3 2, 2 . . . . . . . . . . . . . . . . . .
4 2, 2 4, 3 . . . . . . . . . . . . . . .
5 3, 2 3, 3 4, 4 . . . . . . . . . . . .
6 2, 2 3, 3 4, 4 5, 5, E . . . . . . . . .
7 3, 2 4, 3 4, 4 5, 5 6, 6, E . . . . . .
8 2, 2 4, 3 4, 4 6, 5 6, 6 7, 7, E . . .
9 4, 2 3, 3 5, 4 6, 5 6, 6 7, 7 8, 8, E

state (and the Jacobian) of the system is required during the transfor-
mation. That is, direct attractor selection/targeting is possible—via
the transformation surfaces summarized in Table I—without the
application of a feedback. This is the main advantage of the ADT
method: it enables attractor selection without sampling of the trajec-
tory (or the Jacobian) of the solution and without the application of
feedback.

The disadvantage of the ADT technique—being a feedforward
control method—is that knowledge about the details of the bifurca-
tion structure of the system is required. Otherwise, the proper route
of the transformation of the periodic orbits with the temporary dual-
frequency driving is not known. The “remedy” for this problem can
be the application of an intermediate control quantity, for instance,
the spectra of the emitted pressure in the case of bubbles.82,83 The
peaks at the subharmonics in the spectra might help to properly
tune the driving amplitudes during a transformation. Moreover,
if the basin of attraction of the targeted orbit is small, the tun-
ing of the pressure amplitudes PA1 and PA2 must be sufficiently
slow. However, the discussion of this issue is beyond the scope of
the present study. For a more detailed comparison of the advan-
tages/disadvantages of the proposed ADT technique with methods
of control of multi-stability, the interested reader is referred to our
previous work.23

As the ADT method is demonstrated only for a specific sys-
tem (the Keller–Miksis equation), it is important to generalize
the technique to other oscillators/models in the future. As a first
step, examining other oscillators such as the Duffing,84–90 Toda,91–94
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FIG. 8. Example of a frequency combination having branches with full connectivity. Panel (b) shows the middle surface presented in panel (a) from a different perspective
for better visibility.

Morse,95,96 or van der Pol97 equations will be an important step
toward the generalization. Furthermore, testing the ADT technique
on a large number of diffusively98–102 or globally103–107 coupled iden-
tical systems can have great significance as they can exhibit extreme
multi-stability108 (the presence of infinitely many co-existing stable
states), and they have practical relevance in many scientific areas.
For instance, with the proposed method, it might be possible that
in a diffusively coupled model, the rhythmicity can be restored.109

In acoustic cavitation and sonochemistry,110–112 the investigation
of a bubble cluster113–116 (an ensemble of single bubbles coupled
globally) can provide valuable information on how to drive the
system into a chemically highly active state. As a final example,
by driving an ultrasound contrast agent into higher-order sub-
harmonics, the resolution of ultrasound imaging can potentially
be increased improving the existing techniques in diagnostic
ultrasound.117,118

Finally, it is worth highlighting that any application inherently
using dual-frequency excitation for purposes other than controlling
multi-stability and attractor targeting can still benefit (at least indi-
rectly) from the detailed numerical results presented in this study.
Without giving an exhaustive list, some of these applications are
dual-frequency driven sonochemistry,110,119–122 stability analysis of
traveling beams,123,124 or laser-driven dissociation of molecules.125

VI. SUMMARY

A feedforward technique is presented that is capable of driv-
ing a periodically driven non-linear system between periodic orbits
of subharmonic resonances: the Attractor Domain Targeting tech-
nique. This approach is demonstrated with the Keller–Miksis
equation describing the evolution of the radial dynamics of a spheri-
cal gas bubble placed in an infinite domain of liquid. The basis of the
method is the temporary addition of a second harmonic component
to the driving. Results have shown that with the proper selection
of the frequency pair and with the proper tuning of the ampli-
tudes of the dual-frequency driving, continuous transformations

exist between any pair of periodic orbits of subharmonic resonances.
The technique was numerically tested on attractors with periods up
to period 9. The frequency ratio must be equal to the ratio of the
periods of the periodic orbits being transformed. As special cases,
transformations have been found between period-1 orbits (origi-
nating from the equilibrium state of the system in the absence of
external forcing) and attractors having a period higher than or equal
to 5; see the items marked by E in Table I.
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APPENDIX: THE DIMENSIONLESS FORM OF THE

KELLER–MIKSIS EQUATION

The Keller–Miksis equation, Eqs. (1)–(4), can be rewritten in a
dimensionless form as follows:

ẏ1 = y2, (A1)

ẏ2 =
NKM

DKM
, (A2)
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where the numerator, NKM, and the denominator, DKM, are

NKM =
(

C0 + C1y2

)

(

1

y1

)C10

− C2

(

1 + C9y2

)

− C3
1

y1
− C4

y2

y1

−
(

1 − C9
y2

3

) 3

2
y2

2 − (C5 sin(2πτ)

+ C6 sin(2πC11τ + C12))
(

1 + C9y2

)

− y1 (C7 cos(2πτ) + C8 cos(2πC11τ + C12)) (A3)

and

DKM = y1 − C9y1y2 + C4C9, (A4)

respectively.
The coefficients of the system are summarized as follows:

C0 =
1

ρL

(

P∞ − pV +
2σ

RE

) (

2π

REω1

)2

, (A5)

C1 =
1 − 3γ

ρLcL

(

P∞ − pV +
2σ

RE

)

2π

REω1
, (A6)

C2 =
P∞ − pV

ρL

(

2π

REω1

)2

, (A7)

C3 =
2σ

ρLRE

(

2π

REω1

)2

, (A8)

C4 =
4µL

ρLR2
E

2π

ω1
, (A9)

C5 =
PA1

ρL

(

2π

REω1

)2

, (A10)

C6 =
PA2

ρL

(

2π

REω1

)2

, (A11)

C7 = RE

ω1PA1

ρLcL

(

2π

REω1

)2

, (A12)

C8 = RE

ω1PA2

ρLcL

(

2π

REω1

)2

, (A13)

C9 =
REω1

2πcL

, (A14)

C10 = 3γ , (A15)

C11 =
ω2

ω1
, (A16)

C12 = θ . (A17)
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