
Reducing Lattice Enumeration Search Trees

DECEMBER 2019 • VOLUME XI • NUMBER 48

INFOCOMMUNICATIONS JOURNAL

 In the 90’s Schnorr, Euchner and Hörner introduced the
pruning technique, by which these algorithms obtained

Reducing Lattice Enumeration Search Trees
Mithilesh Kumar, Håvard Raddum, and Srimathi Varadharajan

DOI: 10.36244/ICJ.2019.4.2

1

Reducing Lattice Enumeration Search Trees
Mithilesh Kumar, Håvard Raddum, Srimathi Varadharajan

Abstract—We revisit the standard enumeration algorithm for
finding the shortest vectors in a lattice, and study how the number
of nodes in the associated search tree can be reduced. Two
approaches for reducing the number of nodes are suggested. First
we show that different permutations of the basis vectors have a
big effect on the running time of standard enumeration, and
give a class of permutations that give relatively few nodes in the
search tree. This leads to an algorithm called hybrid enumeration
that has a better running time than standard enumeration when
the lattice is large. Next we show that it is possible to estimate
the signs of the coefficients yielding a shortest vector, and that a
pruning strategy can be based on this fact. Sign-based pruning
gives fewer nodes in the search tree, and never missed the shortest
vector in the experiments we did.

Index Terms—Lattices, SVP problem, enumeration, pruning

I. INTRODUCTION

A lattice in Rn is the set of all integer combinations of m
linearly independent vectors b1, b2, ..., bm in Rn. In this work
we assume m = n, but all results can easily be generalized.
One of the most basic computational problems concerning
lattices is the shortest vector problem (SVP): given a lattice
basis as an input the task is to find a nonzero lattice vector of
smallest norm.

It is known that SVP is NP-hard under randomized reduc-
tions [1]. With the current interest in post-quantum cryptog-
raphy, lattice based cryptographic primitives are among the
most promising candidates for achieving secure and efficient
quantum safe crypto.

There are two main algorithmic techniques for the lattice
problems. The first technique is called lattice reduction, and
the best known algorithms are the famous LLL algorithm [2]
and BKZ algorithm [3]. Both of these algorithms work by
applying successive transformations to the input basis in an
attempt to make the basis vectors short and as orthogonal as
possible. A second and more basic approach, which is the fo-
cus of our work, is the enumeration technique which is simply
an exhaustive search for finding the integer combinations of
basis vectors whose norm is small enough.

The search can be seen as a depth-first search tree where
internal nodes correspond to the partial assignments of the
integer coefficients and the leaves correspond to the lattice
points.

Previous results: In the 1980’s Fincke, Pohst and Kan-
nan studied how to improve the complexity of the standard
algorithm for solving SVP at the time [4], [5], [6]. These
algorithms are deterministic and based on exhaustive search
of lattice points within a small convex set. In general, the
running time of an enumeration algorithm heavily depends
on the quality of the input basis. So, suitably pre-processing

All authors are with Simula UiB, Bergen, Norway

the input lattice using a basis reduction algorithm is essential
before starting a lattice enumeration method.

Recently there have been other approaches using sieving
and discrete pruning techniques, see [7], [8], [9], [10]. For a
survey paper on lattice reduction algorithms, see [11].

In the 90’s Schnorr, Euchner and Horner introduced the
pruning technique, by which these algorithms obtained a
substantial speedups [12], [13]. The rough idea is to prune
away sub-trees where the probability of finding the desired
lattice vector is small. This restricts the exhaustive search to a
subset of all solutions. Although there is a chance of missing
the desired vector, the probability of this is small compared
to the gain in running time.

The pruning strategy was later studied more rigorously by
Gama, Nguyen and Regev in [14] in 2010, introducing what
they called extreme pruning. Very large parts of the search tree
is cut away with extreme pruning. This makes the search very
fast, but the probability of finding the shortest vector on a given
run is very small. However, the authors show that the search
tree is reduced more than the probability of finding the shortest
vector, so one obtains a speed-up by just permuting the basis
and repeating the process a number of times. The algorithm
using extreme pruning is the fastest known, and today’s state
of the art when it comes to enumeration.

Our contribution: In this paper we propose two new ideas,
and show their benefit in speeding up lattice enumeration.
First, we propose a new enumeration algorithm called the
hybrid enumeration for computing intervals for the coefficients
vi. Second, we provide an algorithm for estimating the signs
(+ or -) of the coefficients v1, v2, ..., vn in the lattice basis∑n

i=1 vibi. Both these algorithms aims at reducing the size of
search tree, thereby providing faster enumeration to find the
shortest vector.

One disadvantage with the standard enumeration technique
is that the algorithm depends on the computed Gram-Schmidt
(GS) orthogonal basis for computing the intervals where the
vi-coefficients can be found. Once the GS orthogonal basis is
computed, it fixes the order of the coefficients to be guessed.

In our paper, the hybrid enumeration takes a new approach
by computing the intervals in a way that does not depend
on GS orthogonalization. This means the basis vectors are not
bound by any particular order and we are free to choose which
of the untried coefficients vi to guess on at any given point
in the search tree. We show that dynamically changing the
order of the guessed vi’s significantly lowers the number of
nodes in the search tree compared to the standard enumeration
algorithm.

The price to pay for this flexibility is increased work at
each node of the search tree. Hence the actual time taken to
enumerate a lattice using the new method may be longer than
the time taken by the standard GS enumeration. Therefore we

1

Reducing Lattice Enumeration Search Trees
Mithilesh Kumar, Håvard Raddum, Srimathi Varadharajan

Abstract—We revisit the standard enumeration algorithm for
finding the shortest vectors in a lattice, and study how the number
of nodes in the associated search tree can be reduced. Two
approaches for reducing the number of nodes are suggested. First
we show that different permutations of the basis vectors have a
big effect on the running time of standard enumeration, and
give a class of permutations that give relatively few nodes in the
search tree. This leads to an algorithm called hybrid enumeration
that has a better running time than standard enumeration when
the lattice is large. Next we show that it is possible to estimate
the signs of the coefficients yielding a shortest vector, and that a
pruning strategy can be based on this fact. Sign-based pruning
gives fewer nodes in the search tree, and never missed the shortest
vector in the experiments we did.

Index Terms—Lattices, SVP problem, enumeration, pruning

I. INTRODUCTION

A lattice in Rn is the set of all integer combinations of m
linearly independent vectors b1, b2, ..., bm in Rn. In this work
we assume m = n, but all results can easily be generalized.
One of the most basic computational problems concerning
lattices is the shortest vector problem (SVP): given a lattice
basis as an input the task is to find a nonzero lattice vector of
smallest norm.

It is known that SVP is NP-hard under randomized reduc-
tions [1]. With the current interest in post-quantum cryptog-
raphy, lattice based cryptographic primitives are among the
most promising candidates for achieving secure and efficient
quantum safe crypto.

There are two main algorithmic techniques for the lattice
problems. The first technique is called lattice reduction, and
the best known algorithms are the famous LLL algorithm [2]
and BKZ algorithm [3]. Both of these algorithms work by
applying successive transformations to the input basis in an
attempt to make the basis vectors short and as orthogonal as
possible. A second and more basic approach, which is the fo-
cus of our work, is the enumeration technique which is simply
an exhaustive search for finding the integer combinations of
basis vectors whose norm is small enough.

The search can be seen as a depth-first search tree where
internal nodes correspond to the partial assignments of the
integer coefficients and the leaves correspond to the lattice
points.

Previous results: In the 1980’s Fincke, Pohst and Kan-
nan studied how to improve the complexity of the standard
algorithm for solving SVP at the time [4], [5], [6]. These
algorithms are deterministic and based on exhaustive search
of lattice points within a small convex set. In general, the
running time of an enumeration algorithm heavily depends
on the quality of the input basis. So, suitably pre-processing

All authors are with Simula UiB, Bergen, Norway

the input lattice using a basis reduction algorithm is essential
before starting a lattice enumeration method.

Recently there have been other approaches using sieving
and discrete pruning techniques, see [7], [8], [9], [10]. For a
survey paper on lattice reduction algorithms, see [11].

In the 90’s Schnorr, Euchner and Horner introduced the
pruning technique, by which these algorithms obtained a
substantial speedups [12], [13]. The rough idea is to prune
away sub-trees where the probability of finding the desired
lattice vector is small. This restricts the exhaustive search to a
subset of all solutions. Although there is a chance of missing
the desired vector, the probability of this is small compared
to the gain in running time.

The pruning strategy was later studied more rigorously by
Gama, Nguyen and Regev in [14] in 2010, introducing what
they called extreme pruning. Very large parts of the search tree
is cut away with extreme pruning. This makes the search very
fast, but the probability of finding the shortest vector on a given
run is very small. However, the authors show that the search
tree is reduced more than the probability of finding the shortest
vector, so one obtains a speed-up by just permuting the basis
and repeating the process a number of times. The algorithm
using extreme pruning is the fastest known, and today’s state
of the art when it comes to enumeration.

Our contribution: In this paper we propose two new ideas,
and show their benefit in speeding up lattice enumeration.
First, we propose a new enumeration algorithm called the
hybrid enumeration for computing intervals for the coefficients
vi. Second, we provide an algorithm for estimating the signs
(+ or -) of the coefficients v1, v2, ..., vn in the lattice basis∑n

i=1 vibi. Both these algorithms aims at reducing the size of
search tree, thereby providing faster enumeration to find the
shortest vector.

One disadvantage with the standard enumeration technique
is that the algorithm depends on the computed Gram-Schmidt
(GS) orthogonal basis for computing the intervals where the
vi-coefficients can be found. Once the GS orthogonal basis is
computed, it fixes the order of the coefficients to be guessed.

In our paper, the hybrid enumeration takes a new approach
by computing the intervals in a way that does not depend
on GS orthogonalization. This means the basis vectors are not
bound by any particular order and we are free to choose which
of the untried coefficients vi to guess on at any given point
in the search tree. We show that dynamically changing the
order of the guessed vi’s significantly lowers the number of
nodes in the search tree compared to the standard enumeration
algorithm.

The price to pay for this flexibility is increased work at
each node of the search tree. Hence the actual time taken to
enumerate a lattice using the new method may be longer than
the time taken by the standard GS enumeration. Therefore we

1

Reducing Lattice Enumeration Search Trees
Mithilesh Kumar, Håvard Raddum, Srimathi Varadharajan

Abstract—We revisit the standard enumeration algorithm for
finding the shortest vectors in a lattice, and study how the number
of nodes in the associated search tree can be reduced. Two
approaches for reducing the number of nodes are suggested. First
we show that different permutations of the basis vectors have a
big effect on the running time of standard enumeration, and
give a class of permutations that give relatively few nodes in the
search tree. This leads to an algorithm called hybrid enumeration
that has a better running time than standard enumeration when
the lattice is large. Next we show that it is possible to estimate
the signs of the coefficients yielding a shortest vector, and that a
pruning strategy can be based on this fact. Sign-based pruning
gives fewer nodes in the search tree, and never missed the shortest
vector in the experiments we did.

Index Terms—Lattices, SVP problem, enumeration, pruning

I. INTRODUCTION

A lattice in Rn is the set of all integer combinations of m
linearly independent vectors b1, b2, ..., bm in Rn. In this work
we assume m = n, but all results can easily be generalized.
One of the most basic computational problems concerning
lattices is the shortest vector problem (SVP): given a lattice
basis as an input the task is to find a nonzero lattice vector of
smallest norm.

It is known that SVP is NP-hard under randomized reduc-
tions [1]. With the current interest in post-quantum cryptog-
raphy, lattice based cryptographic primitives are among the
most promising candidates for achieving secure and efficient
quantum safe crypto.

There are two main algorithmic techniques for the lattice
problems. The first technique is called lattice reduction, and
the best known algorithms are the famous LLL algorithm [2]
and BKZ algorithm [3]. Both of these algorithms work by
applying successive transformations to the input basis in an
attempt to make the basis vectors short and as orthogonal as
possible. A second and more basic approach, which is the fo-
cus of our work, is the enumeration technique which is simply
an exhaustive search for finding the integer combinations of
basis vectors whose norm is small enough.

The search can be seen as a depth-first search tree where
internal nodes correspond to the partial assignments of the
integer coefficients and the leaves correspond to the lattice
points.

Previous results: In the 1980’s Fincke, Pohst and Kan-
nan studied how to improve the complexity of the standard
algorithm for solving SVP at the time [4], [5], [6]. These
algorithms are deterministic and based on exhaustive search
of lattice points within a small convex set. In general, the
running time of an enumeration algorithm heavily depends
on the quality of the input basis. So, suitably pre-processing

All authors are with Simula UiB, Bergen, Norway

the input lattice using a basis reduction algorithm is essential
before starting a lattice enumeration method.

Recently there have been other approaches using sieving
and discrete pruning techniques, see [7], [8], [9], [10]. For a
survey paper on lattice reduction algorithms, see [11].

In the 90’s Schnorr, Euchner and Horner introduced the
pruning technique, by which these algorithms obtained a
substantial speedups [12], [13]. The rough idea is to prune
away sub-trees where the probability of finding the desired
lattice vector is small. This restricts the exhaustive search to a
subset of all solutions. Although there is a chance of missing
the desired vector, the probability of this is small compared
to the gain in running time.

The pruning strategy was later studied more rigorously by
Gama, Nguyen and Regev in [14] in 2010, introducing what
they called extreme pruning. Very large parts of the search tree
is cut away with extreme pruning. This makes the search very
fast, but the probability of finding the shortest vector on a given
run is very small. However, the authors show that the search
tree is reduced more than the probability of finding the shortest
vector, so one obtains a speed-up by just permuting the basis
and repeating the process a number of times. The algorithm
using extreme pruning is the fastest known, and today’s state
of the art when it comes to enumeration.

Our contribution: In this paper we propose two new ideas,
and show their benefit in speeding up lattice enumeration.
First, we propose a new enumeration algorithm called the
hybrid enumeration for computing intervals for the coefficients
vi. Second, we provide an algorithm for estimating the signs
(+ or -) of the coefficients v1, v2, ..., vn in the lattice basis∑n

i=1 vibi. Both these algorithms aims at reducing the size of
search tree, thereby providing faster enumeration to find the
shortest vector.

One disadvantage with the standard enumeration technique
is that the algorithm depends on the computed Gram-Schmidt
(GS) orthogonal basis for computing the intervals where the
vi-coefficients can be found. Once the GS orthogonal basis is
computed, it fixes the order of the coefficients to be guessed.

In our paper, the hybrid enumeration takes a new approach
by computing the intervals in a way that does not depend
on GS orthogonalization. This means the basis vectors are not
bound by any particular order and we are free to choose which
of the untried coefficients vi to guess on at any given point
in the search tree. We show that dynamically changing the
order of the guessed vi’s significantly lowers the number of
nodes in the search tree compared to the standard enumeration
algorithm.

The price to pay for this flexibility is increased work at
each node of the search tree. Hence the actual time taken to
enumerate a lattice using the new method may be longer than
the time taken by the standard GS enumeration. Therefore we

First, we propose a new enumeration algorithm called

1

Reducing Lattice Enumeration Search Trees
Mithilesh Kumar, Håvard Raddum, Srimathi Varadharajan

Abstract—We revisit the standard enumeration algorithm for
finding the shortest vectors in a lattice, and study how the number
of nodes in the associated search tree can be reduced. Two
approaches for reducing the number of nodes are suggested. First
we show that different permutations of the basis vectors have a
big effect on the running time of standard enumeration, and
give a class of permutations that give relatively few nodes in the
search tree. This leads to an algorithm called hybrid enumeration
that has a better running time than standard enumeration when
the lattice is large. Next we show that it is possible to estimate
the signs of the coefficients yielding a shortest vector, and that a
pruning strategy can be based on this fact. Sign-based pruning
gives fewer nodes in the search tree, and never missed the shortest
vector in the experiments we did.

Index Terms—Lattices, SVP problem, enumeration, pruning

I. INTRODUCTION

A lattice in Rn is the set of all integer combinations of m
linearly independent vectors b1, b2, ..., bm in Rn. In this work
we assume m = n, but all results can easily be generalized.
One of the most basic computational problems concerning
lattices is the shortest vector problem (SVP): given a lattice
basis as an input the task is to find a nonzero lattice vector of
smallest norm.

It is known that SVP is NP-hard under randomized reduc-
tions [1]. With the current interest in post-quantum cryptog-
raphy, lattice based cryptographic primitives are among the
most promising candidates for achieving secure and efficient
quantum safe crypto.

There are two main algorithmic techniques for the lattice
problems. The first technique is called lattice reduction, and
the best known algorithms are the famous LLL algorithm [2]
and BKZ algorithm [3]. Both of these algorithms work by
applying successive transformations to the input basis in an
attempt to make the basis vectors short and as orthogonal as
possible. A second and more basic approach, which is the fo-
cus of our work, is the enumeration technique which is simply
an exhaustive search for finding the integer combinations of
basis vectors whose norm is small enough.

The search can be seen as a depth-first search tree where
internal nodes correspond to the partial assignments of the
integer coefficients and the leaves correspond to the lattice
points.

Previous results: In the 1980’s Fincke, Pohst and Kan-
nan studied how to improve the complexity of the standard
algorithm for solving SVP at the time [4], [5], [6]. These
algorithms are deterministic and based on exhaustive search
of lattice points within a small convex set. In general, the
running time of an enumeration algorithm heavily depends
on the quality of the input basis. So, suitably pre-processing

All authors are with Simula UiB, Bergen, Norway

the input lattice using a basis reduction algorithm is essential
before starting a lattice enumeration method.

Recently there have been other approaches using sieving
and discrete pruning techniques, see [7], [8], [9], [10]. For a
survey paper on lattice reduction algorithms, see [11].

In the 90’s Schnorr, Euchner and Horner introduced the
pruning technique, by which these algorithms obtained a
substantial speedups [12], [13]. The rough idea is to prune
away sub-trees where the probability of finding the desired
lattice vector is small. This restricts the exhaustive search to a
subset of all solutions. Although there is a chance of missing
the desired vector, the probability of this is small compared
to the gain in running time.

The pruning strategy was later studied more rigorously by
Gama, Nguyen and Regev in [14] in 2010, introducing what
they called extreme pruning. Very large parts of the search tree
is cut away with extreme pruning. This makes the search very
fast, but the probability of finding the shortest vector on a given
run is very small. However, the authors show that the search
tree is reduced more than the probability of finding the shortest
vector, so one obtains a speed-up by just permuting the basis
and repeating the process a number of times. The algorithm
using extreme pruning is the fastest known, and today’s state
of the art when it comes to enumeration.

Our contribution: In this paper we propose two new ideas,
and show their benefit in speeding up lattice enumeration.
First, we propose a new enumeration algorithm called the
hybrid enumeration for computing intervals for the coefficients
vi. Second, we provide an algorithm for estimating the signs
(+ or -) of the coefficients v1, v2, ..., vn in the lattice basis∑n

i=1 vibi. Both these algorithms aims at reducing the size of
search tree, thereby providing faster enumeration to find the
shortest vector.

One disadvantage with the standard enumeration technique
is that the algorithm depends on the computed Gram-Schmidt
(GS) orthogonal basis for computing the intervals where the
vi-coefficients can be found. Once the GS orthogonal basis is
computed, it fixes the order of the coefficients to be guessed.

In our paper, the hybrid enumeration takes a new approach
by computing the intervals in a way that does not depend
on GS orthogonalization. This means the basis vectors are not
bound by any particular order and we are free to choose which
of the untried coefficients vi to guess on at any given point
in the search tree. We show that dynamically changing the
order of the guessed vi’s significantly lowers the number of
nodes in the search tree compared to the standard enumeration
algorithm.

The price to pay for this flexibility is increased work at
each node of the search tree. Hence the actual time taken to
enumerate a lattice using the new method may be longer than
the time taken by the standard GS enumeration. Therefore we

1

Reducing Lattice Enumeration Search Trees
Mithilesh Kumar, Håvard Raddum, Srimathi Varadharajan

Abstract—We revisit the standard enumeration algorithm for
finding the shortest vectors in a lattice, and study how the number
of nodes in the associated search tree can be reduced. Two
approaches for reducing the number of nodes are suggested. First
we show that different permutations of the basis vectors have a
big effect on the running time of standard enumeration, and
give a class of permutations that give relatively few nodes in the
search tree. This leads to an algorithm called hybrid enumeration
that has a better running time than standard enumeration when
the lattice is large. Next we show that it is possible to estimate
the signs of the coefficients yielding a shortest vector, and that a
pruning strategy can be based on this fact. Sign-based pruning
gives fewer nodes in the search tree, and never missed the shortest
vector in the experiments we did.

Index Terms—Lattices, SVP problem, enumeration, pruning

I. INTRODUCTION

A lattice in Rn is the set of all integer combinations of m
linearly independent vectors b1, b2, ..., bm in Rn. In this work
we assume m = n, but all results can easily be generalized.
One of the most basic computational problems concerning
lattices is the shortest vector problem (SVP): given a lattice
basis as an input the task is to find a nonzero lattice vector of
smallest norm.

It is known that SVP is NP-hard under randomized reduc-
tions [1]. With the current interest in post-quantum cryptog-
raphy, lattice based cryptographic primitives are among the
most promising candidates for achieving secure and efficient
quantum safe crypto.

There are two main algorithmic techniques for the lattice
problems. The first technique is called lattice reduction, and
the best known algorithms are the famous LLL algorithm [2]
and BKZ algorithm [3]. Both of these algorithms work by
applying successive transformations to the input basis in an
attempt to make the basis vectors short and as orthogonal as
possible. A second and more basic approach, which is the fo-
cus of our work, is the enumeration technique which is simply
an exhaustive search for finding the integer combinations of
basis vectors whose norm is small enough.

The search can be seen as a depth-first search tree where
internal nodes correspond to the partial assignments of the
integer coefficients and the leaves correspond to the lattice
points.

Previous results: In the 1980’s Fincke, Pohst and Kan-
nan studied how to improve the complexity of the standard
algorithm for solving SVP at the time [4], [5], [6]. These
algorithms are deterministic and based on exhaustive search
of lattice points within a small convex set. In general, the
running time of an enumeration algorithm heavily depends
on the quality of the input basis. So, suitably pre-processing

All authors are with Simula UiB, Bergen, Norway

the input lattice using a basis reduction algorithm is essential
before starting a lattice enumeration method.

Recently there have been other approaches using sieving
and discrete pruning techniques, see [7], [8], [9], [10]. For a
survey paper on lattice reduction algorithms, see [11].

In the 90’s Schnorr, Euchner and Horner introduced the
pruning technique, by which these algorithms obtained a
substantial speedups [12], [13]. The rough idea is to prune
away sub-trees where the probability of finding the desired
lattice vector is small. This restricts the exhaustive search to a
subset of all solutions. Although there is a chance of missing
the desired vector, the probability of this is small compared
to the gain in running time.

The pruning strategy was later studied more rigorously by
Gama, Nguyen and Regev in [14] in 2010, introducing what
they called extreme pruning. Very large parts of the search tree
is cut away with extreme pruning. This makes the search very
fast, but the probability of finding the shortest vector on a given
run is very small. However, the authors show that the search
tree is reduced more than the probability of finding the shortest
vector, so one obtains a speed-up by just permuting the basis
and repeating the process a number of times. The algorithm
using extreme pruning is the fastest known, and today’s state
of the art when it comes to enumeration.

Our contribution: In this paper we propose two new ideas,
and show their benefit in speeding up lattice enumeration.
First, we propose a new enumeration algorithm called the
hybrid enumeration for computing intervals for the coefficients
vi. Second, we provide an algorithm for estimating the signs
(+ or -) of the coefficients v1, v2, ..., vn in the lattice basis∑n

i=1 vibi. Both these algorithms aims at reducing the size of
search tree, thereby providing faster enumeration to find the
shortest vector.

One disadvantage with the standard enumeration technique
is that the algorithm depends on the computed Gram-Schmidt
(GS) orthogonal basis for computing the intervals where the
vi-coefficients can be found. Once the GS orthogonal basis is
computed, it fixes the order of the coefficients to be guessed.

In our paper, the hybrid enumeration takes a new approach
by computing the intervals in a way that does not depend
on GS orthogonalization. This means the basis vectors are not
bound by any particular order and we are free to choose which
of the untried coefficients vi to guess on at any given point
in the search tree. We show that dynamically changing the
order of the guessed vi’s significantly lowers the number of
nodes in the search tree compared to the standard enumeration
algorithm.

The price to pay for this flexibility is increased work at
each node of the search tree. Hence the actual time taken to
enumerate a lattice using the new method may be longer than
the time taken by the standard GS enumeration. Therefore we

1

Reducing Lattice Enumeration Search Trees
Mithilesh Kumar, Håvard Raddum, Srimathi Varadharajan

Abstract—We revisit the standard enumeration algorithm for
finding the shortest vectors in a lattice, and study how the number
of nodes in the associated search tree can be reduced. Two
approaches for reducing the number of nodes are suggested. First
we show that different permutations of the basis vectors have a
big effect on the running time of standard enumeration, and
give a class of permutations that give relatively few nodes in the
search tree. This leads to an algorithm called hybrid enumeration
that has a better running time than standard enumeration when
the lattice is large. Next we show that it is possible to estimate
the signs of the coefficients yielding a shortest vector, and that a
pruning strategy can be based on this fact. Sign-based pruning
gives fewer nodes in the search tree, and never missed the shortest
vector in the experiments we did.

Index Terms—Lattices, SVP problem, enumeration, pruning

I. INTRODUCTION

A lattice in Rn is the set of all integer combinations of m
linearly independent vectors b1, b2, ..., bm in Rn. In this work
we assume m = n, but all results can easily be generalized.
One of the most basic computational problems concerning
lattices is the shortest vector problem (SVP): given a lattice
basis as an input the task is to find a nonzero lattice vector of
smallest norm.

It is known that SVP is NP-hard under randomized reduc-
tions [1]. With the current interest in post-quantum cryptog-
raphy, lattice based cryptographic primitives are among the
most promising candidates for achieving secure and efficient
quantum safe crypto.

There are two main algorithmic techniques for the lattice
problems. The first technique is called lattice reduction, and
the best known algorithms are the famous LLL algorithm [2]
and BKZ algorithm [3]. Both of these algorithms work by
applying successive transformations to the input basis in an
attempt to make the basis vectors short and as orthogonal as
possible. A second and more basic approach, which is the fo-
cus of our work, is the enumeration technique which is simply
an exhaustive search for finding the integer combinations of
basis vectors whose norm is small enough.

The search can be seen as a depth-first search tree where
internal nodes correspond to the partial assignments of the
integer coefficients and the leaves correspond to the lattice
points.

Previous results: In the 1980’s Fincke, Pohst and Kan-
nan studied how to improve the complexity of the standard
algorithm for solving SVP at the time [4], [5], [6]. These
algorithms are deterministic and based on exhaustive search
of lattice points within a small convex set. In general, the
running time of an enumeration algorithm heavily depends
on the quality of the input basis. So, suitably pre-processing

All authors are with Simula UiB, Bergen, Norway

the input lattice using a basis reduction algorithm is essential
before starting a lattice enumeration method.

Recently there have been other approaches using sieving
and discrete pruning techniques, see [7], [8], [9], [10]. For a
survey paper on lattice reduction algorithms, see [11].

In the 90’s Schnorr, Euchner and Horner introduced the
pruning technique, by which these algorithms obtained a
substantial speedups [12], [13]. The rough idea is to prune
away sub-trees where the probability of finding the desired
lattice vector is small. This restricts the exhaustive search to a
subset of all solutions. Although there is a chance of missing
the desired vector, the probability of this is small compared
to the gain in running time.

The pruning strategy was later studied more rigorously by
Gama, Nguyen and Regev in [14] in 2010, introducing what
they called extreme pruning. Very large parts of the search tree
is cut away with extreme pruning. This makes the search very
fast, but the probability of finding the shortest vector on a given
run is very small. However, the authors show that the search
tree is reduced more than the probability of finding the shortest
vector, so one obtains a speed-up by just permuting the basis
and repeating the process a number of times. The algorithm
using extreme pruning is the fastest known, and today’s state
of the art when it comes to enumeration.

Our contribution: In this paper we propose two new ideas,
and show their benefit in speeding up lattice enumeration.
First, we propose a new enumeration algorithm called the
hybrid enumeration for computing intervals for the coefficients
vi. Second, we provide an algorithm for estimating the signs
(+ or -) of the coefficients v1, v2, ..., vn in the lattice basis∑n

i=1 vibi. Both these algorithms aims at reducing the size of
search tree, thereby providing faster enumeration to find the
shortest vector.

One disadvantage with the standard enumeration technique
is that the algorithm depends on the computed Gram-Schmidt
(GS) orthogonal basis for computing the intervals where the
vi-coefficients can be found. Once the GS orthogonal basis is
computed, it fixes the order of the coefficients to be guessed.

In our paper, the hybrid enumeration takes a new approach
by computing the intervals in a way that does not depend
on GS orthogonalization. This means the basis vectors are not
bound by any particular order and we are free to choose which
of the untried coefficients vi to guess on at any given point
in the search tree. We show that dynamically changing the
order of the guessed vi’s significantly lowers the number of
nodes in the search tree compared to the standard enumeration
algorithm.

The price to pay for this flexibility is increased work at
each node of the search tree. Hence the actual time taken to
enumerate a lattice using the new method may be longer than
the time taken by the standard GS enumeration. Therefore we

http://doi.org/10.36244/ICJ.2019.3.2
http://doi.org/10.36244/ICJ.2019.4.2

Reducing Lattice Enumeration Search Trees
INFOCOMMUNICATIONS JOURNAL

DECEMBER 2019 • VOLUME XI • NUMBER 4 9

2

only propose to use the new enumeration technique at the
nodes on the highest levels in the search tree, and then switch
to standard GS enumeration for levels lower than that. This
still leads to a significant reduction in the number of nodes in
comparison with the standard enumeration method, depending
on type of lattice and the level where we switch to standard
GS enumeration.

The second technique we provide is to estimate the signs
of each vi. The main idea behind the algorithm is to exploit
the dot product function which contains information about the
length and angle between the basis vectors. Given two vectors
a and b, if the angle between them is less than 90 degrees
then their sum a + b is longer than both a and b and a − b
will be shorter than at least one of a and b. To get a short
vector we need to subtract one from another which implies
that the sign of these vectors are opposite with respect to each
other. Similarly, when the angle between them is more than
90 degrees, then addition gives a short vector, so their relative
signs should be the same.

We generalize this observation on n vectors, developing a
method for estimating the signs of each vi together with a
confidence measure for each estimate. We then give a pruning
strategy where the interval computed for each vi is cut down
using the estimate of the sign and confidence factor. Unlike
other pruning methods, this leads to a one-sided pruning where
we only cut away a portion of possible vi values where the
sign is believed to be wrong. A useful fact is that our sign-
based pruning can be applied on the top of any other pruning
strategy.

II. PRELIMINARIES

Throughout the paper, we will denote all vectors in bold-
face type, all matrices as capital letters, and all scalars in
lower case italics. Given a linearly independent set of vectors
{b1, b2, ..., bn} in Rn, the lattice L generated by them is the
set

L =
{ n∑

i=1

vibi|vi ∈ Z
}

of integer linear combination of bi’s. The set of vectors
{b1, b2, . . . , bn} is called the lattice basis.

The inner product of two vectors a = (a1, . . . , an) and
b = (b1, . . . , bn) is defined as

a · b = a1b1 + a2b2 + · · ·+ anbn.

The Euclidean norm of a vector a is defined as
√
a · a and

is denoted ‖a‖. The vectors a and b are said to be orthogonal
if a ·b = 0. Given a basis B = {b1, b2, . . . , bn} of a lattice L,
B is said to be orthogonal if for every pair of distinct vectors
bi and bj in B are orthogonal.

A lattice L contains non-zero vectors of shortest length with
respect to the Euclidean norm. This parameter is denoted by
λ1(L). A vector of norm λ1(L) is called a shortest vector of
L.

A. Gram-Schmidt orthogonalization

In general, a basis B for a lattice is not orthogonal. The
Gram-Schmidt process is a method for orthogonalizing a set
of vectors in an n-dimensional Euclidean space Rn. The
projection of a vector a onto a vector b is defined as

Pb(a) =

(
b · a
b · b

)
b. (1)

The Gram-Schmidt process can then be described via the
following equations:

b∗1 = b1

b∗2 = b2 − Pb∗
1
(b2)

b∗3 = b3 − Pb∗
1
(b3)− Pb∗

2
(b3)

...

b∗n = bn −
n−1∑
j=1

Pb∗
j
(bn)

The set {b∗1, b∗2, . . . , b∗n} is an orthogonal basis for the same
space as that spanned by {b1, b2, . . . , bn}. More generally, for
any 1 ≤ i ≤ n the subspace spanned by {b∗1, b∗2, . . . , b∗i } is
the same as that spanned by {b1, b2, . . . , bi}.

B. Projections

We can generalize the projection given in (1) to apply to
a larger space. Let the space V be given by the basis V =
{b1, . . . , bk}. The projection of a vector a onto the space V
is then given by

PV (a) = Pb∗
1
(a) + · · ·+ Pb∗

k
(a),

where the b∗i form the orthogonal basis of V , giving a vector
that lies inside the space V .

Lemma 1. Let V be a subspace of Rn. For any a ∈ Rn, the
vector a− PV (a) is perpendicular to every vector in V .

Proof. We start with a basis BV = {b1, . . . , bk} for V
and expand it to a basis for the entire space by adding
some vectors bk+1, . . . , bn. We then apply the Gram-Schmidt
process to get an orthogonal basis K = {b∗1, . . . , b∗n} for Rn.
Then K is the concatenation of the two bases {b∗1, . . . , b∗k}
and {b∗k+1, . . . , b

∗
n}, and by the GS property, {b∗1, . . . , b∗k}

is a basis for V . Any vector a ∈ Rn can be written as
a = r1b

∗
1 + · · ·+ rnb

∗
n where ri =

a·b∗
i

b∗
i ·b∗

i
.

By definition we have PV (a) = r1b
∗
1 + · · ·+ rkb

∗
k. Hence,

a− PV (a) = rk+1b
∗
k+1 + · · ·+ rnb

∗
n. Since any vector u in

V is a linear combination of the vectors in {b∗1, . . . , b∗k}, we
have u · (a− PV (a)) = 0.

The following lemma provides us with a way to compute
the projection of a vector onto a space V , without needing to
orthogonalize the basis for V .

Lemma 2. Let a be a vector in Rn and let V be a subspace
of Rn with basis BV = {b1, . . . , bk}. Let A be the matrix
with b1, . . . , bk as columns. Then

PV (a) = c1b1 + · · ·+ ckbk

1

Reducing Lattice Enumeration Search Trees
Mithilesh Kumar, Håvard Raddum, Srimathi Varadharajan

Abstract—We revisit the standard enumeration algorithm for
finding the shortest vectors in a lattice, and study how the number
of nodes in the associated search tree can be reduced. Two
approaches for reducing the number of nodes are suggested. First
we show that different permutations of the basis vectors have a
big effect on the running time of standard enumeration, and
give a class of permutations that give relatively few nodes in the
search tree. This leads to an algorithm called hybrid enumeration
that has a better running time than standard enumeration when
the lattice is large. Next we show that it is possible to estimate
the signs of the coefficients yielding a shortest vector, and that a
pruning strategy can be based on this fact. Sign-based pruning
gives fewer nodes in the search tree, and never missed the shortest
vector in the experiments we did.

Index Terms—Lattices, SVP problem, enumeration, pruning

I. INTRODUCTION

A lattice in Rn is the set of all integer combinations of m
linearly independent vectors b1, b2, ..., bm in Rn. In this work
we assume m = n, but all results can easily be generalized.
One of the most basic computational problems concerning
lattices is the shortest vector problem (SVP): given a lattice
basis as an input the task is to find a nonzero lattice vector of
smallest norm.

It is known that SVP is NP-hard under randomized reduc-
tions [1]. With the current interest in post-quantum cryptog-
raphy, lattice based cryptographic primitives are among the
most promising candidates for achieving secure and efficient
quantum safe crypto.

There are two main algorithmic techniques for the lattice
problems. The first technique is called lattice reduction, and
the best known algorithms are the famous LLL algorithm [2]
and BKZ algorithm [3]. Both of these algorithms work by
applying successive transformations to the input basis in an
attempt to make the basis vectors short and as orthogonal as
possible. A second and more basic approach, which is the fo-
cus of our work, is the enumeration technique which is simply
an exhaustive search for finding the integer combinations of
basis vectors whose norm is small enough.

The search can be seen as a depth-first search tree where
internal nodes correspond to the partial assignments of the
integer coefficients and the leaves correspond to the lattice
points.

Previous results: In the 1980’s Fincke, Pohst and Kan-
nan studied how to improve the complexity of the standard
algorithm for solving SVP at the time [4], [5], [6]. These
algorithms are deterministic and based on exhaustive search
of lattice points within a small convex set. In general, the
running time of an enumeration algorithm heavily depends
on the quality of the input basis. So, suitably pre-processing

All authors are with Simula UiB, Bergen, Norway

the input lattice using a basis reduction algorithm is essential
before starting a lattice enumeration method.

Recently there have been other approaches using sieving
and discrete pruning techniques, see [7], [8], [9], [10]. For a
survey paper on lattice reduction algorithms, see [11].

In the 90’s Schnorr, Euchner and Horner introduced the
pruning technique, by which these algorithms obtained a
substantial speedups [12], [13]. The rough idea is to prune
away sub-trees where the probability of finding the desired
lattice vector is small. This restricts the exhaustive search to a
subset of all solutions. Although there is a chance of missing
the desired vector, the probability of this is small compared
to the gain in running time.

The pruning strategy was later studied more rigorously by
Gama, Nguyen and Regev in [14] in 2010, introducing what
they called extreme pruning. Very large parts of the search tree
is cut away with extreme pruning. This makes the search very
fast, but the probability of finding the shortest vector on a given
run is very small. However, the authors show that the search
tree is reduced more than the probability of finding the shortest
vector, so one obtains a speed-up by just permuting the basis
and repeating the process a number of times. The algorithm
using extreme pruning is the fastest known, and today’s state
of the art when it comes to enumeration.

Our contribution: In this paper we propose two new ideas,
and show their benefit in speeding up lattice enumeration.
First, we propose a new enumeration algorithm called the
hybrid enumeration for computing intervals for the coefficients
vi. Second, we provide an algorithm for estimating the signs
(+ or -) of the coefficients v1, v2, ..., vn in the lattice basis∑n

i=1 vibi. Both these algorithms aims at reducing the size of
search tree, thereby providing faster enumeration to find the
shortest vector.

One disadvantage with the standard enumeration technique
is that the algorithm depends on the computed Gram-Schmidt
(GS) orthogonal basis for computing the intervals where the
vi-coefficients can be found. Once the GS orthogonal basis is
computed, it fixes the order of the coefficients to be guessed.

In our paper, the hybrid enumeration takes a new approach
by computing the intervals in a way that does not depend
on GS orthogonalization. This means the basis vectors are not
bound by any particular order and we are free to choose which
of the untried coefficients vi to guess on at any given point
in the search tree. We show that dynamically changing the
order of the guessed vi’s significantly lowers the number of
nodes in the search tree compared to the standard enumeration
algorithm.

The price to pay for this flexibility is increased work at
each node of the search tree. Hence the actual time taken to
enumerate a lattice using the new method may be longer than
the time taken by the standard GS enumeration. Therefore we

based pruning can be applied on top of any other pruning

1

Reducing Lattice Enumeration Search Trees
Mithilesh Kumar, Håvard Raddum, Srimathi Varadharajan

Abstract—We revisit the standard enumeration algorithm for
finding the shortest vectors in a lattice, and study how the number
of nodes in the associated search tree can be reduced. Two
approaches for reducing the number of nodes are suggested. First
we show that different permutations of the basis vectors have a
big effect on the running time of standard enumeration, and
give a class of permutations that give relatively few nodes in the
search tree. This leads to an algorithm called hybrid enumeration
that has a better running time than standard enumeration when
the lattice is large. Next we show that it is possible to estimate
the signs of the coefficients yielding a shortest vector, and that a
pruning strategy can be based on this fact. Sign-based pruning
gives fewer nodes in the search tree, and never missed the shortest
vector in the experiments we did.

Index Terms—Lattices, SVP problem, enumeration, pruning

I. INTRODUCTION

A lattice in Rn is the set of all integer combinations of m
linearly independent vectors b1, b2, ..., bm in Rn. In this work
we assume m = n, but all results can easily be generalized.
One of the most basic computational problems concerning
lattices is the shortest vector problem (SVP): given a lattice
basis as an input the task is to find a nonzero lattice vector of
smallest norm.

It is known that SVP is NP-hard under randomized reduc-
tions [1]. With the current interest in post-quantum cryptog-
raphy, lattice based cryptographic primitives are among the
most promising candidates for achieving secure and efficient
quantum safe crypto.

There are two main algorithmic techniques for the lattice
problems. The first technique is called lattice reduction, and
the best known algorithms are the famous LLL algorithm [2]
and BKZ algorithm [3]. Both of these algorithms work by
applying successive transformations to the input basis in an
attempt to make the basis vectors short and as orthogonal as
possible. A second and more basic approach, which is the fo-
cus of our work, is the enumeration technique which is simply
an exhaustive search for finding the integer combinations of
basis vectors whose norm is small enough.

The search can be seen as a depth-first search tree where
internal nodes correspond to the partial assignments of the
integer coefficients and the leaves correspond to the lattice
points.

Previous results: In the 1980’s Fincke, Pohst and Kan-
nan studied how to improve the complexity of the standard
algorithm for solving SVP at the time [4], [5], [6]. These
algorithms are deterministic and based on exhaustive search
of lattice points within a small convex set. In general, the
running time of an enumeration algorithm heavily depends
on the quality of the input basis. So, suitably pre-processing

All authors are with Simula UiB, Bergen, Norway

the input lattice using a basis reduction algorithm is essential
before starting a lattice enumeration method.

Recently there have been other approaches using sieving
and discrete pruning techniques, see [7], [8], [9], [10]. For a
survey paper on lattice reduction algorithms, see [11].

In the 90’s Schnorr, Euchner and Horner introduced the
pruning technique, by which these algorithms obtained a
substantial speedups [12], [13]. The rough idea is to prune
away sub-trees where the probability of finding the desired
lattice vector is small. This restricts the exhaustive search to a
subset of all solutions. Although there is a chance of missing
the desired vector, the probability of this is small compared
to the gain in running time.

The pruning strategy was later studied more rigorously by
Gama, Nguyen and Regev in [14] in 2010, introducing what
they called extreme pruning. Very large parts of the search tree
is cut away with extreme pruning. This makes the search very
fast, but the probability of finding the shortest vector on a given
run is very small. However, the authors show that the search
tree is reduced more than the probability of finding the shortest
vector, so one obtains a speed-up by just permuting the basis
and repeating the process a number of times. The algorithm
using extreme pruning is the fastest known, and today’s state
of the art when it comes to enumeration.

Our contribution: In this paper we propose two new ideas,
and show their benefit in speeding up lattice enumeration.
First, we propose a new enumeration algorithm called the
hybrid enumeration for computing intervals for the coefficients
vi. Second, we provide an algorithm for estimating the signs
(+ or -) of the coefficients v1, v2, ..., vn in the lattice basis∑n

i=1 vibi. Both these algorithms aims at reducing the size of
search tree, thereby providing faster enumeration to find the
shortest vector.

One disadvantage with the standard enumeration technique
is that the algorithm depends on the computed Gram-Schmidt
(GS) orthogonal basis for computing the intervals where the
vi-coefficients can be found. Once the GS orthogonal basis is
computed, it fixes the order of the coefficients to be guessed.

In our paper, the hybrid enumeration takes a new approach
by computing the intervals in a way that does not depend
on GS orthogonalization. This means the basis vectors are not
bound by any particular order and we are free to choose which
of the untried coefficients vi to guess on at any given point
in the search tree. We show that dynamically changing the
order of the guessed vi’s significantly lowers the number of
nodes in the search tree compared to the standard enumeration
algorithm.

The price to pay for this flexibility is increased work at
each node of the search tree. Hence the actual time taken to
enumerate a lattice using the new method may be longer than
the time taken by the standard GS enumeration. Therefore we

2

only propose to use the new enumeration technique at the
nodes on the highest levels in the search tree, and then switch
to standard GS enumeration for levels lower than that. This
still leads to a significant reduction in the number of nodes in
comparison with the standard enumeration method, depending
on type of lattice and the level where we switch to standard
GS enumeration.

The second technique we provide is to estimate the signs
of each vi. The main idea behind the algorithm is to exploit
the dot product function which contains information about the
length and angle between the basis vectors. Given two vectors
a and b, if the angle between them is less than 90 degrees
then their sum a + b is longer than both a and b and a − b
will be shorter than at least one of a and b. To get a short
vector we need to subtract one from another which implies
that the sign of these vectors are opposite with respect to each
other. Similarly, when the angle between them is more than
90 degrees, then addition gives a short vector, so their relative
signs should be the same.

We generalize this observation on n vectors, developing a
method for estimating the signs of each vi together with a
confidence measure for each estimate. We then give a pruning
strategy where the interval computed for each vi is cut down
using the estimate of the sign and confidence factor. Unlike
other pruning methods, this leads to a one-sided pruning where
we only cut away a portion of possible vi values where the
sign is believed to be wrong. A useful fact is that our sign-
based pruning can be applied on the top of any other pruning
strategy.

II. PRELIMINARIES

Throughout the paper, we will denote all vectors in bold-
face type, all matrices as capital letters, and all scalars in
lower case italics. Given a linearly independent set of vectors
{b1, b2, ..., bn} in Rn, the lattice L generated by them is the
set

L =
{ n∑

i=1

vibi|vi ∈ Z
}

of integer linear combination of bi’s. The set of vectors
{b1, b2, . . . , bn} is called the lattice basis.

The inner product of two vectors a = (a1, . . . , an) and
b = (b1, . . . , bn) is defined as

a · b = a1b1 + a2b2 + · · ·+ anbn.

The Euclidean norm of a vector a is defined as
√
a · a and

is denoted ‖a‖. The vectors a and b are said to be orthogonal
if a ·b = 0. Given a basis B = {b1, b2, . . . , bn} of a lattice L,
B is said to be orthogonal if for every pair of distinct vectors
bi and bj in B are orthogonal.

A lattice L contains non-zero vectors of shortest length with
respect to the Euclidean norm. This parameter is denoted by
λ1(L). A vector of norm λ1(L) is called a shortest vector of
L.

A. Gram-Schmidt orthogonalization

In general, a basis B for a lattice is not orthogonal. The
Gram-Schmidt process is a method for orthogonalizing a set
of vectors in an n-dimensional Euclidean space Rn. The
projection of a vector a onto a vector b is defined as

Pb(a) =

(
b · a
b · b

)
b. (1)

The Gram-Schmidt process can then be described via the
following equations:

b∗1 = b1

b∗2 = b2 − Pb∗
1
(b2)

b∗3 = b3 − Pb∗
1
(b3)− Pb∗

2
(b3)

...

b∗n = bn −
n−1∑
j=1

Pb∗
j
(bn)

The set {b∗1, b∗2, . . . , b∗n} is an orthogonal basis for the same
space as that spanned by {b1, b2, . . . , bn}. More generally, for
any 1 ≤ i ≤ n the subspace spanned by {b∗1, b∗2, . . . , b∗i } is
the same as that spanned by {b1, b2, . . . , bi}.

B. Projections

We can generalize the projection given in (1) to apply to
a larger space. Let the space V be given by the basis V =
{b1, . . . , bk}. The projection of a vector a onto the space V
is then given by

PV (a) = Pb∗
1
(a) + · · ·+ Pb∗

k
(a),

where the b∗i form the orthogonal basis of V , giving a vector
that lies inside the space V .

Lemma 1. Let V be a subspace of Rn. For any a ∈ Rn, the
vector a− PV (a) is perpendicular to every vector in V .

Proof. We start with a basis BV = {b1, . . . , bk} for V
and expand it to a basis for the entire space by adding
some vectors bk+1, . . . , bn. We then apply the Gram-Schmidt
process to get an orthogonal basis K = {b∗1, . . . , b∗n} for Rn.
Then K is the concatenation of the two bases {b∗1, . . . , b∗k}
and {b∗k+1, . . . , b

∗
n}, and by the GS property, {b∗1, . . . , b∗k}

is a basis for V . Any vector a ∈ Rn can be written as
a = r1b

∗
1 + · · ·+ rnb

∗
n where ri =

a·b∗
i

b∗
i ·b∗

i
.

By definition we have PV (a) = r1b
∗
1 + · · ·+ rkb

∗
k. Hence,

a− PV (a) = rk+1b
∗
k+1 + · · ·+ rnb

∗
n. Since any vector u in

V is a linear combination of the vectors in {b∗1, . . . , b∗k}, we
have u · (a− PV (a)) = 0.

The following lemma provides us with a way to compute
the projection of a vector onto a space V , without needing to
orthogonalize the basis for V .

Lemma 2. Let a be a vector in Rn and let V be a subspace
of Rn with basis BV = {b1, . . . , bk}. Let A be the matrix
with b1, . . . , bk as columns. Then

PV (a) = c1b1 + · · ·+ ckbk

2

only propose to use the new enumeration technique at the
nodes on the highest levels in the search tree, and then switch
to standard GS enumeration for levels lower than that. This
still leads to a significant reduction in the number of nodes in
comparison with the standard enumeration method, depending
on type of lattice and the level where we switch to standard
GS enumeration.

The second technique we provide is to estimate the signs
of each vi. The main idea behind the algorithm is to exploit
the dot product function which contains information about the
length and angle between the basis vectors. Given two vectors
a and b, if the angle between them is less than 90 degrees
then their sum a + b is longer than both a and b and a − b
will be shorter than at least one of a and b. To get a short
vector we need to subtract one from another which implies
that the sign of these vectors are opposite with respect to each
other. Similarly, when the angle between them is more than
90 degrees, then addition gives a short vector, so their relative
signs should be the same.

We generalize this observation on n vectors, developing a
method for estimating the signs of each vi together with a
confidence measure for each estimate. We then give a pruning
strategy where the interval computed for each vi is cut down
using the estimate of the sign and confidence factor. Unlike
other pruning methods, this leads to a one-sided pruning where
we only cut away a portion of possible vi values where the
sign is believed to be wrong. A useful fact is that our sign-
based pruning can be applied on the top of any other pruning
strategy.

II. PRELIMINARIES

Throughout the paper, we will denote all vectors in bold-
face type, all matrices as capital letters, and all scalars in
lower case italics. Given a linearly independent set of vectors
{b1, b2, ..., bn} in Rn, the lattice L generated by them is the
set

L =
{ n∑

i=1

vibi|vi ∈ Z
}

of integer linear combination of bi’s. The set of vectors
{b1, b2, . . . , bn} is called the lattice basis.

The inner product of two vectors a = (a1, . . . , an) and
b = (b1, . . . , bn) is defined as

a · b = a1b1 + a2b2 + · · ·+ anbn.

The Euclidean norm of a vector a is defined as
√
a · a and

is denoted ‖a‖. The vectors a and b are said to be orthogonal
if a ·b = 0. Given a basis B = {b1, b2, . . . , bn} of a lattice L,
B is said to be orthogonal if for every pair of distinct vectors
bi and bj in B are orthogonal.

A lattice L contains non-zero vectors of shortest length with
respect to the Euclidean norm. This parameter is denoted by
λ1(L). A vector of norm λ1(L) is called a shortest vector of
L.

A. Gram-Schmidt orthogonalization

In general, a basis B for a lattice is not orthogonal. The
Gram-Schmidt process is a method for orthogonalizing a set
of vectors in an n-dimensional Euclidean space Rn. The
projection of a vector a onto a vector b is defined as

Pb(a) =

(
b · a
b · b

)
b. (1)

The Gram-Schmidt process can then be described via the
following equations:

b∗1 = b1

b∗2 = b2 − Pb∗
1
(b2)

b∗3 = b3 − Pb∗
1
(b3)− Pb∗

2
(b3)

...

b∗n = bn −
n−1∑
j=1

Pb∗
j
(bn)

The set {b∗1, b∗2, . . . , b∗n} is an orthogonal basis for the same
space as that spanned by {b1, b2, . . . , bn}. More generally, for
any 1 ≤ i ≤ n the subspace spanned by {b∗1, b∗2, . . . , b∗i } is
the same as that spanned by {b1, b2, . . . , bi}.

B. Projections

We can generalize the projection given in (1) to apply to
a larger space. Let the space V be given by the basis V =
{b1, . . . , bk}. The projection of a vector a onto the space V
is then given by

PV (a) = Pb∗
1
(a) + · · ·+ Pb∗

k
(a),

where the b∗i form the orthogonal basis of V , giving a vector
that lies inside the space V .

Lemma 1. Let V be a subspace of Rn. For any a ∈ Rn, the
vector a− PV (a) is perpendicular to every vector in V .

Proof. We start with a basis BV = {b1, . . . , bk} for V
and expand it to a basis for the entire space by adding
some vectors bk+1, . . . , bn. We then apply the Gram-Schmidt
process to get an orthogonal basis K = {b∗1, . . . , b∗n} for Rn.
Then K is the concatenation of the two bases {b∗1, . . . , b∗k}
and {b∗k+1, . . . , b

∗
n}, and by the GS property, {b∗1, . . . , b∗k}

is a basis for V . Any vector a ∈ Rn can be written as
a = r1b

∗
1 + · · ·+ rnb

∗
n where ri =

a·b∗
i

b∗
i ·b∗

i
.

By definition we have PV (a) = r1b
∗
1 + · · ·+ rkb

∗
k. Hence,

a− PV (a) = rk+1b
∗
k+1 + · · ·+ rnb

∗
n. Since any vector u in

V is a linear combination of the vectors in {b∗1, . . . , b∗k}, we
have u · (a− PV (a)) = 0.

The following lemma provides us with a way to compute
the projection of a vector onto a space V , without needing to
orthogonalize the basis for V .

Lemma 2. Let a be a vector in Rn and let V be a subspace
of Rn with basis BV = {b1, . . . , bk}. Let A be the matrix
with b1, . . . , bk as columns. Then

PV (a) = c1b1 + · · ·+ ckbk

2

only propose to use the new enumeration technique at the
nodes on the highest levels in the search tree, and then switch
to standard GS enumeration for levels lower than that. This
still leads to a significant reduction in the number of nodes in
comparison with the standard enumeration method, depending
on type of lattice and the level where we switch to standard
GS enumeration.

The second technique we provide is to estimate the signs
of each vi. The main idea behind the algorithm is to exploit
the dot product function which contains information about the
length and angle between the basis vectors. Given two vectors
a and b, if the angle between them is less than 90 degrees
then their sum a + b is longer than both a and b and a − b
will be shorter than at least one of a and b. To get a short
vector we need to subtract one from another which implies
that the sign of these vectors are opposite with respect to each
other. Similarly, when the angle between them is more than
90 degrees, then addition gives a short vector, so their relative
signs should be the same.

We generalize this observation on n vectors, developing a
method for estimating the signs of each vi together with a
confidence measure for each estimate. We then give a pruning
strategy where the interval computed for each vi is cut down
using the estimate of the sign and confidence factor. Unlike
other pruning methods, this leads to a one-sided pruning where
we only cut away a portion of possible vi values where the
sign is believed to be wrong. A useful fact is that our sign-
based pruning can be applied on the top of any other pruning
strategy.

II. PRELIMINARIES

Throughout the paper, we will denote all vectors in bold-
face type, all matrices as capital letters, and all scalars in
lower case italics. Given a linearly independent set of vectors
{b1, b2, ..., bn} in Rn, the lattice L generated by them is the
set

L =
{ n∑

i=1

vibi|vi ∈ Z
}

of integer linear combination of bi’s. The set of vectors
{b1, b2, . . . , bn} is called the lattice basis.

The inner product of two vectors a = (a1, . . . , an) and
b = (b1, . . . , bn) is defined as

a · b = a1b1 + a2b2 + · · ·+ anbn.

The Euclidean norm of a vector a is defined as
√
a · a and

is denoted ‖a‖. The vectors a and b are said to be orthogonal
if a ·b = 0. Given a basis B = {b1, b2, . . . , bn} of a lattice L,
B is said to be orthogonal if for every pair of distinct vectors
bi and bj in B are orthogonal.

A lattice L contains non-zero vectors of shortest length with
respect to the Euclidean norm. This parameter is denoted by
λ1(L). A vector of norm λ1(L) is called a shortest vector of
L.

A. Gram-Schmidt orthogonalization

In general, a basis B for a lattice is not orthogonal. The
Gram-Schmidt process is a method for orthogonalizing a set
of vectors in an n-dimensional Euclidean space Rn. The
projection of a vector a onto a vector b is defined as

Pb(a) =

(
b · a
b · b

)
b. (1)

The Gram-Schmidt process can then be described via the
following equations:

b∗1 = b1

b∗2 = b2 − Pb∗
1
(b2)

b∗3 = b3 − Pb∗
1
(b3)− Pb∗

2
(b3)

...

b∗n = bn −
n−1∑
j=1

Pb∗
j
(bn)

The set {b∗1, b∗2, . . . , b∗n} is an orthogonal basis for the same
space as that spanned by {b1, b2, . . . , bn}. More generally, for
any 1 ≤ i ≤ n the subspace spanned by {b∗1, b∗2, . . . , b∗i } is
the same as that spanned by {b1, b2, . . . , bi}.

B. Projections

We can generalize the projection given in (1) to apply to
a larger space. Let the space V be given by the basis V =
{b1, . . . , bk}. The projection of a vector a onto the space V
is then given by

PV (a) = Pb∗
1
(a) + · · ·+ Pb∗

k
(a),

where the b∗i form the orthogonal basis of V , giving a vector
that lies inside the space V .

Lemma 1. Let V be a subspace of Rn. For any a ∈ Rn, the
vector a− PV (a) is perpendicular to every vector in V .

Proof. We start with a basis BV = {b1, . . . , bk} for V
and expand it to a basis for the entire space by adding
some vectors bk+1, . . . , bn. We then apply the Gram-Schmidt
process to get an orthogonal basis K = {b∗1, . . . , b∗n} for Rn.
Then K is the concatenation of the two bases {b∗1, . . . , b∗k}
and {b∗k+1, . . . , b

∗
n}, and by the GS property, {b∗1, . . . , b∗k}

is a basis for V . Any vector a ∈ Rn can be written as
a = r1b

∗
1 + · · ·+ rnb

∗
n where ri =

a·b∗
i

b∗
i ·b∗

i
.

By definition we have PV (a) = r1b
∗
1 + · · ·+ rkb

∗
k. Hence,

a− PV (a) = rk+1b
∗
k+1 + · · ·+ rnb

∗
n. Since any vector u in

V is a linear combination of the vectors in {b∗1, . . . , b∗k}, we
have u · (a− PV (a)) = 0.

The following lemma provides us with a way to compute
the projection of a vector onto a space V , without needing to
orthogonalize the basis for V .

Lemma 2. Let a be a vector in Rn and let V be a subspace
of Rn with basis BV = {b1, . . . , bk}. Let A be the matrix
with b1, . . . , bk as columns. Then

PV (a) = c1b1 + · · ·+ ckbk

Reducing Lattice Enumeration Search Trees

DECEMBER 2019 • VOLUME XI • NUMBER 410

INFOCOMMUNICATIONS JOURNAL

4

once it is computed this order remains fixed throughout the
standard enumeration routine.

The actual enumeration starts by computing an interval In
such that ‖s‖ ≤ R implies vn ∈ In. The algorithm then fixes
an integer value in In for vn, and based on the choice computes
an interval In−1 such that ‖s‖ ≤ R implies vn−1 ∈ In−1.
Then an integer is selected from In−1 and assigned to vn−1,
and the interval where vn−2 must be found is computed. This
continues until a selection for v1 can be made, in which case
we find a lattice vector with length less than R, or until an
interval Ij that contains no integers is computed.

Intervals are computed recursively in the order
In, In−1, . . . , I2, I1, and all values from all intervals
must be tried to do a complete search that guarantees that a
shortest vector will be found. In the following, we denote the
length of an interval Ii by |Ii|.

Basic enumeration assumes the µ-matrix is computed once
and for all before actual enumeration starts, but this is not
strictly necessary. We can set every basis vector bi in the basis
as the last one, recompute the µ-matrix, and find the interval
of possible coefficients for Ii. Doing this allows us to make
a choice of which vector to first fix the coefficient for. For
instance, we may select the basis vector giving the shortest
interval as the first one to branch for.

This strategy can be generalized and done at any point
during enumeration: Assume vj for j ∈ J ⊆ {1, . . . , n} have
been fixed, where |J | = k. All remaining basis vectors bi for
i ∈ ({1, . . . , n}\J) can be tried by placing them successively
in position n−k in the basis. The µ-matrix and the coefficient
intervals are re-computed for every choice, and the vector
giving the shortest interval is selected as the next one to branch
for. In this way we may dynamically change the order of which
basis vector to branch for, while the enumeration algorithm is
running.

Remark: To compute the smallest interval at a given node,
we do not need to re-compute the full µ-matrix. We only need
to re-compute the entries in µ from the point where we have
changed the order of the basis vectors. For example, if we are
computing the interval for vj , only the rows of µ with indices
higher than j needs to be updated when setting bj last.

C. Strategy for selecting order for basis vectors
The strategy we use for choosing the order of basis vectors

to branch for follows a greedy approach: We always choose
the next vi to try as the one with the shortest interval Ii. The
rationale for this strategy can be explained via the following
lemma, basically saying that the interval for one vi shortens,
when more of the other coefficients are fixed.

Lemma 3. Let J1 ⊆ J2 ⊆ ({1, . . . , n} \ {i}). Let Ii(J1) be
the interval for vi after values of vj , j ∈ J1 have been fixed,
and let Ii(J2) be the interval for vi after some additional vj’s,
j ∈ J2 \ J1 have been fixed. Then |Ii(J1)| ≥ |Ii(J2)|.

Proof. From Equation (2) we see that the length of Ii(J1) is
determined by the sum

n∑
j=k+1

(
vj +

n∑
i=j+1

µi,jvi

)2 ∥∥b∗j
∥∥2 , (3)

while the center of the interval is determined by

n∑
i=k+1

µi,kvi.

When we branch in an unspecified order, (3) can be written
as

∑
j∈J1

t2j ,

where the tj’s are terms decided by the specific order in
which the indices in J1 were chosen. The larger this sum
becomes, the smaller |Ii(J1)| will be. The terms in the sum
are all positive, so expanding with the extra terms to create
the sum

∑
j∈J2

t2j before branching for vi can only decrease
the length of Ii. Hence |Ii(J1)| ≥ |Ii(J2)|.

Lemma 3 shows that the longer we wait to select a particular
vi to branch for, the shorter its interval Ii will become. The
idea for the branching strategy is that intervals that are long
when few vj’s have been selected will become short by the
time the algorithm is forced to branch on them. This will lead
to relatively small search trees.

One way to more easily see this is in the case when one
Ii becomes empty after fixing the vj’s for j ∈ J , for some
J . Say the branching order has been fixed from the start, the
values of vj , j ∈ J have been fixed, and that Ii is empty,
but vi is only to be branched for after another 10 vk’s have
been fixed. Even though it is clear (if we compute Ii) that
all choices of values for the vk’s will lead to a dead end, the
traditional enumeration algorithm will try all of them before
backtracking away from this sub-tree. By always selecting the
next vi to branch for as the one with the shortest interval,
vi will be selected as soon as |Ii| = 0 (the shortest length
possible), and backtracking into the vj’s where j ∈ J will
start immediately.

D. Cost vs effect for minimizing intervals

The drawback of checking which of the remaining indices
to branch for is the extra work done in each node. If we
compute an interval Ii using the µ-matrix of Gram-Schmidt
coefficients, we in general have to recompute the µ-matrix as
part of the process. The complexity for computing this matrix
for one index is O(n3) multiplications, and doing this for every
remaining index not yet branched for gives overall complexity
of O(n4) in each node.

Computing an interval Ii using the projection method in-
volves inverting a matrix, which also has complexity O(n3).
Repeating for all unbranched indices again gives an overall
complexity of O(n4) for the work done in each node. These
complexities are quite high considering they have to be done
for each node. However, they are still polynomial and the
number of nodes in a search tree is super-exponential in n,
so if the reduction in the number of nodes is big enough it is
still worthwhile.

As we saw in Table I, the number of nodes in a search tree
without using any minimizing strategy depends heavily on the
order of the basis vectors. The order of the basis vectors does

3

where the ci are the entries of the vector (ATA)−1ATa.
In particular, the projection can be computed as PV (a) =
A(ATA)−1ATa.

Proof. Since the columns of A are the basis vectors for V ,
we can write PV (a) = c1b1 + · · · + ckbk = Ac for some
values ci. By Lemma 1, the vector a − PV (a) is orthogonal
to every vector in V . Hence AT (a − PV (a)) = 0 since the
matrix/vector multiplication is just taking the inner product of
basis vectors with (a − PV (a)). Substituting for PV (a), we
get ATa−ATAc = 0 which implies that c = (ATA)−1ATa.
Hence, PV (a) = A(ATA)−1ATa.

C. The standard enumeration algorithm

Let L be a lattice whose shortest vector v is unique up to
the sign. Assume we are given the basis {b1, b2, ..., bn} of L
and an upper bound R on λ1(L) such that we need to find all
vectors w in the lattice L that satisfy ‖w‖ ≤ R.

The shortest vector s ∈ L can be written as s = v1b1 +
v2b2 + ... + vnbn where the v′is are unknown integers and
bi =

∑i−1
j=1 µi,jb

∗
j , where µi,j = (bi · b∗j)/(b∗j · b∗j) are the

Gram-Schmidt coefficients. Our goal is to find s.
To find ±s, the enumeration goes through an enumeration

tree formed by the subspace spanned by the vectors whose
norm is at most R. The enumeration tree is a depth first search
tree of depth n. Each internal node in the tree is associated
with a particular vi and each outgoing edge represents an
assignment of an integer value (obtained from a range) to vi.
In particular the root of the tree is the zero vector, while the
leaves are all the vectors of L whose norm is at most R.

At any node, the enumeration algorithm selects an index i
not yet branched for, obtains a set of integers (interval range)
Ii for the possible values vi can take and for each integer t ∈ Ii
the algorithm calls itself recursively to compute the interval
for the next level. The length bound here remains constant
throughout the algorithm. For 1 ≤ k ≤ n, the following
inequality (see [14]) needs to be satisfied, essentially defining
the interval Ik:

(
vk +

n∑
i=k+1

µi,kvi

)2

‖b∗k‖
2
+

n∑
j=k+1

(
vj +

n∑
i=j+1

µi,jvi

)2 ∥∥b∗j
∥∥2 ≤ R2 (2)

By the inequality above, for each 1 ≤ k ≤ n the interval
range Ik for vk can be obtained if vj is known for each j ∈
{k + 1, k + 2, ..., n}. This implies that in the enumeration
algorithm, the indices i can only be chosen in the order starting
from n, n− 1, .. down to 1. In the rest of the paper we refer
to the root node of the search tree being at level n, the second
highest level being level n − 1, etc. That is, if a node is at
level l in the search tree, then only the coefficient vl can be
selected for branching at that node.

III. HYBRID ENUMERATION

In this section we study how permutations of the basis
vectors of a lattice affects the running time of enumeration.

nodes in search tree BKZ-10 BKZ-20
minimum 60.934.596 4.059.025
average 424.300.658 52.886.123
maximum 1.180.735.200 194.214.522
std. deviation 361.710.571 40.202.374

TABLE I: Number of nodes to fully enumerate the BKZ-
reduced SVP40 challenge lattice for 20 random permutations
of the basis. The number of nodes in a search tree is highly
dependent on the particular permutation.

Based on this we present a good strategy for selecting an
order of the basis vectors that results in relatively small search
trees when doing enumeration. This can help speed up extreme
pruning, by only selecting permutations that give small search
trees when iterating the extremely pruned enumeration runs.

A. Variations in Enumeration Complexity from Basis Permu-
tations

As far as we know, there have been no studies of how the
complexity of standard enumeration varies when the vectors
in the input basis are permuted. To motivate the work that
follows, we first present the results of some experiments
showing that the number of nodes in the search tree when
doing full enumeration is highly sensitive with respect to the
order of the basis vectors.

The lattice we use for the demonstration is Darmstadt’s
SVP40 challenge [15], generated from seed 0. The experiment
was done as follows: First, we ran two BKZ-reductions on
the SVP40 lattice, one with block size 10 and one with block
size 20. Then we did full enumeration of each of the two
BKZ-reduced lattices, counting the number of nodes in the
search tree. Next we randomized the two BKZ-reduced bases
20 times each, and ran full enumeration on all of them. The
average number of nodes in the search trees for the randomized
bases are shown in Table I, together with the maximum and
minimum numbers observed and the standard deviation.

From Table I we see that the order of the basis vectors
has a big impact on the size of the enumeration search tree.
The standard deviation is of similar size as the average,
showing that the sizes of the search trees vary greatly with
the permutation.

Another interesting thing we observed is that the order of
the reduced basis as given straight out of BKZ is particularly
good for enumeration. Enumerating the SVP40 challenge
with the basis order given by BKZ-10 gives a tree with
5.968.085 nodes, and the order given by BKZ-20 gives a tree
with 1.232.737 nodes, significantly smaller than the numbers
observed for any of the random permutations.

B. Intervals for coefficients

Given a length bound R, basic enumeration will search
exhaustively for all lattice vectors of length less than or equal
to R. Assume that s = v1b1 + v2b2 + . . .+ vnbn is a vector
such that ‖s‖ ≤ R. Before the enumeration can start, the µ-
matrix [µi,j] of Gram-Schmidt coefficients and the orthogonal
basis vectors b∗1, . . . , b

∗
n must be computed. The µ-matrix is

dependent on the particular order of the basis vectors, and

Reducing Lattice Enumeration Search Trees
INFOCOMMUNICATIONS JOURNAL

DECEMBER 2019 • VOLUME XI • NUMBER 4 11

4

once it is computed this order remains fixed throughout the
standard enumeration routine.

The actual enumeration starts by computing an interval In
such that ‖s‖ ≤ R implies vn ∈ In. The algorithm then fixes
an integer value in In for vn, and based on the choice computes
an interval In−1 such that ‖s‖ ≤ R implies vn−1 ∈ In−1.
Then an integer is selected from In−1 and assigned to vn−1,
and the interval where vn−2 must be found is computed. This
continues until a selection for v1 can be made, in which case
we find a lattice vector with length less than R, or until an
interval Ij that contains no integers is computed.

Intervals are computed recursively in the order
In, In−1, . . . , I2, I1, and all values from all intervals
must be tried to do a complete search that guarantees that a
shortest vector will be found. In the following, we denote the
length of an interval Ii by |Ii|.

Basic enumeration assumes the µ-matrix is computed once
and for all before actual enumeration starts, but this is not
strictly necessary. We can set every basis vector bi in the basis
as the last one, recompute the µ-matrix, and find the interval
of possible coefficients for Ii. Doing this allows us to make
a choice of which vector to first fix the coefficient for. For
instance, we may select the basis vector giving the shortest
interval as the first one to branch for.

This strategy can be generalized and done at any point
during enumeration: Assume vj for j ∈ J ⊆ {1, . . . , n} have
been fixed, where |J | = k. All remaining basis vectors bi for
i ∈ ({1, . . . , n}\J) can be tried by placing them successively
in position n−k in the basis. The µ-matrix and the coefficient
intervals are re-computed for every choice, and the vector
giving the shortest interval is selected as the next one to branch
for. In this way we may dynamically change the order of which
basis vector to branch for, while the enumeration algorithm is
running.

Remark: To compute the smallest interval at a given node,
we do not need to re-compute the full µ-matrix. We only need
to re-compute the entries in µ from the point where we have
changed the order of the basis vectors. For example, if we are
computing the interval for vj , only the rows of µ with indices
higher than j needs to be updated when setting bj last.

C. Strategy for selecting order for basis vectors
The strategy we use for choosing the order of basis vectors

to branch for follows a greedy approach: We always choose
the next vi to try as the one with the shortest interval Ii. The
rationale for this strategy can be explained via the following
lemma, basically saying that the interval for one vi shortens,
when more of the other coefficients are fixed.

Lemma 3. Let J1 ⊆ J2 ⊆ ({1, . . . , n} \ {i}). Let Ii(J1) be
the interval for vi after values of vj , j ∈ J1 have been fixed,
and let Ii(J2) be the interval for vi after some additional vj’s,
j ∈ J2 \ J1 have been fixed. Then |Ii(J1)| ≥ |Ii(J2)|.

Proof. From Equation (2) we see that the length of Ii(J1) is
determined by the sum

n∑
j=k+1

(
vj +

n∑
i=j+1

µi,jvi

)2 ∥∥b∗j
∥∥2 , (3)

while the center of the interval is determined by

n∑
i=k+1

µi,kvi.

When we branch in an unspecified order, (3) can be written
as

∑
j∈J1

t2j ,

where the tj’s are terms decided by the specific order in
which the indices in J1 were chosen. The larger this sum
becomes, the smaller |Ii(J1)| will be. The terms in the sum
are all positive, so expanding with the extra terms to create
the sum

∑
j∈J2

t2j before branching for vi can only decrease
the length of Ii. Hence |Ii(J1)| ≥ |Ii(J2)|.

Lemma 3 shows that the longer we wait to select a particular
vi to branch for, the shorter its interval Ii will become. The
idea for the branching strategy is that intervals that are long
when few vj’s have been selected will become short by the
time the algorithm is forced to branch on them. This will lead
to relatively small search trees.

One way to more easily see this is in the case when one
Ii becomes empty after fixing the vj’s for j ∈ J , for some
J . Say the branching order has been fixed from the start, the
values of vj , j ∈ J have been fixed, and that Ii is empty,
but vi is only to be branched for after another 10 vk’s have
been fixed. Even though it is clear (if we compute Ii) that
all choices of values for the vk’s will lead to a dead end, the
traditional enumeration algorithm will try all of them before
backtracking away from this sub-tree. By always selecting the
next vi to branch for as the one with the shortest interval,
vi will be selected as soon as |Ii| = 0 (the shortest length
possible), and backtracking into the vj’s where j ∈ J will
start immediately.

D. Cost vs effect for minimizing intervals

The drawback of checking which of the remaining indices
to branch for is the extra work done in each node. If we
compute an interval Ii using the µ-matrix of Gram-Schmidt
coefficients, we in general have to recompute the µ-matrix as
part of the process. The complexity for computing this matrix
for one index is O(n3) multiplications, and doing this for every
remaining index not yet branched for gives overall complexity
of O(n4) in each node.

Computing an interval Ii using the projection method in-
volves inverting a matrix, which also has complexity O(n3).
Repeating for all unbranched indices again gives an overall
complexity of O(n4) for the work done in each node. These
complexities are quite high considering they have to be done
for each node. However, they are still polynomial and the
number of nodes in a search tree is super-exponential in n,
so if the reduction in the number of nodes is big enough it is
still worthwhile.

As we saw in Table I, the number of nodes in a search tree
without using any minimizing strategy depends heavily on the
order of the basis vectors. The order of the basis vectors does

3

where the ci are the entries of the vector (ATA)−1ATa.
In particular, the projection can be computed as PV (a) =
A(ATA)−1ATa.

Proof. Since the columns of A are the basis vectors for V ,
we can write PV (a) = c1b1 + · · · + ckbk = Ac for some
values ci. By Lemma 1, the vector a − PV (a) is orthogonal
to every vector in V . Hence AT (a − PV (a)) = 0 since the
matrix/vector multiplication is just taking the inner product of
basis vectors with (a − PV (a)). Substituting for PV (a), we
get ATa−ATAc = 0 which implies that c = (ATA)−1ATa.
Hence, PV (a) = A(ATA)−1ATa.

C. The standard enumeration algorithm

Let L be a lattice whose shortest vector v is unique up to
the sign. Assume we are given the basis {b1, b2, ..., bn} of L
and an upper bound R on λ1(L) such that we need to find all
vectors w in the lattice L that satisfy ‖w‖ ≤ R.

The shortest vector s ∈ L can be written as s = v1b1 +
v2b2 + ... + vnbn where the v′is are unknown integers and
bi =

∑i−1
j=1 µi,jb

∗
j , where µi,j = (bi · b∗j)/(b∗j · b∗j) are the

Gram-Schmidt coefficients. Our goal is to find s.
To find ±s, the enumeration goes through an enumeration

tree formed by the subspace spanned by the vectors whose
norm is at most R. The enumeration tree is a depth first search
tree of depth n. Each internal node in the tree is associated
with a particular vi and each outgoing edge represents an
assignment of an integer value (obtained from a range) to vi.
In particular the root of the tree is the zero vector, while the
leaves are all the vectors of L whose norm is at most R.

At any node, the enumeration algorithm selects an index i
not yet branched for, obtains a set of integers (interval range)
Ii for the possible values vi can take and for each integer t ∈ Ii
the algorithm calls itself recursively to compute the interval
for the next level. The length bound here remains constant
throughout the algorithm. For 1 ≤ k ≤ n, the following
inequality (see [14]) needs to be satisfied, essentially defining
the interval Ik:

(
vk +

n∑
i=k+1

µi,kvi

)2

‖b∗k‖
2
+

n∑
j=k+1

(
vj +

n∑
i=j+1

µi,jvi

)2 ∥∥b∗j
∥∥2 ≤ R2 (2)

By the inequality above, for each 1 ≤ k ≤ n the interval
range Ik for vk can be obtained if vj is known for each j ∈
{k + 1, k + 2, ..., n}. This implies that in the enumeration
algorithm, the indices i can only be chosen in the order starting
from n, n− 1, .. down to 1. In the rest of the paper we refer
to the root node of the search tree being at level n, the second
highest level being level n − 1, etc. That is, if a node is at
level l in the search tree, then only the coefficient vl can be
selected for branching at that node.

III. HYBRID ENUMERATION

In this section we study how permutations of the basis
vectors of a lattice affects the running time of enumeration.

nodes in search tree BKZ-10 BKZ-20
minimum 60.934.596 4.059.025
average 424.300.658 52.886.123
maximum 1.180.735.200 194.214.522
std. deviation 361.710.571 40.202.374

TABLE I: Number of nodes to fully enumerate the BKZ-
reduced SVP40 challenge lattice for 20 random permutations
of the basis. The number of nodes in a search tree is highly
dependent on the particular permutation.

Based on this we present a good strategy for selecting an
order of the basis vectors that results in relatively small search
trees when doing enumeration. This can help speed up extreme
pruning, by only selecting permutations that give small search
trees when iterating the extremely pruned enumeration runs.

A. Variations in Enumeration Complexity from Basis Permu-
tations

As far as we know, there have been no studies of how the
complexity of standard enumeration varies when the vectors
in the input basis are permuted. To motivate the work that
follows, we first present the results of some experiments
showing that the number of nodes in the search tree when
doing full enumeration is highly sensitive with respect to the
order of the basis vectors.

The lattice we use for the demonstration is Darmstadt’s
SVP40 challenge [15], generated from seed 0. The experiment
was done as follows: First, we ran two BKZ-reductions on
the SVP40 lattice, one with block size 10 and one with block
size 20. Then we did full enumeration of each of the two
BKZ-reduced lattices, counting the number of nodes in the
search tree. Next we randomized the two BKZ-reduced bases
20 times each, and ran full enumeration on all of them. The
average number of nodes in the search trees for the randomized
bases are shown in Table I, together with the maximum and
minimum numbers observed and the standard deviation.

From Table I we see that the order of the basis vectors
has a big impact on the size of the enumeration search tree.
The standard deviation is of similar size as the average,
showing that the sizes of the search trees vary greatly with
the permutation.

Another interesting thing we observed is that the order of
the reduced basis as given straight out of BKZ is particularly
good for enumeration. Enumerating the SVP40 challenge
with the basis order given by BKZ-10 gives a tree with
5.968.085 nodes, and the order given by BKZ-20 gives a tree
with 1.232.737 nodes, significantly smaller than the numbers
observed for any of the random permutations.

B. Intervals for coefficients

Given a length bound R, basic enumeration will search
exhaustively for all lattice vectors of length less than or equal
to R. Assume that s = v1b1 + v2b2 + . . .+ vnbn is a vector
such that ‖s‖ ≤ R. Before the enumeration can start, the µ-
matrix [µi,j] of Gram-Schmidt coefficients and the orthogonal
basis vectors b∗1, . . . , b

∗
n must be computed. The µ-matrix is

dependent on the particular order of the basis vectors, and

Reducing Lattice Enumeration Search Trees

DECEMBER 2019 • VOLUME XI • NUMBER 412

INFOCOMMUNICATIONS JOURNAL

6

(a) SVP40

(b) SVP46

(c) SVP50

(d) SVP54

Fig. 1: Number of nodes using hybrid enumeration on lattice
bases pre-processed with BKZ-β for β ∈ {10, 20, 30}.

Fig. 2: Fraction of time taken for doing full hybrid enumeration
on BKZ-10 reduced lattice bases, compared to time taken for
standard enumeration.

levels. For enumerating the lattices only reduced by BKZ-10,
there is a significant decrease in the number of nodes as the
switch level decreases. Is this enough to weigh up for the
O(n4) work done in each node at and above the switch level?

In Figure 2 we have plotted the fraction of time taken
for enumerating the four lattices we have used, compared
to standard enumeration (switch level n + 1). The typical
time taken for running these instances ranged from about one
minute for the SVP46 basis, to about 24 hours for the SVP54,
both pre-processed with BKZ-10. The experiments were run
on a DELL computer running Linux with two 2.8 GHz AMD
EPYC 7451 24-Core processors and 188 GB of RAM.

We observe a few things from Figure 2. First, except for
SVP46, the time it takes to do hybrid enumeration is less than
the time for doing standard enumeration, for some switch level.
Using switch level n gives an increase in time because of an
increase in the number of nodes. For deeper switch levels the
reduction in the number of nodes is actually worth the extra
work done in the few nodes at the top. Second, for the bigger
lattices, the time saving is largest, with full hybrid enumeration
for SVP54 using switch level 51 only taking 34.8% of the
time it takes to do full standard enumeration. Third, we also
see there is an optimal switch level. For SVP40 and SVP50,
hybrid enumeration takes longer for switch level n − 3 than
for n− 2, even though the number of nodes is less for switch
level n− 3. The reduction in the number of nodes is then not
worth the extra work for all nodes on level n− 3.

Figure 2 is only for BKZ-10 reduced bases, and for better
BKZ reductions we do not demonstrate an improvement in
running time. However, the lattices we are able to do full
enumeration for in practice have dimensions in the range 40 -
60, and a block size of 20 and 30 when running BKZ is then a
large portion of that. We see in the plots that there is not much
difference between BKZ-20 and BKZ-30 reduced bases, and
there is hardly any improvement to be done for these cases.
They appear to be quite optimal from the start.

5

not matter when using the minimizing strategy as the vectors
will be sorted as part of the enumeration routine. Hence it
is hard to say anything in general about how large the effect
of minimizing intervals will have, since it depends on how
”lucky” the initial order of the vectors is.

We have tested the minimizing strategy on random lattices
of relatively small dimensions (10 ≤ n ≤ 20), and compared
the number of nodes in these search trees with the number
of nodes in the search trees using standard enumeration. The
minimizing strategy indeed leads to search trees with much
fewer nodes, on the average the reduction is approximately
by a factor n for the small dimensions we looked at. As
the increase in workload in each node is by a factor O(n4),
applying the minimizing strategy in every node is not worth
the extra effort.

E. Hybrid enumeration

When values for many vj’s have been assigned (for j ∈ J),
the effect of minimizing intervals for the relatively few re-
maining indices in {1, . . . , n}\J is small. On the other hand,
applying the minimizing strategy on the very first vj’s to be
fixed has a much greater effect. The number of large sub-
trees rooted high up in the full tree when no ordering strategy
is applied, become significantly smaller when minimizing
intervals. In the extreme case of some interval becoming
empty, the whole sub-tree gets pruned away.

Thus we propose to only apply the minimizing strategy on
the relatively few nodes at the highest levels of the search tree.
This has the benefit of a relatively low cost for a high effect.
We call enumeration with the strategy of minimizing intervals
for the first few levels of the tree for hybrid enumeration.

One parameter for hybrid enumeration is the level in the
tree where we switch from finding an optimal order based on
minimizing intervals to classic enumeration where the basis
is in some given and fixed order. We call this parameter the
switch level.

More precisely, when we reach a node at the switch level
we do the following: We compute the interval lengths for
remaining indices one last time, and permute the remaining
basis vectors according to these lengths. Indices with the
shortest intervals will be branched for first. Then we do normal
enumeration for the sub-tree rooted at the current node, using
this fixed order for the whole sub-tree. Pseudo code for hybrid
enumeration is given in Algorithm 1.

For B = {b1, . . . , bn}, we regard the root node of the tree
(at the top) to be at level n, and the short vectors of L(B) will
be found at level 0. Note that we can run basic enumeration of
the lattice by calling HybridEnumerate(B,R, n+1, n). Calling
HybridEnumerate(B,R, n, n) will also run basic enumeration,
but the basis is first permuted according to the strategy of
minimizing intervals. This makes it easy to compare the benefit
of using hybrid enumeration over basic enumeration.

F. Experiments

We have tested hybrid enumeration on several of the SVP
challenges of [15] and counted the number of nodes hybrid
enumeration gives for different switch levels. The lattice

Algorithm 1 HybridEnumerate(B,R, sl, l)

Input: The basis vectors B = {b1, . . . , bn} of a lattice L,
a length bound R, the current level l, and the switch level
sl.
Output: All vectors s ∈ L with ‖s‖ ≤ R

if l > sl then
Ii ← shortest interval for bi ∈ B
for vi ∈ Ii do

r ← min. length added to ‖s‖ due to choice of vi
HybridEnumerate(B \ {bi}, R− r, sl, l − 1)

end for
end if
if l = sl then

Compute intervals Ij , ∀bj ∈ B
Sort B according to |Ij |, basis vectors on bottom of B

has shortest intervals
HybridEnumerate(B,R, sl, l − 1)

end if
if l < sl then

Run standard enumeration on B with length bound R
end if

bases were first reduced by running BKZ-β on them, for
β ∈ {10, 20, 30}. For each reduced lattice, we ran hybrid
enumeration with switch levels ranging from n+1, equivalent
to standard enumeration, to n− 4, counting the nodes in each
search tree. The results are shown as plots in Figure 1.

We see a few trends from these plots. First, there is not
much difference between BKZ-20 and BKZ-30 regarding the
quality of the bases. Both of them give search trees with
approximately the same number of nodes, and applying the
strategy of minimizing intervals does not change this by
much. Also, the order of the basis vectors given by hybrid
enumeration yields search trees approximately as small as the
order given by BKZ. This is in contrast to the random orders
used for computing the numbers in Table I, that shows a large
increase in the number of nodes. Hence the strategy of sorting
the basis vectors according to interval lengths clearly is a good
approach.

For the BKZ-10 reduced bases, we see a much bigger effect.
First, we see that BKZ-10 gives a significantly weaker reduc-
tion than BKZ-20 or BKZ-30, leading to larger enumeration
search trees. The order as given by BKZ-10 is still good
for enumeration, and doing one initial sorting of the basis
according to interval lengths (switch level n) increases the
search tree. However, lowering the switch level has a clear
impact and significantly reduces the number of nodes in the
search tree, beyond the low number of nodes given by the
initial BKZ-order.

Of course, what matters in the end for a lattice enumeration
algorithm is its complexity, measured in the actual time taken.
We recorded the times taken in all the experiments, to see
if the extra work done in the nodes at and above the switch
level is worth the effort. For the enumeration of BKZ-20 and
BKZ-30 reduced bases it is clearly not worth the effort as the
number of nodes stay almost the same for the various switch

Reducing Lattice Enumeration Search Trees
INFOCOMMUNICATIONS JOURNAL

DECEMBER 2019 • VOLUME XI • NUMBER 4 13

6

(a) SVP40

(b) SVP46

(c) SVP50

(d) SVP54

Fig. 1: Number of nodes using hybrid enumeration on lattice
bases pre-processed with BKZ-β for β ∈ {10, 20, 30}.

Fig. 2: Fraction of time taken for doing full hybrid enumeration
on BKZ-10 reduced lattice bases, compared to time taken for
standard enumeration.

levels. For enumerating the lattices only reduced by BKZ-10,
there is a significant decrease in the number of nodes as the
switch level decreases. Is this enough to weigh up for the
O(n4) work done in each node at and above the switch level?

In Figure 2 we have plotted the fraction of time taken
for enumerating the four lattices we have used, compared
to standard enumeration (switch level n + 1). The typical
time taken for running these instances ranged from about one
minute for the SVP46 basis, to about 24 hours for the SVP54,
both pre-processed with BKZ-10. The experiments were run
on a DELL computer running Linux with two 2.8 GHz AMD
EPYC 7451 24-Core processors and 188 GB of RAM.

We observe a few things from Figure 2. First, except for
SVP46, the time it takes to do hybrid enumeration is less than
the time for doing standard enumeration, for some switch level.
Using switch level n gives an increase in time because of an
increase in the number of nodes. For deeper switch levels the
reduction in the number of nodes is actually worth the extra
work done in the few nodes at the top. Second, for the bigger
lattices, the time saving is largest, with full hybrid enumeration
for SVP54 using switch level 51 only taking 34.8% of the
time it takes to do full standard enumeration. Third, we also
see there is an optimal switch level. For SVP40 and SVP50,
hybrid enumeration takes longer for switch level n − 3 than
for n− 2, even though the number of nodes is less for switch
level n− 3. The reduction in the number of nodes is then not
worth the extra work for all nodes on level n− 3.

Figure 2 is only for BKZ-10 reduced bases, and for better
BKZ reductions we do not demonstrate an improvement in
running time. However, the lattices we are able to do full
enumeration for in practice have dimensions in the range 40 -
60, and a block size of 20 and 30 when running BKZ is then a
large portion of that. We see in the plots that there is not much
difference between BKZ-20 and BKZ-30 reduced bases, and
there is hardly any improvement to be done for these cases.
They appear to be quite optimal from the start.

5

not matter when using the minimizing strategy as the vectors
will be sorted as part of the enumeration routine. Hence it
is hard to say anything in general about how large the effect
of minimizing intervals will have, since it depends on how
”lucky” the initial order of the vectors is.

We have tested the minimizing strategy on random lattices
of relatively small dimensions (10 ≤ n ≤ 20), and compared
the number of nodes in these search trees with the number
of nodes in the search trees using standard enumeration. The
minimizing strategy indeed leads to search trees with much
fewer nodes, on the average the reduction is approximately
by a factor n for the small dimensions we looked at. As
the increase in workload in each node is by a factor O(n4),
applying the minimizing strategy in every node is not worth
the extra effort.

E. Hybrid enumeration

When values for many vj’s have been assigned (for j ∈ J),
the effect of minimizing intervals for the relatively few re-
maining indices in {1, . . . , n}\J is small. On the other hand,
applying the minimizing strategy on the very first vj’s to be
fixed has a much greater effect. The number of large sub-
trees rooted high up in the full tree when no ordering strategy
is applied, become significantly smaller when minimizing
intervals. In the extreme case of some interval becoming
empty, the whole sub-tree gets pruned away.

Thus we propose to only apply the minimizing strategy on
the relatively few nodes at the highest levels of the search tree.
This has the benefit of a relatively low cost for a high effect.
We call enumeration with the strategy of minimizing intervals
for the first few levels of the tree for hybrid enumeration.

One parameter for hybrid enumeration is the level in the
tree where we switch from finding an optimal order based on
minimizing intervals to classic enumeration where the basis
is in some given and fixed order. We call this parameter the
switch level.

More precisely, when we reach a node at the switch level
we do the following: We compute the interval lengths for
remaining indices one last time, and permute the remaining
basis vectors according to these lengths. Indices with the
shortest intervals will be branched for first. Then we do normal
enumeration for the sub-tree rooted at the current node, using
this fixed order for the whole sub-tree. Pseudo code for hybrid
enumeration is given in Algorithm 1.

For B = {b1, . . . , bn}, we regard the root node of the tree
(at the top) to be at level n, and the short vectors of L(B) will
be found at level 0. Note that we can run basic enumeration of
the lattice by calling HybridEnumerate(B,R, n+1, n). Calling
HybridEnumerate(B,R, n, n) will also run basic enumeration,
but the basis is first permuted according to the strategy of
minimizing intervals. This makes it easy to compare the benefit
of using hybrid enumeration over basic enumeration.

F. Experiments

We have tested hybrid enumeration on several of the SVP
challenges of [15] and counted the number of nodes hybrid
enumeration gives for different switch levels. The lattice

Algorithm 1 HybridEnumerate(B,R, sl, l)

Input: The basis vectors B = {b1, . . . , bn} of a lattice L,
a length bound R, the current level l, and the switch level
sl.
Output: All vectors s ∈ L with ‖s‖ ≤ R

if l > sl then
Ii ← shortest interval for bi ∈ B
for vi ∈ Ii do

r ← min. length added to ‖s‖ due to choice of vi
HybridEnumerate(B \ {bi}, R− r, sl, l − 1)

end for
end if
if l = sl then

Compute intervals Ij , ∀bj ∈ B
Sort B according to |Ij |, basis vectors on bottom of B

has shortest intervals
HybridEnumerate(B,R, sl, l − 1)

end if
if l < sl then

Run standard enumeration on B with length bound R
end if

bases were first reduced by running BKZ-β on them, for
β ∈ {10, 20, 30}. For each reduced lattice, we ran hybrid
enumeration with switch levels ranging from n+1, equivalent
to standard enumeration, to n− 4, counting the nodes in each
search tree. The results are shown as plots in Figure 1.

We see a few trends from these plots. First, there is not
much difference between BKZ-20 and BKZ-30 regarding the
quality of the bases. Both of them give search trees with
approximately the same number of nodes, and applying the
strategy of minimizing intervals does not change this by
much. Also, the order of the basis vectors given by hybrid
enumeration yields search trees approximately as small as the
order given by BKZ. This is in contrast to the random orders
used for computing the numbers in Table I, that shows a large
increase in the number of nodes. Hence the strategy of sorting
the basis vectors according to interval lengths clearly is a good
approach.

For the BKZ-10 reduced bases, we see a much bigger effect.
First, we see that BKZ-10 gives a significantly weaker reduc-
tion than BKZ-20 or BKZ-30, leading to larger enumeration
search trees. The order as given by BKZ-10 is still good
for enumeration, and doing one initial sorting of the basis
according to interval lengths (switch level n) increases the
search tree. However, lowering the switch level has a clear
impact and significantly reduces the number of nodes in the
search tree, beyond the low number of nodes given by the
initial BKZ-order.

Of course, what matters in the end for a lattice enumeration
algorithm is its complexity, measured in the actual time taken.
We recorded the times taken in all the experiments, to see
if the extra work done in the nodes at and above the switch
level is worth the effort. For the enumeration of BKZ-20 and
BKZ-30 reduced bases it is clearly not worth the effort as the
number of nodes stay almost the same for the various switch

Reducing Lattice Enumeration Search Trees

DECEMBER 2019 • VOLUME XI • NUMBER 414

INFOCOMMUNICATIONS JOURNAL

7

We conjecture that for higher dimensions, like n = 150,
BKZ-30 would not give an optimally reduced basis, and that
hybrid enumeration then would show the same improvements
as we see with the BKZ-10 reduced bases in our experiments.
All in all, we claim that if one wants to do full enumeration
on large lattices that are not optimally reduced, then hybrid
enumeration will be faster than standard enumeration.

IV. SIGN-BASED PRUNING

Going back to the expansion of a shortest vector in terms
of the basis vectors s =

∑n
i=1 vibi, an enumeration algorithm

computes possible values for each coefficient vi. The equation
for computing the coefficients vi indicates that the range Ii
for vi is likely to contain both positive and negative values.
As both s and −s are shortest vectors, we are content in
finding either of those. If we could a priori know the sign of
these integers (that is whether vi ≤ 0 or vi ≥ 0), we could
discard appropriate values from Ii, making the enumeration
tree smaller. Effectively, this would provide us with another
strategy for pruning. In this section, we describe an algorithm
for making educated guesses for the signs of these coefficients
and how to use them for pruning. In the following we assume
that the lattice basis has been reduced, and that the lengths of
the basis vectors are of low variance.

A. Sign-estimation

First we show how to compute the signs of the coefficients
of the shortest vector when the dimension on the given lattice
is only 2. Let us consider a lattice in 2 dimensions with basis
vectors {b1, b2}. If b1 and b2 are obtuse to each other (i.e. the
angle between them is more than 90◦), then a shortest vector
s = v1b1 + v2b2 can only be obtained if the signs of v1 and
v2 are the same. Similarly, if they are acute (angle less that
90◦) to each other, a shortest vector can only be obtained if
the signs of v1 and v2 are opposite to each other. It is easy
to see this, as a (positive) sum of two vectors pointing in
approximately the same direction can only increase in length.

To extend this observation to higher dimensions we define
the dot-product matrix M , where Mij = bi · bj . Two vectors
have a positive dot product when the angle between them
is less than 90◦ and a negative dot product when the angle
between them is larger than 90◦. Moreover, the magnitude of
bi · bj relative to the product of the lengths of bi and bj is a
measure of how parallel or anti-parallel bi and bj are.

The algorithm for computing the sign of coefficients is
shown in Algorithm 2. The algorithm computes a vector σ of
signs with entries +1 or −1. The sign for the coefficients vi are
computed one at a time, and the estimated sign of vi depends
on the signs of coefficients that have already been computed.
Intuitively, the algorithm compares each basis vector with
some reference vector to estimate the sign of the corresponding
coefficient.

The sign of the first basis vector b1 is set to be positive
by default, so σ1 = +1. This is without loss of generality
since both s and −s are shortest vectors and at least one of
them must have non-negative v1. The vector b1 is set as the
reference vector a for the next basis vector. The first row of

M contains the inner product of b1(= a) with all the other
basis vectors. The basis vector with the largest inner product
in absolute value is both a relatively long vector, and makes an
angle close to 0◦ or 180◦ with b1. Let bi be this basis vector.
Then the sign of vi is set to −1 if M12 > 0, otherwise σi is
set to +1. The reference vector is updated to a = a+ σibi.

Now we want to find a basis vector which is most parallel
or anti-parallel to a. For this we look at the largest entry in
the vector D = M1 + σiMi, where M1 is the top row of M
and Mi is the i’th row. The largest entry in absolute value in
D (except for index 1 and i) indicates the third vector, say
bj , to estimate the sign for. If Dj > 0 then σj = −1, and if
Dj ≥ 0, σj = +1. The vector σjbj is added to a and D is
updated to D = D+σjMj . The algorithm continues like this
until all basis vectors have had their signs estimated.

Algorithm 2 ComputeSign(B)

Input: The basis vectors B of the lattice L.
Output: A vector σ that contains the estimated sign of each
coefficient vi in s =

∑
i vibi where s is a shortest vector,

and a vector γ of real values indicating confidence for each
estimate.

Compute dot-product matrix M such that Mij = bi · bj .
Initialize D := M1 where M1 is the top row of M .
Set σ1 = +1 and γ1 = 1.
Set reference lattice vector a := b1
Set the counter ns := 1.
while ns ≤ n do

Let i be the index of
max{|Dj ||j is not among already fixed signs}.

if Di > 0 then
Set σi = −1

else
Set σi = +1

end if
Set a = a+ σibi
Set D = D + σiMi

Compute γi = | a·bi

‖a‖‖bi‖ |
Set ns = ns + 1

end while

The signs computed in Algorithm 2 are not necessarily
correct for a shortest vector. For each variable vi, we compute
a number 0 ≤ γi ≤ 1 to denote how confident we are that
the computed σi is correct. When γi = 1 we are certain that
the corresponding σi is correct and γi = 0 means we have
no knowledge whether the sign for vi should be positive or
negative. We compute the confidence values of the estimated
signs as follows: Let J ⊂ {1, . . . , n} be the set of indices for
which values have been fixed and let the reference vector be
a =

∑
j∈J σjbj . Then the confidence value for the σi estimate

is given as γi = | a·bi

‖a‖‖bi‖ |.
The intuition behind this measure for confidence is that if

two vectors are very close to being parallel, then having the
same sign on the coefficients of these vectors will always lead
to a longer vector as their sum, pointing approximately in the
same direction as the other two. In order to be part of a short

8

Lattice Pre-processing node fraction shortest vector found
SVP40 BKZ10 0.670 yes
SVP40 BKZ20 0.745 yes
SVP40 BKZ30 0.665 yes
SVP46 BKZ10 0.682 yes
SVP46 BKZ20 0.750 yes
SVP46 BKZ30 0.800 yes

TABLE II: Measure of effect of sign-based pruning. The node
fraction is the number of nodes in pruned search tree compared
to the number of nodes in the full enumeration search tree.

vector s, the other basis vectors must be able to offset this
long vector. If the signs of the coefficients are opposite, a sum
of the two approximately parallel basis vectors would be much
shorter. It is easier to sufficiently offset a short vector than a
long one, in order to find the shortest vector overall.

When two vectors are close to being parallel then a·bi

‖a‖‖bi‖
is close to being 1, and when two vectors are close to being
anti-parallel a·bi

‖a‖‖bi‖ is close to being −1. In both cases γi ≈ 1.
On the other hand, when a and bi are close to orthogonal

(i.e. a ·bi ≈ 0), then a+bi and a−bi will be of almost equal
lengths, and we can only to a little extent distinguish which
of the two cases that will be most easily offset by the other
basis vectors. The confidence value will therefore be close to
0 in this case.

We now turn to how we use the confidence values to prune
intervals in the search tree.

B. Pruning intervals based on sign estimation

We can use the sign estimations and their confidence values
to shorten the intervals computed for enumeration, while still
maintaining a high probability we do not prune away all
shortest vectors.

For a node in the search tree where possible values for
vi are tried, let Ii be the interval computed for vi. Let I+i :=
Ii∩ [0,∞) and I−i := Ii∩(−∞, 0]. For an interval I := [l,m]
and a positive number α ∈ R, let us define the interval αI to be
[αl, αm]. If σi = −1, then Ii is pruned to Ii = (1−γi)I

+
i ∪I−i .

If σi = +1, then Ii is pruned to Ii = (1−γi)I
−
i ∪I+i . In other

words, we cut away a portion of the interval where we believe
a correct value for vi will not be found. The portion cut away
is proportional to the confidence we have in our estimate.

An advantage of this pruning strategy is that it can be put on
top of any other pruning strategy. The sign-based pruning does
not depend on how the intervals are computed. This pruning
strategy reduces the search tree as long as the given intervals
are non-empty and cuts away integer values that are opposite
in sign to the predicted sign.

C. Experiments

We have used a few of the SVP challenge lattices to test the
sign-based pruning strategy. We measured both the reduction
in the number of nodes in the search tree, and whether the
pruning failed to find the shortest vector. The results are
summarized in Table II.

What we see in Table II is that in the experiments we
never failed to find the shortest vector, and that the reduction

in the number of nodes is by a modest but still significant
fraction. One explanation for this is that we cut away the ends
of the intervals, which only takes away small subtrees from
the whole enumeration tree. The vi-values found at the ends
of the intervals are those that consume much of the length
limit R when selected, probably quickly leading to dead ends
anyway. Cutting away these values may not prune away very
large parts of the search tree. Still, it is worthwhile to apply
the sign-based pruning as it costs practically nothing in terms
of extra complexity. The actual run times are cut down by
almost the same fraction as the reduction in the number of
nodes.

V. CONCLUSIONS

Public key encryption schemes based on lattices are one
of the most promising approaches for achieving quantum safe
crypto, and it is important to understand the hardness of the
SVP problem on which they are based. Lattice enumeration
plays a central role in the best known methods for solving SVP,
so studying how to speed up lattice enumeration is important
for assessing the security of lattice-based encryption. In this
paper we have explored two different ideas for speeding up
lattice enumeration.

First we looked at how permutations of the basis vectors of
a lattice affect the running time of the standard enumeration
algorithm. We demonstrate that the particular order of the
basis vectors have a big impact on the number of nodes
in the search tree and the running time. Next we identified
particular permutations that give relatively small search trees.
Dynamically finding the best permutations has a high cost on
its own. However, if the lattice dimension is big enough and
the pre-processing does not leave a strongly reduced basis, it
is well worth the effort to apply the strategy in the relatively
few nodes at the top of the search tree. We call this type of
enumeration for hybrid enumeration.

Secondly, we looked at the possibility of estimating the
signs of the coefficients giving a shortest vector. We can only
estimate the signs with some degree of confidence, but the
estimates and the confidence values leads directly to a pruning
strategy. Unlike other pruning strategies that cuts away values
from both ends of the interval where a coefficient vi can be
found, sign-based pruning only cuts values from one side of
the interval (the side where the values have the ”wrong” sign).
Sign-based pruning can therefore be applied together with any
other pruning strategy one may use.

The experiments of sign-based pruning give a reduction in
the number of nodes in the search tree compared to standard
enumeration, but the reduction is not great. However, we never
failed to find the shortest vector using sign-based pruning.
This may indicate that the pruning we employed from the
confidence measure is not aggressive enough, and that larger
parts of the intervals could be cut away without sacrificing too
much accuracy in solving the SVP. Further studies of sign-
based pruning is topic for future work.

REFERENCES

[1] M. Ajtai, “The Shortest Vector Problem in L2 is NP-hard for Random-
ized Reductions (Extended Abstract),” in Proceedings of the Thirtieth

7

We conjecture that for higher dimensions, like n = 150,
BKZ-30 would not give an optimally reduced basis, and that
hybrid enumeration then would show the same improvements
as we see with the BKZ-10 reduced bases in our experiments.
All in all, we claim that if one wants to do full enumeration
on large lattices that are not optimally reduced, then hybrid
enumeration will be faster than standard enumeration.

IV. SIGN-BASED PRUNING

Going back to the expansion of a shortest vector in terms
of the basis vectors s =

∑n
i=1 vibi, an enumeration algorithm

computes possible values for each coefficient vi. The equation
for computing the coefficients vi indicates that the range Ii
for vi is likely to contain both positive and negative values.
As both s and −s are shortest vectors, we are content in
finding either of those. If we could a priori know the sign of
these integers (that is whether vi ≤ 0 or vi ≥ 0), we could
discard appropriate values from Ii, making the enumeration
tree smaller. Effectively, this would provide us with another
strategy for pruning. In this section, we describe an algorithm
for making educated guesses for the signs of these coefficients
and how to use them for pruning. In the following we assume
that the lattice basis has been reduced, and that the lengths of
the basis vectors are of low variance.

A. Sign-estimation

First we show how to compute the signs of the coefficients
of the shortest vector when the dimension on the given lattice
is only 2. Let us consider a lattice in 2 dimensions with basis
vectors {b1, b2}. If b1 and b2 are obtuse to each other (i.e. the
angle between them is more than 90◦), then a shortest vector
s = v1b1 + v2b2 can only be obtained if the signs of v1 and
v2 are the same. Similarly, if they are acute (angle less that
90◦) to each other, a shortest vector can only be obtained if
the signs of v1 and v2 are opposite to each other. It is easy
to see this, as a (positive) sum of two vectors pointing in
approximately the same direction can only increase in length.

To extend this observation to higher dimensions we define
the dot-product matrix M , where Mij = bi · bj . Two vectors
have a positive dot product when the angle between them
is less than 90◦ and a negative dot product when the angle
between them is larger than 90◦. Moreover, the magnitude of
bi · bj relative to the product of the lengths of bi and bj is a
measure of how parallel or anti-parallel bi and bj are.

The algorithm for computing the sign of coefficients is
shown in Algorithm 2. The algorithm computes a vector σ of
signs with entries +1 or −1. The sign for the coefficients vi are
computed one at a time, and the estimated sign of vi depends
on the signs of coefficients that have already been computed.
Intuitively, the algorithm compares each basis vector with
some reference vector to estimate the sign of the corresponding
coefficient.

The sign of the first basis vector b1 is set to be positive
by default, so σ1 = +1. This is without loss of generality
since both s and −s are shortest vectors and at least one of
them must have non-negative v1. The vector b1 is set as the
reference vector a for the next basis vector. The first row of

M contains the inner product of b1(= a) with all the other
basis vectors. The basis vector with the largest inner product
in absolute value is both a relatively long vector, and makes an
angle close to 0◦ or 180◦ with b1. Let bi be this basis vector.
Then the sign of vi is set to −1 if M12 > 0, otherwise σi is
set to +1. The reference vector is updated to a = a+ σibi.

Now we want to find a basis vector which is most parallel
or anti-parallel to a. For this we look at the largest entry in
the vector D = M1 + σiMi, where M1 is the top row of M
and Mi is the i’th row. The largest entry in absolute value in
D (except for index 1 and i) indicates the third vector, say
bj , to estimate the sign for. If Dj > 0 then σj = −1, and if
Dj ≥ 0, σj = +1. The vector σjbj is added to a and D is
updated to D = D+σjMj . The algorithm continues like this
until all basis vectors have had their signs estimated.

Algorithm 2 ComputeSign(B)

Input: The basis vectors B of the lattice L.
Output: A vector σ that contains the estimated sign of each
coefficient vi in s =

∑
i vibi where s is a shortest vector,

and a vector γ of real values indicating confidence for each
estimate.

Compute dot-product matrix M such that Mij = bi · bj .
Initialize D := M1 where M1 is the top row of M .
Set σ1 = +1 and γ1 = 1.
Set reference lattice vector a := b1
Set the counter ns := 1.
while ns ≤ n do

Let i be the index of
max{|Dj ||j is not among already fixed signs}.

if Di > 0 then
Set σi = −1

else
Set σi = +1

end if
Set a = a+ σibi
Set D = D + σiMi

Compute γi = | a·bi

‖a‖‖bi‖ |
Set ns = ns + 1

end while

The signs computed in Algorithm 2 are not necessarily
correct for a shortest vector. For each variable vi, we compute
a number 0 ≤ γi ≤ 1 to denote how confident we are that
the computed σi is correct. When γi = 1 we are certain that
the corresponding σi is correct and γi = 0 means we have
no knowledge whether the sign for vi should be positive or
negative. We compute the confidence values of the estimated
signs as follows: Let J ⊂ {1, . . . , n} be the set of indices for
which values have been fixed and let the reference vector be
a =

∑
j∈J σjbj . Then the confidence value for the σi estimate

is given as γi = | a·bi

‖a‖‖bi‖ |.
The intuition behind this measure for confidence is that if

two vectors are very close to being parallel, then having the
same sign on the coefficients of these vectors will always lead
to a longer vector as their sum, pointing approximately in the
same direction as the other two. In order to be part of a short

7

We conjecture that for higher dimensions, like n = 150,
BKZ-30 would not give an optimally reduced basis, and that
hybrid enumeration then would show the same improvements
as we see with the BKZ-10 reduced bases in our experiments.
All in all, we claim that if one wants to do full enumeration
on large lattices that are not optimally reduced, then hybrid
enumeration will be faster than standard enumeration.

IV. SIGN-BASED PRUNING

Going back to the expansion of a shortest vector in terms
of the basis vectors s =

∑n
i=1 vibi, an enumeration algorithm

computes possible values for each coefficient vi. The equation
for computing the coefficients vi indicates that the range Ii
for vi is likely to contain both positive and negative values.
As both s and −s are shortest vectors, we are content in
finding either of those. If we could a priori know the sign of
these integers (that is whether vi ≤ 0 or vi ≥ 0), we could
discard appropriate values from Ii, making the enumeration
tree smaller. Effectively, this would provide us with another
strategy for pruning. In this section, we describe an algorithm
for making educated guesses for the signs of these coefficients
and how to use them for pruning. In the following we assume
that the lattice basis has been reduced, and that the lengths of
the basis vectors are of low variance.

A. Sign-estimation

First we show how to compute the signs of the coefficients
of the shortest vector when the dimension on the given lattice
is only 2. Let us consider a lattice in 2 dimensions with basis
vectors {b1, b2}. If b1 and b2 are obtuse to each other (i.e. the
angle between them is more than 90◦), then a shortest vector
s = v1b1 + v2b2 can only be obtained if the signs of v1 and
v2 are the same. Similarly, if they are acute (angle less that
90◦) to each other, a shortest vector can only be obtained if
the signs of v1 and v2 are opposite to each other. It is easy
to see this, as a (positive) sum of two vectors pointing in
approximately the same direction can only increase in length.

To extend this observation to higher dimensions we define
the dot-product matrix M , where Mij = bi · bj . Two vectors
have a positive dot product when the angle between them
is less than 90◦ and a negative dot product when the angle
between them is larger than 90◦. Moreover, the magnitude of
bi · bj relative to the product of the lengths of bi and bj is a
measure of how parallel or anti-parallel bi and bj are.

The algorithm for computing the sign of coefficients is
shown in Algorithm 2. The algorithm computes a vector σ of
signs with entries +1 or −1. The sign for the coefficients vi are
computed one at a time, and the estimated sign of vi depends
on the signs of coefficients that have already been computed.
Intuitively, the algorithm compares each basis vector with
some reference vector to estimate the sign of the corresponding
coefficient.

The sign of the first basis vector b1 is set to be positive
by default, so σ1 = +1. This is without loss of generality
since both s and −s are shortest vectors and at least one of
them must have non-negative v1. The vector b1 is set as the
reference vector a for the next basis vector. The first row of

M contains the inner product of b1(= a) with all the other
basis vectors. The basis vector with the largest inner product
in absolute value is both a relatively long vector, and makes an
angle close to 0◦ or 180◦ with b1. Let bi be this basis vector.
Then the sign of vi is set to −1 if M12 > 0, otherwise σi is
set to +1. The reference vector is updated to a = a+ σibi.

Now we want to find a basis vector which is most parallel
or anti-parallel to a. For this we look at the largest entry in
the vector D = M1 + σiMi, where M1 is the top row of M
and Mi is the i’th row. The largest entry in absolute value in
D (except for index 1 and i) indicates the third vector, say
bj , to estimate the sign for. If Dj > 0 then σj = −1, and if
Dj ≥ 0, σj = +1. The vector σjbj is added to a and D is
updated to D = D+σjMj . The algorithm continues like this
until all basis vectors have had their signs estimated.

Algorithm 2 ComputeSign(B)

Input: The basis vectors B of the lattice L.
Output: A vector σ that contains the estimated sign of each
coefficient vi in s =

∑
i vibi where s is a shortest vector,

and a vector γ of real values indicating confidence for each
estimate.

Compute dot-product matrix M such that Mij = bi · bj .
Initialize D := M1 where M1 is the top row of M .
Set σ1 = +1 and γ1 = 1.
Set reference lattice vector a := b1
Set the counter ns := 1.
while ns ≤ n do

Let i be the index of
max{|Dj ||j is not among already fixed signs}.

if Di > 0 then
Set σi = −1

else
Set σi = +1

end if
Set a = a+ σibi
Set D = D + σiMi

Compute γi = | a·bi

‖a‖‖bi‖ |
Set ns = ns + 1

end while

The signs computed in Algorithm 2 are not necessarily
correct for a shortest vector. For each variable vi, we compute
a number 0 ≤ γi ≤ 1 to denote how confident we are that
the computed σi is correct. When γi = 1 we are certain that
the corresponding σi is correct and γi = 0 means we have
no knowledge whether the sign for vi should be positive or
negative. We compute the confidence values of the estimated
signs as follows: Let J ⊂ {1, . . . , n} be the set of indices for
which values have been fixed and let the reference vector be
a =

∑
j∈J σjbj . Then the confidence value for the σi estimate

is given as γi = | a·bi

‖a‖‖bi‖ |.
The intuition behind this measure for confidence is that if

two vectors are very close to being parallel, then having the
same sign on the coefficients of these vectors will always lead
to a longer vector as their sum, pointing approximately in the
same direction as the other two. In order to be part of a short

7

We conjecture that for higher dimensions, like n = 150,
BKZ-30 would not give an optimally reduced basis, and that
hybrid enumeration then would show the same improvements
as we see with the BKZ-10 reduced bases in our experiments.
All in all, we claim that if one wants to do full enumeration
on large lattices that are not optimally reduced, then hybrid
enumeration will be faster than standard enumeration.

IV. SIGN-BASED PRUNING

Going back to the expansion of a shortest vector in terms
of the basis vectors s =

∑n
i=1 vibi, an enumeration algorithm

computes possible values for each coefficient vi. The equation
for computing the coefficients vi indicates that the range Ii
for vi is likely to contain both positive and negative values.
As both s and −s are shortest vectors, we are content in
finding either of those. If we could a priori know the sign of
these integers (that is whether vi ≤ 0 or vi ≥ 0), we could
discard appropriate values from Ii, making the enumeration
tree smaller. Effectively, this would provide us with another
strategy for pruning. In this section, we describe an algorithm
for making educated guesses for the signs of these coefficients
and how to use them for pruning. In the following we assume
that the lattice basis has been reduced, and that the lengths of
the basis vectors are of low variance.

A. Sign-estimation

First we show how to compute the signs of the coefficients
of the shortest vector when the dimension on the given lattice
is only 2. Let us consider a lattice in 2 dimensions with basis
vectors {b1, b2}. If b1 and b2 are obtuse to each other (i.e. the
angle between them is more than 90◦), then a shortest vector
s = v1b1 + v2b2 can only be obtained if the signs of v1 and
v2 are the same. Similarly, if they are acute (angle less that
90◦) to each other, a shortest vector can only be obtained if
the signs of v1 and v2 are opposite to each other. It is easy
to see this, as a (positive) sum of two vectors pointing in
approximately the same direction can only increase in length.

To extend this observation to higher dimensions we define
the dot-product matrix M , where Mij = bi · bj . Two vectors
have a positive dot product when the angle between them
is less than 90◦ and a negative dot product when the angle
between them is larger than 90◦. Moreover, the magnitude of
bi · bj relative to the product of the lengths of bi and bj is a
measure of how parallel or anti-parallel bi and bj are.

The algorithm for computing the sign of coefficients is
shown in Algorithm 2. The algorithm computes a vector σ of
signs with entries +1 or −1. The sign for the coefficients vi are
computed one at a time, and the estimated sign of vi depends
on the signs of coefficients that have already been computed.
Intuitively, the algorithm compares each basis vector with
some reference vector to estimate the sign of the corresponding
coefficient.

The sign of the first basis vector b1 is set to be positive
by default, so σ1 = +1. This is without loss of generality
since both s and −s are shortest vectors and at least one of
them must have non-negative v1. The vector b1 is set as the
reference vector a for the next basis vector. The first row of

M contains the inner product of b1(= a) with all the other
basis vectors. The basis vector with the largest inner product
in absolute value is both a relatively long vector, and makes an
angle close to 0◦ or 180◦ with b1. Let bi be this basis vector.
Then the sign of vi is set to −1 if M12 > 0, otherwise σi is
set to +1. The reference vector is updated to a = a+ σibi.

Now we want to find a basis vector which is most parallel
or anti-parallel to a. For this we look at the largest entry in
the vector D = M1 + σiMi, where M1 is the top row of M
and Mi is the i’th row. The largest entry in absolute value in
D (except for index 1 and i) indicates the third vector, say
bj , to estimate the sign for. If Dj > 0 then σj = −1, and if
Dj ≥ 0, σj = +1. The vector σjbj is added to a and D is
updated to D = D+σjMj . The algorithm continues like this
until all basis vectors have had their signs estimated.

Algorithm 2 ComputeSign(B)

Input: The basis vectors B of the lattice L.
Output: A vector σ that contains the estimated sign of each
coefficient vi in s =

∑
i vibi where s is a shortest vector,

and a vector γ of real values indicating confidence for each
estimate.

Compute dot-product matrix M such that Mij = bi · bj .
Initialize D := M1 where M1 is the top row of M .
Set σ1 = +1 and γ1 = 1.
Set reference lattice vector a := b1
Set the counter ns := 1.
while ns ≤ n do

Let i be the index of
max{|Dj ||j is not among already fixed signs}.

if Di > 0 then
Set σi = −1

else
Set σi = +1

end if
Set a = a+ σibi
Set D = D + σiMi

Compute γi = | a·bi

‖a‖‖bi‖ |
Set ns = ns + 1

end while

The signs computed in Algorithm 2 are not necessarily
correct for a shortest vector. For each variable vi, we compute
a number 0 ≤ γi ≤ 1 to denote how confident we are that
the computed σi is correct. When γi = 1 we are certain that
the corresponding σi is correct and γi = 0 means we have
no knowledge whether the sign for vi should be positive or
negative. We compute the confidence values of the estimated
signs as follows: Let J ⊂ {1, . . . , n} be the set of indices for
which values have been fixed and let the reference vector be
a =

∑
j∈J σjbj . Then the confidence value for the σi estimate

is given as γi = | a·bi

‖a‖‖bi‖ |.
The intuition behind this measure for confidence is that if

two vectors are very close to being parallel, then having the
same sign on the coefficients of these vectors will always lead
to a longer vector as their sum, pointing approximately in the
same direction as the other two. In order to be part of a short

Similarly, if they are acute (angle less than

7

We conjecture that for higher dimensions, like n = 150,
BKZ-30 would not give an optimally reduced basis, and that
hybrid enumeration then would show the same improvements
as we see with the BKZ-10 reduced bases in our experiments.
All in all, we claim that if one wants to do full enumeration
on large lattices that are not optimally reduced, then hybrid
enumeration will be faster than standard enumeration.

IV. SIGN-BASED PRUNING

Going back to the expansion of a shortest vector in terms
of the basis vectors s =

∑n
i=1 vibi, an enumeration algorithm

computes possible values for each coefficient vi. The equation
for computing the coefficients vi indicates that the range Ii
for vi is likely to contain both positive and negative values.
As both s and −s are shortest vectors, we are content in
finding either of those. If we could a priori know the sign of
these integers (that is whether vi ≤ 0 or vi ≥ 0), we could
discard appropriate values from Ii, making the enumeration
tree smaller. Effectively, this would provide us with another
strategy for pruning. In this section, we describe an algorithm
for making educated guesses for the signs of these coefficients
and how to use them for pruning. In the following we assume
that the lattice basis has been reduced, and that the lengths of
the basis vectors are of low variance.

A. Sign-estimation

First we show how to compute the signs of the coefficients
of the shortest vector when the dimension on the given lattice
is only 2. Let us consider a lattice in 2 dimensions with basis
vectors {b1, b2}. If b1 and b2 are obtuse to each other (i.e. the
angle between them is more than 90◦), then a shortest vector
s = v1b1 + v2b2 can only be obtained if the signs of v1 and
v2 are the same. Similarly, if they are acute (angle less that
90◦) to each other, a shortest vector can only be obtained if
the signs of v1 and v2 are opposite to each other. It is easy
to see this, as a (positive) sum of two vectors pointing in
approximately the same direction can only increase in length.

To extend this observation to higher dimensions we define
the dot-product matrix M , where Mij = bi · bj . Two vectors
have a positive dot product when the angle between them
is less than 90◦ and a negative dot product when the angle
between them is larger than 90◦. Moreover, the magnitude of
bi · bj relative to the product of the lengths of bi and bj is a
measure of how parallel or anti-parallel bi and bj are.

The algorithm for computing the sign of coefficients is
shown in Algorithm 2. The algorithm computes a vector σ of
signs with entries +1 or −1. The sign for the coefficients vi are
computed one at a time, and the estimated sign of vi depends
on the signs of coefficients that have already been computed.
Intuitively, the algorithm compares each basis vector with
some reference vector to estimate the sign of the corresponding
coefficient.

The sign of the first basis vector b1 is set to be positive
by default, so σ1 = +1. This is without loss of generality
since both s and −s are shortest vectors and at least one of
them must have non-negative v1. The vector b1 is set as the
reference vector a for the next basis vector. The first row of

M contains the inner product of b1(= a) with all the other
basis vectors. The basis vector with the largest inner product
in absolute value is both a relatively long vector, and makes an
angle close to 0◦ or 180◦ with b1. Let bi be this basis vector.
Then the sign of vi is set to −1 if M12 > 0, otherwise σi is
set to +1. The reference vector is updated to a = a+ σibi.

Now we want to find a basis vector which is most parallel
or anti-parallel to a. For this we look at the largest entry in
the vector D = M1 + σiMi, where M1 is the top row of M
and Mi is the i’th row. The largest entry in absolute value in
D (except for index 1 and i) indicates the third vector, say
bj , to estimate the sign for. If Dj > 0 then σj = −1, and if
Dj ≥ 0, σj = +1. The vector σjbj is added to a and D is
updated to D = D+σjMj . The algorithm continues like this
until all basis vectors have had their signs estimated.

Algorithm 2 ComputeSign(B)

Input: The basis vectors B of the lattice L.
Output: A vector σ that contains the estimated sign of each
coefficient vi in s =

∑
i vibi where s is a shortest vector,

and a vector γ of real values indicating confidence for each
estimate.

Compute dot-product matrix M such that Mij = bi · bj .
Initialize D := M1 where M1 is the top row of M .
Set σ1 = +1 and γ1 = 1.
Set reference lattice vector a := b1
Set the counter ns := 1.
while ns ≤ n do

Let i be the index of
max{|Dj ||j is not among already fixed signs}.

if Di > 0 then
Set σi = −1

else
Set σi = +1

end if
Set a = a+ σibi
Set D = D + σiMi

Compute γi = | a·bi

‖a‖‖bi‖ |
Set ns = ns + 1

end while

The signs computed in Algorithm 2 are not necessarily
correct for a shortest vector. For each variable vi, we compute
a number 0 ≤ γi ≤ 1 to denote how confident we are that
the computed σi is correct. When γi = 1 we are certain that
the corresponding σi is correct and γi = 0 means we have
no knowledge whether the sign for vi should be positive or
negative. We compute the confidence values of the estimated
signs as follows: Let J ⊂ {1, . . . , n} be the set of indices for
which values have been fixed and let the reference vector be
a =

∑
j∈J σjbj . Then the confidence value for the σi estimate

is given as γi = | a·bi

‖a‖‖bi‖ |.
The intuition behind this measure for confidence is that if

two vectors are very close to being parallel, then having the
same sign on the coefficients of these vectors will always lead
to a longer vector as their sum, pointing approximately in the
same direction as the other two. In order to be part of a short

7

We conjecture that for higher dimensions, like n = 150,
BKZ-30 would not give an optimally reduced basis, and that
hybrid enumeration then would show the same improvements
as we see with the BKZ-10 reduced bases in our experiments.
All in all, we claim that if one wants to do full enumeration
on large lattices that are not optimally reduced, then hybrid
enumeration will be faster than standard enumeration.

IV. SIGN-BASED PRUNING

Going back to the expansion of a shortest vector in terms
of the basis vectors s =

∑n
i=1 vibi, an enumeration algorithm

computes possible values for each coefficient vi. The equation
for computing the coefficients vi indicates that the range Ii
for vi is likely to contain both positive and negative values.
As both s and −s are shortest vectors, we are content in
finding either of those. If we could a priori know the sign of
these integers (that is whether vi ≤ 0 or vi ≥ 0), we could
discard appropriate values from Ii, making the enumeration
tree smaller. Effectively, this would provide us with another
strategy for pruning. In this section, we describe an algorithm
for making educated guesses for the signs of these coefficients
and how to use them for pruning. In the following we assume
that the lattice basis has been reduced, and that the lengths of
the basis vectors are of low variance.

A. Sign-estimation

First we show how to compute the signs of the coefficients
of the shortest vector when the dimension on the given lattice
is only 2. Let us consider a lattice in 2 dimensions with basis
vectors {b1, b2}. If b1 and b2 are obtuse to each other (i.e. the
angle between them is more than 90◦), then a shortest vector
s = v1b1 + v2b2 can only be obtained if the signs of v1 and
v2 are the same. Similarly, if they are acute (angle less that
90◦) to each other, a shortest vector can only be obtained if
the signs of v1 and v2 are opposite to each other. It is easy
to see this, as a (positive) sum of two vectors pointing in
approximately the same direction can only increase in length.

To extend this observation to higher dimensions we define
the dot-product matrix M , where Mij = bi · bj . Two vectors
have a positive dot product when the angle between them
is less than 90◦ and a negative dot product when the angle
between them is larger than 90◦. Moreover, the magnitude of
bi · bj relative to the product of the lengths of bi and bj is a
measure of how parallel or anti-parallel bi and bj are.

The algorithm for computing the sign of coefficients is
shown in Algorithm 2. The algorithm computes a vector σ of
signs with entries +1 or −1. The sign for the coefficients vi are
computed one at a time, and the estimated sign of vi depends
on the signs of coefficients that have already been computed.
Intuitively, the algorithm compares each basis vector with
some reference vector to estimate the sign of the corresponding
coefficient.

The sign of the first basis vector b1 is set to be positive
by default, so σ1 = +1. This is without loss of generality
since both s and −s are shortest vectors and at least one of
them must have non-negative v1. The vector b1 is set as the
reference vector a for the next basis vector. The first row of

M contains the inner product of b1(= a) with all the other
basis vectors. The basis vector with the largest inner product
in absolute value is both a relatively long vector, and makes an
angle close to 0◦ or 180◦ with b1. Let bi be this basis vector.
Then the sign of vi is set to −1 if M12 > 0, otherwise σi is
set to +1. The reference vector is updated to a = a+ σibi.

Now we want to find a basis vector which is most parallel
or anti-parallel to a. For this we look at the largest entry in
the vector D = M1 + σiMi, where M1 is the top row of M
and Mi is the i’th row. The largest entry in absolute value in
D (except for index 1 and i) indicates the third vector, say
bj , to estimate the sign for. If Dj > 0 then σj = −1, and if
Dj ≥ 0, σj = +1. The vector σjbj is added to a and D is
updated to D = D+σjMj . The algorithm continues like this
until all basis vectors have had their signs estimated.

Algorithm 2 ComputeSign(B)

Input: The basis vectors B of the lattice L.
Output: A vector σ that contains the estimated sign of each
coefficient vi in s =

∑
i vibi where s is a shortest vector,

and a vector γ of real values indicating confidence for each
estimate.

Compute dot-product matrix M such that Mij = bi · bj .
Initialize D := M1 where M1 is the top row of M .
Set σ1 = +1 and γ1 = 1.
Set reference lattice vector a := b1
Set the counter ns := 1.
while ns ≤ n do

Let i be the index of
max{|Dj ||j is not among already fixed signs}.

if Di > 0 then
Set σi = −1

else
Set σi = +1

end if
Set a = a+ σibi
Set D = D + σiMi

Compute γi = | a·bi

‖a‖‖bi‖ |
Set ns = ns + 1

end while

The signs computed in Algorithm 2 are not necessarily
correct for a shortest vector. For each variable vi, we compute
a number 0 ≤ γi ≤ 1 to denote how confident we are that
the computed σi is correct. When γi = 1 we are certain that
the corresponding σi is correct and γi = 0 means we have
no knowledge whether the sign for vi should be positive or
negative. We compute the confidence values of the estimated
signs as follows: Let J ⊂ {1, . . . , n} be the set of indices for
which values have been fixed and let the reference vector be
a =

∑
j∈J σjbj . Then the confidence value for the σi estimate

is given as γi = | a·bi

‖a‖‖bi‖ |.
The intuition behind this measure for confidence is that if

two vectors are very close to being parallel, then having the
same sign on the coefficients of these vectors will always lead
to a longer vector as their sum, pointing approximately in the
same direction as the other two. In order to be part of a short

7

We conjecture that for higher dimensions, like n = 150,
BKZ-30 would not give an optimally reduced basis, and that
hybrid enumeration then would show the same improvements
as we see with the BKZ-10 reduced bases in our experiments.
All in all, we claim that if one wants to do full enumeration
on large lattices that are not optimally reduced, then hybrid
enumeration will be faster than standard enumeration.

IV. SIGN-BASED PRUNING

Going back to the expansion of a shortest vector in terms
of the basis vectors s =

∑n
i=1 vibi, an enumeration algorithm

computes possible values for each coefficient vi. The equation
for computing the coefficients vi indicates that the range Ii
for vi is likely to contain both positive and negative values.
As both s and −s are shortest vectors, we are content in
finding either of those. If we could a priori know the sign of
these integers (that is whether vi ≤ 0 or vi ≥ 0), we could
discard appropriate values from Ii, making the enumeration
tree smaller. Effectively, this would provide us with another
strategy for pruning. In this section, we describe an algorithm
for making educated guesses for the signs of these coefficients
and how to use them for pruning. In the following we assume
that the lattice basis has been reduced, and that the lengths of
the basis vectors are of low variance.

A. Sign-estimation

First we show how to compute the signs of the coefficients
of the shortest vector when the dimension on the given lattice
is only 2. Let us consider a lattice in 2 dimensions with basis
vectors {b1, b2}. If b1 and b2 are obtuse to each other (i.e. the
angle between them is more than 90◦), then a shortest vector
s = v1b1 + v2b2 can only be obtained if the signs of v1 and
v2 are the same. Similarly, if they are acute (angle less that
90◦) to each other, a shortest vector can only be obtained if
the signs of v1 and v2 are opposite to each other. It is easy
to see this, as a (positive) sum of two vectors pointing in
approximately the same direction can only increase in length.

To extend this observation to higher dimensions we define
the dot-product matrix M , where Mij = bi · bj . Two vectors
have a positive dot product when the angle between them
is less than 90◦ and a negative dot product when the angle
between them is larger than 90◦. Moreover, the magnitude of
bi · bj relative to the product of the lengths of bi and bj is a
measure of how parallel or anti-parallel bi and bj are.

The algorithm for computing the sign of coefficients is
shown in Algorithm 2. The algorithm computes a vector σ of
signs with entries +1 or −1. The sign for the coefficients vi are
computed one at a time, and the estimated sign of vi depends
on the signs of coefficients that have already been computed.
Intuitively, the algorithm compares each basis vector with
some reference vector to estimate the sign of the corresponding
coefficient.

The sign of the first basis vector b1 is set to be positive
by default, so σ1 = +1. This is without loss of generality
since both s and −s are shortest vectors and at least one of
them must have non-negative v1. The vector b1 is set as the
reference vector a for the next basis vector. The first row of

M contains the inner product of b1(= a) with all the other
basis vectors. The basis vector with the largest inner product
in absolute value is both a relatively long vector, and makes an
angle close to 0◦ or 180◦ with b1. Let bi be this basis vector.
Then the sign of vi is set to −1 if M12 > 0, otherwise σi is
set to +1. The reference vector is updated to a = a+ σibi.

Now we want to find a basis vector which is most parallel
or anti-parallel to a. For this we look at the largest entry in
the vector D = M1 + σiMi, where M1 is the top row of M
and Mi is the i’th row. The largest entry in absolute value in
D (except for index 1 and i) indicates the third vector, say
bj , to estimate the sign for. If Dj > 0 then σj = −1, and if
Dj ≥ 0, σj = +1. The vector σjbj is added to a and D is
updated to D = D+σjMj . The algorithm continues like this
until all basis vectors have had their signs estimated.

Algorithm 2 ComputeSign(B)

Input: The basis vectors B of the lattice L.
Output: A vector σ that contains the estimated sign of each
coefficient vi in s =

∑
i vibi where s is a shortest vector,

and a vector γ of real values indicating confidence for each
estimate.

Compute dot-product matrix M such that Mij = bi · bj .
Initialize D := M1 where M1 is the top row of M .
Set σ1 = +1 and γ1 = 1.
Set reference lattice vector a := b1
Set the counter ns := 1.
while ns ≤ n do

Let i be the index of
max{|Dj ||j is not among already fixed signs}.

if Di > 0 then
Set σi = −1

else
Set σi = +1

end if
Set a = a+ σibi
Set D = D + σiMi

Compute γi = | a·bi

‖a‖‖bi‖ |
Set ns = ns + 1

end while

The signs computed in Algorithm 2 are not necessarily
correct for a shortest vector. For each variable vi, we compute
a number 0 ≤ γi ≤ 1 to denote how confident we are that
the computed σi is correct. When γi = 1 we are certain that
the corresponding σi is correct and γi = 0 means we have
no knowledge whether the sign for vi should be positive or
negative. We compute the confidence values of the estimated
signs as follows: Let J ⊂ {1, . . . , n} be the set of indices for
which values have been fixed and let the reference vector be
a =

∑
j∈J σjbj . Then the confidence value for the σi estimate

is given as γi = | a·bi

‖a‖‖bi‖ |.
The intuition behind this measure for confidence is that if

two vectors are very close to being parallel, then having the
same sign on the coefficients of these vectors will always lead
to a longer vector as their sum, pointing approximately in the
same direction as the other two. In order to be part of a short

7

We conjecture that for higher dimensions, like n = 150,
BKZ-30 would not give an optimally reduced basis, and that
hybrid enumeration then would show the same improvements
as we see with the BKZ-10 reduced bases in our experiments.
All in all, we claim that if one wants to do full enumeration
on large lattices that are not optimally reduced, then hybrid
enumeration will be faster than standard enumeration.

IV. SIGN-BASED PRUNING

Going back to the expansion of a shortest vector in terms
of the basis vectors s =

∑n
i=1 vibi, an enumeration algorithm

computes possible values for each coefficient vi. The equation
for computing the coefficients vi indicates that the range Ii
for vi is likely to contain both positive and negative values.
As both s and −s are shortest vectors, we are content in
finding either of those. If we could a priori know the sign of
these integers (that is whether vi ≤ 0 or vi ≥ 0), we could
discard appropriate values from Ii, making the enumeration
tree smaller. Effectively, this would provide us with another
strategy for pruning. In this section, we describe an algorithm
for making educated guesses for the signs of these coefficients
and how to use them for pruning. In the following we assume
that the lattice basis has been reduced, and that the lengths of
the basis vectors are of low variance.

A. Sign-estimation

First we show how to compute the signs of the coefficients
of the shortest vector when the dimension on the given lattice
is only 2. Let us consider a lattice in 2 dimensions with basis
vectors {b1, b2}. If b1 and b2 are obtuse to each other (i.e. the
angle between them is more than 90◦), then a shortest vector
s = v1b1 + v2b2 can only be obtained if the signs of v1 and
v2 are the same. Similarly, if they are acute (angle less that
90◦) to each other, a shortest vector can only be obtained if
the signs of v1 and v2 are opposite to each other. It is easy
to see this, as a (positive) sum of two vectors pointing in
approximately the same direction can only increase in length.

To extend this observation to higher dimensions we define
the dot-product matrix M , where Mij = bi · bj . Two vectors
have a positive dot product when the angle between them
is less than 90◦ and a negative dot product when the angle
between them is larger than 90◦. Moreover, the magnitude of
bi · bj relative to the product of the lengths of bi and bj is a
measure of how parallel or anti-parallel bi and bj are.

The algorithm for computing the sign of coefficients is
shown in Algorithm 2. The algorithm computes a vector σ of
signs with entries +1 or −1. The sign for the coefficients vi are
computed one at a time, and the estimated sign of vi depends
on the signs of coefficients that have already been computed.
Intuitively, the algorithm compares each basis vector with
some reference vector to estimate the sign of the corresponding
coefficient.

The sign of the first basis vector b1 is set to be positive
by default, so σ1 = +1. This is without loss of generality
since both s and −s are shortest vectors and at least one of
them must have non-negative v1. The vector b1 is set as the
reference vector a for the next basis vector. The first row of

M contains the inner product of b1(= a) with all the other
basis vectors. The basis vector with the largest inner product
in absolute value is both a relatively long vector, and makes an
angle close to 0◦ or 180◦ with b1. Let bi be this basis vector.
Then the sign of vi is set to −1 if M12 > 0, otherwise σi is
set to +1. The reference vector is updated to a = a+ σibi.

Now we want to find a basis vector which is most parallel
or anti-parallel to a. For this we look at the largest entry in
the vector D = M1 + σiMi, where M1 is the top row of M
and Mi is the i’th row. The largest entry in absolute value in
D (except for index 1 and i) indicates the third vector, say
bj , to estimate the sign for. If Dj > 0 then σj = −1, and if
Dj ≥ 0, σj = +1. The vector σjbj is added to a and D is
updated to D = D+σjMj . The algorithm continues like this
until all basis vectors have had their signs estimated.

Algorithm 2 ComputeSign(B)

Input: The basis vectors B of the lattice L.
Output: A vector σ that contains the estimated sign of each
coefficient vi in s =

∑
i vibi where s is a shortest vector,

and a vector γ of real values indicating confidence for each
estimate.

Compute dot-product matrix M such that Mij = bi · bj .
Initialize D := M1 where M1 is the top row of M .
Set σ1 = +1 and γ1 = 1.
Set reference lattice vector a := b1
Set the counter ns := 1.
while ns ≤ n do

Let i be the index of
max{|Dj ||j is not among already fixed signs}.

if Di > 0 then
Set σi = −1

else
Set σi = +1

end if
Set a = a+ σibi
Set D = D + σiMi

Compute γi = | a·bi

‖a‖‖bi‖ |
Set ns = ns + 1

end while

The signs computed in Algorithm 2 are not necessarily
correct for a shortest vector. For each variable vi, we compute
a number 0 ≤ γi ≤ 1 to denote how confident we are that
the computed σi is correct. When γi = 1 we are certain that
the corresponding σi is correct and γi = 0 means we have
no knowledge whether the sign for vi should be positive or
negative. We compute the confidence values of the estimated
signs as follows: Let J ⊂ {1, . . . , n} be the set of indices for
which values have been fixed and let the reference vector be
a =

∑
j∈J σjbj . Then the confidence value for the σi estimate

is given as γi = | a·bi

‖a‖‖bi‖ |.
The intuition behind this measure for confidence is that if

two vectors are very close to being parallel, then having the
same sign on the coefficients of these vectors will always lead
to a longer vector as their sum, pointing approximately in the
same direction as the other two. In order to be part of a short

7

We conjecture that for higher dimensions, like n = 150,
BKZ-30 would not give an optimally reduced basis, and that
hybrid enumeration then would show the same improvements
as we see with the BKZ-10 reduced bases in our experiments.
All in all, we claim that if one wants to do full enumeration
on large lattices that are not optimally reduced, then hybrid
enumeration will be faster than standard enumeration.

IV. SIGN-BASED PRUNING

Going back to the expansion of a shortest vector in terms
of the basis vectors s =

∑n
i=1 vibi, an enumeration algorithm

computes possible values for each coefficient vi. The equation
for computing the coefficients vi indicates that the range Ii
for vi is likely to contain both positive and negative values.
As both s and −s are shortest vectors, we are content in
finding either of those. If we could a priori know the sign of
these integers (that is whether vi ≤ 0 or vi ≥ 0), we could
discard appropriate values from Ii, making the enumeration
tree smaller. Effectively, this would provide us with another
strategy for pruning. In this section, we describe an algorithm
for making educated guesses for the signs of these coefficients
and how to use them for pruning. In the following we assume
that the lattice basis has been reduced, and that the lengths of
the basis vectors are of low variance.

A. Sign-estimation

First we show how to compute the signs of the coefficients
of the shortest vector when the dimension on the given lattice
is only 2. Let us consider a lattice in 2 dimensions with basis
vectors {b1, b2}. If b1 and b2 are obtuse to each other (i.e. the
angle between them is more than 90◦), then a shortest vector
s = v1b1 + v2b2 can only be obtained if the signs of v1 and
v2 are the same. Similarly, if they are acute (angle less that
90◦) to each other, a shortest vector can only be obtained if
the signs of v1 and v2 are opposite to each other. It is easy
to see this, as a (positive) sum of two vectors pointing in
approximately the same direction can only increase in length.

To extend this observation to higher dimensions we define
the dot-product matrix M , where Mij = bi · bj . Two vectors
have a positive dot product when the angle between them
is less than 90◦ and a negative dot product when the angle
between them is larger than 90◦. Moreover, the magnitude of
bi · bj relative to the product of the lengths of bi and bj is a
measure of how parallel or anti-parallel bi and bj are.

The algorithm for computing the sign of coefficients is
shown in Algorithm 2. The algorithm computes a vector σ of
signs with entries +1 or −1. The sign for the coefficients vi are
computed one at a time, and the estimated sign of vi depends
on the signs of coefficients that have already been computed.
Intuitively, the algorithm compares each basis vector with
some reference vector to estimate the sign of the corresponding
coefficient.

The sign of the first basis vector b1 is set to be positive
by default, so σ1 = +1. This is without loss of generality
since both s and −s are shortest vectors and at least one of
them must have non-negative v1. The vector b1 is set as the
reference vector a for the next basis vector. The first row of

M contains the inner product of b1(= a) with all the other
basis vectors. The basis vector with the largest inner product
in absolute value is both a relatively long vector, and makes an
angle close to 0◦ or 180◦ with b1. Let bi be this basis vector.
Then the sign of vi is set to −1 if M12 > 0, otherwise σi is
set to +1. The reference vector is updated to a = a+ σibi.

Now we want to find a basis vector which is most parallel
or anti-parallel to a. For this we look at the largest entry in
the vector D = M1 + σiMi, where M1 is the top row of M
and Mi is the i’th row. The largest entry in absolute value in
D (except for index 1 and i) indicates the third vector, say
bj , to estimate the sign for. If Dj > 0 then σj = −1, and if
Dj ≥ 0, σj = +1. The vector σjbj is added to a and D is
updated to D = D+σjMj . The algorithm continues like this
until all basis vectors have had their signs estimated.

Algorithm 2 ComputeSign(B)

Input: The basis vectors B of the lattice L.
Output: A vector σ that contains the estimated sign of each
coefficient vi in s =

∑
i vibi where s is a shortest vector,

and a vector γ of real values indicating confidence for each
estimate.

Compute dot-product matrix M such that Mij = bi · bj .
Initialize D := M1 where M1 is the top row of M .
Set σ1 = +1 and γ1 = 1.
Set reference lattice vector a := b1
Set the counter ns := 1.
while ns ≤ n do

Let i be the index of
max{|Dj ||j is not among already fixed signs}.

if Di > 0 then
Set σi = −1

else
Set σi = +1

end if
Set a = a+ σibi
Set D = D + σiMi

Compute γi = | a·bi

‖a‖‖bi‖ |
Set ns = ns + 1

end while

The signs computed in Algorithm 2 are not necessarily
correct for a shortest vector. For each variable vi, we compute
a number 0 ≤ γi ≤ 1 to denote how confident we are that
the computed σi is correct. When γi = 1 we are certain that
the corresponding σi is correct and γi = 0 means we have
no knowledge whether the sign for vi should be positive or
negative. We compute the confidence values of the estimated
signs as follows: Let J ⊂ {1, . . . , n} be the set of indices for
which values have been fixed and let the reference vector be
a =

∑
j∈J σjbj . Then the confidence value for the σi estimate

is given as γi = | a·bi

‖a‖‖bi‖ |.
The intuition behind this measure for confidence is that if

two vectors are very close to being parallel, then having the
same sign on the coefficients of these vectors will always lead
to a longer vector as their sum, pointing approximately in the
same direction as the other two. In order to be part of a short

Reducing Lattice Enumeration Search Trees
INFOCOMMUNICATIONS JOURNAL

DECEMBER 2019 • VOLUME XI • NUMBER 4 15

8

Lattice Pre-processing node fraction shortest vector found
SVP40 BKZ10 0.670 yes
SVP40 BKZ20 0.745 yes
SVP40 BKZ30 0.665 yes
SVP46 BKZ10 0.682 yes
SVP46 BKZ20 0.750 yes
SVP46 BKZ30 0.800 yes

TABLE II: Measure of effect of sign-based pruning. The node
fraction is the number of nodes in pruned search tree compared
to the number of nodes in the full enumeration search tree.

vector s, the other basis vectors must be able to offset this
long vector. If the signs of the coefficients are opposite, a sum
of the two approximately parallel basis vectors would be much
shorter. It is easier to sufficiently offset a short vector than a
long one, in order to find the shortest vector overall.

When two vectors are close to being parallel then a·bi

‖a‖‖bi‖
is close to being 1, and when two vectors are close to being
anti-parallel a·bi

‖a‖‖bi‖ is close to being −1. In both cases γi ≈ 1.
On the other hand, when a and bi are close to orthogonal

(i.e. a ·bi ≈ 0), then a+bi and a−bi will be of almost equal
lengths, and we can only to a little extent distinguish which
of the two cases that will be most easily offset by the other
basis vectors. The confidence value will therefore be close to
0 in this case.

We now turn to how we use the confidence values to prune
intervals in the search tree.

B. Pruning intervals based on sign estimation

We can use the sign estimations and their confidence values
to shorten the intervals computed for enumeration, while still
maintaining a high probability we do not prune away all
shortest vectors.

For a node in the search tree where possible values for
vi are tried, let Ii be the interval computed for vi. Let I+i :=
Ii∩ [0,∞) and I−i := Ii∩(−∞, 0]. For an interval I := [l,m]
and a positive number α ∈ R, let us define the interval αI to be
[αl, αm]. If σi = −1, then Ii is pruned to Ii = (1−γi)I

+
i ∪I−i .

If σi = +1, then Ii is pruned to Ii = (1−γi)I
−
i ∪I+i . In other

words, we cut away a portion of the interval where we believe
a correct value for vi will not be found. The portion cut away
is proportional to the confidence we have in our estimate.

An advantage of this pruning strategy is that it can be put on
top of any other pruning strategy. The sign-based pruning does
not depend on how the intervals are computed. This pruning
strategy reduces the search tree as long as the given intervals
are non-empty and cuts away integer values that are opposite
in sign to the predicted sign.

C. Experiments

We have used a few of the SVP challenge lattices to test the
sign-based pruning strategy. We measured both the reduction
in the number of nodes in the search tree, and whether the
pruning failed to find the shortest vector. The results are
summarized in Table II.

What we see in Table II is that in the experiments we
never failed to find the shortest vector, and that the reduction

in the number of nodes is by a modest but still significant
fraction. One explanation for this is that we cut away the ends
of the intervals, which only takes away small subtrees from
the whole enumeration tree. The vi-values found at the ends
of the intervals are those that consume much of the length
limit R when selected, probably quickly leading to dead ends
anyway. Cutting away these values may not prune away very
large parts of the search tree. Still, it is worthwhile to apply
the sign-based pruning as it costs practically nothing in terms
of extra complexity. The actual run times are cut down by
almost the same fraction as the reduction in the number of
nodes.

V. CONCLUSIONS

Public key encryption schemes based on lattices are one
of the most promising approaches for achieving quantum safe
crypto, and it is important to understand the hardness of the
SVP problem on which they are based. Lattice enumeration
plays a central role in the best known methods for solving SVP,
so studying how to speed up lattice enumeration is important
for assessing the security of lattice-based encryption. In this
paper we have explored two different ideas for speeding up
lattice enumeration.

First we looked at how permutations of the basis vectors of
a lattice affect the running time of the standard enumeration
algorithm. We demonstrate that the particular order of the
basis vectors have a big impact on the number of nodes
in the search tree and the running time. Next we identified
particular permutations that give relatively small search trees.
Dynamically finding the best permutations has a high cost on
its own. However, if the lattice dimension is big enough and
the pre-processing does not leave a strongly reduced basis, it
is well worth the effort to apply the strategy in the relatively
few nodes at the top of the search tree. We call this type of
enumeration for hybrid enumeration.

Secondly, we looked at the possibility of estimating the
signs of the coefficients giving a shortest vector. We can only
estimate the signs with some degree of confidence, but the
estimates and the confidence values leads directly to a pruning
strategy. Unlike other pruning strategies that cuts away values
from both ends of the interval where a coefficient vi can be
found, sign-based pruning only cuts values from one side of
the interval (the side where the values have the ”wrong” sign).
Sign-based pruning can therefore be applied together with any
other pruning strategy one may use.

The experiments of sign-based pruning give a reduction in
the number of nodes in the search tree compared to standard
enumeration, but the reduction is not great. However, we never
failed to find the shortest vector using sign-based pruning.
This may indicate that the pruning we employed from the
confidence measure is not aggressive enough, and that larger
parts of the intervals could be cut away without sacrificing too
much accuracy in solving the SVP. Further studies of sign-
based pruning is topic for future work.

REFERENCES

[1] M. Ajtai, “The Shortest Vector Problem in L2 is NP-hard for Random-
ized Reductions (Extended Abstract),” in Proceedings of the Thirtieth

8

Lattice Pre-processing node fraction shortest vector found
SVP40 BKZ10 0.670 yes
SVP40 BKZ20 0.745 yes
SVP40 BKZ30 0.665 yes
SVP46 BKZ10 0.682 yes
SVP46 BKZ20 0.750 yes
SVP46 BKZ30 0.800 yes

TABLE II: Measure of effect of sign-based pruning. The node
fraction is the number of nodes in pruned search tree compared
to the number of nodes in the full enumeration search tree.

vector s, the other basis vectors must be able to offset this
long vector. If the signs of the coefficients are opposite, a sum
of the two approximately parallel basis vectors would be much
shorter. It is easier to sufficiently offset a short vector than a
long one, in order to find the shortest vector overall.

When two vectors are close to being parallel then a·bi

‖a‖‖bi‖
is close to being 1, and when two vectors are close to being
anti-parallel a·bi

‖a‖‖bi‖ is close to being −1. In both cases γi ≈ 1.
On the other hand, when a and bi are close to orthogonal

(i.e. a ·bi ≈ 0), then a+bi and a−bi will be of almost equal
lengths, and we can only to a little extent distinguish which
of the two cases that will be most easily offset by the other
basis vectors. The confidence value will therefore be close to
0 in this case.

We now turn to how we use the confidence values to prune
intervals in the search tree.

B. Pruning intervals based on sign estimation

We can use the sign estimations and their confidence values
to shorten the intervals computed for enumeration, while still
maintaining a high probability we do not prune away all
shortest vectors.

For a node in the search tree where possible values for
vi are tried, let Ii be the interval computed for vi. Let I+i :=
Ii∩ [0,∞) and I−i := Ii∩(−∞, 0]. For an interval I := [l,m]
and a positive number α ∈ R, let us define the interval αI to be
[αl, αm]. If σi = −1, then Ii is pruned to Ii = (1−γi)I

+
i ∪I−i .

If σi = +1, then Ii is pruned to Ii = (1−γi)I
−
i ∪I+i . In other

words, we cut away a portion of the interval where we believe
a correct value for vi will not be found. The portion cut away
is proportional to the confidence we have in our estimate.

An advantage of this pruning strategy is that it can be put on
top of any other pruning strategy. The sign-based pruning does
not depend on how the intervals are computed. This pruning
strategy reduces the search tree as long as the given intervals
are non-empty and cuts away integer values that are opposite
in sign to the predicted sign.

C. Experiments

We have used a few of the SVP challenge lattices to test the
sign-based pruning strategy. We measured both the reduction
in the number of nodes in the search tree, and whether the
pruning failed to find the shortest vector. The results are
summarized in Table II.

What we see in Table II is that in the experiments we
never failed to find the shortest vector, and that the reduction

in the number of nodes is by a modest but still significant
fraction. One explanation for this is that we cut away the ends
of the intervals, which only takes away small subtrees from
the whole enumeration tree. The vi-values found at the ends
of the intervals are those that consume much of the length
limit R when selected, probably quickly leading to dead ends
anyway. Cutting away these values may not prune away very
large parts of the search tree. Still, it is worthwhile to apply
the sign-based pruning as it costs practically nothing in terms
of extra complexity. The actual run times are cut down by
almost the same fraction as the reduction in the number of
nodes.

V. CONCLUSIONS

Public key encryption schemes based on lattices are one
of the most promising approaches for achieving quantum safe
crypto, and it is important to understand the hardness of the
SVP problem on which they are based. Lattice enumeration
plays a central role in the best known methods for solving SVP,
so studying how to speed up lattice enumeration is important
for assessing the security of lattice-based encryption. In this
paper we have explored two different ideas for speeding up
lattice enumeration.

First we looked at how permutations of the basis vectors of
a lattice affect the running time of the standard enumeration
algorithm. We demonstrate that the particular order of the
basis vectors have a big impact on the number of nodes
in the search tree and the running time. Next we identified
particular permutations that give relatively small search trees.
Dynamically finding the best permutations has a high cost on
its own. However, if the lattice dimension is big enough and
the pre-processing does not leave a strongly reduced basis, it
is well worth the effort to apply the strategy in the relatively
few nodes at the top of the search tree. We call this type of
enumeration for hybrid enumeration.

Secondly, we looked at the possibility of estimating the
signs of the coefficients giving a shortest vector. We can only
estimate the signs with some degree of confidence, but the
estimates and the confidence values leads directly to a pruning
strategy. Unlike other pruning strategies that cuts away values
from both ends of the interval where a coefficient vi can be
found, sign-based pruning only cuts values from one side of
the interval (the side where the values have the ”wrong” sign).
Sign-based pruning can therefore be applied together with any
other pruning strategy one may use.

The experiments of sign-based pruning give a reduction in
the number of nodes in the search tree compared to standard
enumeration, but the reduction is not great. However, we never
failed to find the shortest vector using sign-based pruning.
This may indicate that the pruning we employed from the
confidence measure is not aggressive enough, and that larger
parts of the intervals could be cut away without sacrificing too
much accuracy in solving the SVP. Further studies of sign-
based pruning is topic for future work.

REFERENCES

[1] M. Ajtai, “The Shortest Vector Problem in L2 is NP-hard for Random-
ized Reductions (Extended Abstract),” in Proceedings of the Thirtieth

estimates and the confidence values lead directly to a pruning

8

Lattice Pre-processing node fraction shortest vector found
SVP40 BKZ10 0.670 yes
SVP40 BKZ20 0.745 yes
SVP40 BKZ30 0.665 yes
SVP46 BKZ10 0.682 yes
SVP46 BKZ20 0.750 yes
SVP46 BKZ30 0.800 yes

TABLE II: Measure of effect of sign-based pruning. The node
fraction is the number of nodes in pruned search tree compared
to the number of nodes in the full enumeration search tree.

vector s, the other basis vectors must be able to offset this
long vector. If the signs of the coefficients are opposite, a sum
of the two approximately parallel basis vectors would be much
shorter. It is easier to sufficiently offset a short vector than a
long one, in order to find the shortest vector overall.

When two vectors are close to being parallel then a·bi

‖a‖‖bi‖
is close to being 1, and when two vectors are close to being
anti-parallel a·bi

‖a‖‖bi‖ is close to being −1. In both cases γi ≈ 1.
On the other hand, when a and bi are close to orthogonal

(i.e. a ·bi ≈ 0), then a+bi and a−bi will be of almost equal
lengths, and we can only to a little extent distinguish which
of the two cases that will be most easily offset by the other
basis vectors. The confidence value will therefore be close to
0 in this case.

We now turn to how we use the confidence values to prune
intervals in the search tree.

B. Pruning intervals based on sign estimation

We can use the sign estimations and their confidence values
to shorten the intervals computed for enumeration, while still
maintaining a high probability we do not prune away all
shortest vectors.

For a node in the search tree where possible values for
vi are tried, let Ii be the interval computed for vi. Let I+i :=
Ii∩ [0,∞) and I−i := Ii∩(−∞, 0]. For an interval I := [l,m]
and a positive number α ∈ R, let us define the interval αI to be
[αl, αm]. If σi = −1, then Ii is pruned to Ii = (1−γi)I

+
i ∪I−i .

If σi = +1, then Ii is pruned to Ii = (1−γi)I
−
i ∪I+i . In other

words, we cut away a portion of the interval where we believe
a correct value for vi will not be found. The portion cut away
is proportional to the confidence we have in our estimate.

An advantage of this pruning strategy is that it can be put on
top of any other pruning strategy. The sign-based pruning does
not depend on how the intervals are computed. This pruning
strategy reduces the search tree as long as the given intervals
are non-empty and cuts away integer values that are opposite
in sign to the predicted sign.

C. Experiments

We have used a few of the SVP challenge lattices to test the
sign-based pruning strategy. We measured both the reduction
in the number of nodes in the search tree, and whether the
pruning failed to find the shortest vector. The results are
summarized in Table II.

What we see in Table II is that in the experiments we
never failed to find the shortest vector, and that the reduction

in the number of nodes is by a modest but still significant
fraction. One explanation for this is that we cut away the ends
of the intervals, which only takes away small subtrees from
the whole enumeration tree. The vi-values found at the ends
of the intervals are those that consume much of the length
limit R when selected, probably quickly leading to dead ends
anyway. Cutting away these values may not prune away very
large parts of the search tree. Still, it is worthwhile to apply
the sign-based pruning as it costs practically nothing in terms
of extra complexity. The actual run times are cut down by
almost the same fraction as the reduction in the number of
nodes.

V. CONCLUSIONS

Public key encryption schemes based on lattices are one
of the most promising approaches for achieving quantum safe
crypto, and it is important to understand the hardness of the
SVP problem on which they are based. Lattice enumeration
plays a central role in the best known methods for solving SVP,
so studying how to speed up lattice enumeration is important
for assessing the security of lattice-based encryption. In this
paper we have explored two different ideas for speeding up
lattice enumeration.

First we looked at how permutations of the basis vectors of
a lattice affect the running time of the standard enumeration
algorithm. We demonstrate that the particular order of the
basis vectors have a big impact on the number of nodes
in the search tree and the running time. Next we identified
particular permutations that give relatively small search trees.
Dynamically finding the best permutations has a high cost on
its own. However, if the lattice dimension is big enough and
the pre-processing does not leave a strongly reduced basis, it
is well worth the effort to apply the strategy in the relatively
few nodes at the top of the search tree. We call this type of
enumeration for hybrid enumeration.

Secondly, we looked at the possibility of estimating the
signs of the coefficients giving a shortest vector. We can only
estimate the signs with some degree of confidence, but the
estimates and the confidence values leads directly to a pruning
strategy. Unlike other pruning strategies that cuts away values
from both ends of the interval where a coefficient vi can be
found, sign-based pruning only cuts values from one side of
the interval (the side where the values have the ”wrong” sign).
Sign-based pruning can therefore be applied together with any
other pruning strategy one may use.

The experiments of sign-based pruning give a reduction in
the number of nodes in the search tree compared to standard
enumeration, but the reduction is not great. However, we never
failed to find the shortest vector using sign-based pruning.
This may indicate that the pruning we employed from the
confidence measure is not aggressive enough, and that larger
parts of the intervals could be cut away without sacrificing too
much accuracy in solving the SVP. Further studies of sign-
based pruning is topic for future work.

REFERENCES

[1] M. Ajtai, “The Shortest Vector Problem in L2 is NP-hard for Random-
ized Reductions (Extended Abstract),” in Proceedings of the Thirtieth

Reducing Lattice Enumeration Search Trees

DECEMBER 2019 • VOLUME XI • NUMBER 416

INFOCOMMUNICATIONS JOURNAL

Mithilesh Kumar was born in India. He has done
masters in Physics from IIT Kanpur and masters in
computer science from CMI Chennai. In 2014 he
started his PhD studies in algorithms at the University
of Bergen, and he received his PhD degree from this
university in 2017. His primary interests are graph
theory, algorithms, lattices and quantum computation.

Håvard Raddum was born in Bergen, Norway and
received his master degree from the Department of
mathematics at the University of Bergen in 1999.
In 2005 he received a PhD in cryptography from the
University of Bergen. He has done research on the
cryptanalysis of ciphers, and is interested in algebraic
aspects of cryptographic primitives. Håvard currently
leads the cryptography research group at Simula UiB.

Srimathi Varadharajan is a PhD student at Simula
UiB, working on the mathematics of cryptography.
She got a master degree in mathematics from Royal
Holloway University of London in 2015.

References

[1]		 M. Ajtai, “The Shortest Vector Problem in L2 is NP-hard for
Randomized Reductions (Extended Abstract),” in Proceedings of the
Thirtieth 9 Annual ACM Symposium on Theory of Computing, ser.
STOC ’98. New York, NY, USA: ACM, 1998, pp. 10–19,

		 doi: 10.1145/276698.276705.
[2]		 A. K. Lenstra, H. W. Lenstra, and L. Lovász, “Factoring polynomials

with rational coefficients,” Mathematische Annalen, vol. 261, pp. 515–
535, 1982, doi: 10.1007/BF01457454.

[3]		 C. P. Schnorr, “A hierarchy of polynomial time lattice basis reduction
algorithms,” Theoretical Computer Science, vol. 53, pp. 201–224,
1987, doi: 10.1016/0304-3975(87)90064-8.

[4]		 U. Fincke and M. Pohst, “A procedure for determining algebraic
integers of given norm,” in Proceedings of the European Computer
Algebra Conference on Computer Algebra, ser. EUROCAL ’83.
London, UK, UK: Springer-Verlag, 1983, pp. 194–202,

		 doi: 10.1007/3-540-12868-9_103.
[5]		 R. Kannan, “Improved algorithms for integer programming and

related lattice problems,” in Proceedings of the Fifteenth Annual ACM
Symposium on Theory of Computing, ser. STOC ’83. New York, NY,
USA: ACM, 1983, pp. 193–206, doi: 10.1145/800061.808749.

[6]		 U. Fincke and M. Pohst, “Improved methods for calculating vectors of
short length in a lattice, including a complexity analysis,” Mathematics
of Computation, pp. 463 – 471, 1985, doi: 10.2307/2007966.

[7]		 T. Laarhoven and A. Mariano, “Progressive lattice sieving,” in Post-
Quantum Cryptography, T. Lange and R. Steinwandt, Eds. Springer
International Publishing, 2018, pp. 292–311,

		 doi: 10.1007/978-3-319-79063-3_14.
[8]		 M. Schneider, “Sieving for shortest vectors in ideal lattices,” in

Progress in Cryptology – AFRICACRYPT 2013, A. Youssef, A.
Nitaj, and A. E. Hassanien, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 375–391, doi: 10.1007/978-3-642-38553-7_22.

[9]		 Y. Aono and P. Q. Nguyen, “Random sampling revisited: Lattice
enumeration with discrete pruning,” in Advances in Cryptology
– EUROCRYPT 2017, J.-S. Coron and J. B. Nielsen, Eds. Springer
International Publishing, 2017, pp. 65–102,

		 doi: 10.1007/978-3-319-56614-6_3.
[10]	 Y. Aono, P. Q. Nguyen, and Y. Shen, “Quantum lattice enumeration and

tweaking discrete pruning,” in Advances in Cryptology – ASIACRYPT
2018, T. Peyrin and S. Galbraith, Eds. Springer International
Publishing, 2018, pp. 405–434, doi: 10.1007/978-3-030-03326-2_14.

[11]		 P. Q. Nguyen, “Lattice reduction algorithms: Theory and practice,”
in Advances in Cryptology – EUROCRYPT 2011, K. G. Paterson, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 2–6,

		 doi: 10.1007/978-3-642-20465-4_2.
[12]	 C. P. Schnorr and M. Euchner, “Lattice basis reduction: Improved

practical algorithms and solving subset sum problems,” Math.
Program., vol. 66, no. 2, pp. 181–199, Sep. 1994,

		 doi: 10.1007/BF01581144.
[13]	 C. P. Schnorr and H. H. Hörner, “Attacking the chor-rivest

cryptosystem by improved lattice reduction,” in Proceedings of the
14th Annual International Conference on Theory and Application of
Cryptographic Techniques, ser. EUROCRYPT’95. Berlin, Heidelberg:
Springer-Verlag, 1995, pp. 1–12, doi: 10.1007/3-540-49264-X_1.

[14] N. Gama, P. Q. Nguyen, and O. Regev, “Lattice enumeration using
extreme pruning,” in Advances in Cryptology – EUROCRYPT 2010,
H. Gilbert, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp. 257–278, doi: 10.1007/978-3-642-13190-5_13.

[15]	 N. Schneider and N. Gama, “SVP Challenge,”
		 https://www.latticechallenge.org/svp-challenge/index.php.

The search of square m-sequences with maximum
period via GPU and CPU

Paweł Augustynowicz
Military University of Technology

Institute of Cybernetics
gen. Sylwestra Kaliskiego 2, 00-908 Warsaw

Email: pawel.augustynowicz@wat.edu.pl

Krzysztof Kanciak
Military University of Technology

Institute of Cybernetics
gen. Sylwestra Kaliskiego 2, 00-908 Warsaw

Email: krzysztof.kanciak@wat.edu.pl

Abstract—This paper deals with the efficient parallel search of
square m-sequences on both modern CPUs and GPUs. The key
idea is based on applying particular vector processor instructions
with a view to maximizing the advantage of Single Instruction
Multiple Data (SIMD) and Single Instruction Multiple Threads
(SIMT) execution patterns. The developed implementation was
adjusted to testing for the maximum-period of m-sequences of
some particular forms. Furthermore, the early abort sieving
strategy based on the application of SAT-solvers were presented.
With this solution, it is possible to search m-sequences up to
degree 32 exhaustively.

I. INTRODUCTION

Feedback Shift Registers (FSR) are used to generate cryp-
tographically applicable binary sequences. They have many
proponents due to their simplicity, both software and hardware
effectiveness and well-known properties. In particular, stream
ciphers designers use them to construct invertible mappings
with internal state. The strongly desirable property of stream
ciphers is their long period. Therefore, the FSR used in
them should also have this feature. Informally, the period of
mapping is the length of the most extended cycle in its state
transition graph.

In recent years, many cryptographic algorithms such as
stream ciphers (for example GRAIN which is NIST standard
[9], Trivium [3] or Achterbahn [2]), lightweight block ciphers
and sponge-based generators [4, 10] have used NLFSR for
providing both security and efficiency. In most cases, NLF-
SRs have much greater linear-complexity than LFSRs of the
same period, which is directly connected with the security of
cryptographic algorithms [12].

Computationally efficient methods for construction of cryp-
tographically strong NLFSRs remains unknown. The most
critical NLFSR related problem is finding a systematic proce-
dure for constructing NLFSRs with a long confirmed period.
Available algorithms either consider some individual cases
or apply to low order NLFSRs only [7, 14, 16]. Nikolay
Poluyanenko developed the most efficient method. However, it
was not sufficient to obtain applicable NLFSR of degree 30 or
higher [13]. Moreover, it requires the usage of special-purpose
Field-Programmable Gate Arrays (FPGA) hardware, which is
not commonly available.

If we look at the above-mentioned subject from another
point of view, NLFSRs are also known as de Bruijn sequences.

In a de Bruijn series of order n, all 2n different binary n-
tuples appear precisely once. A modified de Bruijn sequence
is obtained from a proper de Bruijn sequence by removing
tuple containing zero elements only.

Another essential sequence type, which statistical and struc-
tural properties were examined, are so-called m-sequences.
Boolean functions that generate the m-sequence can by con-
structed by introducing nonlinear disturbances into linear
functions[11]. Unfortunately, complexity of this approach is
extremely high for orders greater than 8. As a result in this
paper we address the problem of efficient searching for m-
sequences with a guaranteed full period by exhaustively search
for the NLFSR with the following form of feedback function:

f(x0, x1, . . . , xn−1) = g(x0, x1, . . . , xn−1) + xi + xi · xj

for which i �= j, 1 ≤ i, j ≤ n − 1 and g(x0, x1, . . . , xn−1)
is defined by a primitive polynomial over F2. Owing to the
large number of candidate feedback functions, the search was
conducted on GPUs and special strategy of early abort via
SAT solvers’ detection of short cycles were applied.

The aforementioned computational experiment allows ob-
taining an extensive, complete list of n-bit NLFSR (n < 31)
with a maximum period for the considered form of feedback
functions. The previous research in the investigated area has
resulted in maximum period NLFSR up to degree 27 [6]
on Central Processing Units (CPU) and up to degree 29
on FPGA [13]. We have enumerated all m-sequences up to
degree 31. Obtained results suggest the dependency between
the Hamming weight of feedback functions and the period of
NLFSR generated by that function was observed (see Table
VII).

II. BASIC NOTATIONS AND DEFINITIONS

Definition 1: Binary Feedback Shift Register of order n is
a mapping Fn

2 → Fn
2 of the form:

(x0, x1, ..., xn−1) → (x1, x2, ..., xn−1, f(x0, x1, ..., xn−1)),

where:
• f is a boolean function of n variables;
• xn−1 is an output bit.
Depending on the type of feedback function two main types

of shift registers are concerned:

http://doi.org/10.1145/276698.276705
http://doi.org/10.1007/BF01457454
http://doi.org/10.1016/0304-3975(87)90064-8
http://doi.org/10.1007/3-540-12868-9_103
http://doi.org/10.1145/800061.808749
http://doi.org/10.2307/2007966
http://doi.org/10.1007/978-3-319-79063-3_14
http://doi.org/10.1007/978-3-642-38553-7_22
http://doi.org/10.1007/978-3-319-56614-6_3
http://doi.org/10.1007/978-3-030-03326-2_14
http://doi.org/10.1007/978-3-642-20465-4_2
http://doi.org/10.1007/BF01581144
http://doi.org/10.1007/3-540-49264-X_1
http://doi.org/10.1007/978-3-642-13190-5_13
https://www.latticechallenge.org/svp-challenge/index.php

