REAL

Bead geometry modeling on uneven base metal surface by fuzzy systems for multi-pass welding

Horváth, Csongor Márk and Botzheim, János and Thomessen, Trygve and Korondi, Péter (2021) Bead geometry modeling on uneven base metal surface by fuzzy systems for multi-pass welding. Expert Systems with Applications, 186. p. 115356. ISSN 0957-4174

[img]
Preview
Text
eswa2021.pdf

Download (10MB) | Preview

Abstract

This paper presents a modeling method of weld bead profiles deposited on uneven base metal surfaces and its application in multi-pass welding. The robotized multi-pass tungsten inert gas welding requires precise positioning of the weld beads to avoid welding defects and achieve the desirable welding join since the weld bead shapes depend on the surface of the previously deposited beads. The proposed model consists of fuzzy systems to estimate the coefficients of the profile function. The characteristic points of the trapezoidal membership functions in the rule bases are tuned by the Bacterial Memetic Algorithm during supervised training. The fuzzy systems are structured as multiple-input-single-output systems, where the inputs are the welding process variables and the coefficients of the shape functions of the segments underlying the modeled bead; the outputs are the coefficients of the bead shape function. Each segment surface is approximated by a second-order polynomial function defined in the weld bead’s local coordinate system. The model is developed from empirical data collected from single and multi-pass welding. The performance of the proposed model is compared with a multiple linear regression model. During the experimental validation, first, the individual beads are evaluated by comparing the estimated coefficients of the profile function and other bead characteristics (bead area, width, contact angles, and position of the toe points) with the measurements, and the estimations of a multiple linear regression model. Second, the sequential placement of the weld beads is evaluated while filling a straight Vgroove by comparing the estimated bead characteristics with the measurements and calculating the accumulated error of the filled groove cross-section. The results show that the proposed model provides a good estimation of the bead shapes during deposition on uneven base metal surfaces and outperforms the regression model with low error in both validation cases. Furthermore, it is experimentally validated that the derived bead characteristics provide a suitable measure to identify locations sensitive to welding defects.

Item Type: Article
Subjects: T Technology / alkalmazott, műszaki tudományok > TK Electrical engineering. Electronics Nuclear engineering / elektrotechnika, elektronika, atomtechnika
Depositing User: Dr. János Botzheim
Date Deposited: 28 Sep 2021 14:32
Last Modified: 03 Apr 2023 07:25
URI: http://real.mtak.hu/id/eprint/131208

Actions (login required)

Edit Item Edit Item