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A B S T R A C T   

This paper presents a modeling method of weld bead profiles deposited on uneven base metal surfaces and its 
application in multi-pass welding. The robotized multi-pass tungsten inert gas welding requires precise posi
tioning of the weld beads to avoid welding defects and achieve the desirable welding join since the weld bead 
shapes depend on the surface of the previously deposited beads. The proposed model consists of fuzzy systems to 
estimate the coefficients of the profile function. The characteristic points of the trapezoidal membership func
tions in the rule bases are tuned by the Bacterial Memetic Algorithm during supervised training. The fuzzy 
systems are structured as multiple-input-single-output systems, where the inputs are the welding process vari
ables and the coefficients of the shape functions of the segments underlying the modeled bead; the outputs are 
the coefficients of the bead shape function. Each segment surface is approximated by a second-order polynomial 
function defined in the weld bead’s local coordinate system. The model is developed from empirical data 
collected from single and multi-pass welding. The performance of the proposed model is compared with a 
multiple linear regression model. During the experimental validation, first, the individual beads are evaluated by 
comparing the estimated coefficients of the profile function and other bead characteristics (bead area, width, 
contact angles, and position of the toe points) with the measurements, and the estimations of a multiple linear 
regression model. Second, the sequential placement of the weld beads is evaluated while filling a straight V- 
groove by comparing the estimated bead characteristics with the measurements and calculating the accumulated 
error of the filled groove cross-section. The results show that the proposed model provides a good estimation of 
the bead shapes during deposition on uneven base metal surfaces and outperforms the regression model with low 
error in both validation cases. Furthermore, it is experimentally validated that the derived bead characteristics 
provide a suitable measure to identify locations sensitive to welding defects.   

1. Introduction 

Automated welding systems are developed and used mostly for mass 
production in the automotive industry. Although, robotization of small 
series and one-of-a-kind production gained more attention in the last 
years, primarily used by small and medium-sized enterprises. A wide 
variety of robotic welding systems provide quality and efficient solu
tions for the general welding industry. Still, skilled employees cannot be 
replaced yet in the welding of joints in complex structures due to the 
robots’ long commissioning time and tedious teaching procedure. 

Manufacturing one-of-a-kind products, such as the heavy-duty 

Francis hydro-power turbines (Horvath, Thomessen, & Korondi, 
2017), is typically a task with low repeatability due to the workpiece’s 
complex geometry. Off-line robot programming methods are applied to 
overtake the difficulties (Madsen, Bro Soerensen, Larsen, Overgaard, & 
Jacobsen, 2002; Pires, Loureiro, & Bolmsjö, 2006; Tarn, Chen, & Fang, 
2011) by creating collision-free motion in the access restricted zones 
(Lee et al., 2011; Fang, Ong, & Nee, 2016), and providing a graphical 
user interface for control during the inter-task trajectories and welding 
paths (Fang, Ong, & Nee, 2012; Liu et al., 2015; Liu, Zhang, & Zhang, 
2015). 

Further challenges are uprising to handle the significant changes in 
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the base metal thickness, thus the groove’s depth and the variety in the 
groove opening angle (Yan, Fang, Ong, & Nee, 2017). The groove’s 
complexity is similar to the joints in the shipbuilding and offshore in
dustry, where the thick-plate welding accounts for approximately 70 
percent of the total welding jobs. This results a low productivity rate by 
conventional methods such as manual or semi-automatic welding. The 
large dimension joints of thick plates or pipes mean deep and volumi
nous grooves and cannot be filled with single-pass welding; therefore, 
multi-pass welding becomes necessary. 

Defining the connection between the shapes of the weld beads and 
welding process variables is necessary to control the deposition suc
cessfully. It has been intensively studied regarding multi-pass welding 
(Cao, Zhu, Liang, & Wang, 2011; Fang, Ong, & Nee, 2017; Horváth & 
Korondi, 2018; Somlo & Sziebig, 2019), and similarly in additive 
manufacturing (DebRoy et al., 2018; Yuan et al., 2020; Wang et al., 
2020). Traditionally, the main parameters of controlling the bead shape 
are the width, the height, the area, and the describing function. Area- 
based simplification of the beads’ shapes as parallelograms and trape
zoids are used by Madsen et al. (2002),Yang, Ye, Chen, Zhong, and Chen 
(2014) and Zhang, Lu, Cai, and Chen (2011) to generate the bead pattern 
in multi-pass welding. However, the authors have admitted that a sup
portive sensory system might be required for regular adjustments due to 
the implementation’s inaccuracy. 

In additive manufacturing using arc welding, Cao et al. (2011) 
conducted research on a finer bead shape estimation using regular 
curves: sine, cosine, arc, parabola, Gaussian, and logistic functions. The 
functions’ coefficients contained the bead width and height. To achieve 
a stable layering, precise control of the height is required, directly 
related to the bead shape function and the distance between the adjacent 
bead’s centerlines. Cao et al. (2011) suggested the sine and the parabola 
function as the best candidates to describe the bead shape. Similarly, the 
parabola was found as the best fitting curve by Ding, Pan, Cuiuri, and Li 
(2015), Suryakumar et al. (2011), and Xiong, Zhang, Gao, and Wu 
(2013). However, the latter author added that the wire feed rate ratio to 
the welding speed plays an important role. The parabola model in metal 
inert gas (MIG) welding can be used if this ratio is under 12.5; above that 
value, the arc model is suitable. 

A parabola can describe the shape of the weld beads, and its pa
rameters depend on the welding process variables and material prop
erties, preferably described by a suitable model. The statistical and 
numerical approaches were developed since they required less compu
tational power. Such models were reviewed by Benyounis and Olabi 
(2008) in general and presented for MIG and tungsten inert gas (TIG) 
welding by several researchers (Dutta & Pratihar, 2007; Palani & Mur
ugan, 2007; Xiong, Zhang, Hu, & Wu, 2014; Schneider, Lisboa, Silva, & 
Lermen, 2017). Recently, computational intelligence and machine 
learning became dominant in the field (Pratihar, 2015; Feng, Chen, 
Wang, Chen, & Feng, 2020), providing base bead models for intelligent 
welding systems (Fan, Zhang, Shi, and Zhu, 2019). 

Computational intelligence (CI) techniques, such as neural networks, 
fuzzy systems, and evolutionary algorithms, are widely used to solve 
complex and non-linear problems. Even more, several hybrid computing 
techniques were developed to compensate for their limitations (Gow
tham, Vasudevan, Maduraimuthu, & Jayakumar, 2011). In welding, 
most computational intelligence techniques can be used as demon
strated for neural network-based cases (Kim, Son, Park, Lee, & Prasad, 
2002; Mishra et al., 2007; Dutta & Pratihar, 2007; Xiong et al., 2014; 
Ding et al., 2016) or for fuzzy systems (Hancheng, Bocai, Shangzheng, & 
Fagen, 2002; Xue et al., 2005; Narang, Singh, Mahapatra, & Jha, 2011; 
Subashini & Vasudevan, 2012). They provide sufficient prediction for 
the bead shape parameters like width, height, or area without consid
ering the bead describing function. However, the experimental models’ 
performance is highly influenced by the experimental data sets’ quality 
and, consequently, narrowed to the application’s specific validity range. 
Correspondingly, several settings should keep constant such as the 
compound of base material and the filler wire, the welding method, and 

most environmental properties. A further benefit of a model could be to 
detect welding defects (Liao, 2003; Alfaro & Franco, 2010; Meng, Qin, & 
Zou, 2017). 

CI techniques’ important common feature is that they usually pro
vide approximate, acceptably suboptimal solutions while keeping the 
computational complexity at a tractable (usually low degree poly
nomial) level. Neural networks and fuzzy systems (FS) are universal 
approximators (Wang, 1992; Kurková, 1992), and they can be trans
formed into each other. As Koczy (1996) showed, the Takagi–Sugeno- 
Kang (TSK) FS is asymptotically equivalent to the Mamdani FS model 
and can be transformed into each other. Therefore, any architecture 
choice can be justified (Jang & Sun, 1993; Koczy, 1996; Koczy, Tikk, & 
Gedeon, 2000). 

One of the main advantages of choosing fuzzy systems is the infer
ence base, which provides human-like reasoning due to the fuzzy sys
tem’s rule-based approach and non-linear mapping of inputs. They offer 
an easily interpretable method, where the arguments leading to the 
conclusion can be assessed from the rule base (Kesse, Buah, Handroos, & 
Ayetor, 2020). The main challenge is to find a sufficient number of rules 
and the optimal definition of the membership functions. The tuning of 
the membership functions’ parameters can be done by training (Botz
heim, Cabrita, Koczy, & Ruano, 2004), allowing the fuzzy systems to 
learn from the data. In many different fields, evolutionary algorithms 
are applied to design fuzzy systems (Cordón, 2001; Botzheim, Cabrita, 
Kóczy, & Ruano, 2009; Fernandez, Herrera, Cordon, Jose del Jesus, & 
Marcelloni, 2019). With the ability to solve and quasi-optimize problems 
with non-linear and discontinuous characteristics, several evolutionary 
optimization algorithms were developed (Bartz-Beielstein, Branke, 
Mehnen, & Mersmann, 2014; Doerr & Neumann, 2020; Nawa & Fur
uhashi, 1999). The main disadvantage of the classical evolutionary al
gorithms is the low convergence speed in the optimization process. 
Combining them with gradient-based local search methods can utilize 
the advantages of both methods leading to the memetic algorithms 
(Moscato, 1989). 

Bacterial Memetic Algorithm (BMA) (Botzheim et al., 2009) is a 
memetic algorithm in which the bacterial evolutionary algorithm is used 
instead of the classical genetic algorithm, and the Levenberg–Marquardt 
(LM) method (Levenberg, 1944; Marquardt, 1963) is applied as a local 
search. The competitive performance of BMA is shown in several fields, 
for example, in optimization (Botzheim, Toda, & Kubota, 2012), su
pervised machine learning (Balázs, Botzheim, & Kóczy, 2010). 
Furthermore, BMA is applied in several combinatorial optimization 
problems (Botzheim et al., 2012; Zhou, Fang, Botzheim, Kubota, & Liu, 
2016), in supervised machine learning tasks such as fuzzy rule base 
extraction (Botzheim et al., 2009) and training fuzzy neural networks 
(Botzheim & Földesi, 2014), and in single pass welding (Horváth, 
Botzheim, Thomessen, & Korondi, 2020), still its application in multi- 
pass welding is not explored. 

The previously listed studies provided a geometrical description of 
single weld beads. The interaction between the deposited beads was also 
studied, and models developed as described by Cao et al. (2011) and 
Joshi, Hildebrand, Aloraier, and Rabczuk (2013), Xiong et al. (2013). 
The main principle of their models is that the adjacent beads overlap 
each other. At an ideal center distance, the overlapping area is equal to 
the valley area found at the top of the bead between the highest points. 
Different models, such as the Bead Overlapping Model (BOM) (Cao et al., 
2011) and Tangent Overlapping Model, (Ding et al., 2015) provided a 
different solution for the optimal center-line distance value. 

However, Ding et al. (2015) observed that it is impossible to achieve 
an ideally flat top surface between adjacent beads, which served as the 
primary motivation to Li, Sun, Han, Zhang, and Horváth (2018), who 
recently examined the overlapping models and introduced the spreading 
effect what the result of physical phenomena during the solidification 
process of the melted metal. The method reduces the surface unevenness 
by reducing the center distance between the first two deposited beads 
with a d0 measured value and keeping the rest of the offset suggested by 
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the BOM. The d0 is defined experimentally and refers to the average 
distance between the right half of the assumed and the actual profile 
cross-section profile of the second bead at a given vertical position. 

The existing multi-pass planning methods (Madsen et al., 2002; 
Zhang et al., 2011; Yang et al., 2014; Wu et al., 2015; Yan, Ong, & Nee, 
2016) are considering the grove geometry as constant where the dif
ferences are a result of an error. Only very few studies are systematically 
handling the groove geometry changes, providing a general solution in 
multi-pass welding (Yan et al., 2017; Fang et al., 2017). 

As the overviewed literature suggests, the weld bead models are 
mostly given from bead-on-plate experiments. During application on 
uneven surfaces, the experienced deviations from the expected shapes 
are considered part of the process’s uncertainty and the model’s inac
curacy. In multi-pass welding, the unevenness of the layer’s surfaces is 
still neglected, and the bead shapes are approximated with simple 
geometric forms. 

In this paper, a fuzzy system-based empirical model is introduced for 
the shapes of the weld beads considering the welding process variables 
and the unevenness of the deposition’s surface. The description of the 
proposed methods (Section 3) is given after the problem definition 
(Section 2). The model performance and results of the experimental 
validation are discussed in Section 4. Conclusions are drawn in Section 
5. 

2. Problem definition 

In multi-pass welding, precise positioning of the weld beads in the 
groove is required to achieve a desirable weld join. The bead shape 

depends on the previously deposited beads’ surface and is directly 
related to the welding process variables (WPVs). Furthermore, in the 
parameters’ qualified range, multiple combinations of the WPVs can 
produce the specific weld bead shape (Mishra et al., 2007). 

In small and medium-sized enterprises, during the small series pro
duction, the process’s tuning by trial and error method could take up a 
significant amount of time. In the planning phase, the beads are 
deposited layer-by-layer, and their shapes are usually simplified into 
quadrilaterals – reflecting only the bead size and position (Fig. 1). 
However, a model describing the relationship between the process pa
rameters and the resulting bead geometry can support selecting the 
process variables and the automated operation. 

A wide range of bead shape models exists to describe a single bead 
based on the reviewed literature. Excluding those that produce a weld 
joint from a single bead, most of them are developed from bead-on-plate 
experiments, where the surface of the base metal plate is evenly flat due 
to machining. Even in those models applied in additive manufacturing 
or multi-pass welding, the quality of the base metal surface is neglected. 
Even though, Li et al. (2018) showed that the base metal’s unsymmet
rical material distribution is influencing the fluid flow in the melted 
metal and, consequently, the weld’s shape bead after solidification. Still, 
no model was developed to describe a bead surface formation when 
deposited on uneven surfaces (Fig. 2). Our proposed model addresses 
this neglect by including the base metal surface quality besides the 
WPVs in our model as inputs. 

In multi-pass welding one, an important factor is the amount of the 
deposited material, which can be calculated as Ad

B cross-sectional area of 
the weld beads from the WPVs. 

The theoretical Ad
B cross-sectional area of the weld beads can be 

estimated according to Eq. (1) by calculating the amount of the depos
ited weld metal: 

Ad
B =

πD2
w

4
⋅

vf

60vt
, (1)  

where vf represents the wire feed rate, vt is the torch travel speed and Dw 

is the feeding wire’s diameter. A ηd deposition efficiency can be defined 
by comparing Ad

B calculated value with the measured bead area, given 
by the area under the bead surface curve on the given measured cross- 
section profile. According to (American Welding Society, 2001), the 
deposition efficiency is above 90 percent during TIG welding. However, 
the sign and the degree of the deviations might be inconsistent, causing 
error propagation in multi-pass welding as the layered beads are added 
on top of each other. The error is usually reduced on a given workpiece 
by on-site adjustment of the torch position and setting to constant the 
welding parameters across several layers. 

Therefore, we expect that an accurate model utilizing the measure
ment data can increase the accuracy of the weld bead geometry accu
racy. Computational intelligence techniques provide suitable tools to 
develop such a model. Based on our experience with the bacterial 
memetic algorithm (BMA) and its competitive performance with other 

Fig. 1. Traditional weld bead representation compared to the proposed method. (Left) The weld bead shapes are simplified into quadrilaterals and organized into 
layers. (Right) The weld bead shapes are described with a polynomial function and placed freely on the uneven base metal surface. 

Fig. 2. Weld bead and its characteristics in a groove, deposited during multi- 
pass welding. The bead local coordinate system (LCS) is defined at the 
bead center. 
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techniques (Botzheim et al., 2009; Balázs, Botzheim, & Kóczy, 2010; 
Bódis & Botzheim, 2018), we decided to utilize it and validate its 
applicability in multi-pass welding. 

The objectives of the study are to (i) characterize the unevenness of 
the base metal surface, (ii) provide the estimation method of weld bead 
geometry formation on uneven surfaces, and (iii) apply the developed 
model on 304L stainless steel welding groove. 

3. Proposed methods 

Our proposed method introduces a modeling method of the weld 
bead profiles on uneven surface deposition and its application in multi- 
pass TIG welding. The method’s key components are the segmentation 
and characterization of the base metal surface and the modeling of the 
weld bead profile function. The base metal surface is handled in seg
ments and approximated with a complete or incomplete second-order 
polynomial function. The bead profile model consists of fuzzy systems 
to estimate the coefficients of the bead shape function. The membership 
functions’ parameters are tuned by the bacterial memetic algorithm 
(Botzheim et al., 2009) during a supervised learning process and eval
uated by the Mamdani inference model (Mamdani & Assilian, 1975). 

3.1. Overview of the structure 

In our method, we are utilizing the weld bead profiles measured by a 
laser triangulation sensor. The model can be applied even in sensor-less 
welding applications to estimate the weld bead shapes when deposited 
on an uneven base metal surface. The overview of the whole modeling 
and planning process is given in Fig. 3, and can be broken down into the 

following steps: 

Step 1. Acquisition and processing of the welding data, provided 
by the welding experiments and processed by the developed data 
processing framework (Section 3.2) 
Step 2. Weld bead profile modeling by tuning the membership 
functions parameters of the fuzzy systems by BMA in order to infer 
the coefficients of the bead profile function from the welding process 
variables and the parameters of the base metal segments (Section 
3.3) 
Step 3. Application in Multi-pass welding of the developed bead 
model to estimate the bead profile shapes in the iterative bead 
placement process (Section 3.4) 

Welding experiments were carried out on flat plates and in V-grooves 
to provide the measurement data to develop the empirical model (Sec
tion 3.2.1). The welding data were acquired in the form of measured 
profiles by a laser line triangulation sensor and the WPVs from the 
welding power source. Additionally, the position and orientation of the 
tool center were also recorded. 

The measurements were aligned and synchronized in the measure
ment system to provide the organized data for the processing framework 
(Section 3.2.2). It was represented as weld bead cross sections in the 
perpendicular plane to the welding direction. Each bead processing took 
two profile scans of the cross-sections, one without and with the 
deposited bead. The analysis carried out in situ, the profile features were 
defined in the workpiece’s coordinate system. The final step of the data 
processing is the generation of the training data (Section 3.2.3) when the 
base metal- and the bead information is shifted into the weld bead’s 

Fig. 3. Overview of the proposed method’s structure. The main steps are: Aquisition and processing of the welding data (Step 1.), Weld bead profile modeling (Step 
2.), and Application in Multi-pass welding (Step3.). 
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local coordinate system. 
As the next step, the supervised training was performed by the BMA 

to realize the weld bead model (Section 3.3). The characteristic points of 
the trapezoidal membership functions of all rule bases were tuned to 
reduce the approximation error value (Ei in Fig. 3). The Ei defines the 
difference between the estimated and the desired value of the function 
coefficient in the i-th training pattern. All three coefficients of the bead 
shape function have their fuzzy system, and the bead shape function is 
given as a combination of them. 

The application of the model is embedded in a welding process 
control system (Section 3.4). It is designed to be applied in a wide range 
of groove shapes; therefore, the workpiece is defined parametric, while 
the bead placement is a sequential process. 

3.2. Acquisition and processing the welding data 

3.2.1. Welding experiments 
Bead-in-groove and bead-on-plate welding experiments were carried 

out to provide the empirical data for the modeling process. In both setup, 
304L stainless steel with 40◦C preheating temperature provided the base 
metal and 1.2 mm diameter Böhler 13/4-IG wire the filler material. The 
experiments were executed in PA welding position, with a regulated 
constant 12 V and 2.4 mm arc gap. The E3 tungsten electrode’s diameter 
was chosen 3.2 mm diameter to accommodate the arc current’s load. 
Pure argon provided the shielding gas with a flow rate of 12 − 14 L/min. 

The bead-on-plate experiments were carried out on a 20 mm thick 
steel plate, clad welded 3 mm deep with the filler material. The design of 
parameters followed an L25(53) Taguchi design (Kacker, Lagergren, & 
Filliben, 1991) layout with a few additional sets to replace the failed 
combinations. Welding failures happened in the design due to a non- 
optimal combination of WPVs, such as high heat input with a low 
wire feed rate or inadequate welding speed selection. Altogether, 33 
different WPV combination were included, all of them with two inde
pendent trials on a 120 mm length. 

Bead-in-groove experiments were performed in straight V-grooves. 
The edges of the 24.5 mm thick and 390 mm long workpieces were 
prepared with a 35∘ bevel angle, 2 mm height root faces, and 1 mm root 
gap. Three workpieces were involved in the process, each with a 
different bead layout containing between 28 and 35 beads. 

In the verification process, the same preparation was made both for 
the flat plates and the welding grooves. 

To record the weld bead profiles and the workpieces’ surface ge
ometry, the M2DW 160/40 Line Laser Triangulation Sensor (LTS) was 
used. Each weld bead was measured by 0.1 mm increments along the 
weld line, which supplied the raw data cross-sections for further data 
processing. The first and the last fifth of the weld beads were neglected; 
thus, only the stabilized cross-sectional area was considered. The multi- 
pass welding experiments excluded the root pass since the welding 

conditions are well defined and strictly controlled due to its critical 
impact on the final joint quality. The exported measurement data 
included – besides the profile points – the recorded tool center points 
and the actual values of the WPVs. 

3.2.2. Profile segmentation and data processing 
A framework was developed in LabVIEWTM to process the bead 

profiles’ measurements, as the pseudo-code of the whole process is 
shown in Algorithm 1. The measurement data imported from the mea
surement system on the workpiece level, containing each weld bead and 
all the measured cross-sections.  

Algorithm 1.: Processing of the bead profile measurements 

The welding groove can be given in a CAD data file, a profile scan of 
the groove, or a combination of those two (Fig. 4). Additionally, the root 
path definition is also required to provide the robot trajectory reference 
points and the path normal-vectors. In each path point, the right-handed 
local coordinate system is defined by the normal-vector (directing to
wards the groove’s opening) as the y-axis and the vector directing to
wards the next path point as the z-axis. The characteristic cross-sections 
are defined at the path points in the x − y plane along the root path. The 
groove’s mathematical description is made for each characteristic cross- 
section from the digital representation of the workpiece. 

The right-left part of the workpiece is considered according to the x- 
axis of the local coordinate systems, the positive x interval defines the 
right side, and the negative is the left. The segments’ describing func
tions are approximated by a second-order polynomial for unified 
description and a defined integral value in the coordinate system of x − y 
plane, where the x is the running variable. In a complex groove geom
etry, the groove slope function can be sectioned into several segments, 
described by elementary functions. In that case, the groove slope func
tion became their superposed function, and the elementary functions 
should be used in their range of interpretation. 

Upon loading the measurement data (Algorithm 1, ln.3), the indi
vidual cross-sections were merged into processible sections defined by 
the desired resolution along the weld line – 5 mm thick sections in the 
recent application. The unified cross-sections were filtered by removing 
the measurement errors and applying a median filter of rank two and a 
second-order derivative filter. The unification of the cross-sections 
performed for each bead in the groove, therefore maintaining the pro
files’ indexing. After the filtering, the base metal and the bead profiles 
are aligned, removing any remained distortion of the measurements and 
unification. 

The next step in the process is the segmentation of the measured 
profiles (Algorithm 1, ln.6). First, the difference between the base metal 
and the bead profile is examined to locate the bead center’s approxi
mated position and the toe points. Second, the main features are iden
tified, such as the top surface of the workpiece, the groove faces, and the 
deposited beads’ uneven surface. Third, the individual beads and bead 
fractions are located according to the given number of visible bead 

Fig. 4. Digital representation of the welding groove including the root path and 
a generated cross-section. 
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segments. The feature extraction is based on the first and second de
rivatives of the given profile points. It is approximated from the given 
points’ linear regression and its surrounding points in a given radius. 

The profile points are then handled separately, and for each segment, 
the fitting curve is defined: linear fitting for the straight features and 
polynomial fitting for the bead segments. From that point, the profile is 
represented as a list of segmented features – each containing the type 
definition, the coefficients of the fitting curve, and the intersection point 
with the subsequent segment. 

Fig. 5 illustrates a generalized, mathematical description of the 
groove geometry. Segments are defined between the groove features’ 
characteristic points – R points are on the top surface, P and Q points are 
located on the left and the right side of the groove, respectively. The 
NRpoint and NLpoint number of points are typically between two and four 
depending on the edge preparation. If the groove is a V-groove with a 
straight groove face, then there is no internal breakpoint; otherwise, the 
root radius (U-groove) and additionally, beveling defines more. Simi
larly, NTpoint defines the number of characteristic points on the top sur
face, thus the number of segments. 

When all segments were identified, the bead characteristics are 
calculated (Algorithm 1, ln.8). The processing framework allows us to 
manually adjust the segment borders, which, after the confirmed mod
ifications, would update the whole segment list and the corresponding 
curve coefficients. 

Fig. 2 depicts a general weld bead in a groove and the bead char
acteristics defined according to the image. These are namely: the area of 
the bead cross-section (AB), the coordinates of the bead center (BC), toe 
points (T1 and T2), and the contact angles at the toe points (Φ1 and Φ2). 

The Si base metal segments are the earlier deposited bead surfaces or the 
groove edges. The points positions are given in mm in the Descartes 
coordinate system (in the workpiece coordinate system and the bead’s 
local coordinate system), the contact angles are in rad. The area of the 
weld bead is calculated as 

AB =

∫ T2

T1

fBdx −
∑Nsubs

i=1

∫ Ii

Ii− 1

fSi dx, (2)  

where T1 = I0 and T2 = INsubs are the toe points (intersection points of the 
first and the last segments and the bead shape function, respectively), 
the points I1 to INsubs − 1 are the intersection points of the adjacent seg
ments, fB is the bead shape function, fSi is the shape function of the i-th 
segment. Both fB and fSi functions are given in the second order poly
nomial form 

fB = B.a0 +B.a1⋅x+B.a2⋅x2 (3)  

fSi = Si.a0 + Si.a1⋅x+ Si.a2⋅x2 (4) 

The last step is post-processing (Algorithm 1, ln.11), when the whole 
bead is analyzed, and an overview is given about the bead characteristics 
features for each cross-section in graphical form. The system automati
cally detects if any of the evaluated characteristics are out of the 
acceptable range and marks the corresponding cross-section to be 
excluded from the export list. The range of acceptance is defined around 
the mean value of the given characteristics of the exportable cross- 
section. 

Fig. 5. Definition of the characteristic points and the coordinate system on a (a) general groove and a (b) V-groove cross-section. Segments are defined between the 
characteristic points of the groove features – T points are on the top surface, P and Q points are located on the left and the right side of the groove. 

Fig. 6. The inputs and outputs of the fuzzy systems as the key component of the weld bead shape model.  
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3.2.3. Generating training data for modeling 
During the data export, besides the training data, the processed state 

of each cross-section is exported. Thus when the beads are re-evaluated, 
the already defined results are presented in the program. Furthermore, 
an overview is tabulated into a.csv file format to reference the training 
performance evaluation. The above-described process is carried out for 
each bead in the welding groove and all workpieces included in the 
model development. 

The weld bead shape model is structured as multiple-input–single- 
output. The inputs are the four WPVs and the coefficients of the segment 
functions (Si.a0, Si.a1, and Si.a2), altogether 13 parameters. The outputs 
are the coefficients of the bead shape function (B.a0, B.a1, and B.a2) – 
each parameter is estimated by its fuzzy system (Fig. 6). Three WPVs 
were selected to be controlled to comply with the industrial aspect of the 
application, namely the arc current (I), the torch travel speed (vt), and 
the wire feed rate (vf ). Additionally, as a recorded input value, the arc 
voltage (U) was also included because its small fluctuation still signifi
cantly affected the heat input. The parameter ranges are tabulated in 
Table 1, where the first column contains all the model’s inputs, and the 
second column the outputs. The bead shape coefficients are extended 
with the list of the bead’s characteristic parameters, where the ranges 
are interpreted for the measured values. 

In the literature, several curvature descriptions are given to describe 
the shape function of the weld bead. However, the parabola shape was 
chosen because of its ability to characterize the segments generally in 
the welding groove. The bead profiles and straight lines can be given 
with only three parameters while a segment given with the root radius 
can be approximated with an acceptably small error. 

The values of the ai coefficients in the parabola function, given as 

a0 + a1⋅x+ a2⋅x2, (5)  

define the type of curve. If all ai coefficients are non-zero, then it is a 
general parabola, if only a1 = 0, then it is a symmetrical one (the beads 
in the flat plate experiment described mostly like that). The case of a2 =

0 describes a straight line, and if both a1 and a2 are zero, then it is a 
horizontal line, crossing the y-axis at a0. Such horizontal lines are 
describing the top surfaces of the grooves and the flat plates. 

The segmented base metal, including all the groove’s visible features 
and the previously deposited beads, is represented as a list of coefficients 
of the segments, with the type definition and the intersection point’s x 
coordinate with the subsequent segment. 

3.3. Bacterial memetic algorithm for training fuzzy systems 

The weld bead shapes’ modeling is carried out utilizing fuzzy sys
tems for the describing curve function’s coefficients. To define the fuzzy 
systems, the BMA was applied as a supervised trainer (Step 2. in Fig. 3) 
on the Npattern training patterns. The operations are carried out on the b 
bacterium, each encoding the fuzzy rules in their chromosomes (Botz
heim et al., 2009) as a bk vector (k is the iteration variable of the 
individuals). 

The rules in the fuzzy system are given in the following form: 

Rulei : IFx1 = Ai,1 and … and xn = Ai,n THEN y = Bi,

where x = (x1,…xn) is the input vector, y is the output, Ai = (Ai,1…Ai,n)

is the antecedent parameter vector, and Bi is the consequent parts in the 
i-th rule. The rule base is defined to cover the whole interval of inter
pretation of the input variables to provide a valid inference result. 
Trapezoidal typed membership functions are used which can be written 
in the following form: 

μAij
(xj) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xj − aij

bij − aij
, if aij < xj⩽bij

1, if bij < xj⩽cij

dij − xj

dij − cij
, if cij < xj⩽dij

0, otherwise

(6) 

In this equation aij⩽bij⩽cij⩽dij denote the four breakpoints of the 
membership function belonging to the i-th rule and the j-th input vari
able. The output membership function in the i-th rule is also described as 
a trapezoid where the breakpoints are denoted as ai, bi, ci, di (Eq. (7)). 

μBi
(y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

y − ai

bi − ai
, if ai < y⩽bi

1, if bi < y⩽ci

di − y
di − ci

, if ci < y⩽di

0, otherwise

(7) 

As in the original Mamdani algorithm, the minimum operator is used 
as the t-norm in the inference mechanism, meaning that the degree of 
matching of the i-th rule in the case of an Ninput-dimensional crisp x input 
vector is: 

Table 1 
Ranges of the Parameters.  

Input Name Notation Min value Max value units Output Name Notation Min value Max value units 

Arc current I 180 260 [A] Bead a0  B.a0  0.5700 3.2426 [ − ]

Arc voltage U 11.3 13.9 [V] Bead a1  B.a1  − 1.1876 1.1876 [ − ]

Torch travel speed vt  1.9 3.0 [mm/s] Bead a2  B.a2  − 0.2983 0.10522 [ − ]

Wire feed rate vf  500 1900 [mm/min] Bead width w 5.1 13.6 [mm]

Segment-1 a0  S1.a0  − 8.5490 2.3304 [ − ] Bead area AB  2.8 16.3 [mm2 ]

Segment-1 a1  S1.a1  − 1.7163 0.41421 [ − ] Toe-1 X-coordinate T1.X  − 7.9 − 1.3 [mm]

Segment-1 a2  S1.a2  − 0.17121 0.16982 [ − ] Toe-1 Y-coordinate T1.Y  − 2.8 3.3 [mm]

Segment-2 a0  S2.a0  − 0.18400 0.11662 [ − ] Toe-2 X-coordinate T2.X  1.3 7.9 [mm]

Segment-2 a1  S2.a1  − 1.3061 1.3061 [ − ] Toe-2 Y-coordinate T2.Y  − 2.8 3.3 [mm]

Segment-2 a2  S2.a2  − 0.38309 0.53976 [ − ] Contact angle-1 Φ1  1.0711 3.2035 [rad]
Segment-3 a0  S3.a0  − 8.5491 2.3304 [ − ] Contact angle-2 Φ2  1.0711 3.2035 [rad]
Segment-3 a1  S3.a1  − 0.41421 1.7163 [ − ]

Segment-3 a2  S3.a2  − 0.17121 0.16982 [ − ]
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wi = min
Ninput

j=1
μAij

(xj). (8) 

The output of the fuzzy inference is then:   

The number of rules is Nrule, and Ninput is the number of input di
mensions.   

By adjusting the breakpoints of the fuzzy rules’ trapezoids, the al
gorithm carries out the minimization of the E(bk) cumulative error, 
defined as the 2-norm sum of squared ek error of the d(p) desired and the 

yk(bk, x(p)) model’s output value. The output of the fuzzy rule bases is 
evaluated – in each step of the BMA and for all the bacteria – according 
to the Mamdani Inference Model for the x(p) inputs as the p-th training 
pattern. 

Algorithm 2.: Bacterial memetic algorithm 

y(x) =
1
3

∑Nrule

i=1
3wi(d2

i − a2
i )(1 − wi) + 3w2

i (cidi − aibi) + w3
i (ci − di + ai − bi)(ci − di − ai + bi)

∑Nrule

i=1
2wi(di − ai) + w2

i (ci + ai − di − bi)

. (9)   
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E(bk) = ||ek||
2
2 (10)  

ek = [e(p)k ] = [d(p) − yk(bk, x(p))] (11) 

Algorithm 2 shows the pseudo-code of the BMA and in Table 2 the 
applied meta parameters are listed. The BMA consists of three main 
calculation steps: the Bacterial mutation, the Local search, and the Gene 
transfer. The iterative process is performed the number of generations 
(Ngen) times, starting with an initial population containing Nind random 
individuals applying the predefined (Nrule) number of rules. Thus, in the 
initial population creation, the total number of the created membership 
functions is Nind⋅(Ninput +1)⋅Nrule where Ninput = 13 is the number of input 
variables and each membership function has four parameters to main
tain their trapezoidal characteristics. 

In each generation, the Bacterial mutation and the Local search are 
applied to each individual, and the Gene transfer on the whole popula
tion at once. 

3.3.1. Bacterial mutation 
In the Bacterial mutation step, the bacteria and its Nclone clones are 

subjects of random changes in their genes, which according to the Munit 
mutation unit can either be a point (breakpoint of the trapezoid), a 
membership function (trapezoidal, four points), or an entire rule. In 
each iteration, Nclone clones are created then the random changes are 
performed. The number of modified genes is given by the lbm mutation 
segment length. After that, all the clones are evaluated, the best clone 
transfers the mutated part into the other clones, and in the end, only the 
best rule base is kept. The Bacterial mutation is repeated Nsegment times, 
where 

Nsegment = 4⋅Nrule⋅(Ninput + 1)
/

lbm (12)  

in the case when point mutation is applied (Munit is set to point). 

3.3.2. Levenberg–Marquardt algorithm 
The Local search in BMA was utilizing the Levenberg–Marquardt al

gorithm and carried out with a LMprob probability for each individual 
until the complex τk < τ (Botzheim et al., 2009) terminal condition is 

met or the maximum LMiter number of iteration steps is reached. 
Let denote J(bk) the Jacobian matrix of bacterium bk: 

J(bk) =

[
∂yk(bk, x(p))

∂bT
k

]

, (13)  

where each row of the J(bk) matrix contains the partial derivatives of the 
bacterium bk encoded fuzzy system’s output calculated for the given x(p)

input training pattern. The detailed definitions of the derivatives and the 
calculation steps are given in Botzheim et al., 2009. 

In the Levenberg–Marquardt algorithm, the approximation towards 
the local minimum is defined by the sk update vector, rk trust region, and 
γk bravery factor. 

sk = − (JT(bk)J(bk) + γkI)− 1JT(bk)ek, (14)  

rk =
E(bk) − E(bk + sk)

E(bk) − ||J(bk)sk + ek||
2
2

(15) 

The value of γk bravery factor controls both the search direction and 
the magnitude of the update – adjusted dynamically depending on the 
value of the rk trust region. If the value of γk converges towards zero, 
then the algorithm applies the Gauss–Newton method; if towards 
infinite, the algorithm gives the steepest descent approach. 

γk+1 =

⎧
⎨

⎩

4⋅γk if rk < 0.25
γk/2 if rk > 0.75
γk otherwise

(16) 

The local search is evaluated as successful if the update vector 
modifies the bacterium towards the local minimum. In this case, the 
bacterium’s new value is carried on; otherwise, it is left unchanged. 

bk+1 =

{
bk + sk if E(bk + sk) < E(bk)

bk otherwise (17)  

3.3.3. Gene transfer 
The last operation in a generation is the horizontal Gene transfer, 

allowing the recombination of genetic information between two bacte
ria. This operation is performed Ninf number of infection times per 
generation. The individuals are organized into ascending order ac
cording to their E error value then split into halves representing the 
better and the worse individuals. During the infection, a randomly 
chosen, better bacteria overwrites a randomly chosen, worse one’s gene 
with its own Iunit infection unit time lgt infection segment length. The 
infection unit here may be defined in the same ways as the Munit muta
tion unit. When the Gene transfer operation is finished, the new gener
ation’s execution starts until the predefined number of generations 
(Ngen) is performed. 

3.4. Application in multi-pass bead positioning 

During the application of the developed bead shape estimation 
model, an iterative process is carried out to place the weld beads in the 
welding groove sequentially. The pseudo-code of this placement process 
is presented in Algorithm 3. The operation requires the description of the 
welding groove (according to Section 3.2.2) and the Welding Plan, con
taining the information about the WPVs and the tool center point (TCP) 
for each Nbead weld bead. If the welding plan were the desired output, the 
additional rules of bead positioning and WPVs selection would be 
necessary, which requires further discussion but not part of this article. 

Table 2 
Parameters of the BMA  

Parameter Name Notation Value 

Number of inputs Ninput  13 
Number of patterns Npattern  5458 
Number of rules Nrule  2 – 12 
Number of generations Ngen  50 
Number of individuals Nind  50 
Number of clones Nclone  3 
Mutation unit Munit  point 
Mutation segment length lbm  1 
Probability of LM1 LMprob  40 
Max. LM iteration step LMiter  8 
Bravery factor (initial) γinit  1.00 
Terminal condition τ  0.0001 
Number of infections Ninf  50 
Infection unit Iunit  rule 
Infection segment length lgt  1  

1 Levenberg–Marquardt algorithm 
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For simplicity, we assume that the Welding Plan is available.  
Algorithm 3.: Model application in multi-pass welding 

In the initialization, the Groove description provides the initial list of 
the segments. The process starts with the acquisition of the BeadCenter, 
defined as the intersection of the center-line of the welding torch (going 
through the TCP) and the base metal’s surface. Based on the given bead 
center, the list of the probably SegmentCombinations can be selected since 
there is no information about how wide the weld bead will be; thus, it 
can stretch over multiple segments or remain within one segment’s 
borders. 

Since three adjacent segments need to be entered, the proper com
bination should be selected (Algorithm 3, ln 4.), as shown in Table 3. 
One segment (index 0) is fixed as it contains the bead center, but the two 
sides need some consideration. As the most common scenario, the pre
vious and the following segments are selected (case 0). If the bead is too 
small, or the given base metal segment is large, the two sides would be 
the same as the middle segment (case 1). On the other hand, the bead 
can be deposited asymmetrically like one side is still on the center’s 
segment, and the other one is on an adjacent segment (cases 2 and 3). In 
the unlikely event that the adjacent bead is small, the bead’s side would 
stretch over the second segment (cases 4 and 5). 

The Segment Combinations with the WPVs can be entered into the 
previously developed model to acquire the B.a0,B.a1,B.a2 coefficients of 
the bead surface function. 

When the bead model is applied and fed with the segment infor
mation, all the cases mentioned earlier are given, then the resulting bead 
shape is evaluated (Algorithm 3, ln 8.). The cases fulfilling the criteria 
that the segments’ index containing the toe points match the fed seg
ments’ indices are kept the other cases are neglected. If multiple satis
factory combinations are found, the priority is given to those which toe 
points are closer to the Bead Center and covering an area with less dif
ference to the expected bead area. 

The characteristics of the newly acquired bead can be evaluated now. 
The exact shape allows us to perform manufacturing-critical analysis of 
the process and highlight the bead’s problematic locations, thus elimi
nating the welding defects. A good measure is to monitor the Φ1 and Φ1 
contact angle values. If a too-narrow gap is created, the fusion could be 
incomplete, gas pockets or slag inclusions could appear. 

In the last step of the planning process (Algorithm 3, ln 10.), when 

the new bead is defined, the segment list is updated to include it and 
remove the fully covered segments or those whose remaining length 
became neglectable. The iterations are repeated until all weld bead is 
deposited. 

4. Results and discussion 

In the following, the development work results will be discussed, 
including the overview of the main findings of the modeling process of 
the weld bead profiles. The performance of the development model was 
compared with a statistical model (multi regression analysis, MRA) 
models, and over cross-validation, too. Furthermore, demonstration and 
evaluation of the application cases are presented. 

The trained model’s performance was evaluated by comparing the 
estimated and the measured values to define the goodness of the fitting 
using the root mean square error (RMSE). The RMSE values were given 
for the bead geometry with the bead shape function defined by the 
estimated coefficients and compared with the measurements. Beside the 
direct comparison of the B.a0,B.a1, and B.a2 coefficients; the calculated 
values of the AB bead area, w bead width, location of the T1 and T2 toe 
points and the three-phase contact angle (Φ) values were considered. 
The value of the toe points’ positioning error is calculated as the distance 
between the estimated and the measured locations. Similar comparisons 
were carried out for a separate set of validation data. 

The data sets for the training and validation were extracted from the 
welding experiments. The processing of the cross-sections of the weld 
beads and the base metal provided the patterns. The patterns were 
generated two ways for each cross-section since they could be seen from 
two views – a straight view and a mirrored one. Therefore, the double 
amount of pattern could be used in the model’s tuning because the 
segments’ descriptions were not symmetric, thus containing additional 
information for the model. The mirrored pattern generation required to 
negate the value of the a1 coefficients of each function (both the base 
metal’s and the bead’s), then swapping all coefficients’ position of 
Segment–1 and Segment–3. The WPVs of the pattern was left unmodified. 
The mirroring was only necessary to be performed on the patterns 
generated from the cross-sections of beads deposited in the welding 
groove. 

One of the mirrored views of the three workpieces was selected as 
validation data. The fitting evaluation was carried out on each bead and 
cross-section individually, the multi-pass validation on the whole filled 
groove. Altogether, 5458 different bead cross-section was used during 
the training and 947 bead cross-section in the validation data set. 

During the data processing, some of the bead cross-section failed to 
be processed and distorted the later results. Therefore, a filter was 
applied, based on the expected bead area, as discussed in Section 2. The 
deposition efficiency may vary depending on the WPVs, but while 
filtering the measurement and estimation data, the lossless value is set as 
the reference deposited cross-sectional area. Both the measured and 
estimated data were filtered according to the deviation from the refer
ence area, where the threshold set to arbitrary ±0.3. The wide threshold 
range was chosen only to remove the clearly outlying data points. Over 
the set threshold limit, the data point was considered faulty due to some 
unforeseen errors in the processing system. This filtering method can 
also be used during the model’s application since the WPVs values are 
typically defined beforehand. 

4.1. Multiple regression analysis model 

Multiple regression analysis was performed to create a reference 
model to our method since no similar model exists in the overviewed 
literature. The regression model data sets were the same as were used for 
training and validating our machine learning models. The extracted 
regression coefficients for coefficients of the bead shape function are 
tabulated in Table 5. The coefficients with the significant effect (level of 
significance is p ≤ 0.05) on the modeled output were marked with an 

Table 3 
Possible selection of the segment from the base metal segment list (index 0 is the 
segment containing the bead center)  

Case Segment–1 Segment–2 Segment–3 

0 − 1  0 + 1  
1 0 0 0 
2 − 1  0 0 
3 0 0 + 1  
4 − 2  − 1  0 
5 0 + 1  + 2   
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asterisk, next to the p-value. Since each input parameter has a significant 
effect on at least one output parameter, none of them can be excluded 
from the modeling. The coefficient of determination (R2) as calculated 
for each output parameter are: 0.889 for B.a0,0.793 for B.a1, and 0.677 
for B.a2. 

The calculated RMSE values for the training and validation are 
presented in the first row of Table 4.. The goodness of fitting is visualized 
in Fig. 7 with yellow rhomboid markers by plotting the comparison of 

the estimated and the measured coefficients, and additionally, the bead 
cross-sectional area. Both in the training and the validation, the MRA 
model provided a sufficient fitting for the data, verifying the data set’s 
coherency. However, the best performing BMA trained fuzzy system 
(marked by blue squares) outperforms the MRA model during the vali
dation. Furthermore, as shown later, most of the examined model by 
BMA would have better fittings than the MRA model. 

4.2. Evaluation of the trained fuzzy systems 

The fuzzy systems were trained with a different number of rules, set 
between two and twelve. The required calculation time depended on the 
number of rules since they defined the number of segments in the bac
teria’s chromosomes (see Eq. 12). In the case of two rules, the number of 
segments is 112, while for twelve rules, it is 672. The computations of 
the fuzzy systems were carried out on a PC using an Intel® Core™ i7- 
5820 K Processor at 3.30 GHz and an NVIDIA GeForce® GTX 970 

Table 5 
MRA model coefficients to estimate the B.a0,B.a2, and B.a2 coefficients of the weld bead function.   

B.a0 B.a1 B.a2 

Name Coefficient p-value  Coefficient p-value  Coefficient p-value  

Intercept 2.6193 0.0000 * 0.0032 0.9793  -0.1501 0.0000 * 
Arc current -0.0031 0.0000 * 0.0002 0.1722  0.0004 0.0000 * 
Arc voltage -0.0941 0.0000 * 0.0019 0.8537  0.0042 0.0756  
Torch travel speed -0.2585 0.0000 * -0.0209 0.0211 * -0.0053 0.0112 * 
Wire feed rate 0.0009 0.0000 * 0.0000 0.2037  0.0000 0.0000 * 
Segment-1 a0 0.1442 0.0000 * -0.0424 0.0000 * 0.0062 0.0000 * 
Segment-1 a1 -0.4189 0.0000 * 0.2140 0.0000 * -0.0309 0.0000 * 
Segment-1 a2 0.0625 0.5926  1.1911 0.0000 * -0.0596 0.0040 * 
Segment-2 a0 -0.1954 0.1033  0.0728 0.4275  0.5881 0.0000 * 
Segment-2 a1 -0.0086 0.3811  0.2592 0.0000 * 0.0074 0.0000 * 
Segment-2 a2 -0.1260 0.0242 * 0.0090 0.8330  0.3161 0.0000 * 
Segment-3 a0 0.1540 0.0000 * 0.0401 0.0000 * 0.0076 0.0000 * 
Segment-3 a1 0.4449 0.0000 * 0.2066 0.0000 * 0.0299 0.0000 * 
Segment-3 a2 -0.5144 0.0000 * -1.1732 0.0000 * -0.1109 0.0000 *  

Fig. 7. Fitting plots of the estimated and measured coefficients of the bead shape function and bead area. (a) – (d) parameters estimated by the BMA model utilizing 
12 fuzzy rules for the training data, (e) – (h) parameters estimated by the MRA model for the training data. 

Table 4 
RMSE values of the MRA model for the training and the validation.  

RMSE B.a0  B.a1  B.a2  

Training 0.1122 0.0858 0.0194 
Validation 0.2171 0.1791 0.0217  
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graphics card. For two rules, calculation of one generation for each co
efficient took 10.2 s,93.6 s for eight rules, and 251.9 s for twelve rules 
on average. The exact time of a generation varied based on how many 
local searches were carried out since this calculation step performed 
with LMprob probability per bacterium. Retrieving a value utilizing the 
fuzzy system took only a few milliseconds. However, the fuzzy rules are 
not intended to use in a real-time system. Therefore, their response time 
is not critical but is required to be quick enough for comfortable usage. 

The best performing model was the fuzzy systems with twelve rules 
for each coefficient. The exact rules are presented in the Appendix, 
tabulated in Table A.1, A.2, A.3. On the training data set, Table 6 shows 
the RMS Error values of the different setups. As the number of rules 
increases, the estimation error decreases; thus, a better approximation is 
given with a higher number of rules. Moreover, the number of removed 
cross-sections (Table 6 “Profiles” column) remains around two percent 
above six rules, similar to the MRA model. Estimating two out of the 

three coefficients is better for already with two rules (BMA-R02) than 
the MRA model, and half of the calculated parameters also show better 
performance. At four rules (BMA-R04), all parameters but the bead area 
are estimated more precisely than the MRA. However, the area esti
mation shows no clear trend since all three coefficients influence its 
value. 

The T1 and T2 toe point locations are estimated with the MRA model 
with 0.70 and 0.71 mm accuracy. In comparison, the BMA-R02 fuzzy 
system estimated the points within a 0.85 and 0.75 mm radius around 
the respective toe point, and with twelve rules of the BMA-R12, they are 
given within a 0.46 and 0.53 mm radius. Comparing the toe points’ 
estimation errors with the bead width shows that the bead width error is 
between 60 and 70 percent of the cumulative error of the two toe points. 

The evaluation of the contact angle estimation shows that for most 
cases, the fuzzy systems provide under 5◦ error, while this value for the 
MRA is around 7◦. If we consider the normalized RMS error on the 

Table 6 
Comparison of the RMS Error values of training data between measurements and estimations of the different models.  

Model Profiles w  AB  T1.X  T1.Y  T2.X  T2.Y  Φ1  Φ2  

MRA 5370 0.87 1.03 0.61 0.33 0.64 0.32 0.1317 0.1239 
BMA-R02 4996 1.13 1.75 0.80 0.28 0.70 0.26 0.1316 0.1279 
BMA-R03 5196 0.97 1.42 0.69 0.21 0.68 0.24 0.0976 0.1064 
BMA-R04 5210 0.76 1.11 0.58 0.24 0.55 0.22 0.0893 0.0897 
BMA-R05 5236 0.77 1.14 0.54 0.21 0.58 0.18 0.0903 0.0857 
BMA-R06 5259 0.71 1.00 0.54 0.17 0.51 0.21 0.0798 0.0806 
BMA-R07 5330 0.68 1.02 0.53 0.18 0.47 0.17 0.0780 0.0776 
BMA-R08 5351 0.73 1.03 0.50 0.19 0.50 0.18 0.0790 0.0791 
BMA-R09 5363 0.69 1.06 0.48 0.15 0.50 0.17 0.0712 0.0757 
BMA-R10 5345 0.64 0.92 0.48 0.17 0.48 0.16 0.0703 0.0736 
BMA-R11 5375 0.69 0.98 0.48 0.14 0.51 0.16 0.0706 0.0781 
BMA-R12 5369 0.66 0.90 0.44 0.14 0.49 0.21 0.0693 0.0740  

Fig. 8. Fitting plots of the estimated and measured coefficients of the bead shape function and bead area. (a) – (d) comparison of the estimated and measured 
parameters of the BMA and the MRA models for the validation data set. 

Table 7 
Comparison of the RMS Error values of validation data between measurements and estimations of the different models.  

Model Profiles w  AB  T1.X  T1.Y  T2.X  T2.Y  Φ1  Φ2  

MRA 934 1.43 2.63 1.40 1.20 1.66 0.98 0.4018 0.4133 
BMA-R02 838 1.06 1.56 0.71 0.27 0.69 0.29 0.1452 0.1417 
BMA-R03 914 0.99 1.62 0.50 0.31 0.81 0.29 0.0928 0.1256 
BMA-R04 891 0.81 1.26 0.59 0.41 0.76 0.39 0.1022 0.1390 
BMA-R05 872 0.79 1.26 0.52 0.23 0.68 0.36 0.0888 0.1457 
BMA-R06 888 0.79 1.26 0.48 0.29 0.65 0.27 0.0817 0.1024 
BMA-R07 925 0.69 1.34 0.57 0.23 0.54 0.34 0.0967 0.1148 
BMA-R08 880 0.82 1.38 0.46 0.26 0.69 0.32 0.0930 0.1316 
BMA-R09 899 0.70 1.30 0.48 0.28 0.63 0.35 0.0894 0.1103 
BMA-R10 858 0.95 1.34 0.69 0.28 0.72 0.34 0.1133 0.1301 
BMA-R11 899 0.84 1.29 0.57 0.21 0.61 0.25 0.0998 0.1039 
BMA-R12 903 0.78 1.36 0.46 0.16 0.56 0.24 0.0779 0.0862  
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ranges of the parameters (Table 1), then we could see that the best BMA- 
12 model provides the coefficients under three percent precision while 
the MRA around five percent. The contact angles are estimated with our 
model with 3.9 and 3.5 percent precision, while the regression model 
gave twice as big error, 7.4 and 5.8 percent. However, the bead area is 
estimated fairly close to each other; the MRA gave 7.6, while the BMA 
model 6.7 percent error on average. 

Fig. 7 shows the comparison of the estimated and measured pa
rameters (bead coefficients and bead area) for the best performing BMA- 
R12 fuzzy system (a-d) and the MRA model (e-h). For the training data, 
similar fitting can be seen as the results in Table 6 suggests; however, 
several outlier points can be discovered in (f) compared to (b), and also 
in (g) compared to (c). 

Similar results can be read from the RMSE values of the validation 

Fig. 9. Illustration of the evolutionary process using BMA with and without cross-validation for B.a0,B.a1,B.a2 variables at various number of rules.  

Table 8 
Comparison of the RMS Error values of training data between models developed with and without cross-validation.  

(Training) B.a0  B.a1  B.a2   

cross-validation normal BMA cross-validation normal BMA cross-validation normal BMA 
Model mean best mean best mean best mean best mean best mean best 

R02 0.1621 0.1599 0.1628 0.1608 0.0827 0.0798 0.0835 0.0822 0.0164 0.0163 0.0166 0.0165 
R03 0.1320 0.1271 0.1327 0.1291 0.0636 0.0621 0.0634 0.0621 0.0122 0.0121 0.0124 0.0120 
R04 0.1156 0.1129 0.1139 0.1105 0.0576 0.0572 0.0564 0.0546 0.0108 0.0104 0.0110 0.0110 
R05 0.1044 0.1031 0.1073 0.1056 0.0522 0.0514 0.0516 0.0504 0.0101 0.0097 0.0104 0.0102 
R06 0.1005 0.0988 0.1015 0.1003 0.0467 0.0458 0.0488 0.0482 0.0095 0.0094 0.0094 0.0093 
R07 0.0941 0.0895 0.0960 0.0922 0.0439 0.0431 0.0441 0.0433 0.0098 0.0097 0.0095 0.0093 
R08 0.0922 0.0909 0.0887 0.0866 0.0430 0.0421 0.0431 0.0429 0.0091 0.0089 0.0093 0.0091 
R09 0.0873 0.0864 0.0908 0.0881 0.0409 0.0404 0.0416 0.0403 0.0089 0.0087 0.0092 0.0091 
R10 0.0860 0.0850 0.0852 0.0845 0.0401 0.0386 0.0402 0.0379 0.0089 0.0085 0.0085 0.0078 
R11 0.0816 0.0786 0.0819 0.0800 0.0373 0.0354 0.0370 0.0352 0.0085 0.0083 0.0087 0.0087 
R12 0.0797 0.0769 0.0790 0.0776 0.0383 0.0373 0.0385 0.0380 0.0084 0.0084 0.0085 0.0083  
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data set according to Table 7 and the visualized data in Fig. 8. The MRA 
estimations are outperformed already by the two rule BMA-R02 fuzzy 
system for all parameters. The proposed model shows the best results 
with twelve rules except for B.a0 and AB. The toe points’ estimations 
remained in the same range, maintaining the same ratio with the width 
error. The contact angles are given with a high error by the MRA (over 
23◦) and a slight increase for the fuzzy rules, but then the best fuzzy 
system provided the estimates still with a 5◦ accuracy. Regarding the 
Normalized RMS error values, the BMA estimation for B.a1 and B.a2 is 
still under three percent, while the error of B.a0 increased to 5.2 percent. 
The MRA model estimations for the coefficients are 8.1, 12.4, and 5.4 
percent, respectively. While the magnitude of the error in the case of the 
BMA-R12 model stays in the same region as was for the training data, the 
MRA estimations show around 20 percent error in most characteristics 
and around 40 percent for the Toe point estimation. As a comparison, 
the toe points by the BMA-R12 model are estimated at 11.7 and 12.3 
percent error. 

The above analysis can be concluded that the bead geometry 
deposited on uneven surfaces can be estimated by our proposed model 
and can be utilized to examine the beads’ features. 

4.3. Cross-validation 

The effect of cross-validation technique is also investigated. In order 
to realize cross-validation, modifications were applied in how the BMA 
is executed. The validation dataset is kept unchanged. The training 
patterns were divided into two subsets: training and testing. 

For the testing subsets, tenfold cross-validation was chosen, where at 
the start of each training process, the training patterns were ordered 
randomly to one of the ten subsets, creating equal size subsets. Then, in 
each generation, one of the subsets is selected as a test dataset and the 
training is performed on the remaining nine subsets as training data. At 
the end of each generation, the best bacterium is selected according to its 
performance on the training data, but it is also evaluated on the test 
subset. Illustration of such evaluation process is shown in Fig. 9, where 
the original BMA without cross-validation and the BMA with cross- 
validation can also be seen (in this latter case showing the training 
and test evolution) for B.a0,B.a1, and B.a2 variables at a various number 
of rules. 

The training process was repeated three times for each rule number 
due to the stochastic nature of the process. Each time the training pro
cess started, the training patterns were reshuffled. The best results of the 
three runs and their averages are presented in Table 8 for the training 
patterns and in Table 9 for the validation patterns for B.a0,B.a1, and B.a2 
variables using BMA with cross-validation and the normal BMA without 
cross-validation. 

Fig. 10 shows, that the results for the validation dataset with or 

without cross-validation are providing a similar RMSE value. The dif
ferences are emphasized in Fig. 11, by calculating the effect of the cross- 
validation on BMA. The percentage values are given as the difference 
between the RMSE of the BMA with and without cross-validation, 
normalized on the corresponding parameter’s interpretation interval 
(see Table 1). The negative values can be translated into decreased error 
by the cross-validation technique. 

From Figs. 9–11 and Tables 8, and 9 it can be seen that there is no 
significant difference between the two approaches. The fuzzy systems 
were not overtrained, and the BMA could avoid the local optima and 
converge to the global optimum with both approaches. 

4.4. Bead profile estimation in multi-pass welding 

As our method’s evaluation has shown in the previous section, the 
proposed model performed well for the individual weld beads. There
fore, a more comprehensive study is given in the following to evaluate 
the interaction of the bead shape formation during sequential depos
iting. During the evaluation process, the measured and estimated bead 
characteristic features were compared, including all the deposited 
beads. As a measure, an absolute positioning error is calculated for the 
T1 and T2 points, and a relative error for w,AB, and the Φ1,Φ2 angles. 
The evaluation is repeated with a different starting position in the 
groove, given by the starting bead number between zero and twenty, 
with five bead increments. The process is repeated for multiple cross- 
sections in the welding groove. The results are given as a summary, 
including all the 36 generated cross-sections along the weld line with the 
5 mm steps increment. 

The same welding groove was used in the evaluation process, which 
provided the validation data in the previous step. A welding plan is 
tabulated in Table B.1, showing the planned WPVs combination and the 
reference tool center position and orientation for each bead in the 
groove. Furthermore, the measured location of the bead center is shown. 
The profile measurements were taken before and after each welding 
section. The overlapped and aligned measurements are sown in Fig. 12. 
a. The dimensions of the original workpiece were set to the same as 
described in Section 3.2. However, during the trials’ execution, a small 
degree of distortion is experienced – as visible on the left groove face, 
represented by the multiple shifted semi-parallel lines. Still, this 
shrinkage did not influence the individual beads but played a role while 
defining the modeling process’s fitting goodness. 

Due to the experienced material distortion, the model estimates were 
given in two scenarios: (1) The bead deposition is evaluated utilizing the 
measured bead profile (Bead Surface – BS case), (2) A constant groove 
cross-section was chosen with an acceptable deviation in all depth, then 
the measured bead surfaces are added in the middle, while the groove 
faces are kept (Constant Groove – CG case). 

Table 9 
Comparison of the RMS Error values of validation data between models developed with and without cross-validation.  

(Validation) B.a0 B.a1 B.a2  

cross-validation normal BMA cross-validation normal BMA cross-validation normal BMA 

Model Mean best Mean best Mean best Mean best Mean best Mean best 

R02 0.1772 0.1519 0.1894 0.1741 0.0650 0.0611 0.0686 0.0649 0.0240 0.0198 0.0194 0.0186 
R03 0.1840 0.1828 0.2063 0.1479 0.0709 0.0619 0.0753 0.0594 0.0143 0.0133 0.0147 0.0125 
R04 0.1658 0.1419 0.1772 0.1656 0.0774 0.0693 0.0693 0.0524 0.0096 0.0091 0.0166 0.0098 
R05 0.2324 0.1587 0.2016 0.1614 0.0649 0.0547 0.0664 0.0656 0.0109 0.0102 0.0125 0.0117 
R06 0.1651 0.1298 0.1801 0.1407 0.0864 0.0737 0.0794 0.0555 0.0141 0.0126 0.0122 0.0090 
R07 0.1693 0.1410 0.2028 0.1386 0.0688 0.0567 0.0730 0.0574 0.0173 0.0141 0.0155 0.0095 
R08 0.1617 0.1535 0.1711 0.1505 0.0720 0.0620 0.0658 0.0608 0.0109 0.0088 0.0216 0.0128 
R09 0.1580 0.1367 0.1397 0.1610 0.0620 0.0495 0.0830 0.0787 0.0110 0.0094 0.0128 0.0099 
R10 0.1595 0.1393 0.1606 0.1410 0.0748 0.0447 0.0709 0.0583 0.0173 0.0110 0.0120 0.0103 
R11 0.1735 0.1342 0.1632 0.1434 0.0732 0.0677 0.0720 0.0554 0.0124 0.0096 0.0117 0.0104 
R12 0.1389 0.1216 0.1722 0.1215 0.0610 0.0560 0.0603 0.0451 0.0161 0.0103 0.0104 0.0085  
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We expected that due to the multi-pass welding process’s sequential 
nature, the bead shape estimation deviation would include an accu
mulating error. The beads in the upper layers would deviate significantly 
already before the deposition, resulting in higher error in the estimation. 
The propagation error of the increasing number of layers is handled by 
starting the deposition by a bead offset, altered from zero to twenty, as 
shown in Fig. 12 for the CG case and in Fig. 13 for the BS case. In both 
figures, (a) represents the measurements, and in each sub-images, the 
black dots show the expected outcome as a reference. The colored lines 
are the result of the estimation models. According to (b), 31 beads were 
deposited in the groove, showing the highest difference from the mea
surements. As the number of deposited beads decreases, the estimations 
are getting closer to each other since the differences in the segments’ 
description became less significant. 

The quantitative evaluation of the bead characteristics in the groove 
is given in the form of box plots. In both scenarios, the position error of 
the characteristic points (Fig. 14) and the relative errors (Fig. 15) show a 
decreasing trend, thus increasing the accuracy of the estimates as less 
bead deposited and the base metal’s segment description is given more 
precisely to the actual one. The best-fitting is provided when eleven 
beads were deposited in the upper part of the groove. The typical 10–15 
percent error decreases to the 5 percent region, while the position error 
decreases from the 0.5–1 mm interval to under 0.5 mm. This corresponds 
well with the observed errors calculated for the individual beads. Except 
for the full groove filling (starting at Bead No. 0), the positioning errors 
are similar in the two use cases. The BS case shows a larger error due to 
the higher number of beads in the groove’s upper part with a more offset 

of the groove face. Fitting goodness for the width and area estimations 
are the opposite – the BS case shows better fitting what can be explained 
as the detachment of the CG case from the measurements. 

The distribution of relative angular errors is shown in Fig. 16. During 
the complete filling of the groove, the typical error stayed in the 4 − 8 
percent region, while it remained under five percent in the further cases. 
This corresponds well with the founding of the analysis of the validation 
data for the individual beads. The ten percent error was exceeded only in 
extreme cases. Consequently, we can consider this value as a low error 
characteristics of the weld bead. 

4.5. Accumulated error of deposition 

The accumulated error of deposition was examined during both 
groove cross-section. The error value is calculated from the signed dif
ference between the estimated and the measured bead area. The total 
deposited volume is 315.7 mm2. In this section, besides the analysis of 
the pure error accumulation of the estimations, the effect of regular 
correction is also examined. We reset the error accumulation during the 
rectification by providing the measured surface after each fifth depos
ited bead up to the 20th bead. 

Fig. 17 illustrates the CG case. CG.estimated represents the model 
estimates without any correction. The curve follows a clear trend of 
slowly accumulating the area estimation error, and by Bead No.30, 
approximately the area of a medium-sized bead is missing 
( − 11.54 mm2). This error is a result of many small but constant un
derestimation of the bead area. As the rectified values show in the CG.

Fig. 10. Trends of RMSE values for B.a0,B.a1,B.a2 variables during validation.  
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rectified plot, the frequent update of the deposition surfaces keeps the 
error low, and the final difference is − 1.37 mm2. The case of the 
measured bead surface deposition is shown in Fig. 18. Compared to the 
previous case, both the rectified and the uncorrected estimated depo
sition show a similarly low accumulated error with a slight over
estimation of the total deposited area. The BS.estimated plot results 
suggest that the accumulated error is compensated during the deposi
tion; besides, it was initially low for each bead. However, as shown in 
Fig. 13. (b), the final surface of estimations is significantly different from 
the measured surfaces, but the covered area is the same due to the 
groove’s shrinkage. This same distortion is the root of the high accu
mulated error in the CG case. The rectified deposition error of the BS.
rectified plot supports the model’s low estimation error behavior since, in 
this case, both the estimation area and the estimated surface correlate 
with the measurements. 

4.6. Detecting the welding defect sensitive locations 

One of the main advantages of the bead shape function estimation is 
to gain access to the bead characteristic features, thus, providing an 
insight to identify locations in the groove where welding defects might 
occur. The profile measurements suggested such a location, marked in 
Fig. 13. (a) with a gray arrow. The examination of the macro-etched 
cross-section of the workpiece verified (Fig. 19) that there is a slag in
clusion defect in that location. The root of the error is lack of fusion due 
to the too narrow and deep gap, which prevented the liquid metal’s 
proper flow, trapping the residue under the melted weld pool. This error 
should be eliminated immediately after the bead deposition by grinding 
out defective weld beads in manufacturing. If it is identified only during 
the workpiece’s ultrasonic testing, the defect should be explored open 
and re-weld, or in the worst case causing scrapping the part. 

As Fig. 13. (b) and (c), and Fig. 12. (b) and (c) show, the critical 
location is identified in the filled grooves with the estimated bead sur
faces proving that the proposed model is capable of locating the welding 

Fig. 11. Comparing the performance of BMA with or without cross-validation 
for B.a0,B.a1,B.a2 variables at the training (above) and validation data (below). 

Fig. 12. Plot of (a) the measured bead surfaces and (b)-(f) the estimated bead surfaces in a constant cross-section groove (CG). Gray arrows show the welding defect 
sensitive locations. 
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defect sensitive locations. 

5. Conclusion 

This paper presented an uneven base metal surface-based modeling 
method of weld bead profiles and its application in multi-pass welding. 
The method consists of the weld bead’s segmentation and character
ization, the base metal from the laser-line scanned profile measure
ments, and a fuzzy system-based bead profile model. 

An empirical model was developed from data of multi-pass and 
single-pass welding experiments and was validated by comparing the 
estimated bead profiles with the measurements. 

In the first step of the method, the welding data was acquired by 
processing the workpieces’ profile scans to identify the base metal seg
ments and the bead characteristics. The output of the processing is the 
completely characterized weld bead and the training patterns. The 
training patterns for machine learning consisted of the welding process 
variables, the coefficients of the segments function in the weld bead 
local coordinate system as inputs, and the weld bead surface function’s 

Fig. 13. Plot of (a) the measured bead surfaces and (b)-(f) the estimated bead surfaces in a measured groove surface (BS). Gray arrows show the welding defect 
sensitive locations. 

Fig. 14. Position error of the Bead characteristic points T1,T2, and Bead center 
in case of deposition in a constant cross-section groove and measured 
bead surface. 

Fig. 15. Relative error of the width and area of the weld beads in case of 
deposition in a constant cross-section groove and measured bead surface. 

Fig. 16. Relative angular error of the Φ1 and Φ2 contact angles of the weld 
beads in case of deposition in a constant cross-section groove and measured 
bead surface. 
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coefficients as the outputs. 
In the second step, the estimation model was defined as three parallel 

fuzzy systems. The characteristic points of the trapezoidal membership 
functions were tuned with the bacterial memetic algorithm during su
pervised training. The estimated bead profiles showed a good fitting to 
the measurements validating that the proposed model is suitable for 
describing the bead profiles in the welding groove when the deposition 
is made on uneven base metal surfaces. 

The results showed that the model achieved a low-error estimation of 
the calculated bead characteristics. For the individual weld beads, the 
root square mean error of the estimation was 0.1377,0.0424, and 0.0089 
for the coefficients of the bead profile function, which can be translated 
to under three percent error on the parameter range. While the bead area 
is estimated at 1.36 mm2, and the toe points with 0.46 − 0.53 mmradius 
error (corresponding approximately ten percent error on average on the 
full parameter range), the contact angles are estimated with under 5◦ or 
around four percent error. 

The developed model was validated during multi-pass welding, 
where a V-groove was filled with the sequence of estimated weld beads. 
The results showed a good match with the expected layout, especially 
during the estimation of the contact angles. The accumulated error of 
the multi-pass welding was calculated by considering the area of the 
weld beads. In the test case of a simulated constant groove cross-section, 
the error increased over time, resulting in a middle-sized bead difference 
in the end. However, with a simulated measurement of the deposited 
surface, every fifth weld bead resulted in a one percent error in total. In 
the other test case, where the measurements were taken as the welding 
groove’s geometry, the accumulated error stayed around below three 
percent during the deposition with a final error of less than one percent. 

Finally, based on the estimation of bead profiles and the contact 
angles values, the model was able to identify welding defect sensitive 
locations, matching the defect of the real workpiece. 

In our future work, we are intended to explore the proposed model’s 
capability, especially in multi-pass welding in grooves with complex 
geometry and additive manufacturing, including the welding plan gen
eration feature. The bacterial memetic algorithm can be used in the 
optimization of bead placement sequences and it also finds the proper 
welding process variables to produce the required bead. Further di
rections could be to evaluate deeper integration of cross-validation in 
our approaches. 
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Fig. 17. Accumulated error of the deposited bead area, the estimated bead are 
compared to the measured total area (Constant Groove cross-section). 

Fig. 18. Accumulated error of the deposited bead area, the estimated bead are 
compared to the measured total area (Measured Bead Surface cross-section). 

Fig. 19. Cross-section of the workpiece used for validation and the microscopic image of the welding defect (slag inclusion due to lack of fusion).  
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Appendix A. The developed fuzzy systems 

The following tables are containing the rules of the developed fuzzy 
systems. 

Table A.1 
Mamdani fuzzy system definitions for the B.a0 polynomial function coefficient of the weld bead profile (Fuzzy system settings: AND method: min, aggregation method: 
max, defuzzification method: Center of Sums − COS).  

ID Current [A]  Voltage [V]  Torch travel speed [mm/s]  Wire feed rate [mm/min]  

R01 [177.7 210.4 233.9 297.0] [9.37 10.17 12.30 16.33] [2.31 2.63 2.75 3.03] [401 500 1271 2006] 
R02 [173.0 259.0 307.4 310.6] [11.17 12.55 13.73 15.53] [2.02 2.26 3.33 3.51] [708 944 1344 1936] 
R03 [144.9 260.5 265.7 302.4] [10.05 12.23 12.29 12.36] [2.19 2.40 2.40 2.64] [799 827 890 1735] 
R04 [176.6 273.1 279.1 307.7] [9.64 10.58 13.61 15.26] [2.29 2.50 2.66 3.02] [425 490 1558 1665] 
R05 [159.2 218.7 272.3 306.6] [9.48 11.33 12.03 13.06] [1.56 2.56 2.67 3.36] [551 737 1065 1862] 
R06 [214.7 230.0 273.1 300.1] [10.76 11.50 12.60 13.34] [2.03 2.04 2.64 2.65] [1122 1379 2009 2166] 
R07 [177.0 229.0 238.9 286.7] [9.16 12.29 15.01 16.36] [1.56 1.70 2.54 3.57] [762 1066 1508 2138] 
R08 [175.1 201.8 223.7 241.6] [11.14 12.12 15.48 16.00] [1.63 2.97 3.21 3.56] [472 548 763 1576] 
R09 [174.9 186.5 241.0 257.6] [9.70 9.88 10.67 16.58] [1.81 2.27 2.31 2.90] [971 1744 2059 2074] 
R10 [150.0 193.4 241.5 268.1] [9.19 10.35 15.96 16.46] [1.58 2.16 2.70 2.70] [825 939 1508 2256] 
R11 [171.8 193.6 234.0 282.6] [9.68 10.00 12.86 15.68] [1.90 1.99 2.04 3.25] [1444 1528 1530 1921] 
R12 [214.5 215.9 250.0 265.7] [9.70 11.83 13.80 16.16] [2.49 3.11 3.19 3.27] [1253 1271 1811 2250]  

ID Segment-1.a0 [-]  Segment-1.a1 [-]  Segment-1.a2 [-]  Segment-2.a0 [-]  

R01 [-9.0163 0.9872 2.3422 2.6423] [-1.7428 0.2806 0.4087 0.4730] [-0.1779 -0.0107 0.0916 0.1398] [-0.1855 -0.0951 0.0564 0.1119] 
R02 [-7.8952 -6.1493 -4.8619 -2.9335] [-1.9676 -1.5674 -0.4679 0.1362] [-0.1787 -0.1749 -0.0065 0.0528] [-0.1798 -0.0301 -0.0184 0.0372] 
R03 [-2.9248 -1.8972 -0.9204 2.0817] [-1.6684 -0.4040 -0.1605 -0.0023] [-0.1170 -0.0218 0.1098 0.1399] [-0.1724 -0.1460 -0.0736 0.1186] 
R04 [-8.1917 -7.0434 -4.1666 0.1889] [-1.5597 -0.5367 -0.1813 0.0145] [-0.1042 -0.0495 0.0603 0.1523] [-0.0772 0.0006 0.0149 0.0469] 
R05 [-9.6603 -9.4961 -0.0244 0.9633] [-1.6070 0.1547 0.2222 0.3922] [-0.0946 0.0256 0.0395 0.1945] [-0.1972 -0.1012 -0.0198 0.0818] 
R06 [-5.4894 -2.3722 -1.2329 -0.5564] [-1.2058 -1.2044 -0.1673 0.2414] [-0.0933 -0.0291 0.0170 0.0392] [-0.1847 -0.0350 0.0339 0.1311] 
R07 [-8.5205 -3.8625 1.4569 2.1417] [-1.4044 -0.8143 -0.6996 0.0835] [-0.1401 -0.1192 0.0061 0.0895] [-0.1680 -0.0400 0.0672 0.1169] 
R08 [-5.6877 -4.1035 -2.2077 -1.8841] [-1.9324 -1.4382 -1.3531 -0.2484] [-0.0998 -0.0602 0.0077 0.1946] [-0.1275 0.0262 0.0293 0.0491] 
R09 [-7.6782 -0.1865 0.4213 0.9988] [-1.7258 -1.6893 -0.4246 0.2523] [-0.0556 -0.0290 -0.0146 0.0837] [-0.1375 -0.1214 -0.0611 0.0567] 
R10 [-8.1149 -6.7038 -1.9597 1.6364] [-1.5520 -0.7798 -0.4498 0.3874] [-0.1586 0.0006 0.0008 0.0585] [-0.0449 0.0039 0.0249 0.1185] 
R11 [-8.8082 -1.0270 -1.0207 1.2584] [-1.9882 -1.5161 -0.7513 0.2304] [-0.1931 -0.1628 -0.1225 0.0227] [-0.1261 -0.0372 0.0473 0.0727] 
R12 [-3.6880 -0.7400 1.1617 1.6442] [-1.4152 -1.2562 -0.9937 0.4147] [-0.0610 -0.0366 0.0019 0.1049] [-0.1567 -0.0145 0.0515 0.1200]  

ID Segment-2.a1 [-]  Segment-2.a2 [-]  Segment-3.a0 [-]  Segment-3.a1 [-]  

R01 [-0.9756 -0.2622 0.5783 0.7314] [-0.1757 -0.1700 0.1067 0.3605] [-6.6747 -4.1009 1.1217 2.6907] [-0.4244 -0.2714 1.9178 2.0199] 
R02 [-1.2894 -0.1676 0.0692 0.2311] [-0.1375 -0.1335 0.3440 0.5599] [-6.2237 -5.2007 -1.1479 -0.7217] [-0.4097 0.0938 1.2438 1.7475] 
R03 [-0.6734 -0.5688 -0.2544 0.8306] [-0.4465 -0.1933 0.2238 0.2334] [-0.5093 0.3105 0.5544 2.6813] [-0.1410 0.5417 0.8835 1.6744] 
R04 [-0.9266 -0.0752 0.6808 1.3827] [0.0267 0.0315 0.5564 0.6072] [-7.9384 -6.5539 -6.2052 0.5206] [0.0141 0.4671 0.9597 1.4981] 
R05 [-0.7244 -0.4499 -0.2170 0.9913] [-0.4227 -0.2633 0.0142 0.5717] [-4.4337 -2.7435 0.0437 2.2119] [-0.4155 -0.3990 -0.3609 1.5838] 
R06 [-1.2327 -1.1929 0.0756 0.2573] [-0.4271 -0.4063 0.1012 0.5424] [-5.6654 -2.4828 -1.1740 1.1692] [-0.4494 0.1554 1.1724 1.2135] 
R07 [-1.3616 -1.2425 1.3987 1.5589] [-0.1864 -0.1331 0.1519 0.5499] [-2.2505 -0.0240 1.2115 2.7334] [0.4051 0.7320 0.7922 2.0390] 
R08 [-1.3715 -1.1500 1.1025 1.4132] [-0.3615 -0.2743 0.0773 0.1876] [-6.0684 -4.0760 2.1144 2.5004] [-0.4885 -0.4069 1.3781 1.6556] 
R09 [-0.9417 -0.7745 -0.4048 0.6829] [-0.4337 -0.2821 -0.2592 0.6090] [-4.3911 -0.3998 0.3504 1.4935] [-0.2942 -0.2204 1.1436 1.8560] 
R10 [-0.4353 0.2277 0.2328 0.3589] [-0.4166 -0.0705 0.3109 0.3363] [-8.5701 -5.6454 -3.7169 2.4415] [-0.0698 0.3791 0.9464 1.7202] 
R11 [-1.2941 0.8353 0.9798 1.2042] [-0.1949 -0.1021 0.2876 0.5425] [-6.2965 -1.5759 -1.4718 2.2909] [-0.1211 0.6300 1.1697 1.5098] 
R12 [-1.0789 0.6278 0.9942 1.3378] [-0.2512 -0.1757 -0.1132 -0.0437] [-8.5257 -3.9127 0.5298 1.4944] [0.8530 0.8834 1.6460 1.7391]  

ID Segment-3.a2 [-]  Output: Bead.a0 [-]    

R01 [-0.0977 -0.0827 0.0042 0.1091] [0.4561 0.4571 0.8769 0.9705]   
R02 [-0.0973 -0.0188 -0.0071 0.0414] [0.4562 0.4565 1.1109 1.5912]   
R03 [-0.1681 0.0434 0.0446 0.0654] [2.1315 3.0217 3.2921 3.3221]   
R04 [-0.1960 -0.1038 0.0712 0.1822] [1.8963 2.8169 3.2135 3.2137]   
R05 [-0.2025 -0.1066 -0.0435 0.1787] [0.4561 0.4561 0.5617 2.0691]   
R06 [-0.1749 -0.0599 0.0130 0.1093] [0.4561 0.4600 1.4254 1.4670]   
R07 [-0.1718 -0.0373 0.1796 0.1797] [2.6510 3.1196 3.5103 3.6040]   
R08 [-0.1300 -0.0017 0.0987 0.1581] [0.4574 0.4765 0.5936 1.8074]   
R09 [-0.1744 0.0417 0.1494 0.1647] [1.7719 1.8857 2.6774 2.8179]   
R10 [-0.0913 -0.0150 -0.0108 0.0230] [0.5023 0.5475 1.2611 2.5117]   
R11 [-0.0814 -0.0278 0.0209 0.0326] [2.4723 2.7388 2.7391 3.1247]   
R12 [0.0459 0.0786 0.1020 0.1459] [1.0512 3.2276 3.4615 3.7675]    
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Table A.2 
Mamdani fuzzy system definitions for the B.a1 polynomial function coefficient of the weld bead profile (Fuzzy system settings: AND method: min, aggregation method: 
max, defuzzification method: Center of Sums − COS).  

ID Current [A]  Voltage [V]  Torch travel speed [mm/s]  Wire feed rate [mm/min]  

R01 [187.9 244.8 261.7 283.8] [9.19 12.93 13.89 14.78] [1.99 2.09 2.16 3.05] [712 789 1586 1893] 
R02 [171.8 268.9 299.5 310.2] [12.32 14.16 15.83 15.94] [1.81 2.47 3.33 3.45] [470 1651 1869 1911] 
R03 [164.2 180.7 188.0 288.1] [9.67 10.18 10.90 13.00] [1.83 1.94 2.45 3.29] [623 692 733 1430] 
R04 [174.2 252.2 282.8 294.8] [10.10 10.73 11.50 15.46] [2.13 2.83 2.94 3.43] [558 686 706 1883] 
R05 [184.0 219.7 221.1 268.8] [9.85 9.93 13.48 16.53] [2.00 2.20 2.20 3.03] [905 1022 1655 1849] 
R06 [161.0 180.7 202.4 307.8] [9.87 12.75 13.59 14.39] [1.90 2.59 2.90 3.01] [605 1146 1344 1463] 
R07 [159.7 163.0 173.2 245.0] [9.13 11.82 13.89 14.78] [1.90 2.21 2.26 3.29] [698 744 1785 2150] 
R08 [154.7 162.8 214.8 278.1] [9.17 12.15 13.08 14.73] [1.90 2.84 2.93 2.98] [656 721 848 1878] 
R09 [173.5 213.1 216.4 225.5] [11.99 12.06 15.77 15.86] [1.84 1.93 2.21 3.07] [775 913 2113 2277] 
R10 [168.5 247.0 256.1 256.8] [10.90 12.26 15.53 16.46] [1.84 2.07 2.55 3.09] [634 1088 1129 1329] 
R11 [164.9 197.2 243.1 252.5] [10.27 10.67 14.04 16.16] [1.59 1.59 2.14 2.89] [460 547 1149 1913] 
R12 [152.9 177.2 179.9 292.2] [11.49 12.17 12.39 16.37] [2.10 2.90 3.02 3.46] [613 661 1746 1900]  

ID Segment-1.a0 [-]  Segment-1.a1 [-]  Segment-1.a2 [-]  Segment-2.a0 [-]  

R01 [-5.8622 -2.8972 -2.7971 2.4865] [-2.0515 -1.3389 -1.1469 0.2519] [-0.1532 0.0499 0.1016 0.1938] [-0.2108 -0.0608 -0.0124 0.0771] 
R02 [-7.5906 1.3370 2.5319 2.7100] [-1.9758 -1.7887 -0.2620 0.4398] [-0.0129 0.0540 0.0633 0.0888] [-0.2180 -0.1666 0.0007 0.0162] 
R03 [-8.8579 -4.8905 -3.4487 0.8289] [-1.4406 -1.3229 -0.5135 0.3747] [-0.1746 -0.0872 -0.0616 0.1232] [-0.2004 -0.1249 -0.0552 0.0272] 
R04 [-7.9444 -5.8706 -1.7662 0.9235] [-1.2457 -0.6754 0.2855 0.3388] [-0.1372 -0.0621 -0.0563 0.1763] [-0.1552 -0.0576 -0.0574 0.1169] 
R05 [-7.0021 -6.3005 -6.1894 0.9468] [-1.4531 -1.2579 0.0067 0.1333] [-0.1499 -0.0869 -0.0712 0.0571] [-0.2171 -0.2159 -0.0691 0.0868] 
R06 [-9.4796 -2.0253 -0.5267 0.2288] [-1.4437 -1.2680 0.1121 0.2539] [-0.1890 0.0669 0.0697 0.0950] [-0.1250 0.0603 0.1071 0.1239] 
R07 [-7.8384 -7.3173 -3.7322 -1.5746] [-1.6003 -0.9935 -0.9911 -0.5634] [-0.0822 0.0957 0.1016 0.1641] [-0.2108 -0.1499 0.0467 0.0748] 
R08 [-8.2177 -4.9113 -3.7259 -1.4310] [-1.6944 -1.5734 -0.5088 -0.2922] [-0.1827 -0.0524 0.1059 0.1866] [-0.2118 -0.1821 0.0820 0.1291] 
R09 [-3.7143 -0.5490 -0.5466 -0.1994] [-2.0508 -1.9931 -1.3796 -0.3955] [-0.0887 0.0167 0.0174 0.0513] [-0.1107 -0.0310 -0.0206 0.1138] 
R10 [-6.0317 -5.2826 0.1788 0.6305] [-2.0093 -1.9701 -0.6512 0.0219] [-0.0891 0.0738 0.1725 0.1917] [-0.1938 -0.1238 0.0279 0.0739] 
R11 [-8.0176 -3.2134 -2.6361 -2.5892] [-1.9711 -1.4898 -1.4174 -1.0171] [-0.1977 -0.1689 0.0820 0.0958] [-0.0887 0.0239 0.0333 0.0410] 
R12 [-5.5857 -2.9890 -2.9666 0.7672] [-2.0370 -1.9510 -0.6238 -0.1751] [-0.0697 0.0041 0.0929 0.1819] [-0.1256 -0.0924 0.1082 0.1217]  

ID Segment-2.a1 [-]  Segment-2.a2 [-]  Segment-3.a0 [-]  Segment-3.a1 [-]  

R01 [-0.6262 -0.4963 -0.4671 1.1033] [-0.4326 -0.0109 0.0555 0.5425] [-5.7375 -5.2226 -0.1276 1.1567] [-0.1781 0.3109 0.7603 1.5447] 
R02 [-0.7190 0.7786 1.3246 1.5174] [-0.3782 -0.3024 -0.2071 -0.1608] [-9.4780 -6.9101 -5.6343 -3.5537] [-0.4902 0.1962 0.4580 1.5939] 
R03 [-0.2693 0.8948 1.3525 1.4827] [-0.3911 -0.2857 0.3072 0.5549] [-7.7754 -1.6498 0.1562 1.7843] [0.1825 1.5395 1.5739 1.5882] 
R04 [-0.5818 -0.4233 1.3374 1.4301] [-0.3364 -0.2980 -0.1349 0.1702] [-5.1662 -2.8241 -1.1139 0.7283] [0.0291 1.5079 1.7900 1.8352] 
R05 [-0.2594 0.0763 1.3718 1.4814] [-0.3205 -0.0781 0.3329 0.3994] [-9.6831 -7.6627 -3.4002 2.1406] [-0.2783 0.1640 1.1566 1.6597] 
R06 [-1.2465 -1.0536 -0.2481 0.4839] [-0.1421 0.1087 0.2134 0.4339] [-8.2576 -6.6140 -2.4465 -1.9551] [-0.1771 0.6985 1.3216 1.5162] 
R07 [-1.2790 0.2177 0.9037 1.5458] [-0.2099 0.0278 0.1565 0.6197] [-7.2805 2.2658 2.4639 2.7178] [-0.0884 0.3845 0.8111 1.8037] 
R08 [-1.0337 -0.0153 0.4817 1.5036] [-0.3272 -0.2467 0.4117 0.4845] [-8.2185 -8.1380 0.3422 0.6248] [-0.2055 -0.1756 1.3993 1.4448] 
R09 [-1.1949 0.4299 0.9357 1.5278] [-0.3069 -0.2979 -0.2774 0.4559] [-9.7425 -8.2847 -0.7519 1.4794] [-0.4237 0.8056 1.1737 1.4830] 
R10 [-1.5030 -1.1086 -0.9477 0.8226] [-0.4433 -0.1547 -0.1516 0.5450] [-9.8226 -9.2775 -3.3123 -1.4074] [-0.0342 0.7926 0.9139 1.4816] 
R11 [-1.4327 -0.7518 0.4817 0.5577] [-0.2222 -0.1824 -0.0703 0.5315] [-4.2259 -0.4584 0.1194 1.7442] [-0.1717 0.4248 1.9005 2.0160] 
R12 [-0.8539 -0.5682 -0.1558 1.0811] [-0.3857 -0.3654 0.1582 0.1787] [-3.0209 -2.6642 -0.0523 0.8471] [-0.4641 -0.2627 0.0802 0.6869]  

ID Segment-3.a2 [-]  Output: Bead.a0 [-]    

R01 [-0.1688 -0.0892 0.1190 0.1432] [-1.2827 -1.1323 -0.4826 1.3546]   
R02 [0.0315 0.0563 0.1157 0.1283] [-0.0501 0.0107 0.9724 1.1102]   
R03 [-0.1856 -0.1111 0.0502 0.1081] [0.6989 0.9611 1.3459 1.3540]   
R04 [-0.0839 0.0533 0.0537 0.0627] [-0.6329 0.7745 1.2174 1.2303]   
R05 [-0.0410 0.0016 0.0741 0.1445] [-1.3157 1.1513 1.1949 1.2631]   
R06 [-0.1842 -0.1604 -0.0891 0.1998] [-1.2157 -1.1409 0.3851 1.3041]   
R07 [-0.2038 0.0939 0.1388 0.2008] [-1.3049 -0.7196 1.2554 1.3316]   
R08 [0.0006 0.0357 0.1601 0.1928] [-1.4222 -0.8067 1.0234 1.1821]   
R09 [-0.0345 -0.0251 0.0043 0.1769] [-1.3750 -1.3679 -0.8537 1.0049]   
R10 [-0.0901 -0.0871 0.0118 0.0439] [-1.3775 -1.3772 -1.3744 -0.2538]   
R11 [-0.2027 -0.1501 -0.0150 -0.0130] [-1.4172 -0.7736 1.0619 1.0643]   
R12 [-0.0602 0.0229 0.1623 0.1773] [-1.3200 -1.3194 -1.2002 1.2294]    
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Table A.3 
Mamdani fuzzy system definitions for the B.a2 polynomial function coefficient of the weld bead profile (Fuzzy system settings: AND method: min, aggregation method: 
max, defuzzification method: Center of Sums − COS).  

ID Current [A]  Voltage [V]  Torch travel speed [mm/s]  Wire feed rate [mm/min]  

R01 [150.2 167.8 226.4 279.9] [11.34 12.00 12.08 13.70] [1.85 2.43 3.23 3.29] [911 1653 1979 2182] 
R02 [170.5 207.6 241.3 245.8] [9.16 11.07 12.52 16.30] [1.77 2.16 2.22 2.32] [916 1114 1123 1139] 
R03 [151.5 197.8 264.7 299.8] [11.13 11.55 12.11 12.31] [1.56 1.64 1.99 3.57] [421 562 574 1230] 
R04 [179.7 205.2 206.9 207.7] [9.45 10.90 15.38 15.58] [1.71 1.72 2.74 2.94] [714 941 1042 1144] 
R05 [151.1 172.8 277.7 301.5] [10.04 11.35 13.27 15.32] [2.16 3.22 3.31 3.53] [1431 1567 1620 1913] 
R06 [178.1 210.5 258.7 273.5] [10.76 12.23 12.44 14.11] [1.84 2.16 2.61 3.01] [532 1341 1383 2063] 
R07 [186.6 190.5 263.1 298.3] [9.29 9.45 12.90 15.63] [2.50 2.52 3.20 3.39] [518 547 1258 1634] 
R08 [179.4 196.0 291.9 310.4] [10.29 10.52 13.15 13.93] [1.84 1.84 1.88 3.01] [485 602 1540 1868] 
R09 [192.3 203.6 301.9 303.6] [9.90 10.12 10.16 12.30] [1.84 2.15 2.88 3.39] [529 551 642 1347] 
R10 [146.2 164.9 193.2 201.1] [11.88 12.44 12.51 12.76] [1.88 1.92 2.00 3.13] [455 481 1542 1981] 
R11 [187.1 233.3 235.1 296.2] [9.49 9.65 11.07 13.22] [1.90 2.19 2.79 3.25] [748 752 1574 1781] 
R12 [177.9 185.4 263.9 304.1] [10.16 10.40 11.75 16.26] [2.37 2.77 3.10 3.47] [992 1291 2000 2269]  

ID Segment-1.a0 [-]  Segment-1.a1 [-]  Segment-1.a2 [-]  Segment-2.a0 [-]  

R01 [-8.7291 -4.0657 0.3994 1.5906] [-1.3950 -0.7099 0.3664 0.4519] [-0.0953 0.0018 0.0480 0.0677] [-0.1282 -0.0152 -0.0046 0.0913] 
R02 [-10.0103 -6.4535 -2.6680 2.3204] [-1.9065 -1.3372 -1.1642 0.1531] [-0.1386 0.0601 0.1553 0.2033] [-0.1870 -0.1725 -0.0045 0.0958] 
R03 [-8.0854 -6.7511 -4.7392 0.3061] [-1.5095 -1.2007 -0.9176 0.4332] [-0.0286 -0.0036 0.0060 0.0519] [-0.1789 -0.0149 0.0543 0.0566] 
R04 [-7.3475 -6.7077 -6.7065 -3.9485] [-1.4671 -0.9162 -0.2202 -0.2043] [-0.0223 0.0918 0.1220 0.1938] [-0.1816 -0.1484 0.0373 0.0580] 
R05 [-10.0597 -7.9424 -1.9385 -1.5795] [-1.8847 -1.6472 -0.2765 0.4953] [-0.1938 -0.1626 -0.1577 -0.1108] [-0.1824 -0.1366 -0.1109 -0.1085] 
R06 [-6.2514 -0.1165 0.4951 2.2950] [-1.8448 -1.1279 -0.3255 0.3511] [-0.1730 -0.0031 0.1471 0.1912] [-0.1880 0.0244 0.0867 0.1212] 
R07 [-5.1620 -4.2983 0.1016 1.4353] [-1.5771 -1.5332 -0.2794 0.0085] [-0.0972 -0.0867 0.0017 0.1067] [-0.0963 -0.0872 0.1146 0.1288] 
R08 [-9.3204 -4.2948 -0.3922 0.0017] [-1.7862 -1.2253 -1.0395 -0.1885] [-0.0862 -0.0496 -0.0439 0.1095] [-0.1198 -0.1191 -0.1087 0.0542] 
R09 [-8.1099 -7.6049 -7.1880 -0.1435] [-1.4429 -1.3992 -0.5704 0.4023] [-0.0239 0.1291 0.1505 0.1713] [-0.1309 -0.0088 -0.0044 0.0430] 
R10 [-6.1882 -0.5275 1.9689 2.5674] [-2.0493 -1.5032 -1.4543 -0.6314] [-0.1675 -0.0645 0.0207 0.2012] [-0.2026 -0.0638 -0.0515 0.1051] 
R11 [-8.6051 -5.8701 -0.7933 0.7541] [-1.5496 -0.8912 0.0460 0.2428] [-0.0671 -0.0581 0.0680 0.0901] [-0.1101 -0.0628 -0.0238 0.1229] 
R12 [-2.9871 -2.3055 -1.0648 -0.5324] [-1.7748 -1.0454 -0.6879 0.0554] [-0.1975 -0.0339 0.0692 0.1587] [-0.1854 -0.0440 0.0477 0.1349]  

ID Segment-2.a1 [-]  Segment-2.a2 [-]  Segment-3.a0 [-]  Segment-3.a1 [-]  

R01 [-0.8904 0.0427 0.0748 0.8877] [-0.1547 -0.0390 0.1942 0.4183] [-8.4967 -6.1152 0.0842 1.6189] [-0.1441 -0.1165 -0.0079 1.7796] 
R02 [-0.8852 -0.8400 -0.7573 0.4734] [-0.4215 -0.3949 -0.0319 -0.0046] [-5.7698 -1.0308 -0.8404 1.9988] [-0.2262 0.2382 0.4848 1.3663] 
R03 [-0.7353 -0.2839 1.1161 1.1727] [-0.1796 -0.1197 0.1119 0.3131] [-8.3675 -7.8209 1.6490 2.5738] [-0.4504 -0.4349 -0.3173 -0.0169] 
R04 [0.0542 0.7110 0.8833 1.1025] [-0.4162 -0.3135 0.5550 0.5893] [-0.4464 1.0314 1.2661 1.6721] [-0.4772 -0.3293 -0.3188 0.3174] 
R05 [-0.3332 -0.0677 -0.0111 1.4940] [-0.3177 0.1461 0.1552 0.5184] [-5.1092 -4.7012 -4.6259 1.4303] [-0.4781 -0.1429 -0.0660 0.6304] 
R06 [-1.5123 -1.4762 1.0940 1.2068] [-0.2009 -0.0633 0.0155 0.1051] [-6.0670 -1.9054 2.2205 2.2446] [-0.3992 0.4170 0.8155 1.7564] 
R07 [-0.5928 -0.5429 1.3379 1.5364] [-0.1035 -0.0427 0.1291 0.1827] [-5.0606 -2.6745 0.4644 0.9948] [-0.3778 0.1882 1.6414 1.8456] 
R08 [-1.4954 -1.2795 0.2037 0.7423] [-0.1624 0.1421 0.4144 0.5146] [-7.5596 -1.6419 -1.2899 1.2050] [-0.1822 1.8065 1.8189 1.9878] 
R09 [0.1314 0.4766 1.0338 1.3755] [-0.2751 -0.1524 0.1425 0.2648] [-5.7656 -4.6515 -2.7881 0.8978] [0.4550 0.5045 0.9996 1.5993] 
R10 [-1.4881 -0.1572 0.1055 1.4915] [-0.4339 -0.3118 -0.2749 0.0570] [-5.9051 -0.9436 -0.6293 -0.2015] [1.1533 1.2586 1.7961 1.8618] 
R11 [-1.1548 -0.7712 -0.7149 0.9812] [-0.1680 -0.0802 0.2805 0.4449] [-5.9310 0.8670 2.6987 2.7084] [0.6627 1.6515 1.8628 1.9483] 
R12 [-1.0176 -0.7365 -0.6541 -0.0972] [-0.2158 -0.1189 0.3131 0.4062] [-9.0642 -5.6870 -5.2877 -0.8029] [-0.3311 -0.1501 0.6366 0.7070]  

ID Segment-3.a2 [-]  Output: Bead.a0 [-]    

R01 [-0.1088 -0.0992 0.0362 0.1806] [-0.1772 -0.1695 -0.0111 0.0610]   
R02 [-0.1229 -0.0834 -0.0504 0.0303] [-0.3376 -0.3091 -0.2873 0.0846]   
R03 [-0.1848 -0.1255 -0.0414 0.0154] [-0.3306 -0.1777 -0.0965 0.0543]   
R04 [-0.1454 -0.0906 0.0296 0.1316] [-0.3387 -0.3347 -0.3237 0.0881]   
R05 [-0.1316 -0.1108 -0.0789 -0.0457] [-0.1626 -0.0771 -0.0387 0.0505]   
R06 [-0.1591 -0.0124 0.1160 0.1670] [-0.1872 0.0902 0.0931 0.0931]   
R07 [-0.0795 -0.0403 0.0155 0.1417] [0.0277 0.0376 0.1243 0.1262]   
R08 [-0.0473 -0.0335 0.1650 0.1682] [-0.1462 0.0675 0.0969 0.1016]   
R09 [-0.1724 0.1287 0.1925 0.1981] [-0.3212 -0.0996 -0.0333 0.1230]   
R10 [-0.2025 -0.1748 -0.0634 0.1793] [-0.3553 -0.3542 -0.2916 -0.2281]   
R11 [-0.1725 -0.1621 -0.0334 0.1470] [0.0129 0.0402 0.1089 0.1098]   
R12 [-0.1974 -0.0545 0.0367 0.1453] [-0.2792 -0.2465 -0.2343 -0.1967]    
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Appendix B. The Welding plan of the validation 

This table is containing the welding plan used in the validation test. 
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Balázs, K., Botzheim, J., & Kóczy, L. T. (2010). Comparative Investigation of Various 
Evolutionary and Memetic Algorithms. In J. Kacprzyk, I. J. Rudas, J. Fodor, & 
J. Kacprzyk (Eds.), series Title: Studies in Computational Intelligence: Vol. 313. 
Computational Intelligence in Engineering (pp. 129–140). Berlin Heidelberg, Berlin, 
Heidelberg: Springer. https://doi.org/10.1007/978-3-642-15220-7_11.  

Bartz-Beielstein, T., Branke, J., Mehnen, J., & Mersmann, O. (2014). Evolutionary 
Algorithms. Wiley Interdisciplinary Reviews. Data Mining and Knowledge Discovery, 4 
(3), 178–195. https://doi.org/10.1002/widm.1124 

Benyounis, K. Y., & Olabi, A. G. (2008). Optimization of different welding processes 
using statistical and numerical approaches – A reference guide. Advances in 
Engineering Software, 39(6), 483–496. https://doi.org/10.1016/j. 
advengsoft.2007.03.012. URL: http://www.sciencedirect.com/science/article/pii/ 
S0965997807001020. 

Botzheim, J., Cabrita, C., Koczy, L., Ruano, A., 2004. Estimating fuzzy membership 
functions parameters by the Levenberg-Marquardt algorithm. In: 2004 IEEE 
International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542). Vol. 3. pp. 
1667–1672 vol 3, iSSN: 1098–7584. doi: 10.1109/FUZZY.2004.1375431. 
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