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Abstract

We study the classical Mackey–Glass delay differential equation

x′(t) = −ax(t) + bfn(x(t − 1))

where a, b, n are positive reals, and fn(ξ) = ξ/[1 + ξn] for ξ ≥ 0. As a limiting (n → ∞) case we also 
consider the discontinuous equation

x′(t) = −ax(t) + bf (x(t − 1))

where f (ξ) = ξ for ξ ∈ [0, 1), f (1) = 1/2, and f (ξ) = 0 for ξ > 1. First, for certain parameter values 
b > a > 0, an orbitally asymptotically stable periodic orbit is constructed for the discontinuous equation. 
Then it is shown that for large values of n, and with the same parameters a, b, the Mackey–Glass equation 
also has an orbitally asymptotically stable periodic orbit near to the periodic orbit of the discontinuous 
equation.

Although the obtained periodic orbits are stable, their projections R � t 	→ (x(t), (x(t − 1))) ∈ R2 can 
be complicated.
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1. Introduction

The Mackey–Glass equation

y′(t) = −ay(t) + b
y(t − τ)

1 + yn(t − τ)

with positive parameters a, b, τ, n was introduced in 1977 by Michael Mackey and Leon Glass 
[28] as a model of feedback control of blood cells. This simple-looking differential equation with 
a single delay attracted the attention of many mathematicians since its hump-shaped nonlinearity 
causes entirely different dynamics compared to the case where the nonlinearity is monotone. See 
the work [25] of Lasota for a similar model. There exist several rigorous mathematical results, 
numerical and experimental studies on the Mackey-Glass equation showing convergence, oscil-
lations of solutions, and complicated behavior, see e.g. [1,6,14,16,26,27,35]. Despite the intense 
research, the dynamics is not fully understood yet.

By rescaling the time we may assume τ = 1. Therefore, we consider

y′(t) = −ay(t) + bfn(y(t − 1)) (En)

where a > 0, b > 0, n ≥ 4, and fn(ξ) = ξ/[1 + ξn] for ξ ≥ 0. The natural phase space to 
study (En) is C+ = C([−1, 0], (0, ∞)), see [8,10]. For each ψ ∈ C+ there is a unique solution 
yn,ψ : [−1, ∞) → (0, ∞) with yn,ψ(s) = ψ(s), −1 ≤ s ≤ 0. The solutions define the continuous 
semiflow Fn : [0, ∞) × C+ � (t, ψ) 	→ y

n,ψ
t ∈ C+, where yn,ψ

t (s) = yn,ψ(t + s), −1 ≤ s ≤ 0.
If a ≥ b > 0 then it is elementary to show that yψ(t) → 0 as t → ∞ for all ψ ∈ C+. In the 

rest of the paper we assume b > a > 0. Then there is a global attractor A ⊂ C+, that is, A ⊂ C+
is compact and nonempty, Fn(t, A) = A for all t ≥ 0, and A attracts all bounded subsets of C+.

The unique positive zero ζ 0
n of [0, ∞) � ξ 	→ −aξ + bfn(ξ) ∈ R defines the unique equilib-

rium point ζ̂ 0
n ∈ C+ of Fn by ζ̂ 0

n (s) = ζ 0
n , −1 ≤ s ≤ 0. It is easy to see that, for fixed b > a > 0, 

there exists an N(a, b) ≥ 4 so that ζ̂ 0
n is unstable for n ≥ N(a, b), and, as n increases, ζ̂ 0

n is a 
source of periodic orbits via local Hopf bifurcations, see e.g. [44]. On the other hand, the papers 
[15] by Karakostas et al. and [9] by Gopalsamy et al. give conditions for the global attractivity 
of the unique positive equilibrium of (En) for b > a > 0, and n is below a certain constant given 
in terms of a, b. Our result is valid for some b > a > 0 and n is large.

The maximum of fn is at ξ0
n = 1/ n

√
n − 1. Assuming n > b/(b − a), the inequality ξ0

n < ζ 0
n

follows. Liz, Röst and Wu [26,35] gave conditions to guarantee A ⊂ {ψ ∈ C+ : ψ(s) > ξ0
n }, that 

is A is in the region where the feedback is monotone decreasing. This means that the structure of 
A can be studied by using the Poincaré–Bendixson type theorem of Mallet-Paret and Sell [31], 
see also [17,41].

If ξ0
n < ζ 0

n (a consequence of n > b/(b − a)) then there is a unique ζ 1
n ∈ (0, ξ0

n ) with 
bfn(ζ

1
n ) = aζ 0

n , and (ξ − ζ 0
n )(−aζ 0

n +bfn(ξ)) < 0 for ξ ∈ (ζ 1
n , ∞) \ {ζ 0

n }. Consequently, if t > 0, 
y(t) = ζ 0

n and y(t − 1) ∈ (ζ 1
n , ζ 0

n ) then y′(t) > 0, and if t > 0, y(t) = ζ 0
n and y(t − 1) > ζ 0

n then 
y′(t) < 0. This means a negative feedback condition in the region (ζ 1

n , ∞) with respect to ζ 0
n . 

Then the inclusion A ⊂ {ψ ∈ C+ : ψ(s) > ζ 1
n } (which can be guaranteed by following [26,35]) 

allows to apply the results obtained for equations with negative feedback resulting in a Morse de-
composition of A, see [30,32]. In particular, periodic orbits and some connections between them 
can be obtained in this way. In addition, under the negative feedback condition complicated dy-
namics is possible, see [11,24]. The work of Lani-Wayda [23] shows chaos for an equation with 
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a hump-shaped nonlinearity, similar to fn, however, the result is not applicable for (En). A major 
problem in delay differential equations is to prove complicated dynamics for the Mackey–Glass 
equation (En).

We emphasize that, in general, for equation (En) the global attractor A is not in a region of 
C+ where the negative feedback condition holds with respect to the positive equilibrium.

The aim of this paper is to construct periodic orbits for equation (En) for some parameter val-
ues a, b, n. The obtained periodic orbits are hyperbolic, orbitally stable, exponentially attractive 
with asymptotic phase. In the proof we use the limiting Mackey–Glass equation

x′(t) = −ax(t) + bf (x(t − 1)) (E∞)

where f (ξ) = limn→∞ fn(ξ), that is, f (ξ) = ξ for ξ ∈ [0, 1), f (1) = 1/2, and f (ξ) = 0 for 
ξ > 1. Theorem 3.1 shows that if the parameters b > a > 0 are given so that the hypothesis

(H) equation (E∞) has an ω-periodic solution p :R → R with the following properties:

(i) p(0) = 1, p(t) > 1 for all t ∈ [−1, 0),
(ii) (p(t), p(t − 1)) = (1, a/b) for all t ∈ [0, ω]

holds then there exists an n∗ ≥ 4 such that, for all n ≥ n∗, equation (En) has a periodic solution 
pn :R → R with period ωn > 0 so that the periodic orbits On = {pn

t : t ∈ [0, ωn]} are hyperbolic, 
orbitally stable, exponentially attractive with asymptotic phase, and ωn → ω, dist {On,O} → 0
as n → ∞, where O = {pt : t ∈ [0, ω]}.

In order to get periodic orbits for equation (En) by the application of Theorem 3.1, hypothesis 
(H) needs to be verified. We have two types of results in this direction: analytical and computer-
assisted proofs. First, Proposition 4.1 shows that (H) is satisfied if b is large comparing to a, 
namely b > max{aea, ea − e−a}. Another result, whose proof can be found in [18], is Propo-
sition 4.2 when b is sufficiently close to a. More precisely, for every a > 0 there exists an 
ε0 = ε0(a) > 0 such that for the parameters a, b with b ∈ (a, a + ε0) condition (H) holds. If 
a > 0 is fixed and bk → a+ as k → ∞ then the minimal period of the obtained periodic solu-
tion tends to ∞. The most interesting examples for a, b, such that (H) is valid, are obtained by 
applying rigorous computer-assisted techniques, see Proposition 4.5.

The results of this paper can be summarized as follows.

Theorem 1.1. If the pair of parameters a, b satisfies either the condition of Proposition 4.1, or 
Proposition 4.2, or a and b are given in Proposition 4.5, then there exists an n∗ = n∗(a, b) ≥ 4
such that for all n ≥ n∗ equation (En) has a hyperbolic, orbitally stable, exponentially attractive 
periodic orbit with asymptotic phase.

The shapes of the obtained periodic solutions (depending on a, b, n) vary from simple looking 
slowly oscillating solutions (with respect to ζ 0

n ) to solutions with complex structures, see the 
figures at the end of the paper. For some of the periodic solutions x guaranteed by Theorem 1.1
the projections R � t 	→ (x(t), x(t − 1)) ∈ R2 produce complicated looking structures, and the 
figures are similar to those obtained in numerical studies and were believed to be a sign of chaotic 
dynamics generated by (En)
17
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As the proofs are technical, we give a brief overview of the key steps. A solution of (E∞) is 
defined as a continuous function x : [−1, t∗) → R with 0 < t∗ ≤ ∞ such that the map [0, t∗) �
t 	→ f (x(t − 1)) ∈ R is locally integrable and

x(t) = e−a(t−τ)x(τ ) +
t∫

τ

e−a(t−s)f (x(s − 1)) ds

holds for all 0 ≤ τ < t < t∗. It is easy to see that for any initial function ϕ ∈ C+ there is a 
unique solution x = xϕ : [−1, ∞) → (0, ∞) satisfying x0 = ϕ. However, comparing solutions 
with ϕ > 1 and ϕ ≡ 1, one sees that there is no continuous dependence on initial data in C+. By 
choosing

C+
r = {ψ ∈ C+ : ψ−1(c) is finite for all c ∈ (0,1]}

as a phase space, the solutions of (E∞) define the continuous semiflow [0, ∞) � (t, ϕ) 	→ x
ϕ
t ∈

C+
r .

If ϕ ∈ C+
r and the solution x = xϕ of (E∞) satisfies the additional property

(x(t), x(t − 1)) =
(

1,
a

b

)
(1.1)

for all t in a fixed interval [0, M], then Proposition 2.6 shows that, for large n, the solution 
yn,ψ , ψ ∈ C+, of (En) remains close to xϕ on the interval [0, M] provided they are close on the 
interval [0, 1]. Condition (1.1) guarantees that, if x(t) = xϕ(t) is close to 1 and the derivative 
x′(t) exists, then x′(t) = −ax(t) + bf (x(t − 1)) is not close to zero, and this makes it possible 
to show that the measure of the set {t ∈ [−1, M − 1] : |xϕ(t) − 1| < δ} is bounded by Kδ for 
a fixed K > 0, and for all small δ > 0. Therefore, for most of the times t ∈ [0, M], one has 
xϕ(t − 1) /∈ (1 − δ, 1 + δ), that is, xϕ(t − 1) is not close to the discontinuity point of f allowing 
the application of perturbation type arguments. Another key fact is that, for each δ ∈ (0, 1), 
fn(ξ) → f (ξ) as n → ∞ uniformly in ξ ∈ [0, 1 − δ] ∪ [1 + δ, ∞). This convergence ensures 
that, for large n, maxt∈[0,1] |xϕ(t) − yn,ψ(t)| is small provided ϕ(s) ≥ 1 + δ, ψ(s) ≥ 1 + δ, 
s ∈ [−1, 0]. See Propositions 2.5 and 2.6 for the precise results.

Hypothesis (H) implies the existence of a small γ > 0 so that for a translate q of p one has 
q0 ∈ Sγ = {ψ ∈ C+ : ψ(s) ≥ ψ(0) = 1 +γ, s ∈ [−1, 0]}. Theorem 3.1 states that, for large n, the 
solution curves [0, ∞) � t 	→ y

n,ψ
t ∈ C+ of (En) starting in Sγ return to Sγ , that is, yn,ψ

t ∈ Sγ

for some t > 0. A crucial property of the Mackey–Glass nonlinearity is that, for n ≥ 4, the 
polynomial bound supξ>0 |f ′

n(ξ)| ≤ n/4 is valid, while for a fixed γ > 0, supξ≥1+γ |f ′
n(ξ)| ≤

n/[1 + (1 + γ )n] tending to zero exponentially as n → ∞. This guarantees that, for large n, the 
return map Sγ � ψ 	→ y

n,ψ
t ∈ Sγ is a contraction, and its fixed point determines a stable periodic 

orbit of (En).
The paper is organized as follows. Section 2 shows the basic properties of the solutions of 

equation (E∞) in the phase space C+
r . In addition, it gives the technical conditions ensuring that 

the solutions of (E∞) with certain regularity properties are approximated on compact intervals 
by the solutions (En) for large n. Section 3 proves that, for large n, under hypothesis (H) equation 
(En) has a stable periodic orbit close to the orbit guaranteed by (H). Section 4 contains analytical 
and rigorous computer-assisted tools to find parameter values b > a > 0 with hypothesis (H). 
18
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The paper is concluded by figures demonstrating the variety of the obtained periodic orbits of the 
Mackey–Glass equation (En).

We remark that a well known and widely applied technique in the study of a delay differential 
equation of the form y′(t) = −ay(t) + bgn(y(t − 1)), with a parameter n, is to consider the lim-
iting equation x′(t) = −ax(t) + bg(x(t − 1)) with the assumption that the limiting nonlinearity 
g(ξ) = limn→∞ gn(ξ) is a step function with finite steps. The idea turned out to be very success-
ful to prove a variety of dynamical properties, see the papers [4,11,19–21,34,36,40,42,43,45]. 
For example, the search for periodic orbits can be reduced to a finite dimensional problem in this 
way. For an equation with a piece-wise linear limiting nonlinearity g, like f in equation (E∞), 
the search for periodic orbits is still an infinite dimensional problem. For a delay differential 
equation, different from (En), Mackey et al. [29] introduced the limiting nonlinearity f as in this 
paper, and constructed stable periodic orbits for the original equation. The technique of Mackey 
et al. [29] applies to equation (En) provided b is large comparing to a, and yields a periodic so-
lution of (En) with a relatively simple shape. In the present paper the situation of [29] is covered 
by Proposition 4.1 (together with Theorem 3.1).
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2. Preliminary results

Let R, C, N , N0 denote the set of real numbers, complex numbers, positive integers, nonneg-
ative integers, respectively. Let C be the Banach space C([−1, 0], R) equipped with the norm 
‖ϕ‖ = maxs∈[−1,0] |ϕ(s)|. For a continuous function u : I → R defined on an interval I , and for 
t, t − 1 ∈ I , ut ∈ C is given by ut (s) = u(t + s), s ∈ [−1, 0]. Introduce the subsets

C+ ={ψ ∈ C : ψ(s) > 0 for all s ∈ [−1,0]} ,

C+
r =

{
ψ ∈ C+ : ψ−1(c) is finite for all c ∈ (0,1]

}
of C where ψ−1(c) = {s ∈ [−1, 0] : ψ(s) = c}. C+ and C+

r are metric spaces with the metric 
d(ϕ, ψ) = ‖ϕ − ψ‖. For a finite set S let #S denote the number of elements of the set S.

Let a, b, n be real positive parameters with b > a > 0 and n ≥ 4. Define the function

fn : [0,∞) � ξ 	→ ξ

1 + ξn
∈ R,

and its limit when n → ∞
19
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f (ξ) = lim
n→∞fn(ξ) = lim

n→∞
ξ

1 + ξn
=

⎧⎪⎨⎪⎩
ξ if 0 ≤ ξ < 1
1
2 if ξ = 1

0 if ξ > 1

Set

ξ0
n = 1

n
√

n − 1
, ξ1

n = n

√
n + 1

n − 1
.

Then 0 < ξ0
n < 1 < ξ1

n , and ξ0
n , ξ1

n are the only zeros of f ′
n, f

′′
n in (0, ∞), respectively.

Proposition 2.1. Let n ≥ 4.

(i) For each ε ∈ (0, 1), fn(ξ) → f (ξ), as n → ∞, uniformly in ξ ∈ [0, ∞) \(1 −ε, 1 +ε).
(ii) If ξ > 0 then |f ′

n(ξ)| ≤ n/4.
(iii) If ξ > 1 then |f ′

n(ξ)| ≤ n/(1 + ξn).

Proof. (i) If 0 ≤ ξ ≤ 1 − ε then

|fn(ξ) − f (ξ)| = ξn+1

1 + ξn
≤ (1 − ε)n+1.

If ξ ≥ 1 + ε then

|fn(ξ) − f (ξ)| = fn(ξ) = 1

1/ξ + ξn−1 ≤ (1 + ε)1−n.

(ii) From f ′
n(ξ) = [1 − (n −1)ξn]/(1 + ξn)2 it is easy to see that f ′

n(ξ) ∈ [0, 1) for ξ ∈ (0, ξ0
n ], 

and f ′
n(ξ) < 0 for ξ > ξ0

n . From

f ′′
n (ξ) = nξn−1[(n − 1)ξn − (n + 1)]

(1 + ξn)3

it follows that f ′
n has a minimum at ξ1

n . For the minimum value f ′
n(ξ

1
n ) = −(n −1)2/(4n) ≥ −n/4

holds. Therefore, −n/4 ≤ f ′
n(ξ) < 1 for all ξ > 0. This proves (ii).

(iii) If ξ > 1 then

|f ′
n(ξ)| = (n − 1)ξn − 1

(1 + ξn)2 <
(n − 1)ξn

(1 + ξn)2 <
n − 1

1 + ξn
<

n

1 + ξn

and (iii) holds. �
Consider the equations

y′(t) = −ay(t) + bfn(y(t − 1)) (En)

and
20
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x′(t) = −ax(t) + bf (x(t − 1)). (E∞)

A solution of equation (En) on [−1, ∞) with initial function ψ ∈ C+ is a continuous function 
y : [−1, ∞) → R so that y0 = ψ , the restriction y|(0,∞) is differentiable, and equation (En)
holds for all t > 0. The solutions are easily obtained from the variation-of-constants formula for 
ordinary differential equations on successive intervals of length one,

y(t) = e−a(t−k)y(k) + b

t∫
k

e−a(t−s)fn(y(s − 1)) ds, (2.1)

where k ∈ N0, k ≤ t ≤ k + 1. Hence one can find that each ψ ∈ C+ uniquely determines a 
solution y = yn,ψ : [−1, ∞) → R with yn,ψ

0 = ψ , and yn,ψ(t) > 0 for all t ≥ 0. In addition, one 
sees that yn,ψ satisfies the integral equation

yn,ψ(t) = e−a(t−τ yn,ψ(τ ) + b

t∫
τ

e−a(t−s)f (yn,ψ(s − 1)) ds (0 ≤ τ < t < ∞). (2.2)

The solutions define the continuous semiflow

Fn : [0,∞) × C+ � (t,ψ) 	→ y
n,ψ
t ∈ C+.

For equation (E∞) with the discontinuous f , we use formula (2.1) with f instead of fn

to define solutions for (E∞). A solution of equation (E∞) with initial function ϕ ∈ C+ is a 
continuous function x = xϕ : [−1, tϕ) → R with some 0 < tϕ ≤ ∞ such that x0 = ϕ, the map 
[0, tϕ) � s 	→ f (x(s − 1)) ∈ R is locally integrable, and

x(t) = e−a(t−k)x(k) + b

t∫
k

e−a(t−s)f (x(s − 1)) ds, (2.3)

holds for all k ∈N0 and t ∈ [0, tϕ) with k ≤ t ≤ k + 1.
It is not difficult to show that, for any ϕ ∈ C+, there is a unique solution xϕ of equation 

(E∞) on [−1, ∞). However, comparing solutions with initial functions ϕ > 1, ϕ ≡ 1, one sees 
that there is no continuous dependence on initial data in C+. Therefore we restrict our attention 
to the subset C+

r of C+. The choice of C+
r as a phase space guarantees not only continuous 

dependence on initial data, but also allows to compare certain solutions of equations (E∞) and 
(En) for large n.

Proposition 2.2 below shows that, for all ϕ ∈ C+
r , equation (E∞) has a unique solution xϕ

on [−1, ∞) with xϕ
t ∈ C+

r for all t ≥ 0. Once we have the existence of xϕ : [−1, ∞) → R, it is 
elementary to obtain the integral equation

xϕ(t) = e−a(t−τ)xϕ(τ ) + b

t∫
e−a(t−s)f (xϕ(s − 1)) ds (0 ≤ τ < t < ∞). (2.4)
τ
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Proposition 2.2. For each ϕ ∈ C+
r there is a unique maximal solution xϕ : [−1, ∞) → R of 

equation (E∞). The maximal solution xϕ satisfies:

(i) x
ϕ
t ∈ C+

r for all t ≥ 0,
(ii) if t > 0 and xϕ(t − 1) = 1, then xϕ is differentiable at t , and equation (E∞) holds at t .

The map

F : [0,∞) × C+
r � (t, ϕ) 	→ x

ϕ
t ∈ C+

r

is a continuous semiflow.

Proof. Step 1. Let ϕ ∈ C+
r be given. Then there exists a sequence (sl)Ll=0 so that −1 ≤ s0 < s1 <

. . . < sL ≤ 0 and ϕ−1(1) = {s0, . . . , sL}. Set J = {t0, . . . , tL} with tl = sl + 1, l ∈ {0, . . . , L}. 
The function [0, 1] � s 	→ f (ϕ(s − 1)) ∈ [0, 1] is bounded, and continuous at all ξ ∈ [0, 1] \ J . 
Consequently, it is integrable on [0, 1]. It follows that the definition

x0 = ϕ, x(t) = e−at x(0) + b

t∫
0

e−a(t−s)f (x(s − 1)) ds, t ∈ [0,1] (2.5)

of x : [−1, 1] → R gives a continuous function. Moreover, x is differentiable at each point of 
(0, 1] \ J , and equation (E∞) holds for all t ∈ (0, 1] \ J

Step 2. Assume xt ∈ C+ is not satisfied for all t ∈ [0, 1]. Then, by x0 = ϕ ∈ C+, there is a 
minimal t∗ ∈ (0, 1] with x(t∗) = 0. As J is a finite set, there is an ε > 0 so that [t∗ −ε, t∗) ∩J = ∅, 
and (E∞) holds for all t ∈ (t∗ − ε, t∗). Clearly,

x′(t) = −ax(t) + bf (x(t − 1)) ≥ −ax(t) for all t ∈ (t∗ − ε, t∗),

and it follows that

x(t) ≥ x(t∗ − ε)e−a(t−t∗+ε) ≥ x(t∗ − ε)e−aε for all t ∈ (t∗ − ε, t∗).

Hence, by the continuity of x, we obtain the contradiction x(t∗) > 0. Therefore xt ∈ C+ for all 
t ∈ [0, 1].

Step 3. If xt ∈ C+
r is not true for all t ∈ [0, 1], then there exists a c ∈ (0, 1] so that {t ∈ [0, 1] :

x(t) = c} is an infinite set. As J is finite, we may choose an open interval I ⊂ (0, 1) so that 
I ∩ J = ∅ and Ic = {t ∈ I : x(t) = c} is infinite. Note that x is differentiable on I , (E∞) holds 
on I .

By ϕ ∈ C+
r , one may assume that x(t − 1) /∈ {ac/b, 1} for all t ∈ I . Observe ac/b < 1. This 

fact and the continuity of x0 = ϕ allow us to distinguish three cases.
Case 1: x(t − 1) > 1 for all t ∈ I . Then x′(t) = −ax(t) < 0 for all t ∈ I , and hence x is 

strictly decreasing on I , a contradiction to the fact that Ic is infinite.
Case 2: x(t − 1) < ac/b for all t ∈ I . Since Ic is infinite, there is a t∗ ∈ I with x(t∗) = c and 

x′(t∗) ≥ 0. On the other hand, we have

x′(t∗) = −ax(t∗) + bf (x(t∗ − 1)) = −ac + bx(t∗ − 1)) < −ac + b
ac = 0,

b
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a contradiction.
Case 3: ac/b < x(t − 1) < 1 for all t ∈ I . Similarly to Case 2, as Ic is infinite, there is t∗∗ ∈ I

with x(t∗∗) = c and x′(t∗) ≤ 0. From (E∞) it follows that

x′(t∗∗) = −ax(t∗∗) + bf (x(t∗∗ − 1)) = −ac + bx(t∗∗ − 1) > −ac + b
ac

b
= 0,

a contradiction.
Therefore xt ∈ C+

r for all t ∈ [0, 1].
Step 4. So far we proved that, for any ϕ ∈ C+

r , (2.5) defines a continuous extension x of ϕ to 
[−1, 1], and xt ∈ C+

r for all t ∈ [0, 1]. This procedure can be repeated to find a unique continuous 
function x : [−1, ∞) → R such that x0 = ϕ, xt ∈ C+

r for all t ≥ 0, and equation (2.3) holds for 
all k ∈ N0 and t ∈ [k, k + 1]. Therefore, a unique solution xϕ exists on [−1, ∞), and statement 
(i) is satisfied as well. Moreover, according to the remark preceding the proposition, the integral 
equation (2.4) holds for xϕ .

If xϕ(t̄ − 1) = 1 then xϕ(s − 1) = 1 for all s ∈ [τ, t] provided τ < t̄ < t and τ, t are close to 
t̄ . As the only discontinuity of f is at ξ = 1, by applying the fundamental theorem of calculus, 
statement (ii) follows from the integral equation (2.4).

Step 5. Let t1 ≥ 0, t2 > 0, ϕ ∈ C+
r . We claim that the semigroup property F(t1 + t2, ϕ) =

F(t2, F(t1, ϕ)) holds. It is sufficient to show the semigroup property for t2 ∈ (0, 1], since the 
case t2 > 1 can be obtained from repeated application of the case t2 ∈ (0, 1]. So, let t2 ∈ (0, 1].

Let ψ = F(t1, ϕ) = x
ϕ
t1

. We have to show xψ
t2

= F(t2, ψ) = F(t1 + t2, ϕ) = x
ϕ
t1+t2

, that is, 
xψ(t2 + θ) = xϕ(t1 + t2 + θ), θ ∈ [−1, 0].

If t2 + θ ≤ 0, then xψ(t2 + θ) = ψ(t2 + θ) = xϕ(t1 + t2 + θ). If t2 + θ > 0 then, by (2.4) with 
τ = 0, t = t2 + θ and ψ = x

ϕ
t1

,

xψ(t2 + θ) = e−a(t2+θ)ψ(0) + b

t2+θ∫
0

e−a(t2+θ−s)f (ψ(s − 1)) ds. (2.6)

By (2.4) with τ = 0, t = t1, one has

ψ(0) = xϕ(t1) = e−at1x(0) + b

t1∫
0

e−a(t1−s)f (xϕ(s − 1)) ds. (2.7)

Substituting (2.7) into (2.6) and using ψ(s − 1) = xϕ(t1 + s − 1), we obtain

xψ(t2 + θ) = e−a(t1+t2+θ)x(0) + b

t1+t2+θ∫
0

e−a(t1+t2+θ−s)f (xϕ(s − 1)) ds

= xϕ(t1 + t2 + θ).

Therefore, xψ
t2

= x
ϕ
t1+t2

.
Step 6. For any fixed ϕ ∈ C+

r , the continuity of [0, ∞) � t 	→ F(t, ϕ) ∈ C+
r follows from the 

uniform continuity of xϕ on compact subintervals of [−1, ∞).
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Step 7. Now we show that, for each fixed t ≥ 0, the map C+
r � ϕ 	→ F(t, ϕ) ∈ C+

r is con-
tinuous. Suppose t ∈ [0, 1]. Let ε > be given, and let ϕm → ϕ in C+

r . The finite set ϕ−1(1)

can be covered by open intervals with total length less than ε/(3b). Let U be the union of 
these open intervals. Clearly, f (ϕm(s)) → f (ϕ(s)) uniformly in s ∈ [−1, 0] \ U as m → ∞. 
Thus, there is m0 ∈N so that, for all m ≥ m0, sups∈[−1,0]\U |f (ϕm(s)) − f (ϕ(s))| < ε/(3b) and 
‖ϕm − ϕ‖ < ε/3. Then, from (2.3) we obtain that, for every t ∈ [0, 1] and m ≥ m0,

‖F(t, ϕm)−F(t, ϕ)‖ ≤ sup
t∈[−1,1]

|xϕm

(t) − xϕ(t)|

≤ ‖ϕm − ϕ‖ + b

⎛⎜⎝∫
U

+
∫

[−1,0]\U

⎞⎟⎠ |f (ϕm(s)) − f (ϕ(s))|ds

<
ε

3
+ b

ε

3b
+ b

ε

3b
= ε.

Therefore, ϕm → ϕ in C+
r implies F(t, ϕm) → F(t, ϕ) as m → ∞ uniformly in t ∈ [0, 1]. This 

fact combined with the semigroup property gives that, in case ϕm → ϕ in C+
r , F(t, ϕm) →

F(t, ϕ) as m → ∞ uniformly on t in compact subintervals of [0, ∞).
Step 8. The continuity of F in t from Step 6 and the continuity of F in ϕ uniformly on 

t in compact subintervals of [0, ∞) from Step 7 together yield the continuity of F jointly in 
(t, ϕ) ∈ [0, ∞) × C+

r . This completes the proof. �
Next we prove a boundedness property.

Proposition 2.3. Let ϕ ∈ C+
r , ψ ∈ C+ and n ≥ 4.

(i) If ϕ and ψ are in C([−1, 0], (0, b/a)) then the segments xϕ
t and yn,ψ

t are in C([−1, 0],
(0, b/a)) for all t ≥ 0. The same holds for C([−1, 0], (0, b/a]).

(ii) There exist t∗(ϕ) ≥ 0, t∗∗(ψ) ≥ 0 such that xϕ
t ∈ C([−1, 0], (0, b/a)) for all t ≥ t∗(ϕ), and 

y
n,ψ
t ∈ C([−1, 0], (0, b/a)) for all t ≥ t∗∗(ϕ).

(iii) If yn,ψ(t0) ≤ b/a for some t0 ≥ 0 then |(yn,ψ)′(t)| < 2b holds for all t > t0. Similarly, if 
xϕ(t1) ≤ b/a for some t1 ≥ 0 then |(xϕ)′(t)| < 2b holds for all t > t1 for which (xϕ)′(t)
exists.

Proof. Let ϕ ∈ C+
r and ψ ∈ C+ be given. Let z denote either xϕ or yn,ψ . Then, by (2.2) and 

(2.4), for 0 ≤ τ < t < ∞, we have

z(t) = e−a(t−τ)z(τ ) + b

t∫
τ

e−a(t−s)g(z(s − 1)) ds

where g = f if z = xϕ , and g = fn if z = yn,ψ .
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If z(τ ) ≤ b/a for some τ ≥ 0 then, by g ≤ 1, for all t ≥ τ

z(t) ≤ b

a
e−a(t−τ) + b

t∫
τ

e−a(t−s) ds = b

a
.

If z(τ ) < b/a then z(t) < b/a follows for all t > τ . Hence, statement (i) is immediate.
In order to show (ii), by the first part of the proof it suffices to find a t0 ≥ 0 with z(t0) < b/a. 

Assuming z(t) ≥ b/a for all t ≥ 0, from the integral equation for z, for t > 1 one gets

z(t) = e−a(t−1)z(1) + b

t∫
1

e−a(t−s)g(z(s − 1)) ds

≤ e−a(t−1)z(1) + b

a

[
1 − e−a(t−1)

]
sup

ξ≥b/a

g(ξ).

Hence, by using b > a > 0 and supξ≥b/a g(ξ) < 1, it follows that lim supt→∞ z(t) < b/a, a 
contradiction. Therefore, (ii) holds.

Statement (iii) is obvious from equations (En), (E∞) and Proposition 2.2. �
For γ > 0 define

�γ = {ϕ ∈ C : ϕ(s) ≥ 1 + γ fo all s ∈ [−1,0]}.

Clearly, �γ ⊂ C+. The difference of two solutions of (En) with initial functions from �γ can be 
estimated as follows.

Proposition 2.4. Let γ > 0, ψ ∈ �γ , χ ∈ �γ , and n ≥ 4. Let y = yn,ψ and z = zn,χ denote the 
solutions of (En) on [−1, ∞) with initial functions ψ and χ , respectively. Then, for each integer 
M ≥ 0, we have

|y(t) − z(t)| ≤
(

|ψ(0) − χ(0)| + bn

1 + (1 + γ )n
‖ψ − χ‖

)(
1 + b

n

4

)M

for all t ∈ [0, M + 1].

Proof. For t ∈ [0, 1] from the integral equation (2.1) for y and z with k = 0, by using Proposi-
tion 2.1,

|y(t) − z(t)| ≤ e−at |ψ(0) − χ(0)| + b sup
ξ≥1+γ

|f ′(ξ)|
t∫

0

e−a(t−s)|y(s − 1) − z(s − 1)|ds

≤
(

|ψ(0) − χ(0)| + bn

1 + (1 + γ )n
‖ψ − χ‖

)
follows. This means that the statement holds for M = 0.
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Let � = |ψ(0) − χ(0)| + [bn/(1 + (1 + γ )n)
]‖ψ − χ‖. Suppose that j ≥ 1 is an integer and 

for all t ∈ [0, j ] the inequality

|y(t) − z(t)| ≤ �

(
1 + bn

4

)j−1

is valid. Then

‖yj − zj‖ ≤ �

(
1 + bn

4

)j−1

holds as well. Using Proposition 2.1 and the last inequality, from the integral equations (2.1) for 
y and z with t ∈ [j, j + 1] and k = j , we obtain

|y(t) − z(t)| ≤e−a(t−j)|y(j) − z(j)| + b sup
ξ>0

|f ′(ξ)|
t∫

j

e−a(t−s)|y(s − 1) − z(s − 1)|ds

≤
(

1 + bn

4

)
‖yj − zj‖

≤�

(
1 + bn

4

)j

,

and the proof is complete. �
For ϕ ∈ C+

r , τ ≥ 0 and δ ∈ (0, 1) define

�(ϕ, τ, δ) = {t ∈ (τ, τ + 1) : |xϕ(t) − 1| < δ}.

By the continuity of xϕ , the set �(ϕ, τ, δ) is the union of disjoint open intervals. Let |�(ϕ, τ, δ)|
denote the sum of the lengths of these open intervals.

For ϕ ∈ C+
r , τ ≥ 0 and δ0 ∈ (0, min{a/b, 1 − a/b}) let

�(ϕ, τ, δ0) = {t ∈ [τ − 1, τ ] : xϕ(t) ∈ {1, a/b + δ0, a/b − δ0}}.

By Proposition 2.2, the set �(ϕ, τ, δ0) is finite, that is #�(ϕ, τ, δ0) < ∞.
For δ0 ∈ (0, min{a/b, 1 − a/b}) set

Nδ0 = [1 − δ0,1 + δ0] ×
[a
b

− δ0,
a

b
+ δ0

]
.

The next result guarantees that the solution xϕ of equation (E∞) spends relatively little time 
in a neighborhood of the discontinuity ξ = 1 of f , that is, |�(ϕ, τ, δ)| is small.

Proposition 2.5. Let ϕ ∈ C+
r , M ≥ 1, δ0 ∈ (0, min{a/b, 1 − a/b}) and γ0 ∈ N be given such that(
xϕ(t), xϕ(t − 1)

)
/∈ Nδ for all t ∈ [0,M] (2.8)
0
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and

#�(ϕ, τ, δ0) ≤ γ0 for all τ ∈ [0,M − 1] (2.9)

hold. Define K0 = 2(1 + γ0)/[(b − a)δ0].
Then, for any δ ∈ (0, δ0],

|�(ϕ, τ, δ)| ≤ K0δ for all τ ∈ [0,M − 1]. (2.10)

Proof. Set x = xϕ , and fix τ ∈ [0, M − 1] and δ ∈ (0, δ0].
Define the subsets

U = {t ∈ (τ, τ + 1) : x(t − 1) = 1 and x(t − 1) /∈ [a/b − δ0, a/b + δ0]},
V = {t ∈ (τ, τ + 1) : x(t − 1) ∈ [a/b − δ0, a/b + δ0]},
W = {t ∈ (τ, τ + 1) : x(t − 1) = 1}

of (τ, τ + 1). Clearly, U, V, W are disjoint, and (τ, τ + 1) = U ∪ V ∪ W .
Setting

� = �(ϕ, τ, δ) = {t ∈ (τ, τ + 1) : |x(t) − 1| < δ},

we have

� = � ∩ (τ, τ + 1) = (� ∩ U) ∪ (� ∩ V ) ∪ (� ∩ W).

Observe � ∩ V = ∅ by (2.8), and W is finite by Proposition 2.2, and � ∩ U is an open subset of 
(τ, τ + 1). It follows that |�| = |� ∩ U |.

By (2.9) the set � = �(ϕ, τ, δ0) is a finite subset of [τ, τ + 1]. Therefore the open set U can 
be written as

U =
N⋃

j=1

(αj ,βj )

where

τ ≤ α1 < β1 ≤ α2 < β2 ≤ . . . ≤ αN < βN ≤ τ + 1.

The set � = �(ϕ, τ, δ0) contains the points β1, α2, β2, . . . , αN−1, βN−1, αN , and possibly more 
points. Since βj = αj+1 can happen for j ∈ {1, . . . , N − 1}, the set � contains at least N − 1
points. Thus,

N ≤ 1 + #� ≤ 1 + γ0.

Clearly
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� ∩ U =
N⋃

j=1

(
� ∩ (αj ,βj )

)
.

For a given (αj , βj ) there are three cases according to whether x(t − 1) > 1, or a/b + δ0 <

x(t − 1) < 1, or 0 < x(t − 1) < a/b − δ0 for all t ∈ (αj , βj ). In all cases, x′(t) exists and 
equation (E∞) holds for all t ∈ (αj , βj ) since x(t − 1) = 1.

Case 1: x(t − 1) > 1 for all t ∈ (αj , βj ). If t ∈ � ∩ (αj , βj ) then x(t) > 1 − δ, and, by 
δ0 < a/b,

x′(t) = −ax(t) ≤ −a(1 − δ) ≤ −a(1 − δ0) < −(b − a)δ0.

Case 2: a/b + δ0 < x(t − 1) < 1 for all t ∈ (αj , βj ). If t ∈ � ∩ (αj , βj ) then x(t) < 1 + δ, 
and, by δ0 < a/b,

x′(t) = −ax(t) + bx(t − 1) > −a(1 + δ) + b(a/b + δ0) > (b − a)δ0.

Case 3: 0 < x(t − 1) < a/b − δ0 for all t ∈ (αj , βj ). If t ∈ � ∩ (αj , βj ) then x(t) > 1 − δ, 
and, by δ0 < a/b,

x′(t) = −ax(t) + bx(t − 1) < −a(1 − δ) + b(a/b − δ0) < −(b − a)δ0.

CLAIM. Either � ∩ (αj , βj ) = ∅, or � ∩ (αj , βj ) =
(
α̂j , β̂j

)
for some α̂j , β̂j with αj ≤ α̂j <

β̂j ≤ βj .

Proof of the Claim. Suppose � ∩ (αj , βj ) = ∅. Since � ∩ (αj , βj ) is open, it suffices to show 
that for all t1, t2, t3 in (αj , βj ) with t1 < t2 < t3 and t1 ∈ �, t3 ∈ � we have t2 ∈ �.

Assume t2 /∈ �. Then either x(t2) ≥ 1 +δ, or x(t2) ≤ 1 −δ. If x(t2) ≥ 1 +δ then, by t1, t3 ∈ �, 
t2 ∈ (t1, t3) and continuity, there exist t∗2 ∈ (t1, t2] and t∗∗

2 ∈ [t2, t3) so that

x(t∗2 ) = x(t∗∗
2 ) = 1 + δ, x(t) < 1 + δ for all t ∈ (t1, t

∗
2 ) ∪ (t∗∗

2 , t3).

On the other hand, in Cases 1, 2, 3 we obtain

x′(t∗2 ) < 0, x′(t∗∗
2 ) > 0, x′(t∗2 ) < 0,

respectively, which is a contradiction. The possibility x(t2) ≤ 1 − δ similarly leads to a contra-
diction. Therefore, t2 ∈ �, and the Claim holds.

According to the above Claim, assume � ∩ (αj , βj ) =
(
α̂j , β̂j

)
with αj ≤ α̂j < β̂j ≤ βj . 

Then one of the Cases 1–3 holds for all t ∈ (α̂j , β̂j ), and

|x′(t)| ≥ (b − a)δ0 for all t ∈ (α̂j , β̂j ).

In particular, x′(t) does not change sign in (α̂j , β̂j ). Observe that (α̂j , β̂j ) ⊂ � implies |x(β̂j ) −
x(α̂j )| ≤ 2δ. Combining the above facts we obtain
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2δ ≥ |x(β̂j ) − x(α̂j )| = |
β̂j∫

α̂j

x′(t) dt | =
β̂j∫

α̂j

|x′(t)|dt ≥ (b − a)δ0(β̂j − α̂j ).

Hence

|� ∩ (αj ,βj )| = β̂j − α̂j ≤ 2δ

(b − a)δ0
.

Since j ∈ {1, . . . , N} was arbitrary,

|�| = |� ∩ U | =
N∑

j=1

|� ∩ (αj ,βj )| ≤ N
2δ

(b − a)δ0
≤ 2(1 + γ0)

(b − a)δ0
δ = K0δ,

and the proof is complete. �
By Proposition 2.1, for each δ ∈ (0, 1) there exists n1 = n1(δ) ≥ 4 so that

|fn(ξ) − f (ξ)| < δ provided n ≥ n1(δ), ξ ≥ 0, and |ξ − 1| ≥ δ.

Now we are able to guarantee that, for large n, the solutions of equation (En) remain close to 
a solution of equation (E∞) on a compact interval, provided they are close on the interval [0, 1].

Proposition 2.6. Let ϕ ∈ C+
r , an integer M > 1, δ0 ∈ (0, min{a/b, 1 − a/b}) and γ0 ∈ N be 

given so that conditions (2.8) and (2.9) are satisfied. Let

K0 = 2

(b − a)δ0
(1 + γ0),B = 1 + 2b(K0 + 1) and δ1 = δ0

2
B−M.

Then for all δ ∈ (0, δ1], for all n ≥ n1(δ), and for all ψ ∈ C+, for the solutions x = xϕ of (E∞)
and y = yn,ψ of (En),

‖y1 − x1‖ < δ implies |y(t) − x(t)| < δBM (t ∈ [0,M + 1]).

Proof. Let δ ∈ (0, δ1], n ≥ n1(δ), and ψ ∈ C+ be fixed. Set x = xϕ and y = yn,ψ .
Suppose that

‖y1 − x1‖ < δ.

It is sufficient to show that

‖yj+1 − xj+1‖ < δBj for all j ∈ {0, . . . ,M}.

We prove by induction. Assume that j ∈ {1, . . . , M} is given, and

‖yj − xj‖ < δBj−1.
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Observe that this is true for j = 1 by our assumption. It suffices to verify

‖yj+1 − xj+1‖ < δBj .

For t ≥ j , the integral equations

x(t) = e−a(t−j)x(j) + b

t∫
j

e−a(t−s)f (x(s − 1)) ds,

y(t) = e−a(t−j)y(j) + b

t∫
j

e−a(t−s)fn(y(s − 1)) ds

hold. Hence

‖yj+1 − xj+1‖ ≤ max
t∈[j,j+1] e

−a(t−j)|y(j) − x(j)|

+ b max
t∈[j,j+1]

t∫
j

e−a(t−s)|fn(y(s − 1)) − f (x(s − 1))|ds,

≤ |y(j) − x(j)| + b

j∫
j−1

|fn(y(s)) − f (x(s)) ds.

Define the set

Jδ = �(ϕ, j − 1,2δBj−1) = {t ∈ (j − 1, j) : |x(t) − 1| < 2δBj−1}.

From δ ≤ δ1 it follows that

2δBj−1 ≤ 2δ1B
j−1 = δ0B

−MBj−1 ≤ δ0.

Then estimation (2.10) of Proposition 2.5 with τ = j − 1 and 2δBj−1 instead of δ applies to get

|Jδ| = |�(ϕ, j − 1,2δBj−1)| ≤ 2δBj−1K0.

For s ∈ Jδ one has fn(y(s)) ∈ (0, 1) and f (x(s)) ∈ [0, 1], and hence

|fn(y(s)) − f (x(s))| ≤ 1.

Suppose s ∈ (j − 1, j) \ Jδ . Then |x(s) − 1| ≥ 2δBj−1, and

either x(s) ≤ 1 − 2δBj−1 or x(s) ≥ 1 + 2δBj−1.
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Using |y(s) − x(s)| ≤ ‖yj − xj‖ < δBj−1 for all s ∈ [j − 1, j ], it follows that |y(s) − 1| ≥
δBj−1 ≥ δ. Then, by n > n1(δ),

|fn(y(s)) − f (y(s))| < δ.

Now we distinguish two cases.
Case 1: x(s) ≤ 1 − 2δBj−1. Then y(s) ≤ 1 − δBj−1 holds as well, and

|fn(y(s)) − f (x(s))| ≤ |fn(y(s)) − f (y(s))| + |f (y(s)) − f (x(s))|
≤ δ + |y(s) − x(s)|
≤ δ + δBj−1 ≤ 2δBj−1.

Case 2: x(s) ≥ 1 + 2δBj−1. In this case we have y(s) ≥ 1 + δBj−1, and hence

|fn(y(s)) − f (x(s))| ≤ |fn(y(s)) − f (y(s))| + |f (y(s)) − f (x(s))|
= |fn(y(s)) − f (y(s))| + 0

≤ δ ≤ 2δBj−1.

Consequently,

‖yj+1 − xj+1‖ ≤ δBj−1 + b

j∫
j−1

|fn(y(s)) − f (x(s))|ds

≤ δBj−1 + b

∫
Jδ

1ds + b

∫
(j−1,j)\Jδ

2δBj−1 ds

≤ δBj−1 + b|Jδ| + b2δBj−1

≤ δBj−1 + b2δBj−1K0 + b2δBj−1

= δBj−1 (1 + +2bK0 + 2b) = δBj .

This completes the proof. �
3. Periodic orbits assuming hypothesis (H)

In this section we prove the existence of periodic orbits under the hypothesis:

(H) The parameters b > a > 0 are given such that equation (E∞) has an ω-periodic solution 
p :R → R with the properties:

(H1) p(0) = 1, p(t) > 1 for all t ∈ [−1, 0);
(H2) (p(t), p(t − 1)) = (1, a/b) for all t ∈ [0, ω].
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Remarks.

(i) From (E∞) it follows that p(t) = e−at for t ∈ [0, 1]. Then one finds ω > 2. Note that 
p0 ∈ C+

r . Then, by Proposition 2.2 and periodicity, pt ∈ C+
r for all t ∈R.

(ii) Let ϕ ∈ C+ be arbitrary with ϕ(0) = 1 and ϕ(s) > 1 for s ∈ [−1, 0). Then ϕ ∈ C+
r . Propo-

sition 2.2 gives the unique solution xϕ : [−1, ∞) → R of (E∞) with xϕ
t ∈ C+

r for all t ≥ 0. 
Suppose that there exists an ω > 2 with xϕ(ω) = 1, and xϕ(ω + s) > 1 for all s ∈ [−1, 0). 
Define ψ = x

ϕ
ω . By f (ξ) = 0 for ξ > 1, it follows that xϕ(t) = xψ(t) for all t ≥ 0, and 

xψ(t + ω) = xψ(t) for all t ≥ −1. Thus xψ can be extended to an ω-periodic solution 
of (E∞) satisfying condition (H1). Condition (H2) requires to show that p(t) = 1 implies 
p(t − 1) = a/b for all t ∈ [0, ω]. These observations give a relatively straightforward way 
to verify condition (H), see the next section.

Theorem 1.1 is a consequence of the following result together with sufficient conditions for 
(H).

Theorem 3.1. Suppose b > a > 0 are given such that condition (H) holds. Then there exists an 
n∗ ≥ 4 such that, for all n ≥ n∗, equation (En) has a periodic solution pn : R → R with period 
ωn > 0 so that the periodic orbits

On = {pn
t : t ∈ [0,ωn]}

are hyperbolic, orbitally stable, exponentially attractive with asymptotic phase, and ωn → ω, 
dist {On,O} → 0 as n → ∞.

Proof. The proof is divided into several steps.
Step 1. Preparation.
Let M be the largest integer with M ≤ ω + 1/2. Then M ∈ {2, 3, . . .} and

M − 1

2
≤ ω < M + 1

2
. (3.1)

The continuity and periodicity of p, and condition (H2) guarantee the existence of

δ0 ∈
(

0,min
{a

b
,1 − a

b

})
(3.2)

such that

(p(t),p(t − 1)) /∈ Nδ0 for all t ∈R, (3.3)

where

Nδ0 = [1 − δ0,1 + δ0] ×
[a
b

− δ0,
a

b
+ δ0

]
.

Hypothesis (H) and the continuity of p yield an α ∈ (0, 1/2) such that

min p(t) > 1.

t∈[−1−α,−α]
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By using (H), equation (E∞) and the choice of α, one gets p(t) = e−at for all t ∈ [−α, 1]. Define

ε = min

{
a

2
,
δ0

2
,

1

3

(
b

a
− 1

)
,

1

3

(
eaα − 1

)
,

1

3

(
min

t∈[−1−α,−α]p(t) − 1

)}
.

Set

σ0 = 1

a
log

1 + 3ε

1 + 2ε
, σ1 = 1

a
log

1 + 2ε

1 + ε
, σ2 = 1

a
log(1 + 2ε).

Clearly, σ0 + σ2 = (1/a) log(1 + 3ε) ≤ α < 1/2, and

p(−σ0 − σ2) = 1 + 3ε, p(−σ2) = 1 + 2ε, p(σ1 − σ2) = 1 + ε.

By the choices of M , α and ε, we have

M − 1 ≤ ω − 1

2
< ω − (σ0 + σ2) < ω − σ0 < ω + σ1 < ω + σ2 < ω + 1

2
< M + 1. (3.4)

It is convenient to define the shifted version of p by

q :R � t 	→ p(t − σ2) ∈R.

Then q is an ω-periodic solution of (E∞) satisfying

q(t) = (1 + 2ε)e−at for all t ∈ [−σ0, σ2], (3.5)

q(−σ0) = 1 + 3ε, q(0) = 1 + 2ε, q(σ1) = 1 + ε, q(σ2) = 1, (3.6)

q(t) ≥ 1 + 3ε for all t ∈ [−1 − σ0,−σ0]. (3.7)

Set s0 = 4(e − 1)/b, and define

h : [s0,∞) � s 	→
(

b

(
1 + 4b

a

)
s

(
1 + bs

4

)M
)1/s

− 1 ∈R.

Clearly, lims→∞ h(s) = 0. For s > s0 we have

d

ds
log [h(s) + 1] = d

ds

[
1

s
log

(
b

(
1 + 4b

a

)
s

)
+ M

s
log

(
1 + bs

4

)]
= − 1

s2

[
log

(
b

(
1 + 4b

a

)
s

)
− 1

]
− M

s2

[
log

(
1 + bs

4

)
− bs

4 + bs

]
≤ − 1

s2

[
log

(
b

(
1 + 4b

a

)
s

)
− 1

]
− M

s2

[
log

(
1 + bs

4

)
− 1

]
< 0.

Consequently, h strictly decreases on [s0, ∞) from h(s0) > 0 to 0. Then there exists an n0 =
n0(ε) ≥ s0 so that
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h(n) < ε for all n ≥ n0. (3.8)

Observe that, by the monotonicity of h and the definition of n0,

[1 + h(n)]n
1 + (1 + ε)n

≤
(

1 + h(n)

1 + ε

)n

≤
(

1 + h(n0)

1 + ε

)n0

< 1 for all n ≥ n0. (3.9)

From p0 ∈ C+
r , by periodicity and Proposition 2.2, pt ∈ C+

r follows for all t ∈ R. Then, by 
using the periodicity of p again, it is obvious that

γ0 := sup
τ∈R

#�(p0, τ, δ0)

=max
τ∈R

# {t ∈ [τ, τ + 1] : p(t − 1) ∈ {1, a/b + δ0, a/b − δ0}} < ∞.

Let

K0 = 2

(b − a)δ0
(1 + γ0), B = 1 + 2b(K0 + 1), δ1 = δ0

2
B−M.

Fixing δ = εB−M , we have

δ ≤ δ0

2
B−M = δ1.

Recall from Section 2 that n1 = n1(δ) = n1(εB
−M) is given so that

|fn(ξ) − f (ξ)| < δ provided ξ ≥ 0, |ξ − 1| ≥ δ, n ≥ n1. (3.10)

By the definition of q , δ0, γ0, M , the conditions (2.8) and (2.9) of Proposition 2.5 hold with 
ϕ = q0. Proposition 2.6 can be applied with ϕ = q0 and an arbitrary ψ ∈ C+ to obtain that, for 
the solution q of (E∞) and for the solution y = yn,ψ of (En),

‖q1 − y1‖ < δ = εB−M implies |q(t) − y(t)| < δBM = ε for all t ∈ [0,M + 1] (3.11)

is satisfied provided n ≥ n1(δ) = n1(εB
−M).

It is straightforward to see that there is an n2 = n2(ε) so that

bfn(1 + ε) < εB−M for all n ≥ n2. (3.12)

Note that B−M < 1, and hence (3.12) implies bfn(1 + ε) < ε for all n ≥ n2.
Define

n∗ = n∗(ε) = max
{
n0(ε), n1(εB

−M),n2(ε)
}

.

Step 2. A return map.
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Introduce the subsets

S = {ψ ∈ C : ψ(0) = 1 + 2ε, 1 + ε ≤ ψ(s) ≤ b/a for all s ∈ [−1,0]} ,

S0 = {ψ ∈ S : 1 + ε < ψ(s) < b/a for all s ∈ [−1,0]}

of C. Let n ≥ n∗ be fixed. For given ψ ∈ S let y = yn,ψ be the solution of equation (En) with 
y0 = ψ . Our aim is to show that the solution curve [0, ∞) � t 	→ yt ∈ C returns to S, that is, 
yτ ∈ S for some τ > 0.

First we estimate q(t) − y(t). For t ∈ [0, 1],

q(t) = e−atq(0) + b

t∫
0

e−a(t−s)f (q(s − 1)) ds = e−at (1 + 2ε)

y(t) = e−at (1 + 2ε) + b

t∫
0

e−a(t−s)fn(y(s − 1)) ds.

Hence, by y0 = ψ ∈ S and (3.12), for all t ∈ [0, 1],

|q(t) − y(t)| ≤ b

t∫
0

e−a(t−s)fn(y(s − 1)) ds ≤ bfn(1 + ε) < εB−M, (3.13)

that is, ‖q1 − y1‖ < εB−M = δ. Applying (3.11)

|q(t) − y(t)| < ε for all t ∈ [0,M + 1] (3.14)

follows. In addition, Proposition 2.3 yields

y(t) ≤ b

a
for all t ∈ [−1,∞). (3.15)

The ω-periodicity of q , ω > 2, the properties (3.5), (3.6), (3.7) of q and (3.14) imply

y(ω − σ0) > q(ω − σ0) − ε = q(−σ0) − ε = 1 + 2ε, (3.16)

y(ω + σ1) < q(ω + σ1) + ε = q(σ1) + ε = 1 + 2ε, (3.17)

y(t) > q(t) − ε ≥ 1 + ε − ε = 1 for all t ∈ [ω − σ0,ω + σ1], (3.18)

y(t) > q(t) − ε ≥ 1 + 2ε for all t ∈ [ω − 1 − σ0,ω − σ0]. (3.19)

We claim that y strictly decreases on the interval [ω − σ0, ω + σ1]. Indeed, by (3.18), (3.19), 
(3.12) and the choice of ε,
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y′(t) = −ay(t) + bfn(y(t − 1)) ≤ −a + bfn(1 + 2ε)

< −a + bfn(1 + ε) < −a + εB−M < −a + ε

≤ −a

2
for all t ∈ [ω − σ0,ω + σ1],

(3.20)

and by (3.16), (3.17), there is a unique τ = τ(n, ψ) ∈ (ω − σ0, ω + σ1) so that y(τ) = 1 + 2ε. 
Taking into account (3.19) and (3.15) as well,

yτ ∈ S

follows. The return map R is defined by

R : S � ψ 	→ Fn(τ,ψ) ∈ S.

Note that p(t) = e−at , t ∈ [0, 1], implies q(t) ≤ 1 for all t ∈ [σ2, 1 + σ2]. This fact combined 
with (3.14) gives y(t) < 1 + ε < b/a for all t ∈ [σ2, 1 + σ2]. Hence Proposition 2.3 and (3.19), 
(3.20), τ = τ(n, ψ) ∈ (ω − σ0, ω + σ1), y(τ) = 1 + 2ε combined guarantee yτ ∈ S0. Therefore

R(S) ⊂ S0.

Step 3. R is a contraction.
Let n ≥ n∗, ψ, χ ∈ S, y = yn,ψ , z = yn,χ , τy = τ(n, ψ), τz = τ(n, χ). Observing ψ(0) =

χ(0), Proposition 2.4 with γ = ε gives

|y(t) − z(t)| ≤ bn

1 + (1 + ε)n

(
1 + bn

4

)M

‖ψ − χ‖ (t ∈ [0,M + 1]). (3.21)

In order to estimate τy − τz, note that y(τy) = 1 + 2ε = z(τz) and τy, τz ∈ (ω − σ0, ω + σ1). 
Then, by (3.20) and (3.21),

a

2
|τy − τz| ≤

∣∣∣∣∣∣∣
τz∫

τy

y′(t) dt

∣∣∣∣∣∣∣= |y(τz) − y(τy)|

= |y(τz) − z(τz)|

≤ bn

1 + (1 + ε)n

(
1 + bn

4

)M

‖ψ − χ‖.

Hence

|τy − τz| ≤ 2

a

bn

1 + (1 + ε)n

(
1 + bn

4

)M

‖ψ − χ‖. (3.22)

By Proposition 2.3, |y′(t)| < 2b for all t > 0, and thus

‖yτy − yτz‖ ≤ 2b|τy − τz|. (3.23)
36



F.A. Bartha, T. Krisztin and A. Vígh Journal of Differential Equations 296 (2021) 15–49
Now, (3.22), (3.23) and (3.21) combined yield

‖R(ψ) − R(χ)‖ = ‖yτy − zτz‖
≤ ‖yτy − yτz‖ + ‖yτz − zτz‖

≤
(

1 + 4b

a

)
bn

1 + (1 + ε)n

(
1 + bn

4

)M

‖ψ − χ‖.
(3.24)

Recall the function h and inequality (3.9) from Step 1, and set

κ =
(

1 + h(n0)

1 + ε

)n0

.

As ψ, χ ∈ S were arbitrary, estimation (3.24) and inequality (3.9) imply

‖R(ψ) − R(χ)‖ ≤ κ‖ψ − χ‖ for all ψ,χ ∈ S. (3.25)

By κ < 1 the map R : S → S is a contraction. The closed subset S of C is a complete metric 
space with the metric induced by the norm of C. Then R has a unique fixed point in S, denoted by 
η(n). By the remark at the end of Step 2, η(n) = S(η(n)) ∈ S0. The fixed point η(n) determines 
a periodic solution pn : R → R of equation (En) with period ωn ∈ (ω − σ0, ω + σ1). Clearly, 
pn(t) = yn,η(n)(t) for t ≥ −1, and ωn = τ(n, η(n)). Let

On = {
pn

t : 0 ≤ t ≤ ωn
}

be the corresponding periodic orbit.
Step 4. Hyperbolicity and attraction of On.
The results of Chaper XIV in [8] or the Appendix of [22] will be applied.
Let n ≥ n∗ be fixed, and let pn : R → R be the periodic solution of (En) obtained in Step 3. 

Recall that pn
0 ∈ S0, and for the period ωn of pn the relation ωn ∈ (ω − σ0, ω + σ1) ⊂ (3/2, ∞)

holds.
The restriction of the continuous semiflow Fn : [0, ∞) × C+ → C+ to the set (1, ∞) × C+

is continuously differentiable. Define the closed subspace H = {ψ ∈ C : ψ(0) = 0} of C, and 
the continuous linear functional l∗ : C � ψ 	→ ψ(0) ∈ R. Then (l∗)−1(0) = H . We look for so-
lutions (t, ψ) ∈ (1, ∞) × C of the equation G(t, ψ) = 0, where G : (1, ∞) × C � (t, ψ) 	→
l∗
(
Fn(t,ψ) − pn

0

) ∈ R. Note that G(ωn, pn
0 ) = 0. Moreover, by inequality (3.20) with y = pn

and ωn ∈ (ω − σ0, ω + σ1), one sees D1G(ωn, pn
0 )1 = l∗

(
D1F

n(ωn,pn
0 )1
) = (

pn
ωn

)′
(0) =

(pn)′(ωn) < −a/2. Using the Implicit Function Theorem, there exist an open neighborhood 
U of pn

0 in C, a ν ∈ (0, min{ωn − (ω − σ0), ω + σ1 − ωn}), and a C1-map ζ : U → R with 
ζ(pn

0 ) = ωn and ζ(U) ⊂ (ωn − ν, ωn + ν) so that, for every (t, ψ) ∈ (ωn − ν, ωn + ν) × U , the 
equality G(t, ψ) = 0 holds if and only if t = ζ(ψ).

By Step 2, for any ψ ∈ S there is a unique τ(n, ψ) ∈ (ω − σ0, ω + σ1) with yn,ψ(τ (n, ψ)) =
Fn(τ(n, ψ), ψ)(0) = 1 + 2ε, or equivalently, G(τ(n, ψ), ψ) = 0. From (ωn − ν, ωn + ν) ⊂
(ω−σ0, ω+σ1) it follows that, for all ψ ∈ U ∩S, we have ζ(ψ) = τ(n, ψ). Notice that pn

0 ∈ S0, 
and S0 is open in the hyperplane pn

0 +H . Then U ∩S0 is an open neighborhood of pn
0 in pn

0 +H . 
Therefore the restriction of the return map R to U ∩ S0 coincides with the restriction of the C1-
map
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U � ψ 	→ Fn(ζ(ψ),ψ) ∈ C

to U ∩ S0. Consequently, R is C1-smooth on U ∩ S0.
There is an open ball V in pn

0 + H with center at pn
0 so that V ⊂ U ∩ S0. From κ < 1 and 

(3.25) it follows for all k ∈N and ψ, χ ∈ V that

‖Rk(ψ) − Rk(χ)‖ ≤ κk‖ψ − χ‖.
Set L = DR(pn

0 ). Clearly ‖Lk‖ = ‖DRk(pn
0 )‖ ≤ κk for all k ∈ N .

As H is a real Banach space, the spectrum of L = DR(pn
0 ) is defined as the spectrum of 

its complexification LC : HC → HC . Recall (see Section III.7 in [8]) that the norm ‖ · ‖ on 
HC satisfies the admissibility condition max{‖u‖, ‖v‖} ≤ ‖u + iv‖ ≤ ‖u‖ + ‖v‖ for all u, v in 
H . A consequence of this condition is that for any linear bounded operator T : H → H and its 
complexification we have ‖TC‖ ≤ 2‖T ‖. In particular

‖(LC)k‖ = ‖(Lk)C‖ ≤ 2‖Lk‖ ≤ 2κk

for all k ∈ N .
By the spectral radius formula

ρ(LC) = lim
k→∞‖(LC)k‖1/k ≤ lim

k→∞(2κk)1/k = κ < 1,

and this shows that the spectrum of the derivative DR(pn
0) : H → H is in the open unit disk of 

C.
The results of Chapter XIV in [8] apply to conclude that On is hyperbolic, orbitally stable, 

and exponentially attractive with asymptotic phase.
Step 5. The limit of On as n → ∞.
Let pn : R → R be the periodic solution of (En) obtained in Step 3 for all n ≥ n∗.
Inequality (3.13) with y(t) = pn(t) gives that

|q(t) − pn(t)| ≤ bfn(1 + ε) for all t ∈ [0,1].
Then Proposition 2.6 with y(t) = pn(t) yields

|q(t) − pn(t)| < bfn(1 + ε)BM for all t ∈ [0,M + 1].
If n → ∞ then fn(1 + ε) → 0. Consequently,

|q(t) − pn(t)| → 0 as n → ∞ uniformly in t ∈ [0,M + 1].
Hence, by ωn ∈ (ω − σ0, ω + σ1), it is easy to get that ωn → ω and dist(On, O) → 0 as n → ∞.

This completes the proof. �
4. Hypothesis (H)

In this section we show that there exist parameters b > a > 0 so that condition (H) holds. In 
Subsection 4.1 analytic tools are used to give parameters b > a > 0 satisfying (H). A computer-
assisted technique is applied in Subsection 4.2.
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4.1. Analytic tools to verify (H)

We have two types of results. In the first case b is large comparing to a.

Proposition 4.1. If a > 0, b > 0 satisfy b > max{aea, ea − e−a} then (H) holds.

Proof. By Remark (ii) in Section 3, in order to have an ω-periodic solution of (E∞) with (H1) 
it suffices to consider ϕ ∈ C+ with ϕ(0) = 1, ϕ(s) > 1 for s ∈ [−1, 0), and to find an ω > 2 with 
xϕ(ω) = 1 and xϕ(ω + s) > 1, s ∈ [−1, 0).

Assume b > max{aea, ea − e−a}. Let ϕ ∈ C+ be given with ϕ(0) = 1, ϕ(s) > 1 for s ∈
[−1, 0), and set x = xϕ . Then x(t) = e−at for t ∈ [0, 1].

By the integral equation (2.4) with τ = 1, x(τ) = e−a , f (x(s − 1)) = x(s − 1) = e−a(s−1)

one finds

x(t) = e−a(t−1)e−a + b

t∫
1

e−a(t−s)e−a(s−1) ds

= e−at
[
1 + bea(t − 1)

]
(1 ≤ t ≤ 2).

(4.1)

Then, x(2) = e−2a(1 + bea) > 1 because of b > ea − e−a . Equation (4.1) gives

x′(t) = e−at
[
bea − a − abea(t − 1)

]
(1 < t < 2).

Hence x′ can have at most one zero in (1, 2). Then, by e−a = x(1) < 1 < x(2), there is a unique 
t1 ∈ (1, 2) with x(t1) = 1. Clearly, x(t) < 1 for t ∈ [1, t1), and x(t) > 1 for t ∈ (t1, 2].

By using the integral equation (2.4) with τ = 2, equation (4.1), and f (x(s − 1)) = x(s − 1)

for s ∈ [2, t1 + 1), it follows that

x(t) = e−a(t−2)x(2) + b

t∫
2

e−a(t−s)e−a(s−1)
[
1 + bea(s − 2)

]
ds

= e−at

[
1 + bea + bea(t − 2) + 1

2
b2e2a(t − 2)2

]
(2 ≤ t ≤ t1 + 1),

(4.2)

and from equation (4.2) one finds

x′(t) = e−at
[
− a − (a − 1)bea + bea(bea − a)(t − 2) − 1

2
ab2e2a(t − 2)2

]
(2 < t < t1 + 1).

(4.3)
The definition of t1 ∈ (1, 2) gives

1 + bea(t1 − 1) = eat1 . (4.4)

By (4.2) with t = t1 + 1, and by using (4.4),
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x(t1 + 1) = e−a(t1+1)

[
1 + bea + bea(t1 − 1) + 1

2
b2e2a(t1 − 1)2

]
= e−a(t1+1)

[
1

2
+ bea + 1

2

(
1 + bea(t1 − 1)

)2]
= e−a(t1+1)

[
bea + 1

2
− 1

2
e2a

]
+ 1

2

[
e−a(t1−1) + ea(t1−1)

]
> 1

(4.5)

because bea + (1/2) − (1/2)e2a > 0 by b > ea − e−a , and e−a(t1−1) + ea(t1−1) ≥ 2.
We claim x(t) > 1 for all t ∈ [2, t1 + 1]. Since x(2) > 1 and x(t1 + 1) > 1, in case the claim 

does not hold there exists t2 ∈ (2, t1 + 1) with x′(t2) = 0 and x(t2) ≤ 1. From (4.3) one gets

1 + bea + bea(t2 − 2) + 1

2
b2e2a(t2 − 2)2 = 1

a

[
bea + b2e2a(t2 − 2)

]
,

and then (4.2) with the above equality gives

x(t2) = b

a
e−a(t2−2)

[
e−a + b(t2 − 2)

]
.

Define

A : [0,1] � s 	→ b

a
e−as

[
e−a + bs

] ∈ R.

From b > aea and b > ea − e−a > 1 − e−a one obtains

A(0) = b

aea
> 1, A(1) = b

aea

(
e−a + b

)
> 1.

If A(s) > 1 for all s ∈ [0, 1] fails then A′(s∗) = 0 and A(s∗) ≤ 1 for some s∗ ∈ (0, 1). The equal-
ity A′(s∗) = 0 implies aA(s∗) = b2e−as∗/a. Hence, by using b > aea , A(s∗) = (b/a)2e−as∗ >

(b/a)2e−a > e2ae−a = ea > 1, a contradiction. Consequently, A(s) > 1 for all s ∈ [0, 1]. As 
t2 ∈ (2, t1 + 1) ⊂ (2, 3), we conclude with s = t2 − 2 that x(t2) = A(t2 − 2) > 1, a contradiction. 
Thus, x(t) > 1 for all t ∈ [2, t1 + 1].

Now we have x(t) > 1 for all t ∈ (t1, t1 + 1]. Setting ω = t1 + 1 + (1/a) logx(t1 + 1), it 
is straightforward to see that x′(t) = −ax(t) and x(t) = x(t1 + 1)e−a(t−t1−1) > 1 for all t ∈
(t1 + 1, ω) and x(ω) = 1. Then the ω-periodic extension p of the restriction x|[0,ω] is an ω-
periodic solution of equation (E∞) satisfying (H1).

It remains to verify (H2). The equality p(t) = 1 in [0, ω] holds at t = 0, t = t1 and t = ω. (H1) 
and the periodicity imply p(−1) = p(ω − 1) > 1 > a/b. By b > aea and t1 ∈ (1, 2), p(t1 − 1) =
x(t1 − 1) = e−a(t1−1) > e−a > a/b. Thus (H2) holds as well. �

The second case, where we have an analytic proof for (H), is when b is sufficiently close to a.

Proposition 4.2. For every a > 0 there exists an ε0 = ε0(a) > 0 such that for the parameters a, b
with b ∈ (a, a + ε0) condition (H) holds.
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In particular, for the periodic solution p = p(a, b) of equation (E∞) the minimal period 
ω = ω(a, b) satisfies ω > 5, and there exists a σ = σ(a, b) ∈ (4, ω − 1) so that

0 < p(t) < 1 for all t ∈ (0, σ ); p(t) > 1 for all t ∈ (σ,ω).

Moreover, if a > 0 is fixed and (bk)
∞
k=1 is a sequence in (a, a + ε0(a)) with limk→∞ bk = b then 

σ(a, bk) → ∞, ω(a, bk) → ∞ as k → ∞.

The proof of Proposition 4.2 is given in [18].
Remarks.

(i) The periodic solutions p of equation (E∞) obtained in Propositions 4.1 and 4.2 have 
relatively simple shapes. In fact, they are slowly oscillating around 1 in the sense that 
|t1 − t2| > 1 for any two times t1 = t2 with p(t1) = p(t2) = 1. Three consecutive times 
in p−1(1) determine the minimal period ω(a, b). Moreover, from the proofs of Proposi-
tions 4.1 and 4.2 it is easily seen that p(R) ⊂ [e−a, ∞) holds for the range of the periodic 
solution p.

(ii) The periodic solution p guaranteed by Proposition 4.1 has the additional property that its 
range p(R) ⊂ [e−a, ∞) is in the interval (a/b, ∞) since b > aea . For solutions x(t) of 
equation (E∞) with range in (a/b, ∞) a negative feedback property holds with respect to 
ξ = 1, that is, in case x(t) = 1 we have

x′(t) = −ax(t) + bf (x(t − 1)) = −a + bx(t − 1) > 0 provided
a

b
< x(t − 1) < 1,

x′(t) = −ax(t) + bf (x(t − 1)) = −a < 0 provided x(t − 1) > 1.

In the range of the periodic solution p given by Proposition 4.2 the negative feedback 
property with respect to ξ = 1 does not hold for equation (E∞).

(iii) Proposition 4.2 gives a periodic solution p with large minimal period ω(a, b) if b is close 
to a. For the minimal period ω(a, b) of the periodic solution p in Proposition 4.1, by the 
proof we have ω = t1 + 1 + (1/a) logx(t1 + 1), t1 ∈ (1, 2), and then (4.5) easily implies the 
estimation

1

a
log

(
1 + bea

)
< ω(a,b) <

2

a
log

(
1 + bea

)
.

4.2. A computer-assisted proof of (H)

First, recall that both (En) and (E∞) are delay differential equations (DDE) with constant 
delay. A major difference is that, albeit the latter has a seemingly more appealing delayed term, 
the right–hand side of (E∞) is non–smooth.

Our goal now is to utilize rigorous computations in order to verify that (H) holds for some pairs 
of a, b. Such techniques have been readily applied to DDEs both using global representations 
[3,12,5,13] and by propagating multiple local Taylor expansions of the solution over a single 
delay interval [37,38]. In the later approach, the state within the phase space is represented by 
a finite number of polynomials. This structure is well suited for solving the delayed system, 
however, e.g. computing Poincaré maps will readily increase the inaccuracy of the computations. 
41



F.A. Bartha, T. Krisztin and A. Vígh Journal of Differential Equations 296 (2021) 15–49
This is caused by the necessity of using intermediate values from the past that were not “stored” 
but may be obtained solely from one of those local expansions at an intermediate point.

The approach we choose is similar to [37,38], integrating forward in time. We have used the 
rigorous package CAPD as the foundation for our software [7]. The aforementioned non–smooth 
nature of (E∞) gives rise to difficulties when directly applying methods of [37,38] as controlling 
the crossings of 1 is essentially a series of Poincaré maps that need to be computed. In order to 
overcome these difficulties, we leverage the specific form of (E∞). The key observation is that 
the solution segments may be explicitly constructed when we restrict our attention to a certain 
subset of the phase space C+

r .
We need some new notations. First, for a ψ ∈ C([γ, δ], R) and for [α, β] ⊆ [γ, δ], let us 

introduce

ψ[α,β] : [0, β − α] → R+, ψ[α,β](s) = ψ(α + s).

Then, define the sets C>1([0, δ]), C+
pol([0, δ]), C≤1

pol([0, δ]), and C+
seg([0, δ]) as

C>1([0, δ]) = {ψ ∈ C([0, δ], [1,∞)) : ψ(s) > 1 for all s ∈ (0, δ)} ,

C+
pol([0, δ]) =

{
ψ ∈ C([0, δ],R+) : ψ(s) = e−as

n∑
k=0

ck

(bs)k

k!

for some reals c0, c1, . . . , cn with s ∈ [0, δ]
}
,

C
≤1
pol([0, δ]) =

{
ψ ∈ C+

pol([0, δ]) : ψ(s) ≤ 1 for all s ∈ [0, δ]
}

, and

C+
seg([0, δ]) = C>1([0, δ]) ∪ C

≤1
pol([0, δ]), respectively.

Finally, the space C+
r,comp we use for rigorous computations is chosen as

C+
r,comp =

{
ψ ∈ C+

r : ∃ {di}mi=0 ⊂ [−1,0] s.t. −1 = d0 < . . . < di < . . . < dm = 0

and ψ[di ,di+1] ∈ C+
seg([0, di+1 − di]) for i = 0, . . . ,m − 1

}
.

(4.6)

That is, we consider those functions in C+
r that are comprised of finitely many subsegments being 

either above 1 or expressible as a polynomial multiplied with e−at in local coordinates (i.e. time 
is shifted to start from 0).

Lemma 4.3. Let ψ ∈ C+
r,comp and d ∈ (−1, 0] such that ψ[−1,d] ∈ C+

seg([0, d + 1]). Then, 

x
ψ
[0,d+1] ∈ C+

pol([0, d + 1]).
In particular, if ψ[−1,d] ∈ C>1([0, d + 1]), then xψ

[0,d+1](s) = e−asψ(0). On the other hand, 

if ψ[−1,d] ∈ C
≤1
pol([0, d + 1]) with

ψ[−1,d](s) = e−as
n∑

ck

(bs)k

k! ,
k=0
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then

x
ψ
[0,d+1](s) = e−as

[
ψ(0) +

n+1∑
k=1

ck−1
(bs)k

k!

]
. (4.7)

Proof. First, assume that ψ[−1,d] ∈ C>1([0, d + 1]). Then, (E∞) implies

d

dt
xψ(t) = −axψ(t)

for t ∈ [0, d + 1] with xψ(0) = ψ(0). Clearly, xψ
[0,d+1](t) = e−atψ(0) follows.

Second, consider the case ψ[−1,d] ∈ C
≤1
pol([0, d + 1]) with

ψ[−1,d](s) = e−as
n∑

k=0

ck

(bs)k

k! .

Thus, (E∞) is transformed into

d

dt
xψ(t) = −axψ(t) + be−at

n∑
k=0

ck

(bt)k

k! .

By the method of variation of constants, we readily obtain that

x
ψ
[0,d+1](t) = e−at

⎡⎣ψ(0) +
t∫

0

b

n∑
k=0

ck

(bs)k

k! ds

⎤⎦= e−at

[
ψ(0) +

n+1∑
k=1

ck−1
(bt)k

k!

]
.

The claim xψ
[0,d+1] ∈ C+

pol([0, d + 1]) directly follows from the formulae derived above. �
Clearly, for any ϕ ∈ C+

pol([0, δ]) the set {s ∈ [0, δ] : ϕ(s) = 1} is finite. Therefore, a conse-

quence of Lemma 4.3 is that C+
r,comp is invariant, that is, F(t, C+

r,comp) ⊆ C+
r,comp for all t ≥ 0.

Lemma 4.3 provides the basis for the rigorous computational procedure as it gives exact for-
mulae for the subsegments of the solution. Note that the coefficients ck propagate unchanged 
(just re-indexed) to the next subsegment. This is notably beneficial for interval methods.

Given an initial condition ψ ∈ C+
r,comp, in order to compute the solution we still need to sub-

divide the continuing segment from Lemma 4.3 into subsegments where the solution is above 
or below 1. This procedure consists of two parts. First, all crossings of 1 have to be found and 
localized with sufficient precision. Then, for all subsegments where the solution is below 1, the 
coefficients in the polynomial part have to be obtained.

For localizing crossings we have used the rigorous Newton method capable of proving the 
existence of zeros of functions [33,39]. For the latter task, the following lemma provides a simple 
computational scheme.
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Lemma 4.4. Let ϕ ∈ C+
pol([0, δ]) and τ ∈ [0, δ]. If

ϕ(t) = e−at

n∑
k=0

ck

(bt)k

k! ,

then

ϕ[τ,δ](t) = e−at
n∑

k=0

(
e−aτ · dk

dtk

1

bk
eatϕ(t)

∣∣∣∣∣
t=τ

)
(bt)k

k! .

Proof. First, recall that for a polynomial

p(t) =
n∑

k=0

ηkt
k,

it is well known that

ηk = 1

k!
dk

dtk
p(t)

∣∣∣∣∣
t=0

.

Now, by definition,

ϕ[τ,δ](t) = ϕ(τ + t) for t ∈ [0, δ − τ ]

holds. Hence, as eatϕ(t) is a polynomial of degree n, so is

eatϕ[τ,δ](t) = e−aτ ea(τ+t)ϕ[τ,δ](t) = e−aτ ea(τ+t)ϕ(τ + t).

Therefore,

eatϕ[τ,δ](t) = e−aτ ea(τ+t)ϕ(τ + t) = e−aτ
n∑

k=0

(
1

k!
dk

dtk
ea(τ+t)ϕ(τ + t)

∣∣∣∣∣
t=0

· tk
)

=
n∑

k=0

(
e−aτ · dk

dtk

1

bk
ea(τ+t)ϕ(τ + t)

∣∣∣∣∣
t=0

· (bt)k

k!

)

=
n∑

k=0

(
e−aτ · dk

dtk

1

bk
eatϕ(t)

∣∣∣∣∣
t=τ

· (bt)k

k!

)
. �

Using the results presented in this section, we may formulate the rigorous integration proce-
dure for (E∞) within C+

r,comp. In the following, let IR denote the set of real intervals. We note 
that all computations are performed using interval arithmetic, the differentiation in Lemma 4.4
is carried out using automatic differentiation, hence, all computational results are rigorous.
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Algorithm 1: Rigorous integration of (E∞).

Data: a, b ∈ IR, ψ ∈ C+
r,comp

Step 1: Obtain d1 from ψ ;

Step 2: Compute xψ
[0,d1+1](t) by Lemma 4.3;

Step 3: Find all τ ∈ [0, d1 + 1] s.t. xψ
[0,d1+1](t) crosses 1 transversely at t = τ ;

Step 3b: If non-transverse / uncertain crossings exist, then Abort;
Data: Transverse crossings τ1, τ2, . . . , τM
Step 4: Compute the proper representations over

[0, τ1], . . . , [τk, τk+1], . . . , [τM, d1 + 1] using Lemma 4.4;

Result: x
ψ
[d1,d1+1] ∈ C+

r,comp

Algorithm 1 describes one-step forward integration from an initial ψ ∈ C+
r,comp. The length of 

this step equals to the first element of the time subdivision in the representation of ψ ∈ C+
r,comp. 

Clearly, we may repeat Algorithm 1 and obtain a rigorous enclosure of xψ(t).
Using an initial condition ψ ∈ C+

r,comp satisfying ψ(t) > 1 for t ∈ [−1, 0) and ψ(0) = 1, we 
may repeatedly execute our algorithm. If, at any point, we can guarantee that there exists τ > 0
such that xψ

[τ,τ+1](t) > 1, then, we have proved the existence of a periodic orbit and, at the same 
time, obtained a rigorous enclosure of its trajectory.

In the following, we present the results of our computations, namely, pairs of a and b for 
which the proof was successful. The code for our software may be found at [2].

Proposition 4.5. System (E∞) attains a periodic solution satisfying condition (H) for parameter 
values

• a = 2, b = 15 with ω ∈ [2.493021, 2.495419].
• a = 7, b = 7.5 with ω ∈ [36.564308, 36.565093].
• a = 4.22, b = 7 with ω ∈ [16.689452, 16.693050].
• a = 4, b = 10 with ω ∈ [6.847648, 6.851446].
• a = 5.95, b = 10 with ω ∈ [10.101741, 10.104210].
• a = 7.04, b = 10 with ω ∈ [19.837935, 19.840255].

Figs. 1–6 present the corresponding trajectories and phase portraits. Figs. 1 and 2 illustrate the 
typical simple looking periodic solutions guaranteed by Propositions 4.1 and 4.2, respectively. 
Figs. 3–6 show more complicated shapes.
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