International Journal of Systematic and Evolutionary Microbiology Sphingobacterium hungaricum sp. nov. a novel species on the borderline of the genus Sphingobacterium

M	anusc	ript D	raft

Manuscript Number:	IJSEM-D-21-00404R1					
Full Title:	Sphingobacterium hungaricum sp. nov. a novel species on the borderline of the genus Sphingobacterium					
Article Type:	Taxonomic Description					
Section/Category:	New taxa - Bacteroidetes					
Keywords:	Sphingobacterium hungaricum; new taxon; Bacteroidetes; Sphingobacteriaceae; borderline of the genus					
Corresponding Author:	Ákos Tóth National Agricultural Research and Innovation Center Budapest, HUNGARY					
First Author:	Ákos Tóth					
Order of Authors:	Ákos Tóth					
	Rózsa Máté					
	József Kutasi					
	Erika Tóth					
	Károly Bóka					
	András Táncsics					
	István Nagy					
	Gábor Kovács					
	Judit Kosztik					
	Ildikó Bata-Vidács					
	József Kukolya					
Manuscript Region of Origin:	HUNGARY					
Abstract:	A Gram-reaction-negative bacterial strain, designated Kb22 T , was isolated from agricultural soil and characterised using a polyphasic approach to determine its taxonomic position. On the basis of 16S rRNA gene sequence analysis, the strain shows highest similarity (94.39%) with Sphingobacterium nematocida M-SX103 T . The highest ANI (71.83%) value was found with Sphingobacterium olei HAL-9 T , and the highest AAI (66.65%) value was found with Sphingobacterium olei HAL-9 T . Cells are aerobic, non-motile rods. The isolate was found to be positive for catalase and oxidase tests. The assembled genome of strain Kb22 T has a total length of 4,06 Mb, the DNA G+C content is 38.1 mol%. The only isoprenoid quinone is menaquinone 7 (MK-7). The major fatty acids are iso-C 15:0 (28.4%), summed feature 3 (C 16:1 ω 7 c and/or iso-C 15:0 2-OH) (25.7%) and iso-C 17:0 3-OH (19.7%). Based on phenotypic characteristics and phylogenetic analysis, it is concluded that strain Kb22 T is a member of the genus Sphingobacterium and represents a novel species, for which the name Sphingobacterium hungaricum sp. nov. is proposed. The type strain of the species is strain Kb22 T (=LMG 31574 = NCAIM B.02638).					
Author Comments:						
Opposed Reviewers:						
Suggested Reviewers:	Peter Schumann DSMZ: Leibniz Institut - Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH					

	psc@dsmz.de					
	Károly Márialigeti ELTE: Eotvos Lorand Tudomanyegyetem marialigeti.karoly@ttk.elte.hu					
Additional Information:						
Question	Response					
Does this article report on work with humans or animals?	No					
Does this article include details (names, initials, hospital numbers), images, or videos relating to an individual person?	Νο					

 \bigcup

Response to Reviewer

Click here to access/download Response to Reviewer Response_Kb22.docx Sphingobacterium hungaricum sp. nov. a novel species on the borderline of the genus
 Sphingobacterium

3

Ákos Tóth^{1,*}, Rózsa Máté², József Kutasi², Erika Tóth³, Károly Bóka⁴, András Táncsics⁵,
István Nagy^{6,7}, Gábor Kovács^{6,8} Judit Kosztik¹, Ildikó Bata-Vidács¹, József Kukolya¹

6

7 ¹Research Group for Food Biotechnology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary; ²BioFil 8 Microbiological, Biotechnological and Biochemical Ltd., Budapest, Hungary; ³Department of 9 Microbiology, Eötvös Loránd University, Budapest, Hungary; ⁴Department of Plant Anatomy, 10 Eötvös Loránd University, Budapest, Hungary; ⁵Department of Molecular Ecology, Institute 11 of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life 12 Sciences. Gödöllő, Hungary; ⁶SeqOmics Biotechnology Ltd., Mórahalom, Hungary; ⁷Institute 13 of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, 14 Hungary; ⁸University of Sopron, Sopron, Hungary 15

*Correspondence: Ákos Tóth, Tel.: +36 1 796 0400; E-mail address:
toth.akosgergely@gmail.com

18

Keywords: Sphingobacterium hungaricum; new taxon; Bacteroidetes, Sphingobacteriaceae;
borderline of the genus

Abbreviations: AAI, Amino Acid Identity; ANI, Average Nucleotide Identity; dDDH, digital 21 DNA-DNA Hybridisation; DSMZ, Deutsche Sammlung von Mikroorganismen und 22 Zellkulturen (German Collection of Microorganisms and Cell Cultures); GGDC, Genome-to-23 Genome Distance Calculator; GH, Glycoside Hydrolase; GNL, aminoglycolipid; LB agar, 24 25 Luria-Bertani agar; L, uncharacterised lipid; MiGA, Microbial Genomes Atlas; TYGS, Type Strain Genome Server; MLSA, MultiLocus Sequence Analysis; RAST, Rapid Annotation 26 using Subsystem Technology; PE, phosphatidylethanolamine; PGL, phosphoglycolipid; PL, 27 phospholipid. 28

Author notes: The GenBank accession numbers for the 16S rRNA gene sequence and the
 whole genome of *Sphingobacterium hungaricum* strain Kb22^T are MF471353 and
 PRDK00000000, respectively.

32

<u>±</u>

A Gram-reaction-negative bacterial strain, designated Kb22^T, was isolated from 34 agricultural soil and characterised using a polyphasic approach to determine its 35 taxonomic position. On the basis of 16S rRNA gene sequence analysis, the strain shows 36 highest similarity (94.39%) with Sphingobacterium nematocida M-SX103^T. The highest 37 ANI (71.83%) value was found with *Sphingobacterium composti* T5-12^T, and the highest 38 AAI (66.65%) value was found with *Sphingobacterium* olei HAL-9^T. Cells are aerobic, 39 non-motile rods. The isolate was found to be positive for catalase and oxidase tests. The 40 assembled genome of strain Kb22^T has a total length of 4,06 Mb, the DNA G+C content 41 is 38.1 mol%. The only isoprenoid quinone is menaquinone 7 (MK-7). The major fatty 42 acids are iso-C_{15:0} (28.4%), summed feature 3 (C_{16:1} ω 7c and/or iso-C_{15:0} 2-OH) (25.7%) 43 and iso-C_{17:0} 3-OH (19.7%). 44 45 Based on phenotypic characteristics and phylogenetic analysis, it is concluded that strain

46 Kb22^T is a member of the genus *Sphingobacterium* and represents a novel species, for

47 which the name *Sphingobacterium hungaricum* sp. nov. is proposed. The type strain of

48 the species is strain $Kb22^T$ (=LMG 31574 = NCAIM B.02638).

49

50

51 **Introduction**

The family Sphingobacteriaceae was proposed by Steyn et al. [1] and emended by García-52 López et al. [2]. Sphingobacteriaceae belong to the order Sphingobacteriales, class 53 Sphingobacteriia and phylum 'Bacteroidetes'. The type genus of the family is 54 55 Sphingobacterium. At the time of writing, the family includes 15 validly published genera (https://lpsn.dsmz.de/ April, 2021 [3, 4]). According to Steyn et al., members of the family are 56 Gram-stain-negative, non-motile rods, having iso-C_{15:0}, iso-C_{15:0} 2-OH, iso-C_{15:0} 3-OH, C_{16:0}, 57 3-OH and iso-C_{17:0} 3-OH as predominant fatty acids; 58 $C_{16:1}$ $\omega 7c$, C_{16:0} phosphatidylethanolamine as the major polar lipid and menaquinone-7 (MK-7) as the major 59 60 respiratory quinone [1]. The members of *Sphingobacteriaceae* have been mostly isolated from soil and water. The genus Sphingobacterium was proposed by Yabuuchi et al. [5] and 61 emended by Wauters et al. [6]. At the time of writing, the genus includes 58 taxa with validly 62 published and correct names (https://lpsn.dsmz.de/ April, 2021 [3, 4]), the type species is 63 Sphingobacterium spiritivorum [5]. The main characteristics of the genus are the negative 64 result of Gram-staining, positive catalase and oxidase tests, rod shape, non-motility and MK-7 65

as predominant isoprenoid quinone. Most of the *Sphingobacterium* strains have been isolatedfrom soil, rhizosphere or composts.

68

69 Isolation and ecology

Strain Kb22^T was isolated from an agricultural field in the Great Hungarian Plain, Hungary. 70 The approximate geographical coordinates were 47° 11' 56" N and 19° 00' 46" E. Before 71 72 sampling, maize was harvested from the field. The soil was fertilised, and its pH was moderately alkaline. After sampling, the soil particles were homogenised by vortexing and 73 serially diluted with peptone water (9 g peptone, 1 g NaCl, in 1000 ml dH₂O). It was 74 subsequently spread onto xylan containing agar (1 g NaNO₃; 1 g K₂HPO₄; 3 g NaCl; 0.5 g 75 MgCl₂; 0.5 g yeast extract; 0.5 g peptone; 3 g xylan; 25 g agar; 1000 ml dH₂O) and incubated 76 at 10 °C for 5 days. Single colonies on the plates were purified on the same medium. The 77 isolate is routinely maintained on LB medium (DSM medium No. 381, www.dsmz.de) at 28 78 °C and pH 7.5. 79

80

81 16S phylogeny

Sphingobacterium is a relatively large genus, at the time of writing (June of 2021) the genus 82 includes 58 validly published species with correct name. New species in the genus have 83 already been described with 16S rRNA gene similarity of 90.0% [7] and 99.1% [8]. The 84 golden standard for species delineation was DNA-DNA hybridisation, then Stackebrandt and 85 Goebel proposed a boundary of 16S rRNA gene sequence similarity of 97% for species 86 delineation based on a correlation analysis between DDH values and 16S rRNA gene 87 sequence identities [9]. Thus, until recently, taxonomic frameworks primarily based on 16S 88 89 rRNA gene sequences. However, this threshold value has been updated to 98.7% [10]. As for genera, the generally used genus threshold of 95% 16S rRNA gene identity has been recently 90 revised to a minimal value of 94.5% [11]. 91

DNA was extracted from Kb22^T liquid culture grown in LB medium. Genomic DNA isolation and 16S rRNA gene amplification were performed according to Tóth *et al.* [12]. The partial 16S rRNA gene sequence of strain Kb22^T (MF471353) was compared with the EzBioCloud Database (http://www.ezbiocloud.net/taxonomy) [13] for an approximate phylogenetic affiliation. After Sanger sequencing of the 16S rRNA gene, a genome sequencing project of Kb22^T was carried out. According to the comparisons with the complete 16S rRNA gene sequences in the EzBioCloud Database, the highest level of sequence similarity occurred with *Sphingobacterium nematocida* M-SX103^T (94.39%) [14], followed by *Sphingobacterium composti* T5-12^T (94.31%) [15].

101 Phylogenetic tree based on 16S rRNA gene was inferred by using the neighbor-joining 102 method [16] with Kimura's two-parameter calculation model [17]. Tree topologies and 103 distances were evaluated by bootstrap analysis based on 1000 replicates. Evolutionary 104 analyses were conducted in MEGA X [18]. The phylogenetic tree based on 16S rRNA gene 105 sequences suggested that strain Kb22^T forms a distinct phyletic lineage in the 106 *Sphingobacteriaceae* family.

107

108 Genome features

109 The genome of strain Kb22^T was sequenced with Illumina MiSeq sequencing technology as 110 described previously [19]. Genome assembly was performed by SPAdes v. 3.9.1; CLC NGS

Cell v. 11.0. Genome completeness and contamination values were examined by TypeMet 111 tool of MiGA server (http://microbial-genomes.org/) [20]. Annotation of the genome was 112 performed by NCBI Prokaryotic Genome Annotation Pipeline v4.4 with Best-placed 113 reference protein set and GeneMarkS+ methods [21, 22] and Rapid Annotation using 114 Subsystem Technology server v. 2.0 (RAST; https://rast.nmpdr.org) [23]. The completeness 115 and contamination metrics of the genome were found to be 96.2% and 1.9%, respectively. 116 Other quality metrics of genome sequencing and assembly were as follows: 227-fold genome 117 coverage, contig N50=578,756, number of contigs was 10. The genome size and G+C content 118 of Kb22^T were 4,056,205 bp and 38.1 mol%, respectively. According to the annotation, there 119 were 3603 genes, 3548 CDSs and 55 RNA genes in the genome. The coding density was 120 89.51%. 121

The anti-SMASH server was used to identify the secondary metabolite biosynthesis gene
clusters [24]. Four putative biosynthetic gene clusters (arylpolyene, resorcinol and two furans)
were found in 3 genomic regions.

Strain Kb22^T was isolated on xylan containing minimal agar, and it was also able to grow on media containing mannan or cellulose as sole carbon source. The genome annotation revealed 55 glycoside hydrolases (GHs) in 21 different GH families (Table 1). These enzyme genes may play a role in the breakdown and modification of carbohydrates in soil. Some of these enzymes are active on plant cell wall polysaccharides and potentially have role in the breakdown of lignocelluloses. The main polysaccharide components in lignocellulose are cellulose and xylan. The key enzymes for the decomposition of these two main components

are a xylanases, β -xylosidases, cellulases and β -glucosidases. The presence of these genes was 132 examined in Sphingobacterium hungaricum Kb22^T, Sphingobacterium composti KCTC 133 12578^T, Sphingobacterium olei HAL-9^T [25] and Sphingobacterium nematocida 134 DSM 24091^T (Table 2). According to the annotation of genomes (GCA 015210005, 135 GCA_009829075, GCA_005048855, GCA_900168125), we found the key genes required for 136 xylan degradation in Kb22^T, but in the case of the endophytic *Sphingobacterium nematocida* 137 DSM_24091^T no xylanase or cellulase genes were found. The results revealed differences in 138 the gene set of the compared strains, and it is important to note that lignocellulose degradation 139 140 in nature is performed by microbial communities. The glycoside hydrolase sequences were identified using the Carbohydrate Active Enzymes database (http://www.cazy.org/) and the 141 Interpro web service (https://www.ebi.ac.uk/interpro/) [26, 27]. 142

143

144 Genome based phylogeny

As the number of whole genome sequences increased, it became possible to introduce different overall genome related indexes (OGRI). However, according to Chun et al., OGRI does not have a taxonomic resolution above the species level, so a multigene-based phylogenomic treeing approach should be chosen for defining genera [28]. Others recommend the use of genus-specific ANI and AF (Aligment Fraction) values [29]. Recently, the genomic-scale phylogenetic, AAI and conserved signature indels (CSIs) based classification of broad genera seems to be suitable [30-32].

The 16S rRNA gene similarity found for Kb22^T is at the genus boundary, thus also MLSA
and whole genome sequence based methods were used to determine the phylogenetic position
of the strain.

155 Multilocus sequence analyses were performed by autoMLST webserver (https://automlst.ziemertlab.com/) [33]. The concatenated sequences were made from 78 156 157 genes (Table S1). Phylogenetic tree based on concatenated sequences was inferred using the neighbor-joining method [16] with Kimura's two-parameter calculation model [17] using 158 MEGA version X [18]. Tree topologies and distances were evaluated by bootstrap analysis 159 based on 1000 replicates. Based on the MLSA tree, Kb22^T was found to be a member of the 160 genus Sphingobacterium as a novel species (Fig. 1). 161

Genome-based relatedness between Kb22^T and S. spiritivorum NCTC 11386^T, the type strain 162 163 of the type species, was determined based on ANI using OrthoANI (https://www.ezbiocloud.net/tools/ani) algorithm [34] and dDDH (identities/HSP length) with 164

GGDC service of DSMZ (http://ggdc.dsmz.de/) [35]. The OrthoANIu and dDDH values
between Kb22^T and *S. spiritivorum* NCTC 11386^T were 70.37 and 19.90%, much lower than
the generally accepted species boundary of 95~96 and 70%, respectively [35-37]. The highest
OrthoANIu value(71.83%) was found with *Sphingobacterium composti* T5-12^T.

As part of the phylogenomic studies, TYGS (https://tygs.dsmz.de/) [38] and MiGA 169 (http://microbial-genomes.org/) [20] webservers were used. Phylogenomic treeing by TYGS 170 confirmed the MLSA result that Kb22^T represents a new species within genus 171 Sphingobacterium (Fig. 2). An AAI matrix with type strains in the Sphingobacteriaceae 172 family was calculated by the latest extension of the Microbial Genome Atlas 173 (https://xsede.microbial-genomes.org/). The lowest value was observed with Anseongella 174 ginsenosidimutans Gsoil 524^T (52%), the highest with Sphingobacterium spiritivorum NCTC 175 11386^T (66%) (Table 3). Genbank assembly accessions: Albibacterium bauzanense DSM 176 524^T 22554^T - GCA_004339765.1 [39]; Anseongella ginsenosidimutans Gsoil 177 GCA 008033235.1 [40]; Arcticibacter svalbardensis MN12-7^T - GCA 000403135.1 [41]; 178 18603^T -GCA 000166195.3 DSM [42]: 179 Mucilaginibacter paludis Nubsella zeaxanthinifaciens TDMA-5^T - GCA_003313335.1 [43]; Olivibacter sitiensis DSM 17696^T -180 GCA 000427965.1 [44]; Parapedobacter koreensis Jip14^T - GCA 900109365.1 [45]; 181 Pararcticibacter amylolyticus FJ4-8^T - GCA_003130405.1 [46]; Pedobacter heparinus DSM 182 2366^T - GCA_000023825.1 [1]; Pelobium manganitolerans YS-25^T - GCA_003609575.1 183 [47]; Pseudosphingobacterium domesticum DSM 18733^T - GCA 900109575.1 [48]; Solitalea 184 koreensis DSM 21342^T - GCA_900182575.1 [49]; Sphingobacterium spiritivorum NCTC 185 11386^T - GCA 900457435.1 [5]. 186

According to MiGA distance analysis, the closest relatives are *Sphingobacterium olei* HAL-9^T (accession: GCA_005048855) (66.65% AAI) and *Sphingobacterium alkalisoli* Y3L14^T (accession: GCA_005049105) (66.39% AAI) [50]. The p-value of taxonomic novelty at genus level is 0.655 and at species level is 0.002. Summarising the phylogenetic assessments, the taxonomic position of Kb22^T is a borderline case. In accordance with the recommendation of Chun *et al.*, the phylogenomic results were considered decisive for genus level rank [28].

193

194 Physiologic, morphologic and chemotaxonomic characterisation

Biomass for chemical and molecular studies was obtained by cultivation in shaker flasks (180 r.p.m.) using LB medium at 30 °C for 32 h. Colony morphology of strain Kb22^T was determined on LB agar medium by directly observing single colonies. Cell morphology of

strain Kb22^T was observed under electron microscope. Pigments were investigated as 198 described previously by Daood and Biacs [51] and by Bernardet and Bowman [52]. The Gram 199 200 reaction was determined with a non-staining method as described by Buck et al. [53]. Oxidase activity was studied with OXI oxidase test strip (Diagnostics s.r.o.). Catalase production was 201 202 demonstrated by the method of Barrow and Feltham [54]. Growth at different temperatures (from 4 to 50 °C), NaCl tolerance (0–5% w/v) and pH tolerance (pH 4–10, using increments 203 of 0.5 pH unit, pH values were adjusted with HCl or NaOH) were determined using LB 204 medium. Growth at pH 4-10 was examined in flasks and 96-well plates with continuous 205 monitoring of optical density. Acid production from different carbon sources, the assimilation 206 of different substrates and the enzymatic activities of strain Kb22^T were investigated with API 207 50 CH, API 20 NE and API ZYM kits (BioMérieux) according to the manufacturer's 208 instructions. The API 50CH and 20NE tests were read after 24-48 h incubation at 28 °C. 209 Anaerobic and microaerophilic growth was checked on TSA medium using the Anaerocult A 210 and C systems (Merck). The physiological characteristics were examined by side-by-side 211 analysis with *Sphingobacterium composti* T5-12^T [15]. 212

LB medium is used for general laboratory cultivation, but the novel strain also grew well on 213 TSA, nutrient and R2A media. After 72 h growth on LB at 30 °C, colonies were found to be 1 214 mm in diameter, circular, non-mucoid, smooth and orange. Cells of Kb22^T produced 215 flexirubin-type pigments. Strain Kb22^T was found to be Gram-reaction-negative, aerobic, 216 positive for oxidase and catalase, rod-shaped bacterium (Fig. S1). Cells were observed to be 217 non-motile, grow in 0.0–2.0% (w/v) NaCl, at a pH range 6.5 to 8.5 and at a temperature range 218 between 10 and 35 °C. Optimal growth was observed at 30 °C, 1.0% (w/v) NaCl and pH 7.5. 219 Mean cell size of $Kb22^{T}$ was found to be 0.5 µm in diameter and 1.0-1.5 µm in length. 220

According to API 50 CH test, Kb22^T was positive for acid production from D-arabinose, D-221 glucose, D-fructose, D-mannose, L-rhamnose, methyl-α-D-mannopyranoside, methyl-α-D-222 xylopyranoside, N-acetyl-glucosamine, amygdaline, arbutine, esculine, salicine, D-cellobiose, 223 D-maltose, D-lactose, D-melibiose, D-saccharose, D-trehalose, D-melezitose, D-raffinose, 224 225 starch, gentiobiose, D-turanose and L-fucose. β -galactosidase activity, hydrolysis of esculin 226 and assimilation of glucose, mannose, N-acetyl-glucosamine and maltose were demonstrated by using the API 20 NE test. In the API ZYM test, strain Kb22^T was positive for alkaline 227 phosphatase, esterase lipase (C8), leucine arylamidase, naphthol-AS-BI-phosphohydrolase, β-228 glucosidase, N-acetyl-β-glucosaminidase and trypsin. Differential phenotypic characteristics 229 between strain $Kb22^{T}$ and *Sphingobacterium composti* T5-12^T are given in Table 4. 230 According to comparative genomics performed on MicroScope platform, the strain specific 231

- CDSs account for 80.577% in Kb22^T genome and 83.065% in *Sphingobacterium composti*T5-12^T genome [55].
- 234 Analyses of chemotaxonomic traits were carried out by DSMZ Identification Service,
- 235 Braunschweig, Germany. For polar lipid and respiratory quinone analyses, the strains were
- cultivated in LB liquid medium at 30 °C, 180 r.p.m. until exponential growth was reached.
- 237 The fatty acid profiles of strain Kb22^T and *Sphingobacterium composti* T5-12^T were analysed
- using active growing cultures on LB at 30 °C.
- According to the DSMZ Identification Service, fatty acid methyl esters (FAMEs) were obtained following the method of Miller [56] and Kuykendall *et al.* [57]. FAMEs were separated by gas chromatography, detected by a flame ionisation detector using Sherlock Microbial Identification System (MIS) (MIDI, Microbial ID, Newark, DE 19711 U.S.A.) and identified by using the TSBA40 4.10 database of the Microbial Identification System. Summed feature components were identified thereafter by GC/MS.
- The predominant cellular fatty acids of strain Kb22^T were observed to be iso-C_{15:0} (28.4%), summed feature 3 (C_{16:1} ω 7*c* and/or iso-C_{15:0} 2-OH) (25.7%) and iso-C_{17:0} 3-OH (19.7%). The fatty acid profile was found to be similar to that of related species, in accordance with the description of *Sphingobacterium* genus [5]. However, the ratios of the components were different. The complete fatty acid composition is shown in Table 5.
- The respiratory quinones were extracted from freeze dried material and purified by a silicabased solid phase extraction. Purified samples were further analysed by HPLC and UHPLC-ESI-qTOF system [58, 59; dsmz.de]. The only respiratory quinone of Kb22^T was menaquinone-7 (MK-7).
- Polar lipids were studied according to Tindall *et al.* [58-60, dsmz.de]. Strain Kb22^T exhibited a complex polar lipid profile consisting of phosphatidylethanolamine (PE) and phosphoglycolipid (PGL) as dominant elements and an uncharacterised aminoglycolipid (GNL), six uncharacterised phospholipids (PL) and five uncharacterised lipids (L) (Fig. S2). Though the domination of PE is characteristic of other species in the genus, the presence and ratio of other components were different [5].
- In conclusion, phenotypic, biochemical, chemotaxonomic and phylogenetic information of strain Kb22^T support its classification as a novel species of *Sphingobacterium*, for which the name *Sphingobacterium hungaricum* sp. nov. is proposed. The GenBank accession numbers for the 16S rRNA gene sequence and the whole genome of *Sphingobacterium hungaricum* strain Kb22^T are MF471353 and PRDK00000000, respectively.
- 265

- 266 Description of Sphingobacterium hungaricum sp. nov.
- 267

Sphingobacterium hungaricum (hun.ga'ri.cum. M.L. neut. adj. *hungaricum* of or belonging to
Hungary, where the type strain was isolated)

270 Cells are strictly aerobic, Gram-reaction-negative straight rods and non-motile. It grows well on LB, TSA, nutrient and R2A media. Colonies have orange pigmentation on TSA after 48 h 271 272 of incubation. Cells are 0.5 µm in diameter and 1.0-1.5 µm in length. It grows at 10–35 °C (optimum, 30 °C) and at NaCl concentrations of 0–2 w/v % (optimum, 1 w/v %). It is positive 273 274 for oxidase, catalase, β -galactosidase, alkaline phosphatase, esterase lipase (C8), leucine arylamidase, naphthol-AS-BI-phosphohydrolase, ß-glucosidase, N-acetyl-ß-glucosaminidase, 275 276 trypsin, hydrolysis of esculin and assimilation of glucose, mannose, N-acetyl-glucosamine, and maltose. Strain Kb22^T was found to be positive for acid production from D-arabinose, D-277 278 glucose, D-fructose, D-mannose, L-rhamnose, methyl-a-D-mannopyranoside, methyl-a-D-279 xylopyranoside, N-acetyl-glucosamine, amygdaline, arbutine, esculine, salicine, D-cellobiose, D-maltose, D-lactose, D-melibiose, D-saccharose, D-trehalose, D-melezitose, D-raffinose, 280 starch, gentiobiose, D-turanose, and L-fucose. The major fatty acids are iso-C_{15:0} (28.4%), 281 summed feature 3 (C_{16:1} ω 7c and/or iso-C_{15:0} 2-OH) (25.7%) and iso-C_{17:0} 3-OH (19.7%). The 282 only respiratory quinone is MK-7. The major polar lipid is phosphatidylethanolamine. The 283 type strain is Kb22^T (=LMG 31574 = NCAIM B.02638), isolated from agricultural field in the 284 Great Hungarian Plain, Hungary. The DNA G+C content of the type strain is 38.1 mol%, the 285 genome is 4.06 Mb. The GenBank accession number of the genome is PRDK00000000. 286

287

288 **Funding Information**

This work was supported by the NVKP_16-1-2016-0009 project. Ákos Tóth was supported
by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences (Grant No.
BO/00342/18).

292 Conflict of interest

293 The authors declare that there are no conflicts of interest.

294 **References**

Steyn PL, Segers P, Vancanneyt M, Sandra P, Kersters K, Joubert JJ. Classification of
 heparinolytic bacteria into a new genus, *Pedobacter*, comprising four species:

- 297 Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter
 298 africanus sp. nov. and Pedobacter saltans sp. nov. proposal of the family
 299 Sphingobacteriaceae fam. nov. Int J Syst Bacteriol 1998;48(1):165-177.
- Garcia-Lopez M., Meier-Kolthoff JP, Tindall BJ, Gronow S, Woyke T, Kyrpides NC,
 Hahnke RL, Goker M. Analysis of 1000 type-strain genomes improves taxonomic
 classification of *Bacteroidetes*. *Front. Microbiol* 2019;10:2083. DOI:
 10.3389/fmicb.2019.02083
- Euzéby JP. List of bacterial names with standing in nomenclature: a folder available
 on the internet. *International Journal of Systematic Bacteriology* 1997;47:590-592.
 DOI: 10.1099/00207713-47-2-590
- Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC and Göker M. List of
 Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ.
 International Journal of Systematic and Evolutionary Microbiology 2020;70:5607 5612. DOI: 10.1099/ijsem.0.004332
- 5. Yabuuchi E, Kaneko T, Yano I, Moss CW, Miyoshi N. Sphingobacterium gen. nov., *Sphingobacterium spiritivorum* comb. nov., Sphingobacterium multivorum comb.
 nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.:
 glucose-nonfermenting Gram-negative rods in CDC groups IIK-2 and IIb. Int. J. Syst.
 Bacteriol. 1983;33:580-598.
- 6. Wauters G, Janssens M, De Baere T, Vaneechoutte M, Deschaght P. Isolates
 belonging to CDC group II-i belong predominantly to *Sphingobacterium mizutaii*Yabuuchi *et al.* 1983: emended descriptions of *S. mizutaii* and of the genus *Sphingobacterium. Int J Syst Evol Microbiol* 2012;62:2598-2601.
- Jiang S, Chen M, Su S, Yang M, Li A, Zhang C, Lin M, Zhang W, Luo X. *Sphingobacterium arenae* sp. nov., isolated from sandy soil. *Int J Syst Evol Microbiol* 2014;64:248-253.
- Lee DH, Hur JS, Kahng HY. *Sphingobacterium cladoniae* sp. nov., isolated from
 lichen, *Cladonia* sp., and emended description of *Sphingobacterium siyangense*. Int J
 Syst Evol Microbiol 2013;63:755-760.
- Stackebrandt E, Goebel BM. Taxonomic Note: a place for DNA-DNA reassociation
 and 16S rRNA sequence analysis in the present species definition in bacteriology. *Int J Syst Evol Microbiol* 1994;44:846–849.
- 329 10. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards.
 330 *Microbiol Today* 2006;33:152–155.

- 11. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer K, Whitman WB,
 Euzéby J, Amann R, Móra RR. Uniting the classification of cultured and uncultured
 bacteria and archaea using 16S rRNA gene sequences. *Nat Rev Microbiol*2014;12:635-645. DOI:10.1038/ nrmicro3330
- 12. Tóth Á, Baka E, Bata-Vidács I, Luzics S, Kosztik J *et al. Micrococcoides hystricis*gen. nov., sp. nov., a novel member of the family *Micrococcaceae*, phylum *Actinobacteria. Int J Syst Evol Microbiol* 2017;67:2758-2765.
- 13. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M *et al.* Introducing EzTaxon-e: a
 prokaryotic 16S rRNA gene sequence database with phylotypes that represent
 uncultured species. *Int J Syst Evol Microbiol* 2012;62:716–721.
- 14. Liu J, Yang LL, Xu CK, Xi JQ, Yang FX, Zhou F, Zhou Y, Mo MH, Li
 WJ. *Sphingobacterium nematocida* sp. nov., a nematicidal endophytic bacterium
 isolated from tobacco. *Int J Syst Evol Microbiol* 2012;62:1809-1813.
- 15. Ten LN, Liu Q-M, Im W-T, Aslam Z, Lee S-T. *Sphingobacterium composti* sp. nov., a
 novel DNase-producing bacterium isolated from compost. *J Microbiol Biotechnol*2006;16:1728-1733.
- 347 16. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing
 348 phylogenetic trees. *Mol Biol Evol* 1987;4:406–425.
- 17. Kimura M. A simple method for estimating evolutionary rate of base substitutions
 through comparative studies of nucleotide sequences. *Journal of Molecular Evolution* 1980:16:111-120.
- 18. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary
 Genetics Analysis across computing platforms. *Molecular Biology and Evolution* 2018:35:1547-1549.
- 355 19. Szuroczki S, Khayer B, Sproer C, Toumi M, Szabo A, Felfoldi T, Schumann P, Toth
 356 E. *Arundinibacter roseus* gen. nov., sp. nov., a new member of the family
 357 *Cytophagaceae. Int J Syst Evol Microbiol* 2019;69:2076-2081.
- 20. Rodriguez-R LM, Gunturu S, Harvey WT, Rosselló-Mora R, Tiedje JM, Cole JR, et
 al. The Microbial Genomes Atlas (MiGA) webserver: taxonomic and gene diversity
 analysis of *Archaea* and *Bacteria* at the whole genome level. Nucleic Acids Res.
 2018;46:W282–W288. DOI:10.1093/nar/gky467
- 362 21. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP *et al.* NCBI
 363 prokaryotic genome annotation pipeline. *Nucleic Acids Res* 2016;44(14):6614-6624.

- 22. O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D *et al.* Reference sequence
 (RefSeq) database at NCBI: current status, taxonomic expansion, and functional
 annotation. *Nucleic Acids Res* 2016;4(44):D733-D745.
- 367 23. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, *et al.* The RAST Server: Rapid
 368 Annotations using Subsystems Technology. *BMC Genomics* 2008;9:75.
- 369 24. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY *et al.* antiSMASH 5.0:
 370 updates to the secondary metabolite genome mining pipeline. *Weber Nucleic Acids*371 *Research* 2019 DOI: 10.1093/nar/gkz310. 29. Buck JD.
- 25. Liu B, Yang X, Sheng M, Yang Z, Qiu J, Wang C, He J. *Sphingobacterium olei* sp.
 nov., isolated from oil-contaminated soil. *Int J Syst Evol Microbiol* 2020; 70:19311939.
- 26. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The
 Carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–
 D495.
- 27. Blum M, Chang H, Chuguransky S, Grego T, Kandasaamy S, Mitchell A, Nuka G,
 Paysan-Lafosse T, Qureshi M, Raj S, RichardsonL, Salazar GA, Williams L, Bork P,
 Bridge A, Gough J, Haft DH, Letunic I, Marchler-Bauer A, Mi H, Natale DA, Necci
 M, Orengo CA, Pandurangan AP, Rivoire C, Sigrist CJA, Sillitoe I, Thanki N,
 Thomas PD, Tosatto SCE, Wu CH, Bateman A and Finn RD <u>The InterPro protein</u>
 <u>families and domains database: 20 years on</u>. *Nucleic Acids Research*, Nov 2020, DOI:
 10.1093/nar/gkaa977.
- 28. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS. Proposed
 minimal standards for the use of genome data for the taxonomy of prokaryotes. *Int J Syst Evol Microbiol.* 2018;68:461–466.
- 29. Barco RA, Garrity GM, Scott JJ, Amend JP, Nealson KH, Emerson DA. Genus
 definition for *Bacteria* and *Archaea* based on a standard genome relatedness index. *mBio.* 2020;11, e02475–19. DOI: 10.1128/mBio.02475-19
- 30. Gupta RS, Patel S, Saini N, Chen S. Robust demarcation of 17 distinct *Bacillus* species clades, proposed as novel *Bacillaceae* genera, by phylogenomics and comparative genomic analyses: description of *Robertmurraya kyonggiensis* sp. nov.
 and proposal for an emended genus *Bacillus* limiting it only to the members of the Subtilis and Cereus clades of species. *Int J Syst Evol Microbiol.* 2020
 Nov;70(11):5753-5798. DOI: 10.1099/ijsem.0.004475. Epub 2020 Oct 27. Erratum in: *Int J Syst Evol Microbiol.* 2020 Dec;70(12):6531-6533. PMID: 33112222.

- 398 31. Lawson PA, Rainey FA. Proposal to restrict the genus *Clostridium* Prazmowski
 399 to *Clostridium butyricum* and related species. *Int J Syst Evol Microbiol.* 2016
 400 Feb;66(2):1009-1016. DOI: 10.1099/ijsem.0.000824. Epub 2015 Dec 7. PMID:
 401 26643615.
- 32. Nicholson AC, Gulvik CA, Whitney AM, Humrighouse BW, Bell ME, Holmes B, 402 Steigerwalt AG, Villarma A, Sheth M, Batra D, Rowe LA, Burroughs M, Pryor JC, 403 Bernardet JF, Hugo C, Kämpfer P, Newman JD, McQuiston JR. Division of the 404 genus Chryseobacterium: Observation of discontinuities in amino acid identity values, 405 406 a possible consequence of major extinction events, guides transfer of nine species to the genus Epilithonimonas, eleven species to the genus Kaistella, and three species to 407 the genus Halpernia gen. nov., with description of Kaistella daneshvariae sp. nov. 408 and Epilithonimonas vandammei sp. nov. derived from clinical specimens. Int J Syst 409 Evol Microbiol. 2020 Aug;70(8):4432-4450. DOI: 10.1099/ijsem.0.003935. Epub 410 2020 Jan 2. PMID: 32735208; PMCID: PMC7660247. 411
- 33. Alanjary M, Steinke K, Ziemert N. AutoMLST: an automated web server for
 generating multi-locus species trees highlighting natural product potential, *Nucleic Acids Research*, Volume 47, Issue W1, 02 July 2019, Pages W276–
 W282, <u>https://doi.org/10.1093/nar/gkz282</u>
- 34. Yoon SH, Ha SM, Lim JM, Kwon SJ, Chun J. A large-scale evaluation of algorithms
 to calculate average nucleotide identity. *Antonie van Leeuwenhoek*. 2017;10:1281–
 1286.
- 419 35. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species
 420 delimitation with confidence intervals and improved distance functions. *BMC*421 *Bioinformatics* 2013;14:60.
- 36. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P *et al.* DNA–
 DNA hybridization values and their relationship to whole-genome sequence
 similarities. *Int J Syst Evol Microbiol* 2007;57:81–91.
- 37. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic
 species definition. *Proc Natl Acad Sci USA* 2009;106:19126–19131.
- 38. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for
 state-of-the-art genome-based taxonomy. *Nat. Commun.* 2019;10:2182. DOI:
 10.1038/s41467-019-10210-3

- 39. Garcia-Lopez M, Meier-Kolthoff JP, Tindall BJ, Gronow S, Woyke T, Kyrpides NC,
 Hahnke RL, Goker M. Analysis of 1,000 Type-Strain Genomes Improves Taxonomic
 Classification of *Bacteroidetes*. *Front Microbiol* 2019; 10:2083.
- 433 40. Siddiqi MZ, Liu Q, Kang MS, Kim MS, Im WT. *Anseongella ginsenosidimutans* gen.
 434 nov., sp. nov., isolated from soil cultivating ginseng. *Int J Syst Evol Microbiol*435 2016;66:1125x-11130.
- 436 41. Prasad S, Manasa BP, Buddhi S, Pratibha MS, Begum Z, Bandi S, Tirunagari P,
 437 Shivaji S. Arcticibacter svalbardensis gen. nov., sp. nov., of the family
 438 Sphingobacteriaceae in the phylum Bacteroidetes, isolated from Arctic soil. Int J Syst
 439 Evol Microbiol 2013;63:1627-1632.
- 440 42. Pankratov TA, Tindall BJ, Liesack W, Dedysh SN. *Mucilaginibacter paludis* gen.
 441 nov., sp. nov. and *Mucilaginibacter gracilis* sp. nov., pectin-, xylan- and laminarin442 degrading members of the family *Sphingobacteriaceae* from acidic Sphagnum peat
 443 bog. *Int J Syst Evol Microbiol* 2007;57:2349-2354.
- 444 43. Asker D, Beppu T, Ueda K. *Nubsella zeaxanthinifaciens* gen. nov., sp. nov., a
 445 zeaxanthin-producing bacterium of the family *Sphingobacteriaceae* isolated from
 446 freshwater. *Int J Syst Evol Microbiol* 2008;58:601-606.
- 447 44. Ntougias S, Fasseas C, Zervakis GI. *Olivibacter sitiensis* gen. nov., sp. nov., isolated
 448 from alkaline olive-oil mill wastes in the region of Sitia, Crete. *Int J Syst Evol*449 *Microbiol* 2007;57:398-404.
- 450 45. Kim MK, Na JR, Cho DH, Soung NK, Yang DC. *Parapedobacter koreensis* gen. nov.,
 451 sp. nov. *Int J Syst Evol Microbiol* 2007;57:1336-1341.
- 452 46. Cai YY, Dong WW, Hu YL, Jiang X, Wang YW, Zhou YQ, Peng N, Liang YX, Zhao
 453 SM. *Pararcticibacter amylolyticus* gen. nov., sp. nov., Isolated from a Rotten Hemp
 454 Rope, and Reclassification of *Pedobacter tournemirensis* as *Pararcticibacter*455 *tournemirensis* comb. nov. *Curr Microbiol* 2020;77:320-326.
- 47. Xia X, Wu S, Han Y, Liao S, Wang G. *Pelobium manganitolerans* gen. nov., sp. nov.,
 isolated from sludge of a manganese mine. *Int J Syst Evol Microbiol* 2016;66:4954458 4959.
- 459 48. Vaz-Moreira I, Nobre MF, Nunes OC, Manaia CM. *Pseudosphingobacterium*460 *domesticum* gen. nov., sp. nov., isolated from home-made compost. *Int J Syst Evol*461 *Microbiol* 2007;57:1535-1538.

462	49. Weon HY, Kim BY, Lee CM, Hong SB, Jeon YA, Koo BS, Kwon SW. Solitalea
463	koreensis gen. nov., sp. nov. and the reclassification of [Flexibacter] canadensis as
464	Solitalea canadensis comb. nov. Int J Syst Evol Microbiol 2009;59:1969-1975.
465	50. Xu L, Sun JQ, Wang LJ, Gao ZW, Sun LZ, Wu XL. Sphingobacterium alkalisoli sp.
466	nov., isolated from a saline-alkaline soil. Int J Syst Evol Microbiol 2017;67:1943-
467	1948.
468	51. Daood HG, Biacs AP. Simultaneous determination of Sudan dyes and carotenoids in
469	red pepper and tomato products by HPLC. J Chromatogr Sci 2005: 43:461-465
470	52. Bernardet JF, Bowman PJ. (2006). The prokaryotes: a handbook on the biology of
471	bacteria. Proteobacteria: Delta and Epsilon Subclasses. Deeply Rooted Bacteria. 7.
472	481-532.
473	53. Buck JD. Nonstaining (KOH) method for determination of Gram reactions of marine
474	bacteria. Appl Environ Microbiol 1982;44:992–993.
475	54. Barrow GI, Feltham RKA. Cowan and Steel's Manual for the Identification of
476	Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 2004
477	55. Vallenet, D., Engelen, S., Mornico, D., Cruveiller, S., Fleury, L., Lajus, A., Rouy, Z.,
478	Roche, D., Salvignol, G., Scarpelli, C., & Médigue, C. (2009). MicroScope: a platform
479	for microbial genome annotation and comparative genomics. Database : the journal of
480	biological databases and curation, 2009, bap021. DOI: 10.1093/database/bap021
481	56. Miller LT. A single derivatization method for bacterial fatty acid methyl esters
482	including hydroxy acids. J Clin Microbiol 1982;16:584-586.
483	57. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance,
484	and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst
485	Evol Microbiol 1988;38:358-361.
486	58. Tindall BJ. A comparative study of the lipid composition of Halobacterium
487	saccharovorum from various sources. Syst Appl Microbiol 1990a;13:128-130.
488	59. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol.
489	Letts 1990b;66:199-202.
490	60. Tindall BJ, Sikorski J, Smibert RM, Kreig NR. Phenotypic characterization and the
491	principles of comparative systematics. In Methods for General and Molecular
492	Microbiology 3rd ed. 2007 pp. 330-393.
493	61. Lefort V, Desper R, Gascuel O. FastME 2.0: A comprehensive, accurate, and fast
494	distance-based phylogeny inference program. Mol Biol Evol. 2015;32:2798-2800.
495	DOI: 10.1093/molbev/msv150

- 496 62. Farris JS. Estimating phylogenetic trees from distance matrices. *Am Nat.* 1972;106:
 497 645–667.
- 498
- 499

COMPANSMAL

500 Figures and Tables

501

Table 1. Glycoside hydrolases coded in *Sphingobacterium hungaricum* Kb22^T genome

	GH family	NCBI accession	Activities in Family				
	On failing	number	Activities in Fulliny				
	GH2	MBE8713017; MBE8713638; MBE8712575; MBE8715037	β-galactosidase (EC 3.2.1.23); $β$ -mannosidase (EC 3.2.1.25); $β$ - glucuronidase (EC 3.2.1.31); a-L-arabinofuranosidase (EC 3.2.1.55); exo- $β$ - glucosaminidase (EC 3.2.1.165); a-L-arabinopyranosidase (EC 3.2.1); $β$ - galacturonidase (EC 3.2.1); $β$ -xylosidase (EC 3.2.1.37); $β$ -D- galactofuranosidase (EC 3.2.1.146); $β$ -glucosidase (EC 3.2.1.21) and others				
	GH3	MBE8715078; MBE8713443; MBE8713973	β-glucosidase (EC 3.2.1.21); xylan 1,4- $β$ -xylosidase (EC 3.2.1.37); α-L- arabinofuranosidase (EC 3.2.1.55); glucan 1,4- $β$ -glucosidase (EC 3.2.1.74); $β$ - 1,2-glucosidase (EC 3.2.1); $β$ -1,3-glucosidase (EC 3.2.1); xyloglucan-specific exo- $β$ -1,4-glucanase / exo-xyloglucanase (EC 3.2.1.155) and others				
	GH5	MBE8712452	endo- β -1,4-glucanase / cellulase (EC <u>3.2.1.4</u>); endo- β -1,4-xylanase (EC <u>3.2.1.8</u>); β -glucosidase (EC <u>3.2.1.21</u>); β -mannosidase (EC <u>3.2.1.25</u>); glucan β -1,3-glucosidase (EC <u>3.2.1.58</u>); exo- β -1,4-glucanase / cellodextrinase (EC <u>3.2.1.74</u>); glucan endo-1,6- β -glucosidase (EC <u>3.2.1.75</u>); mannan endo- β -1,4-mannosidase (EC <u>3.2.1.78</u>); cellulose β -1,4-cellobiosidase (EC <u>3.2.1.91</u>); steryl β -glucosidase (EC <u>3.2.1.04</u>); endo- β -1,6-galactanase (EC <u>3.2.1.164</u>); mannan transglycosylase (EC <u>3.2.1.52</u>); chitosanase / laminarinase (EC <u>3.2.1.39</u>); β -N-acetylhexosaminidase (EC <u>3.2.1.52</u>); chitosanase (EC <u>3.2.1.132</u>); β -D-galactofuranosidase (EC <u>3.2.1.146</u>); β -galactosylceramidase (EC <u>3.2.1.46</u>); a-L-arabinofuranosidase (EC <u>3.2.1.55</u>) and others				
	GH13	MBE8713329; MBE8712407	a-amylase (EC 3.2.1.1); pullulanase (EC 3.2.1.41); cyclomaltodextrinase (EC 3.2.1.54); trehalose-6-phosphate hydrolase (EC 3.2.1.93); a-glucosidase (EC 3.2.1.20); maltotetraose-forming a-amylase (EC 3.2.1.60); isoamylase (EC 3.2.1.68); maltotriose-forming a-amylase (EC 3.2.1.116); trehalose synthase (EC 5.4.99.16); amylo-a-1,6-glucosidase (EC 3.2.1.33); oligosaccharide a-4- glucosyltransferase (EC 2.4.1.161) and others				
	GH15	MBE8712115	glucoamylase (EC 3.2.1.3); glucodextranase (EC $3.2.1.70$); a,a-trehalase (EC $3.2.1.28$); dextran dextrinase (EC $2.4.1.2$)				
0	GH16	MBE8713572; MBE8714674	xyloglucan:xyloglucosyltransferase (EC 2.4.1.207); endo-1,3- β -glucanase / laminarinase (EC 3.2.1.39); endo-1,3(4)- β -glucanase (EC 3.2.1.6); licheninase (EC 3.2.1.73); β -agarase (EC 3.2.1.81); xyloglucanase (EC 3.2.1.151); endo- β -1,3-galactanase (EC 3.2.1.181); hyaluronidase (EC 3.2.1.35); endo- β -1,4-galactosidase (EC 3.2.1); chitin β -1,6-glucanosyltransferase (EC 2.4.1); β -glycosidase (EC 3.2.1); β -carrageenase (EC 3.2.1) and others				
	GH20	MBE8715038	β-hexosaminidase (EC 3.2.1.52); lacto-N-biosidase (EC 3.2.1.140); β-1,6-N-acetylglucosaminidase (EC 3.2.1); β-6-SO3-N-acetylglucosaminidase (EC 3.2.1)				
	GH25	MBE8715245	lysozyme (EC <u>3.2.1.17</u>)				
	GH26	MBE8712451; MBE8712453	β-mannanase (EC <u>3.2.1.78</u>); exo- $β$ -1,4-mannobiohydrolase (EC <u>3.2.1.100</u>); $β$ -1,3-xylanase (EC <u>3.2.1.32</u>); lichenase / endo- $β$ -1,3-1,4-glucanase (EC <u>3.2.1.73</u>); mannobiose-producing exo- $β$ -mannanase (EC <u>3.2.1</u>)				
	GH31	MBE8712408; MBE8713639	a-glucosidase (EC 3.2.1.20); a-galactosidase (EC 3.2.1.22); a-mannosidase (EC 3.2.1.24); a-1,3-glucosidase (EC 3.2.1.84); a-xylosidase (EC 3.2.1.177); a-glucan lyase (EC 4.2.2.13); isomaltosyltransferase (EC 2.4.1); a-N-acetylgalactosaminidase (EC 3.2.1.49) and others				
	GH32	MBE8713030	invertase (EC 3.2.1.26); endo-inulinase (EC 3.2.1.7); exo-inulinase (EC 3.2.1.80); fructan β -(2,6)-fructosidase/6-exohydrolase (EC 3.2.1.154); sucrose:fructan 6-fructosyltransferase (EC 2.4.1.10); fructan:fructan 6G-fructosyltransferase (EC 2.4.1.243); levan fructosyltransferase (EC 2.4.1); cycloinulo-oligosaccharide fructanotransferase (EC 2.4.1) and others				
	GH36	MBE8712331	a-galactosidase (EC $3.2.1.22$); a-N-acetylgalactosaminidase (EC $3.2.1.49$); stachyose synthase (EC $2.4.1.67$); raffinose synthase (EC $2.4.1.82$)				

	GH43	MBE8714090; MBE8715079; MBE8714498; MBE8712801; MBE8712802; MBE8714088; MBE8714089; MBE8715346	β -xylosidase (EC 3.2.1.37); α-L-arabinofuranosidase (EC 3.2.1.55); xylanase (EC 3.2.1.8); α-1,2-L-arabinofuranosidase (EC 3.2.1); β -1,3-xylosidase (EC 3.2.1); exo- β -1,3-galactanase (EC 3.2.1.145) and others
	GH65	MBE8713327; MBE8713430	a,a-trehalase (EC $3.2.1.28$); maltose phosphorylase (EC $2.4.1.8$); trehalose phosphorylase (EC $2.4.1.64$); trehalose-6-phosphate phosphorylase (EC $2.4.1.216$) and others
	GH76	MBE8713771; MBE8715179; MBE8713770	a-1,6-mannanase (EC <u>3.2.1.101</u>); a-glucosidase (EC <u>3.2.1.20</u>)
	GH78 GH78 MBE8713719; MBE8713720; MBE8713061; MBE8713026; MBE8715340		a-L-rhamnosidase (EC <u>3.2.1.40</u>); rhamnogalacturonan a-L-rhamnohydrolase (EC <u>3.2.1.174</u>); L-Rhap-a-1,3-D-Apif -specific a-1,3-L-rhamnosidase (EC <u>3.2.1</u>)
	GH88	MBE8713573	d-4,5-unsaturated β -glucuronyl hydrolase (EC <u>3.2.1</u>)
	GH92 MBE8715180; MBE8715337; MBE8713866; MBE8712429; MBE8713427; MBE8712806; MBE8712806; MBE8714415; MBE8714415; MBE8715336 GH106 MBE8713721 GH125 MBE8714531		mannosyl-oligosaccharide a-1,6-mannosidase (EC $3.2.1$); a-mannosidase (EC $3.2.1.24$); a-1,2-mannosidase (EC $3.2.1$); a-1,3-mannosidase (EC $3.2.1$); a-1,4-mannosidase (EC $3.2.1$) and others
6			a-L-rhamnosidase (EC <u>3.2.1.40</u>); rhamnogalacturonan a-L-rhamnohydrolase (EC <u>3.2.1.174</u>)
			exo-a-1,6-mannosidase (EC <u>3.2.1</u>)
	GH29/GH95	MBE8713785; MBE8713440; MBE8714269; MBE8715039	a-L-fucosidase (EC <u>3.2.1.51</u>); a-1,3/1,4-L-fucosidase (EC <u>3.2.1.111</u>); a-1,2- L-fucosidase (EC <u>3.2.1.63</u>) a-L-galactosidase (EC <u>3.2.1</u>)

Table 2. Genes annotated as xylanase, β-xylosidase, cellulase or β-glucosidase in the genome
 of Kb22^T and related strains. GenBank accession numbers are GCA_015210005
 (*Sphingobacterium hungaricum* Kb22^T), GCA_009829075 (*Sphingobacterium composti* KCTC 12578^T), GCA_005048855 (*Sphingobacterium olei* HAL-9^T) and GCA_900168125

508 (*Sphingobacterium nematocida* DSM_24091^T). The GH family numbers are in parentheses.

	S. hungaricum Kb22 ^T	S. composti KCTC 12578 ^T	S. olei HAL-9 ^T	S. nematocida DSM_24091 ^T
isolation source of the strain	soil	compost	soil	leaf tissue
xylanase	MBE8715079(GH43) MBE8714090(GH43)	-	WP_136902756 (GH10) WP_136902760 (GH10)	
β-xylosidase	MBE8712801(GH43)	-		
cellulase	-	WP_159637017 (GH5) WP_159637239 (GH5)	WP_136901870 (GH5)	
β-glucosidase	MBE8715078(GH3) MBE8713443(GH3)	DE	WP_136900542 (GH1) WP_136902682 (GH3)	-

509

Table 3. AAI matrix with $Kb22^{T}$ and type strains in the *Sphingobacteriaceae* family. 511 Genbank assembly accessions: *Albibacterium bauzanense* DSM 22554^T - GCA_004339765.1; 512 Anseongella ginsenosidimutans Gsoil 524^T - GCA_008033235.1; Arcticibacter svalbardensis 513 MN12-7^T - GCA 000403135.1; *Mucilaginibacter paludis* DSM 18603^T - GCA 000166195.3; 514 Nubsella zeaxanthinifaciens TDMA-5^T - GCA_003313335.1; Olivibacter sitiensis DSM 515 17696^{T} - GCA 000427965.1; Parapedobacter koreensis Jip 14^{T} - GCA 900109365.1; 516 Pararcticibacter amylolyticus FJ4-8^T - GCA_003130405.1; Pedobacter heparinus DSM 517 2366^T - GCA_000023825.1; Pelobium manganitolerans YS-25^T - GCA_003609575.1; 518 *Pseudosphingobacterium domesticum* DSM 18733^T - GCA_900109575.1; *Solitalea koreensis* 519 DSM 21342^T - GCA_900182575.1; Sphingobacterium spiritivorum NCTC 11386^T -520 GCA_900457435.1. 521

Sphingobacterium hungaricum Kb22 ^T	Albibacterium bauzanense DSM 22554 ^T	Parapedobacter koreensis Jip14 ^T	Sphingobacterium spiritivorum NCTC 11386 ^T	Anseongella ginsenosidimutans Gsoil 524 ^T	Olivibacter sitiensis DSM 17696 ^T	Solitalea koreensis DSM 21342 ^T	Pararcticibacter amylolyticus FJ4-8 ^T	Pelobium manganitolerans YS-25 ^T	Pedobacter heparinus DSM 2366 ^T	Mucilaginibacter paludis DSM 18603 ^T	Arcticibacter svalbardensis MN12-7 ^T	Pseudosphingobacterium domesticum DSM 18733 ^T	Nubsella zeaxanthinifaciens TDMA-5 ^T	
100	58	60	66	52	59	54	58	56	57	57	57	60	57	Sphingobacterium hungaricum Kb22 ^T
58	100	59	59	52	59	54	58	56	56	57	57	61	57	Albibacterium bauzanense DSM 22554 ^T
60	59	100	62	53	60	54	58	56	56	57	57	61	57	Parapedobacter koreensis Jip14 ^T
66	59	62	100	52	60	54	59	56	57	57	57	61	57	Sphingobacterium spiritivorum NCTC 11386 ^T
52	52	53	52	100	52	54	53	53	52	53	52	53	53	Anseongella ginsenosidimutans Gsoil 524 ^T
59	59	60	60	52	100	54	58	57	57	57	57	64	57	Olivibacter sitiensis DSM 17696 ^T
54	54	54	54	54	54	100	55	55	55	55	54	55	55	Solitalea koreensis DSM 21342 ^T

58	58	58	59	53	58	55	100	58	58	59	63	60	58	Pararcticibacter amylolyticus FJ4-8 ^T
56	56	56	56	53	57	55	58	100	58	57	57	57	58	$\begin{array}{c} Pelobium\ manganitolerans\\ YS-25^{T} \end{array}$
57	56	56	57	52	57	55	58	58	100	58	58	57	65	Pedobacter heparinus DSM 2366 ^T
57	57	57	57	53	57	55	59	57	58	100	58	58	57	Mucilaginibacter paludis DSM 18603 ^T
57	57	57	57	52	57	54	63	57	58	58	100	58	57	Arcticibacter svalbardensis MN12-7 ^T
60	61	61	61	53	64	55	60	57	57	58	58	100	57	Pseudosphingobacterium d omesticum DSM 18733 ^T
57	57	57	57	53	57	55	58	58	65	57	57	57	100	Nubsella zeaxanthinifaciens TDMA-5 ^T

523 CONFIDENTIAL

- **Table 4.** Differential phenotypic characteristics between strain Kb22^T and *Sphingobacterium*
- 525 *composti* T5-12^T. Data are from this study, except G+C content of *Sphingobacterium*
- **526** *composti* T5- 12^{T} [9]
- 527 Strains: 1, Kb22^T; 2, *Sphingobacterium composti* T5–12^T

	1	2	
Isolation source	soil	compost	
Temperature range for growth (°C)	10.25 (20)	10 40 (25)	
(optimum)	10-35 (30)	10-40 (33)	
Growth with NaCl (%) (optimum)	0-2 (1)	0.5-3 (0.5)	
pH range for growth (optimum)	6.0-8.5 (7.5)	5.5-8.5 (7.0)	
G+C content (mol%)	38.1	35.2	
API 50CH			
D-arabinose	+	-	
D-galactose	-	+	
rhamnose	+	-	
mannitol	-	+	
methyl-α-D-mannopyranoside	+	$ /_{i} $	
methyl-a-D-glucopyranoside	+		6
N-acetyl glucosamine	- +	-	
amygdalin	+		
arbutin	+//	-	
salicin	+	-	
D-cellobiose	+	-	
D-maltose	+	-	
D-lactose	+	-	
D-melibiose	+	-	
D-saccharose	+	-	
D-trehalose	+	-	
melesitose	+	-	
D-raffinose	+	-	
starch	+	-	
gentiobiose	+	-	
turanose	+	-	
API 20 NE			
hydrolysis of esculin	+	-	
assimilation of mannitol	-	+	
assimilation of maltose	+	-	
API ZYM			
esterase lipase (C8)	+	-	
β-glucosidase	+	-	
α-chymotrypsin	-	+	

Table 5. Cellular fatty acid composition of *Sphingobacterium hungaricum* Kb22^T and *Sphingobacterium composti* T5-12^T. Strains: 1, Kb22^T; 2, *Sphingobacterium composti* T5-12^T; tr, trace amount (<1%). Summed Features are fatty acids that cannot be resolved reliably from another fatty acid using the chromatographic conditions chosen. The MIDI system groups these fatty acids together as one feature with a single percentage of the total. The unknown fatty acids have no name listed in the peak library file of the MIDI system. ECL, equivalent chain length.

	1	2	
iso-C _{15:0}	28.4	39.7	
iso-C _{15:0} 3-OH	2.7	1.8	1
iso-C _{15:1} F	-	2.0	
iso-C _{15:1} G	5.1		
iso-C _{17:0} 3-OH	19.7	17.6	
iso- $C_{17:1} \omega 9c$	10.1	10.6	
summed feature 1 (iso-C _{15:1} H/C _{13:0} 3-OH)		1.2	
summed feature 3 ($C_{16:1} \omega 7c$ /iso- $C_{15:0}$ 2-OH)	25.7	20.6	
summed feature 4 (iso-C _{17:1} I/anteiso-C _{17:1} B)	1.3	-	
unknown (ECL 13.565)	1.1	1.1	
unknown (ECL 16.582)	1.6	1.3	
COM			

Fig. 1. MLSA tree showing the relationship of strain Kb22^T to closely related species. Genes for MLSA were selected by autoMLST webserver. The phylogenetic tree based on concatenated genes was inferred using the neighbor-joining method with Kimura's twoparameter calculation model.

- 542
- 543

Fig. 2. Tree inferred with FastME 2.1.6.1 [61] from GBDP distances calculated from genome sequences. The branch lengths are scaled in terms of GBDP distance formula $_{\delta}5$. The numbers above branches are GBDP pseudo-bootstrap support values from 100 replications, with an average branch support of 39.9%. The tree was rooted at the midpoint [62]. Assembly accessions are in parentheses.

- 551
- 552

0.020

	TIGFRAMGeneentriesabbreviation		Biological process	Gene name		
	TIGR01798	cit_synth_I	Energy metabolism	citrate (Si)-synthase		
		•		di-trans,poly-cis-		
	TIGR00055	uppS	Cell envelope	decaprenylcistransferase		
	TIGR03953	rplD_bact	Protein synthesis	50S ribosomal protein uL4		
	TIGR00635	ruvB	DNA metabolism	Holliday junction DNA helicase RuvB		
	TIGR00447	pth	Protein synthesis	aminoacyl-tRNA hydrolase		
	TIGR00114	lumazine-synth	Biosynthesis of cofactors, prosthetic groups, and carriers	6,7-dimethyl-8-ribityllumazine synthase		
		~		16S rRNA (guanine(527)-N(7))-		
	TIGR00138	rsmG_gidB	Protein synthesis	methyltransferase RsmG		
	TIGR01394	TypA_BipA	Regulatory functions	GTP-binding protein TypA/BipA		
	TIGR00059	L17	Protein synthesis	ribosomal protein bL17		
	TIGR00150	T6A_YjeE	Protein synthesis	tRNA threonylcarbamoyl adenosine modification protein YjeE		
	TIGR01520	FruBisAldo_II_A	Energy metabolism	II		
	TIGR00482	TIGR00482	Biosynthesis of cofactors, prosthetic groups, and carriers	nicotinate (nicotinamide) nucleotide adenylyltransferase		
	TIGR00242	TIGR00242	Regulatory functions	division/cell wall cluster transcriptional repressor MraZ		
	TIGR00420	trmU	Protein synthesis	tRNA (5-methylaminomethyl-2- thiouridylate)-methyltransferase		
	TIGR00575	dnlj	DNA metabolism	DNA ligase, NAD-dependent		
	TIGR00422	valS	Protein synthesis	valinetRNA ligase		
$\langle \rangle$	TIGR00461	gcvP	Energy metabolism	glycine dehydrogenase		
	TIGR01169	rplA_bact	Protein synthesis	ribosomal protein uL1		
	TIGR00928	purB	Purines, pyrimidines, nucleosides, and nucleotides	adenylosuccinate lyase		
	TIGR00096	TIGR00096	Protein synthesis	16S rRNA (cytidine(1402)-2'-O)- methyltransferase		
	TIGR01163	rpe	Energy metabolism	ribulose-phosphate 3-epimerase		
	TIGR00510	lipA	Biosynthesis of cofactors, prosthetic groups, and carriers	lipoyl synthase		
	TIGR01071	rplO_bact	Protein synthesis	ribosomal protein uL15		
	TIGR00487	IF-2	Protein synthesis	translation initiation factor IF-2		
	TIGR03284	thym sym	Purines, pyrimidines, nucleosides, and nucleotides	thymidylate synthase		

Table S1. Genes selected for MLSA by autoMLST

				transcription
				termination/antitermination factor
	TIGR00922	nusG	Transcription	NusG
	TIGR00628	ung	DNA metabolism	uracil-DNA glycosylase
	TIGR01066	rplM_bact	Protein synthesis	ribosomal protein uL13
	TIGR01063	gyrA	DNA metabolism	DNA gyrase, A subunit
	TIGR00967	3a0501s007	Protein fate	preprotein translocase, SecY subunit
	TIGR01009	rpsC_bact	Protein synthesis	ribosomal protein uS3
	TIGR01021	rpsE_bact	Protein synthesis	ribosomal protein uS5
	TIGR00043	TIGR00043	Protein synthesis	rRNA maturation RNase YbeY
				non-canonical purine NTP
				pyrophosphatase, RdgB/HAM1
	TIGR00042	TIGR00042	DNA metabolism	family
			~ ~ ~ ~	phospho-N-acetylmuramoyl-
	TIGR00445	mraY	Cell envelope	pentapeptide-transferase
	TIGR01051	topA_bact	DNA metabolism	DNA topoisomerase I
	TICD00202	-1 V	Durate in fate	ATP-dependent Clp protease, ATP-
	TIGR00382	сірх	Protein fate	DNA directed DNA polymores
	TIGP02013	rnoB	Transcription	bata subunit
	TIGR02013	fto7	Collular processes	coll division protain Etc7
	110K00003	ItSZ	Centular processes	signal recognition particle-docking
	TIGR00064	ftsY	Protein fate	nrotein FtsY
	Hereovor	101	Totelli lute	23S rRNA (adenine(2503)-C(2))-
	TIGR00048	rRNA mod RlmN	Protein synthesis	methyltransferase
	TIGR00165	S18	Protein synthesis	ribosomal protein bS18
	TIGR00166	S6	Protein synthesis	ribosomal protein bS6
	TIGR02729	Obg CgtA	Protein synthesis	Obg family GTPase CgtA
	TIGR00414	serS	Protein synthesis	serinetRNA ligase
((TIGR00431	TruB	Protein synthesis	tRNA pseudouridine(55) synthase
(TIGR00416	sms	DNA metabolism	DNA repair protein RadA
7				crossover junction
	TIGR00228	ruvC	DNA metabolism	endodeoxyribonuclease RuvC
				DNA-directed RNA polymerase,
	TIGR02386	rpoC_TIGR	Transcription	beta' subunit
			Biosynthesis of	
			cofactors, prosthetic	
	TIGR00212	hemC	groups, and carriers	hydroxymethylbilane synthase
			~	ribosomal RNA small subunit
	TIGR00755	ksgA	Protein synthesis	methyltransferase A
	TIGR00952	S15_bact	Protein synthesis	ribosomal protein uS15
	TIGR00436	era	Protein synthesis	GTP-binding protein Era
			Purines, pyrimidines,	
	TICDALAAS		nucleosides, and	inosine-5'-monophosphate
	TIGR01302	IMP_dehydrog	nucleosides, and nucleotides	inosine-5'-monophosphate dehydrogenase

		Purines, pyrimidines, nucleosides, and	
TIGR03263	guanyl_kin	nucleotides	guanylate kinase
TIGR00430	Q_tRNA_tgt	Protein synthesis	tRNA-guanine transglycosylase
TIGR01050	rpsS_bact	Protein synthesis	ribosomal protein uS19
TIGR02012	tigrfam_recA	DNA metabolism	protein RecA
TIGR00521	coaBC_dfp	Biosynthesis of cofactors, prosthetic groups, and carriers	phosphopantothenoylcysteine decarboxylase / phosphopantothenatecysteine ligase
110101039	gyib		DNA gyrase, D subuint
TIGR00337	PyrG	nucleosides, and nucleotides	CTP synthase
TIGR03594	GTPase_EngA	Protein synthesis	ribosome-associated GTPase EngA
TIGR00499	lysS_bact	Protein synthesis	lysinetRNA ligase
TIGR00088	trmD	Protein synthesis	tRNA (guanine(37)-N(1))- methyltransferase
TIGR00086	smpB	Protein synthesis	SsrA-binding protein
TIGR00496	frr	Protein synthesis	ribosome recycling factor
TIGR00479	rumA	Protein synthesis	23S rRNA (uracil-5-)- methyltransferase RumA
TIGR01171	rplB_bact	Protein synthesis	ribosomal protein uL2
TIGR02348	GroEL	Protein fate	chaperonin GroL
TIGR00959	ffh	Protein fate	signal recognition particle protein
TIGR01379	thiL	Biosynthesis of cofactors, prosthetic groups, and carriers	thiamine-phosphate kinase
TIGR00033	aroC	Amino acid biosynthesis	chorismate synthase
\mathcal{I}		Central intermediary	glutamine-fructose-6-phosphate
TIGR01135	glmS	metabolism	transaminase (isomerizing)
TIGR01357	aroB	Amino acid biosynthesis	3-dehydroquinate synthase
TIGR01032	rplT_bact	Protein synthesis	ribosomal protein bL20
TIGR03631	uS13_bact	Protein synthesis	ribosomal protein uS13
TIGR01011	rpsB bact	Protein synthesis	ribosomal protein uS2
		· · · · · · · · · · · · · · · · · · ·	

- **Fig. S1.** Transmission electron micrograph of strain $Kb22^{T}$

Fig S2. Polar lipids of strain Kb22^T after two-dimensional thin-layer chromatography (TLC)
PE, phosphatidylethanolamine; PGL, phosphoglycolipid; GNL, aminoglycolipid; PL,
phospholipid; L, uncharacterised lipid

