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Computed tomography (CT) is one of the most useful techniques for digitizing bone

structures and making endocranial models from the neurocranium. The resulting digital

endocasts reflect the morphology of the brain and the associated structures. Our first

aim was to document the methodology behind creating detailed digital endocasts of

canine skulls. We created digital endocasts of the skulls of 24 different dog breeds

and 4 wild canids for visualization and teaching purposes. We used CT scanning with

0.323mm × 0.322mm × 0.6mm resolution. The imaging data were segmented with

3D Slicer software and refined with Autodesk Meshmixer. Images were visualized in

3D Slicer and surface models were converted to 3D PDFs to provide easier interactive

access, and 3D prints were also generated for visualization purposes. Our second aim

was to analyze how skull length and width relate to the surface areas of the prepiriform

rhinencephalic, prefrontal, and non-prefrontal cerebral convexity areas of the endocasts.

The rhinencephalic area ratio decreased with a larger skull index. Our results open the

possibility to analyze the relationship between the skull and brain morphology, and to link

certain features to behavior, and cognition in dogs.

Keywords: endocast, 3D, brain, canine, skull, CT, digital, morphology

INTRODUCTION

Endocranial casting (or endocasting) is an effective tool for studying external brain morphologies
such as gyrification, sulcal pattern, olfactory bulb shape, and for making different brain
measurements (e.g., distance, surface, or volume analysis), even if the brain is not accessible
anymore, only the skull. In the presence of the encephalon, the magnetic resonance imaging (MRI)
is preferred to the investigations due to is good resolution and distinction between the internal
structures of the brain. The endocasting technique is often used in paleoanthropology to examine
the encephalic morphology of extinct taxa when only the skull is available (1–4). Endocasts are
usually made of latex or silicon (5, 6), which are poured into the neurocranial cavity (after closing
the channels of the skull to prevent leakage). After hardening, the material is removed from the
skull, and, due to the endosteal impressions, the final endocast reliably reflects the sulcal and gyral
patterns of the surface of the brain. However, there are some drawbacks to using this method; for
example, removing the mold can damage the fine bones of the endocranium. In order to assess
the volume, the endocranium could be filled with a matrix (i.e., stones, water, or beads), but this
method has proven to be imprecise and usually leads to an overestimation of the total volume (7, 8).
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Currently, neuroscientists and medical personnel as well as
paleontologists heavily rely on structural imaging techniques.
Computed tomography (CT), which is a significant exploratory
tool in biology (9, 10), is one of the most useful techniques for
digitizing bone structures and making endocranial models from
them (11). The resulting digital endocasts reflect the morphology
of the brain (12–16) and the associated structures, such as the
vascular system (17) and the cranial nerves (18). Mammals and
birds are generally considered to be highly encephalized taxa
(19–21), and, as their brains fill their cranial cavities, there is
a strong correlation between the volume and the morphology
of the endocasts and the brains in these species (20). CT
provides DICOM (Digital Imaging and Communications in
Medicine file format) images which can serve as a base for the
creation of detailed, high-quality three-dimensional (3D) models
of the osseous structures. Using this technique, it is possible to
obtain digital endocasts of the endocranial space. During the
later segmentation, one can decide exactly where the endosteal
covering is present (thus the possible soft tissue remnants or
the non-required hyperostosis can be removed digitally from a
given segment). Additionally, closing the individual intracranial
channels and foramina can be performed in a more precise way,
as the user can clearly establish the cutting planes on the DICOM
images (compared to the conventional methods which use
plasticine to obliterate the foramina). This eliminates the issue
of the filling material (e.g., plastic beads) leaking into irrelevant
spaces (e.g., into the meatus temporalis, which is fenestrated
toward the neurocranial space). When compared to the latex
or silicon endocasts, the digital ones present the same reliability
(7, 22) but also have additional advantages. For instance, CT does
not damage the original specimen, and most of the commercial
CT analysis softwares are designed to automatically calculate the
volumes of the selected areas. Digital endocasts have also been
used in other fields, too, such as archeological studies (23–27). 3D
printing can allow these models to be materialized and replicated
in any desired number, scale, and quality. CT imaging data from
the entire skull have been utilized in several other studies [e.g.,
studying the frontal sinus anatomy (28) or the ethmoturbinate
system (29), determining volume ratios of different cranial areas
(30, 31), or performing finite element analysis (32)].

The amount of variation in the head shape of dog breeds is
unique in the Canidae family (33). As dogs are popular pets,
studying behavioral/cognitive effects of brain/skull morphology
is important. In an early study, it was concluded that
domestication led to behavioral changes which are probably
connected to size changes in brain regions and proportions (34).
This is particularly true in domestic dogs. Because skull shapes
and body shapes are so diverse among breeds, dogs offer unique
opportunities to observe the correlation between morphology
and behavior. Data from a population of various breeds of dogs
showed that the degree of gyrification of the cerebral cortex
determined by the size of the brain (35). Hence, the possibility
to rely on solid tools to study dogs’ neuroanatomy seems
more than relevant. Head shape can be measured objectively,
and its common metric is the skull or cephalic index (36).
Head shape is linked to behavior, brain size (37), the gross
organization of the brain (38), and both the position and shape of

sensory organs (39). Despite the assumption that these significant
neuromorphological changes are strongly linked with behavior
and health and the recent popularity of brachycephalic dogs (40),
there have been few efforts to investigate the links between skull
length and brain area ratios.

The first aim of the study was to document the methodology
behind creating digitalized endocasts from canine skulls
as, according to our knowledge, such literature is lacking
despite its relevance (e.g., a potential means for veterinary
education). The second aim of the study was to investigate
how artificial selection for shorter or longer heads affected
the prepiriform rhinencephalic, prefrontal, and non-prefrontal
cerebral convexity area of the endocasts, and investigated their
relationships with the skull index. We hypothesized that the
endocast rhinencephalic area ratio is negatively linked to the skull
index (i.e., the ratio between the maximum width and length).

MATERIALS AND METHODS

Segmentation and Visualization
Subjects
Twenty-eight skulls from 24 different dog (Canis familiaris)
breeds (Afghan hound, American bulldog, Australian shepherd,
beagle, Belgian shepherd dog, border collie, borzoi, English
bulldog, cane corso, chow chow, collie, English cocker spaniel,
English pointer, English setter, French bulldog, German shepherd
dog, Leonberger, medium German spitz, pug, Rhodesian
ridgeback, saluki, Saint Bernard, Weimaraner, andWelsh terrier)
and 4 wild canids [gray wolf (Canis lupus), coyote (Canis latrans),
golden jackal (Canis aureus), and maned wolf (Chrysocyon
brachyurus)] were selected from the collection of author TC. We
chose these breeds because they represent canids with different
skull sizes and shapes. Breed information was provided by the
owners who donated the cadavers. The heads were removed and
underwent a maceration and degreasing procedure to effectively
remove all the soft and adipose tissues around and inside the
bones. The exact age of each specimen was unknown, but all
the skulls were from adults (confirmed based on the complete
ossification of the cranial sutures and the teeth formula).

Imaging and Formatting
The modeling included the following main steps: (1)
high-resolution scanning of the skulls (medical ultra high
resolution—UHR—grade); (2) creating a filter-enhanced dataset
from the original image series; (3) defining and setting the
main orthogonal planes; (4) segmentation of the skull; (5)
segmentation of the raw endocast; (6) closure of the neurocranial
channels and foramina at defined positions; (7) exporting the
segmentation as a surface mesh file and refining the 3D model;
(8) two- and three-dimensional visualization of the final mesh
(Figure 1).

The high-resolution imaging was performed with a Siemens
Somatom Definition AS+ CT machine (Siemens, Erlangen,
Germany; 170 mAs, 140 kV, pixel size 0.323 × 0.322mm,
slice thickness 0.6mm, with a v80u bone kernel). The machine
was located in Kaposvár (Hungary), at the Diagnostic and
Oncoradiology Center. The raw image series were exported in
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FIGURE 1 | An overview of the modeling workflow from the scanning to the finalization (A–C). STL, stereolithography; DICOM, Digital Imaging and Communications in

Medicine file format.

FIGURE 2 | Orthogonal views and volume-rendered model of a Saint Bernard skull’s CT series. (A) Transverse view. (B) 3D volume-rendered image, left rostro-lateral

view. (C) Sagittal view. (D) Dorsal view.

a DICOM format. The DICOM images were imported into
the 3D Slicer software (freeware, open source, https://www.
slicer.org), where the basic DICOM volume was visualized
in the orthogonal planes and a volume-rendered model
from the skull was generated with the “Volume Rendering”
module (Figure 2). To selectively increase the voxel density,
the “GrayscaleConnectedClosingImageFilter” filter was applied
(which enhances the brightness for those dark areas which
are surrounded by a brighter object) from the “Simple
Filters” module. In this way, a new dataset was created in
which the diploe of the cranial bones had a higher gray
value without losing the initial detail in the endocranial
contour. This helped to add the diploic channels into

the skull segment during the subsequent semi-automatic
segmentation process.

As a means to obtain the same segmentation planes for all
the skulls, we used the “Reformat” module to precisely set the
orthogonal planes: the sagittal plane was set along the midline,
the dorsal plane was adjusted using the bilateral cochleae, and the
spheno-occipital axis, and, finally, the transverse plane was set to
be perpendicular to both the sagittal and dorsal planes.

Segmentation and Modeling
Segmentation of the endocast was performed with the “Segment
Editor” module of the 3D Slicer. First, a new segment of the
skull was created where the threshold was adjusted to include
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FIGURE 3 | Main phases of the segmentation process. (A) Automatic

threshold-segmentation of the skull. (B) Complete segmentation of the skull

after filling the remaining intraosseous parts. (C) Highlighting the raw

endocranial volume together with its neighboring osseous structures. (D) The

final shape of the endocast after subtracting the skull segment (B) from the

raw endocranial segment (C).

all the osseous structures and, thus, to gain a proper lining of
the intracranial cavity (Figure 3A). The remaining interlaminar
holes were filled manually (Figure 3B). Afterward, a block was
created which comprised the entire endocranial volume and the
surrounding osseous structures (Figure 3C). Using the “Logical
Operators” menu of the Segment Editor module, the skull
segment was subtracted from the endocast segment, resulting
in an endocast that precisely fit along the intracranial border
(Figure 3D).

The channels through which the different cranial nerves and
vessels pass were closed manually by defining the planes to
follow the same procedure on all of the skulls: the rostral end
of the ethmoidal fossa was closed along the lamina cribrosa;
the meatus acusticus internus and foramina ethmoidales were
closed along the sagittal plane (Figure 4A); the canalis opticus,
fissura orbitalis, foramen rotundum, foramen mastoideum,
and canalis condylaris were closed along the transverse plane
(Figure 4B); and the foramen ovale, foramen caroticum, canalis
petrooccipitalis, foramen jugulare, and canalis nervi hypoglossi
were closed along the dorsal plane (Figure 4C). Each channel
was closed on the first slice where it did not have a direct
connection with the endocranial space. The meatus temporalis
was closed below and above the points where the channel was
communicating with the neurocranial cavity. Due to the diversity
of shapes of the foramen magnum across dog breeds, we used the
following closure criteria for it: a caudally tilted transverse plane
was set in a way to go through on the dorsal and ventral border
of the foramen magnum at the midsagittal plane (Figure 4D).
Using these procedures, we were able to produce a uniform
segmentation process for all the skulls.

The endocast segment was then exported in a
stereolithography (STL) format as a 3D surface mesh. Checking
and refining the mesh was done with Autodesk Meshmixer

FIGURE 4 | Closure of the different channels and openings of the

neurocranium. (A) At the region of the lamina cribrosa (sagittal plane). (B) At

the level of the foramen ovale (transverse plane). (C) At the level of the chiasma

opticum (dorsal plane). (D) At the region of the foramen magnum (midsagittal

plane). Yellow arrows show the channels/foramina.

(freeware, http://www.meshmixer.com); afterward, the STL
file was imported into the 3D Slicer, where the surface mesh
file was projected onto the orthogonal views. The complete
endocranial volume was checked and controlled for its proper
fitting (Figure 5). Anatomical terminology was used according
to the 6th edition of the Nomina Anatomica Veterinaria (http://
www.wava-amav.org/wava-documents.html).

Two- and Three-Dimensional Visualization
In order to show the different visualization possibilities which
could be made based on this modeling technique, we created 2D
standard images, then converted the 3D mesh into a 3D PDF
format, which enables the users to rotate, colorize, annotate, or
slice the model freely. Finally, using the selective laser sintering
3D-printing procedure with a Formiga P110 machine with
PA2200 polyamide powder (EOS GmbH, München, Germany),
some models were printed out and painted with acrylic dye to
provide further visualization aid.

Correlations Between Cranial and
Endocranial Measurements
The analyses were carried on those digital endocasts which were
created from the 28 skulls.
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FIGURE 5 | Projecting the surface mesh (marked with orange) onto the Saint Bernard’s skull and checking its fitting on the orthogonal views. (A) Transverse view. (B)

Dorsal view. (C) Sagittal view. (D) 3D model of the endocast of a Saint Bernard skull, left lateral view.

FIGURE 6 | Fiducial markers on a Saint Bernard’s skull (volume-rendered

model). (A) Left lateral view. (B) Rostral view. (C) Dorsal view. (1) Prosthion. (2)

Inion. (3) Widest point of the left zygomatic arch. (4) Widest point of the right

zygomatic arch.

Calculating the Skull Index
Measurements were done using the following landmarks:
prosthion, inion (protuberantia occipitalis externa), and
the widest point of the zygomatic arches (Figure 6).
Skull indices (SI) were determined according to

this formula:

SI =
skull width

skull length
∗ 100

where the skull width was measured between the widest
point of the zygomatic arches and the skull length was
measured between the prosthion and inion. Skulls having SI
< 51 were classified as dolicocephalic, 51 ≤ SI < 59 were
mesocephalic, and 59 ≤ SI considered to be brachycephalic
types (41).

Calculating the Volume and the Surface Ratios
Both the volume and the surface of a given STL model was
automatically calculated and displayed with the 3D Slicer’s
Models module. To calculate the surface ratios, a sub-
segmentation of the endocasts was performed. The surfaces of the
endocasts were smoothed with Meshmixer (using a number 20
smoothing scale) to equalize the surface smoothness and decrease
local inhomogeneities (e.g., imprintings of the vessels). The
surface of each endocast was divided into subparts comprising
the left and right prepiriform rhinencephalic, prefrontal,
and non-prefrontal cerebral convexity areas (Figure 7). The
prepiriform rhinencephalic area included the olfactory bulb, the
olfactory trigone, and the olfactory peduncle, bordered by the
lateral rhinal fissure and caudally at the transverse level of the
orbital fissure. We did not include the piriform lobe due to
the fact that no clear caudal boundary can be drawn on the
parahippocampal gyrus, and because the greatest morphological
alteration happens at the region of the rostral cranial fossa as a
result of the shortening of the skull. The caudal border of the
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prefrontal area was drawn at the presylvian sulcus, and where
the sulcus dorsally terminated, we drew a straight line toward
the midline along the transverse plane. The rostral border of the
prefrontal cortex was given by the olfactory bulb, next to the
cribriform plate, and its ventral boundary was represented by
the rostral part of the sulcus rhinalis lateralis. The non-prefrontal
cerebral convexity area comprised the remaining cerebral surface
on the lateral convexity up to the junction of the channel of the
transverse sinus (thus comprising regions from the caudal part
of the frontal lobe, and the visible parts of the temporal, parietal,
and occipital lobes. This is why we used this non-conventional
terminology to describe it during the analysis). The surface areas

FIGURE 7 | The segmented surface regions on the left side on an English

setter’s endocast. (A) Left lateral view. (B) Dorsal view. (C) Ventral view. (1)

Prepiriform rhinencephalic area (in blue). (2) Prefrontal area (in yellow). (3)

Non-prefrontal cerebral convexity area (in green).

of the left and right sides from the same specimen were averaged
as follows:

meanprefrontal_area =
prefrontal_arealeft + prefrontal_arearight

2

Thus, for each animal, we obtained three averaged surface
values: prepiriform rhinencephalic (R), prefrontal (F), and non-
prefrontal cerebral convexity (C) areas. For calculating area ratios
(%), each average value was divided by the full hemicerebral
surface, e.g.,

R% =
R

R+ F + C

Statistical Analysis
We used SPSSv25.0 for the analyses. The Spearman correlation
was used for investigating the relationship between the endocast
volumes, surface areas and proportions, and the skull index.

RESULTS

Due to the high-resolution CT scanning, the gyri and sulci
can be properly distinguished on the surfaces of the endocast
meshes (Figure 8), the casts of the olfactory bulbs also show
the points where the olfactory nerves leave through the lamina
cribrosa (Figure 8A/1), and even the impression of the basilar
artery can be well-recognized on the ventral surface of the
brainstem (Figure 8B/9). The 3D surface endocast models from
the 28 skulls visualize the differences between meso-, brachy-,
and dolichocephalic dogs’ endocasts from three angels (Figure 9).
We placed the 28 endocasts next to each other (in an increasing
volume order), showing the differences in their sizes and shapes
(Figure 10).

FIGURE 8 | Visible structures on a Weimaraner’s endocast. (A) Left rostro-lateral view. (B) Ventral view. (C) Right caudo-lateral view. The numbers represent the

structures of the brain. (1) Bulbus olfactorius. (2) Canalis opticus. (3) Fissura orbitalis. (4) Foramen rotundum. (5) Foramen ovale. (6) Dorsum sellae. (7), Canalis

petrooccipitalis. (8) Foramen caroticum. (9) Impression of the A. basilaris cerebri on the medulla oblongata. 10) Foramen jugulare. (11) Fossa subarcuata. (12) Canalis

nervi hypoglossi. (13) Canalis condylaris. (14) Gyrus marginalis. (15) Gyrus postcruciatus. (16) Gyrus precruciatus. (17) Gyrus ectomarginalis. (18) Gyrus suprasylvius

caudalis. (19) Gyrus suprasylvius medius. (20) Gyrus suprasylvius rostralis. (21) Gyrus ectosylvius caudalis. (22) Gyrus ectosylvius medius. (23) Gyrus ectosylvius

rostralis. (24) Gyrus sylvius caudalis. (25) Gyrus sylvius rostralis. (26) Gyrus compositus caudalis. (27) Gyrus compositus rostralis. (28) Impression of the A. meningea

media. (29) Sinus transversus. (30) Vermis cerebelli.
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FIGURE 9 | Endocasts from dogs with the three main head types. (A) The dolichocephalic skull of a borzoi. (B–D) Endocast of a borzoi. (E) The mesocephalic skull of

a Rhodesian ridgeback. (F–H) Endocast of a Rhodesian ridgeback. (I) The brachycephalic skull of a pug. (J–L) Endocast of a pug. (A,E,I) Left rostro-lateral view.

(B,F,J) Left lateral view. (C,G,K) Dorsal view. (D,H,L) Rostral view.

Two models can be interactively viewed as PDF documents,
where rotation, slicing, annotation, measurements, and changes
in lighting and opacity can be freely performed. Annotations
were made in these 3D PDF documents to show the main
gyri, sulci, and openings of the brain on these two endocasts,
belonging to a Weimaraner and a French bulldog (https://
figshare.com/articles/_/12363596). The volume rendered and the
surface models can also be visualized in the same coordinate
system to show their relationship (Figure 11).

3D printing gave us a unique possibility to examine
the endocasts in their actual size and provided an in-hand
comparison between different breeds (Figure 12). In the case of
one sample, the 3D model of the skull was digitally opened on
the left side to see inside the neurocranial cavity, while on the
right side the endocast was mounted onto the bone by removing
the outer osseous lamina and diploe from the occipital, parietal,
temporal, and frontal bones together with opening the frontal
sinuses in order to show the position of the brain inside the skull
on the 3D print (Figure 13).

As expected, the endocast volumes, averaged endocast areas,
skull length, and skull width positively correlated with each
other, i.e., larger headed dogs had larger endocast surfaces
(for statistical details, see Table 1). The specific endocast area
ratios (%) correlated differently with skull length and width.
R% (prepiriform rhinencephalic ratio) and F% (prefrontal ratio)
correlated positively with skull length, and negatively with C%
(non-prefrontal cerebral convexity ratio), i.e., longer-headed
dogs had proportionally larger rhinencephalic and smaller non-
prefrontal cerebral areas. Of course, based on the endocasting
method we could only assess the visible surface of these areas
(e.g., a part from the prefrontal region is hidden by the olfactory
bulb), and could not measure actual volumes. Skull width and

endocast volume did not correlate with any endocast area
ratio; thus, neither skull width nor endocast volume affects
endocast area ratios. In harmony with the findings with skull
length, the skull index correlated negatively with R% (Figure 14),
did not correlate with F%, and correlated positively with C%
(Table 1); thus, dolichocephalic dogs had proportionally larger
rhinencephalic and non-prefrontal cerebral convexity areas than
brachycephalic dogs. Dogs with the highest skull index (the
French bulldog and pug) substantially differed from all other
dogs in their exceptionally small prepiriform rhinencephalic area.

DISCUSSION

In this study, we digitized 28 canine skulls using computed
tomography, created virtual endocast models in both 2D images,
3D PDFs, and 3D prints. We presented endocasts with a higher
spatial resolution (<0.5mm) than standard medical imaging
(which is usually >0.5mm); therefore, they can be used to
visualize in detail the endocranial space in its entirety. The
surface morphology, placement of the channels for the cranial
nerves, and even traces of the vascular system can be effectively
shown with this technique. We also presented the casts from
different directions and in comparison with each other, and also
as 3D PDF files, which allows the viewer to interact with the
content (e.g., hide or show different parts of the 3D model,
turn in any angle, make annotations or measurements, or look
inside the model). Digital models can also be 3D printed, which
gives an additional tool for evaluation and education, as the
models can be replicated in the required number, detail, and
size. It should be noted that the CT-based segmentation of an
endocast from a skull cannot provide those details which would
derive from anMRI-examination which visualizes the brain itself
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FIGURE 10 | Endocasts from different canine specimens, showing the diversity of surface morphology. Left lateral view. GDJK, Golden jackal; BEAG, Beagle; WEIM,

Weimaraner; GSD, German shepherd dog; WELT, Welsh terrier; FBUL, French bulldog; BORZ, Borzoi; TURV, Belgian shepherd dog (Tervueren); MDGS, Medium

German spitz; SALU, Saluki; ESET, English setter; AMBD, American bulldog; COLL, Collie; CHOW, Chow chow; CANE, Cane corso; STBD, Saint Bernard; ECKR,

English cocker spaniel; COY, Coyote; MAWO, Maned wolf; LEON, Leonberger; AUSS, Australian shepherd; BORD, Border collie; RHOD, Rhodesian ridgeback;

WOLF, Gray wolf; PUG, Pug; AFGH, Afghan hound; ENPO, English pointer; BULD, English bulldog. The endocasts are grouped into columns according to an

increasing total volume [thus the top left endocast (GJDK) represents the smallest endocast, and the bottom right (BULD) has the largest volume].

[thus, using an actual brain during structural imaging results
in more detailed segmentation and region-specific volumetric
measurements can be also performed (42, 43)]. Our intention
was to show that creating an endocranial cast from a CT-dataset
can also offer a good alternative (if only the skull is available)
to study the macroscopic surface anatomy. We demonstrated
different surface structures of the brain (e.g., gyri, sulci, and
foramina) on 3Dmodels. The casts clearly delineated the shape of
the olfactory bulbs, and even the impressions of themajor arteries
are recognizable on the surface (Figure 8). To our knowledge,
canine digital endocranial casts have not been created before in
this number regarding different breeds and wild species. This

approach might help to characterize neuroanatomical variation
resulting from domestication processes by comparing endocasts
of dogs and other canids. As wild forms changed through
the course of domestication, these changes in behavior and
behavioral patterns could be linked to changes in the size
and proportions of different brain regions (34). It is unclear
whether the relation between brain volume and executive
function reflects a broad-scale evolutionary phenomenon or
a unique consequence of primate brain evolution. Primates
show associations between brain volume and differences in
some aspects of cognition (44). The extraordinary degree of
intraspecific morphological variation in domesticated dogs offers
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FIGURE 11 | Volume-rendered skull model (with a midsagittal section) and the endocast of a gray wolf. (A) Left lateral view. (B) Rostral view. (C) Caudal view. (D)

Ventral view. (E) Dorsal view.

FIGURE 12 | 3D prints of different endocasts. (A) Endocast of a Welsh terrier (1), a border collie (2), a Weimaraner (3), a pug (4), a borzoi (5), and a gray wolf (6). (B)

Ventral aspect of the endocast of a Weimaraner. (C) Rostroventral aspect of the endocast of a border collie.
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a unique opportunity to study this phenomenon. High definition
endocasts could help provide more detailed neuroanatomical
measures that could be used tomore precisely link neuroanatomy
to cognitive abilities (i.e., social cue following).

It has been argued that the mammalian brain, particularly
its size, is affected by natural selection and influences particular
behavioral capacities. Based on comparative data it was
demonstrated that mosaic changes are an important factor in
brain structure and evolution, suggesting that brain evolution
involved complex relationships among the individual brain
components (45). The frontal cortex structure and development
can differ substantially between taxa. For example in primate, but
not carnivore, frontal cortex hyperscales relative to the rest of
neocortex and the rest of the brain (46). Moreover, researchers
examined a group of birds in the corvid family and found that

FIGURE 13 | Composite 3D-printed model of a skull and the endocast of a

Weimaraner. (A) Right lateral view. (B) Left lateral view. (C) Rostrodorsal view.

(D) Caudodorsal view.

some species had a larger relative hippocampus than others (47).
Interestingly, the species with a bigger hippocampus shows better
performance on spatial memory tasks. It was also shown that the
size of the cerebellum increases throughout the evolution of apes
and even humans (48). This difference suggests that the cerebellar
specialization could be involved in the evolution of humans’
advanced technological capacities and even as a preadaptation for
language. Dogs have been exposed to strong selective pressure
and the result of this artificial selection brought to different
breeds with a variety of working roles. For instance, it has been
suggested that cooperative working breeds have also a higher
proficiency when it comes to following human social cues (49,
50). In an MRI-based analysis, it was found that neuroanatomy
co-varies together with behavioral specializations (i.e., sight
hunting, scent hunting, guarding, and companionship) (38).
Another study revealed the existence of relationships between
body size, skull shape, and behavior among dog breeds (51).
These results reinforce the assumption that dogs’ morphotypes
(including the cephalic index, that has an effect in the brain
shape) can be associated with particular behavioral profiles (e.g.,
grooming, chasing, aggression). As increase in the brain size
was proved to be positively linked with the executive function
(37), dogs might be considered a powerful model for studying
evolutionary links between cognition and neuroanatomy. Hence,
we argue that the study of detailed endocasts and the study of
the neuroanatomical variations could give helpful aid to pinpoint
and document furthermore the differences between breed groups
or working roles beside the MRI studies.

Our results could give an aid for visualization and educational
purposes. We created and visualized endocasts of several dog
breeds and based on these endocasts, detailed morphometric
analyses and interspecific comparisons (regarding volume,
surface, or ratio) can be performed in the future. The analyses
of the endocast area proportions showed that the prepiriform
rhinencephalic area significantly decreased with the larger
skull index. The limitation of the study is the relatively low
number of skulls and that only one individual represents a
breed or a wild species, without information whether this
individual is a typical representative of its breed/species or
not. However, we presented a wide range of skulls with

TABLE 1 | Spearman’s correlations between skull and endocast parameters.

Volume Skull length Skull width Skull index Avg. R Avg. F Avg. C R% F%

Skull length 0.694**

Skull width 0.839** 0.513**

Skull index 0.131 −0.423* 0.486**

Avg. R 0.808** 0.874** 0.556** −0.297

Avg. F 0.751** 0.749** 0.612** −0.053 0.718**

Avg. C 0.955** 0.548** 0.807** 0.258 0.688** 0.667**

R% 0.007 0.543** −0.084 −0.595** 0.526** 0.156 −0.183

F% 0.059 0.523** 0.042 −0.357 0.331 0.605** −0.048 0.440*

C% −0.084 −0.631** 0.020 0.607** −0.567** −0.425* 0.097 −0.890** −0.735**

*p < 0.05, **p < 0.01.

R, prepiriform rhinencephalic area; F, prefrontal area; C, non-prefrontal cerebral convexity area; avg., average.
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FIGURE 14 | Correlations between cranial and endocranial measurements. For breed/species name abbreviations, see Figure 10.

different cephalic index, and showed the diversity of the
endocasts’ (and based on this, the brains’) morphology (e.g.,
with Figure 10). Further studies with more individuals should
validate the representativity of ours skulls and investigate how
the reduced rhinencephalic area is linked to the relatively poor
performance of brachycephalic dogs in olfactory search tasks
(52). By assessing the surface one should know that only the
external surface of the brain is visible on an endocast, and
some parts (like the prefrontal lobe) are partly hidden due to
the overlap of adjacent structures. Consequently, when it is
possible, an MRI-based volumetric assessment is recommended.
Despite that fact, the surface analysis using the endocasts
could give a good tool to compare the degree of modification
(concerning the changes in the skull shape) of the brain,
especially when only the skull of an animal (or its DICOM
data) is available. Brachycephalic dogs typically have a smaller
angle between the olfactory bulb fissure and the baseline
of the cranial cavity, causing the ethmoid turbinates to be
more ventrally oriented and protrude into the nasal airways
(53). This protrusion also contributes to health issues, such
as brachycephalic obstructive airway syndrome (54). A study
reported similar findings based on paramedian sagittal magnetic
resonance imaging slices of canine brains, i.e., brachycephalic
brains are rounded and shortened in the anterior-posterior
plane with a shifted olfactory lobe (55). We also demonstrated
that the length of the skull has a significant effect on the
endocast area ratios, whereas the skull width has no effect on the
measured areas.

The digitalization process with structural imaging for making
virtual endocasts does have a substantial cost (e.g., paying

for the CT scanning time), and the 3D modeling work also
requires knowledge of the specific software used during the
segmentation and mesh-refine steps. Despite that, we believe that
its benefits are well worth these investments, as described in
the introduction. In conclusion, the digital canine endocranial
casts we created can be useful for both educational and
comparative purposes, considering the growing interest in the
virtual-, augmented-, and mixed reality fields which require high
resolution surface models.
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