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Abstract: Pituitary adenylate cyclase-activating polypeptide (PACAP), a neuropeptide with
widespread expression and general cytoprotective effects, is also involved in aging. Previously,
we observed accelerated systemic senile amyloidosis in PACAP knockout (KO) mice. As mice par-
tially lacking PACAP (heterozygous-HZ) show variable symptoms, here we investigated whether HZ
mice have accelerated aging, completed with observations in PAC1 receptor KO mice. As we have
limited data on qualitative or quantitative changes in the blood of PACAP-deficient mice, we investi-
gated whether these changes could be in the background of the amyloidosis. Routine histological
staining was used to examine amyloid deposits, rated on a severity scale 0–3. Blood was collected
from PACAP wild type/HZ mice for complete blood analysis. In contrast to receptor KO mice
showing no amyloidosis, histopathological analysis revealed severe deposits in PACAP HZ mice,
with kidney, spleen, skin, and intestines being most affected. Increased cholesterol, lipoprotein levels,
and differences in several blood count parameters were found in HZ mice. In summary, amyloidosis
also develops in partial absence of PACAP, in contrast to the lack of its PAC1 receptor. In addition to
the earlier identified inflammatory and degenerative disturbances, the alteration in lipid metabolism
and bone marrow activity can also be additional factors leading to systemic degenerative processes.

Keywords: PACAP; deficiency; amyloidosis; PAC1 receptor; blood formation; aging; heterozygous

1. Introduction

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide with 38
(PACAP38) or 27 (PACAP27) amino acid residues [1]. PACAP acts through specific PAC1
receptors and VPAC1, and VPAC2 receptors which also bind a related peptide, vasoactive
intestinal peptide (VIP), with equal affinity. In addition to the receptorial mechanisms of
action, PACAP is able to traverse biological barriers and act directly intracellularly, and
it also transactivates other receptors [1,2]. The eight splice variants of the PAC1 receptor
activate different signal transduction pathways. The most common pathway through
which PACAP exerts its actions is the cAMP/protein kinase A pathway. The expression
of the PACAP receptors has been described to show changes according to developmental
stage and other environmental conditions [3–5]. The splice variants of the receptor, the
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different signaling pathways, and the other routes of action are responsible for the very
diverse actions of the peptide. Among others, PACAP has been shown to play a role in
several physiological processes, such as micturition [6], cardiac excitability [7], control of
body weight [8], respiration [9], pain processes [10], cartilage metabolism [11] as well as
addiction and stress-related behaviors [12]. PACAP acts as a growth factor and influences
the development of the nervous system as well as peripheral organs. These effects include
actions on neuronal mitosis, migration, myelination, and tissue differentiation [13–17]. In
the periphery, PACAP plays a role in haemopoetic stem cell proliferation [18], and skeletal
and immune development [19,20].

Similar to developmental effects, PACAP plays a role in restorative processes in
various injuries. This has been reviewed several times [21–27]. The main protective mecha-
nisms include strong antiapoptotic and anti-inflammatory effects as well as antioxidant
capacity of the peptide [22,25]. Previously, we hypothesized that the effects of PACAP
against increased apoptosis, and that inflammation and oxidative stress could also be an
important protective factor in aging. Indeed, we have found that mice lacking endogenous
PACAP display an early onset systemic amyloidosis present in most organs [28]. Based
on these observations, we proposed that PACAP gene-deficient animals could serve as
a model of accelerated aging [29]. Much less is known about mice lacking the specific
receptor of PACAP (PAC1 receptor). Some studies have been published on altered physio-
logical and pathological reactions of these mice, but it is not known whether they show
any aging-related signs [30,31].

The clinical importance of PACAP has been highlighted in several studies [32]. PACAP
is upregulated in different injuries and diseases; furthermore, PACAP gene polymorphism
has been associated with altered stress response [33,34]. Homozygous PACAP gene-
deficient mice are well known to react with increased injuries to harmful stimuli. This has
been proven in dozens of pathological conditions [22,35,36]. However, complete PACAP
deficiency has not been described in humans and is not likely to occur. Nevertheless,
partial deficiency or decreased levels have already been described in humans. For exam-
ple, decreased PACAP levels have been shown in posttraumatic stress disorder in female
patients [33], and in the cerebrospinal fluid of multiple sclerosis patients [37]. Further-
more, Han and coworkers have measured significantly decreased PACAP levels in the
cerebrospinal fluid and decreased peptide expression in the brains of Alzheimer’s disease
patients, correlating with the decline of cognitive performance [38,39]. Thus, as partial defi-
ciency of PACAP is a more likely clinical scenario, studying heterozygous PACAP-deficient
mice could give a valuable insight into possible clinical correlations. Only scarce data are
available about heterozygous mice and aging. Ohtaki and colleagues have described the
decrease in antioxidant capacity with a parallel increase in reactive oxygen species in aging
heterozygous mice [40]. Regarding the eye, it has been found that, while heterozygous
animals do not differ from wild type mice in tear secretion and corneal structure at young
age, they develop dry eye symptoms with corneal keratinization and reduced tear secretion
at older age [41]. As mentioned above, we have previously described a presenile systemic
amyloidosis in homozygous aging PACAP-deficient mice leading to multi-organ failure
and possibly responsible for the increased mortality of these mice [28]. Given the possible
human relevance, the aim of the present study was to investigate whether a similar phe-
nomenon can be observed in mice partially lacking PACAP. In addition, we investigated
whether amyloidosis can also be found in PAC1 receptor-deficient mice.

2. Materials and Methods
2.1. Animals

Wild type (WT) and heterozygous (HZ) PACAP-deficient (on CD1 background), as
well as WT (PAC1-R WT) and homozygous PAC1 receptor-deficient (PAC1-R KO, C57BL/6J
background) mice were used in the present investigation. For the histological analysis,
PACAP WT (n = 8) and PACAP HZ (n = 10); PAC1-R WT (n = 9) and PAC1-R KO (n = 3)
mice were used, they were grouped into 3- to 12- (young) and 13- to 24-month-old (aging)
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groups. For the blood analysis, 3.5 months old PACAP WT (n = 11) and PACAP HZ (n = 11)
mice were used. Maintenance, backcrossing for ten generations of the in-house-bred mice,
and all experimental procedures were approved by the Animal Welfare Committee of the
University of Pécs, and the National Scientific Ethical Committee on Animal Experimenta-
tion (ÁTET) at the Ministry of Agriculture, fully complied with the Decree No. 40/2013. (II.
14.) of the Hungarian Government and the EU Directive 2010/63/EU on the protection
of animals used for scientific purposes (ethical permission numbers: BA02/2000-24/2011;
BA02/2000-20/2006 [42,43]). Genotyping of PACAP WT and HZ mice was performed
from tail samples at sacrifice using a Phire Animal Tissue Direct PCR Kit (Thermo Fisher
Scientific, Waltham, MA, USA) [43]. The genotypes of PAC1 receptor KO mice were
determined by PCR of the total genomic DNA extracted from mouse tails [44]. Isolated
genomic DNA of each experimental animal was added to RedTaq readymix (Sigma Aldrich,
St. Louis, MO, USA) containing primers p7 (5′-TGGGTTTGATGACTATGAGC-3′), p8 (5′-
TGAGGGTGACGAGGGAGG TG-3′), and pNeo (5′-GCCTTCTATCGCCTTCTTGA-3′) [45],
according to the manufacturer’s instructions. For PCR, an MJ Research PTC200 thermal
cycler was used. Following a 3-min pre-incubation step at 95 ◦C, the following program
was applied for 30 cycles: 95 ◦C, 45 s denaturation; 58 ◦C, 45 s annealing; 72 ◦C, 1 min
extension. This was then followed by a 72 ◦C step for 5 min and subsequent cooling to 4 ◦C.
All PCR experiments were validated using positive and negative controls. DNA fragments
were visualized by 1% agarose gel electrophoresis.

2.2. Histological Analysis

For histological analysis, young and aging WT (n = 4 and n = 4, respectively) and
PACAP HZ (n = 3, n = 7, respectively); PAC1-R WT (n = 9); and PAC1-R KO (n = 3) mice
were used. Mice were sacrificed under isoflurane anesthesia (AErrane, Baxter, Budapest,
Hungary). Removed organs and tissues were fixed in 4% buffered paraformaldehyde and
embedded in paraffin. Three-µm-thick sections were made and stained with routine histo-
logical staining (hematoxylin and eosin, H&E) as well as with Congo red, a pathological
marker for amyloid. Amyloid deposits appear as an eosinophilic homogenous mass with
H&E staining. The appearance of amyloid was confirmed with Congo staining, which
shows deposits as a red-orange mass under normal light, and apple-green birefringence
under polarized light. An amyloid index described in our previous study was used in the
present investigation to provide a semi-quantitative scoring of Congo red-positive amyloid
deposits. The amyloid scoring was the following [28]: 0: no amyloid; 1: slight focal deposits;
2: presence of moderate/severe focal or slight diffuse amyloid; and 3: with massive diffuse
amyloid deposit. Previously, we presented that male and female scores combined as no
gender differences had been observed [28]. A statistical comparison between groups was
made with a non-parametric Mann–Whitney test.

2.3. Blood Laboratory Analysis

As morphological alterations were only found in PACAP HZ mice, but not PAC1
receptor-deficient mice, blood laboratory analysis was performed only in PACAP HZ mice
and compared to WT animals. Blood from young (3 months old) PACAP HZ (n = 11)
and WT mice (n = 11) was collected under isoflurane overdose into BD Vacutainer tubes
with sodium heparin for plasma analysis or EDTA for routine complete blood count (Bec-
ton, Dickinson and Company, NJ, USA). Na+ and K+ ions, alkaline phosphatase (ALP),
creatinine, cholesterol, triglyceride, and high- and low-density lipoprotein (HDL, LDL)
were measured with a COBAS 8000 analyzer (Roche Ltd., Rotkreuz, Switzerland), while
blood count was measured with a Sysmex XN-1000-V Multispecies Hematology Analyzer
(Sysmex Hungaria, Budapest, Hungary). The following parameters were measured: white
blood cell count (WBC), red blood cell count (RBC), hemoglobin concentration (HGB), hema-
tocrit (HCT), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH),
mean corpuscular hemoglobin concentration (MCHC), platelet count measured with opti-
cal method (PLT&Q), red cell distribution width—standard deviation (RDW-SD), red cell
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distribution width—coefficient of variation (RDW-CV), platelet distribution width (PDW),
mean platelet volume (MPV), platelet large cell ratio (P-LCR), plateletcrit (PCT), nucleated
red blood cell (NRBC), neutrophil granulocyte count (NEUT), lymphocyte count (LYMPH),
monocyte count (MONO), eosinophil granulocyte count (EO), basophil granulocyte count
(BASO), reticulocyte count (RET), immature reticulocyte fraction (IRF), reticulocytes with
low fluorescence (LFR), reticulocytes with median fluorescence (MFR), reticulocytes with
high fluorescence (HFR), and reticulocyte hemoglobin equivalent (RET-HE).

Statistical analysis of plasma parameters and blood count was performed using two-
way ANOVA followed by Fisher’s or Bonferroni’s post hoc test, respectively. Differences
were considered significant when p < 0.05.

3. Results
3.1. Histology

Our histological results in PACAP HZ mice matched those described earlier in ho-
mozygous PACAP KO mice [28]. Amyloid deposits appeared at an early age and were more
widespread in mice partially lacking PACAP compared to WTs. Most severely affected
organs were spleen, intestines, esophagus, kidney, and skin (Figure 1). Amyloid scores in
the esophagus, intestines, spleen, kidney, and skin were markedly and significantly higher
in the HZ animals compared to WTs (Figure 2).

In contrast to the PACAP-deficient mice, PAC1 receptor-deficient animals showed no
sign of amyloid deposits. Screening through all organs did not find any sign of amyloidosis
in either young or aging individuals; all organs had a normal structure (Figure 1).

3.2. Blood Plasma Analysis and Blood Count

Results of the plasma analysis (Table 1) were similar to our earlier findings in homozy-
gous PACAP KO mice [28]. Significant changes were observed in HDL, LDL, and total
cholesterol levels. However, in contrast to the earlier described slight, but not statistically
significant, increases in aging PACAP KO animals, HZ mice showed significant increases
in these parameters (Chol: 2.21 ± 0.09 and 2.57 ± 0.08 mmol/L; LDL: 0.26 ± 0.01 and
0.37 ± 0.02; HDL 1.86 ± 0.08 and 2.22 ± 0.07 in WT and HZ mice, respectively). Among
the lipid parameters, no difference was observed in the TG levels. Other parameters were
not altered either (creatinin, Na, K, ALP).

Table 1. Plasma analysis of wild type (WT) and PACAP heterozygous (HZ) mice. Results are given
in mean ± S.E.M. ** p < 0.01, *** p < 0.001 vs. WT mice.

PACAP WT Mice PACAP HZ Mice

Creatinin (µmol/L) 9.50 ± 1.64 8.10 ± 0.68
Na+ (mmol/L) 160 ± 0.5 157.10 ± 0.6
K+ (mmol/L) 4.13 ± 0.09 4.17 ± 0.08

ALP (U/L) 51.20 ± 2.1 53.45 ± 2.32
Cholesterol (mmol/L) 2.21 ± 0.09 2.57 ± 0.08 **

TG (mmol/L) 1.06 ± 0.1 0.91 ± 0.07
LDL (mmol/L) 0.26 ± 0.01 0.37 ± 0.02 ***
HDL (mmol/L) 1.86 ± 0.08 2.22 ± 0.07 **
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Figure 1. Representative photomicrographs of amyloid deposits in tissues from PAC1 receptor KO 
mice (left side) and from PACAP HZ mice (right side). Representative pictures from spleen, kidney, 
esophagus, duodenum, and skin are shown with HE staining. No amyloid deposits were found in 
receptor KO mice, while PACAP HZ mice showed severe deposits in the spleen parenchyme, in the 
renal corpuscles, in the lamina propria of esophagus and intestines, and in the subepidermal layer 
of the skin. Scale bar: 50 micrometers. 

Figure 1. Representative photomicrographs of amyloid deposits in tissues from PAC1 receptor KO
mice (left side) and from PACAP HZ mice (right side). Representative pictures from spleen, kidney,
esophagus, duodenum, and skin are shown with HE staining. No amyloid deposits were found in
receptor KO mice, while PACAP HZ mice showed severe deposits in the spleen parenchyme, in the
renal corpuscles, in the lamina propria of esophagus and intestines, and in the subepidermal layer of
the skin. Scale bar: 50 micrometers.
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Figure 2. Overall amyloid index in young and aging WT and PACAP HZ mice in the most severely affected organs. Scores 
are represented as mean + SEM, * p < 0.05; ** p < 0.01, *** p < 0.001 compared to WT mice. 
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Figure 2. Overall amyloid index in young and aging WT and PACAP HZ mice in the most severely affected organs. Scores
are represented as mean + SEM, * p < 0.05; ** p < 0.01, *** p < 0.001 compared to WT mice.

Earlier, we described that the complete blood count showed no significant alterations
between WT and homozygous KO mice. This is different from our present observations.
We found that, while most blood count parameters did not change (Figure 3), significant
changes were observed in several of them (Table 2). Among characteristic parameters
of red blood cells, significant changes were observed in mean corpuscular hemoglobin
concentration (MCHC), red cell distribution width—standard deviation (RDW-SD), red cell
distribution width—coefficient of variation (RDW-CV), nucleated red blood cell (NRBC),
reticulocyte count (RET), reticulocytes with median fluorescence (MFR), and reticulocyte
hemoglobin equivalent (RET-HE). Among the platelet parameters, plateletcrit was changed.
No significant differences were observed in the other measured parameters, for details see
Table 2.
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platelet (PLT) distribution width histograms. 
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Figure 3. Representative blood count results from a HZ mouse. WDF: white blood cell differential;
upper (green) cloud: monocytes, lower left (purple) cloud: lymphocytes, lower middle (blue) cloud:
neutrophilic granulocytes, lower right (red) cloud: eosinophilic granulocytes. RET: reticulocytes and
mature red blood cells, with the least differentiated reticulocytes in the right quartile, and mature red
blood cells in the left quartile. Lower panels show representative red blood cell (RBC) and platelet
(PLT) distribution width histograms.
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Table 2. Blood count in wild type (WT) and PACAP heterozygous (HZ) mice. Results are given in mean ± S.E.M. * p < 0.05,
** p < 0.01 compared to wild type mice.

PACAP WT PACAP HZ Mice

White blood cell count (WBC) [109/L] 3.56 ± 0.42 3.95 ± 0.66
Red blood cell count (RBC) [1012/L] 8.40 ± 0.36 7.91 ± 0.20
Hemoglobin concentration (HGB) [g/L] 123.91 ± 3.36 121.90 ± 2.21
Haematocrit (HCT) [%] 37.92 ± 1.27 36.31 ± 0.80
Mean corpuscular volume (MCV) [fL] 45.50 ± 1.16 45.91 ± 0.24
Mean corpuscular hemoglobin (MCH) [pg] 14.88 ± 0.34 15.45 ± 0.15
Mean corpuscular hemoglobin concetration (MCHC) [g/L] 327.64 ± 3.05 335.90 ± 1.66 *
Platelet count measured with optical method (PLT&Q) [109/L] 1324 ± 260.25 1394.1 ± 66.01
Red cell distribution width—standard deviation (RDW-SD) [fL] 27.15 ± 1.86 23.2 ± 0.24 *
Red cell distribution width—coefficient of variation (RDW-CV) [%] 18.89 ± 1.24 15.87 ± 0.31 *
Platelet distribution width (PDW) [fL] 7.06 ± 0.15 6.81 ± 0.06
Mean platelet volume (MPV) [fL] 7.26 ± 0.27 6.93 ± 0.03
Platelet large cell ratio (P-LCR) [%] 9.62 ± 3.05 4.63 ± 0.27
Plateletcrit (PCT) [%] 0.75 ± 0.09 1.03 ± 0.06 **
Nucleated red blood cell (NRBC) [109/L] 0.06 ± 0.01 0.03 ± 0.01 **
Neutrophil granulocyte count (NEUT) [109/L] 0.93 ± 0.12 0.78 ± 0.08
Lymphocyte count (LYMPH) [109/L] 2.16 ± 0.28 2.63 ± 0.51
Monocyte count (MONO) [109/L] 0.30 ± 0.04 0.33 ± 0.06
Eosinophil garnulocyte count (EO) [109/L] 0.15 ± 0.01 0.17 ± 0.03
Basophil granulocyte count (BASO) [109/L] 0.00 ± 0.00 0.00 ± 0.00
Reticulocyte count (RET) [%] 4.19 ± 0.19 3.73 ± 0.01 *
Immature reticulocyte fraction (IRF) [%] 52.45 ± 1.06 51.26 ± 0.46
Reticulocytes with low fluorescence (LFR) [%] 47.55 ± 1.06 48.74 ± 0.46
Reticulocytes with median fluorescence (MFR) [%] 12.60 ± 0.38 11.10 ± 0.16 **
Reticulocytes with high fluorescence (HFR) [%] 39.86 ± 0.89 40.16 ± 0.53
Reticulocyte hemoglobin equivalent (RET-HE) [pg] 17.34 ± 0.33 18.45 ± 0.08 **

4. Discussion

In contrast to the severe symptoms observed in mice partially lacking PACAP, no sign
of amyloidosis or other marked histological alteration in any organ could be observed in
the PAC1 receptor knockout mice. The involvement of the PAC1 receptor has been proven
in several physiological processes [11,35,46,47]. Accordingly, the lack of the receptor is
expected to lead to severe alterations in these processes. Indeed, PAC1 receptor knockout
mice display several pathological responses to certain stimuli, but compensatory mech-
anisms have also been implicated in cases where no alteration can be observed. Among
others, PAC1 receptor knockout mice have blunted intestinal relaxation [48], decreased
fertility [49], decreased calcium, oxytocin and vasopressin release from supraoptic neu-
rons [50], impaired cardiorespiratory responses after birth [9,51,52], mild deficit in learning
and memory with reduced expression of brain derived neurotrophic factor [53,54]. In addi-
tion, elevated locomotor behavior with reduced anxiety and altered social behavior [55,56],
decreased writhing response to pain as well as markedly reduced chronic nociceptive
response [57,58], pulmonary hypertension and right heart failure leading to early postnatal
death [30], attenuated pupillary light reflex [59], and impaired insulinotropic response [45]
have also been reported.

Interestingly, in spite of the several reported protective effects of the PAC1 receptor,
PAC1 receptor deficiency has been found to attenuate progression of atherosclerosis in
apolipoprotein E-deficient mice [31]. There are other controversial data on PAC1 deficiency.
While Otto and coworkers [55] did not observe any gross alteration in circadian rhythmicity,
others described altered VIP oscillation patterns during the dark period [60] phase delay
after photic stimulations [61], and altered circadian food anticipatory activity rhythms [62].
Several reports have described no differences between PAC1 receptor-deficient and wild
type mice: PAC1 receptor knockout mice had unaffected FSH, LH and prolactin synthe-
sis [49], limited alteration in nociception after short-lasting stimuli [58], and showed no
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distinguishable signs from wild type mice at birth [30]. Our results can be added to this
last group of observations, as we found no differences between WT and PAC1 receptor
KO mice in organ morphology and gross appearance, even at older age. However, it has
to be noted that the early postnatal mortality of the newborns was high, which made the
breeding of the animals extremely complicated. The differences may depend on mouse
strain, environmental conditions, and several other factors.

In contrast to PAC1 receptor KO mice, we found several alterations in PACAP-deficient
animals. In the present study we aimed at investigating the effects of a partial lack of
the peptide. Complete PACAP deficiency in PACAP homozygous knockout mice has
been shown to have severe consequences in numerous physiological and pathological
processes. Among others, mice with a complete lack of PACAP have high mortality, altered
axonal arborization in the dentate gyrus [63], disturbed energy balance [64], and reduced
food intake [65]. PACAP deficiency leads to increased vulnerability towards different
stressors. This has been reviewed in numerous studies [22,66,67]. Among others, mice
lacking endogenous PACAP show increased infarct volume in cerebral ischemia [68],
increased damage in kidney ischemia/reperfusion injury [69], and increased ganglion
cell death in retinal ischemia [70]. Moreover, regeneration after injuries is also slower,
as it has been shown in axonal regeneration [71] and in callus formation following bone
fracture [72]. These data support the protective role of endogenously expressed PACAP.
Sporadic data support that even the partial lack of PACAP leads to increased injuries,
but only a few papers have been published. Endo et al. have found a similar degree of
retinal ganglion cell loss in retinal injury to that observed in homozygous PACAP-deficient
mice [73]. In the present study we found that the presenile systemic amyloidosis observed
in homozygous mice [28] is similarly severe to that in heterozygous animals. This shows
the importance of the endogenous PACAPergic system in protection against age-related
degenerative conditions, summarized in Figure 4. Recently, PACAP has been found to
counteract tau deposition in a model of Alzheimer’s disease, highlighting the importance
of the PAC1/PACAP system in the clearance of tau in the brain [74]. This observation,
together with our data in amyloidosis, shows that PACAP can act against pathological
protein depositions, leading to degenerative diseases.
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found to be sufficient to lead to severe symptoms, as observed in homozygous KO mice (right panel).
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Among the laboratory parameters, we found that total cholesterol, LDL, and HDL lev-
els were significantly increased in HZ mice compared to WT animals. This is in accordance
with our earlier findings in homozygous mice, where we described a similar tendency
in both young and aging groups. Although very few and partially contradicting data
are available, PACAP has been implicated in several metabolic processes, including lipid
metabolism. Among others, the early postnatal death of PACAP-deficient mice was shown
to be associated with disturbed lipid metabolism, where authors found elevated serum
triglyceride and cholesterol levels in PACAP null mice [76]. In addition, PACAP has been
shown to increase adipocyte lipolysis [77–79], free fatty acid, and triglyceride levels, but no
change was observed in cholesterol after infusion and bolus injection in dogs [80]. These
and other related effects of PACAP in inflammatory processes may be in the background
for the described accelerated atherosclerosis found in PACAP/Apolipoprotein E-deficient
mice [81], although no change in cholesterol levels were found in these mice. PACAP
was also found to ameliorate lipid metabolism and inflammation in fatty liver [82]. Total
blood count showed no major differences between WT and HZ mice, but data from our
young mice showed minor but statistically significant differences in parameters reflecting
formation and maturation of red blood cells and platelets. Reticulocyte as well as nucle-
ated red blood cell count was lower, while mean corpuscular hemoglobin concentration
was higher, and plateletcrit was found to be slightly increased in HZ mice. Although we
cannot draw final conclusions from these data, PACAP has already been demonstrated
to be involved in hematopoiesis. The very limited data from the literature show, for ex-
ample, that PACAP is involved in hematopoietic progenitor cell proliferation [18] and in
megakaryocyte maturation [83,84].

5. Conclusions

In conclusion, in the present study we provided evidence that presenile systemic
amyloidosis develops also in the partial absence of PACAP, in contrast to the lack of
its PAC1 receptor. In addition to the earlier identified inflammatory and degenerative
disturbances, the alterations in lipid metabolism and bone marrow activity can also be seen
as additional factors that lead to systemic degenerative processes.
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