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Abstract

This study evaluates the projected changes in the atmospheric water budget and precipitation under the RCP8.5 scenario 

over two CORDEX-CORE domains: South America (SAM) and Europe (EUR). An ensemble of ive twenty-irst century 

projections with the Regional Climate Model version 4 (RegCM4) and their driving Global Climate Models (GCMs) are 

analyzed in terms of the atmospheric water budget terms (precipitation, P; evapotranspiration, ET; and moisture lux con-

vergence, C). Special focus is on four subregions: Amazon (AMZ), La Plata basin (LPB), Mid-Europe (ME) and Eastern 

Europe (EA). The precipitation change signal in SAM presents a dipole pattern, i.e. drier conditions in AMZ and wetter 

conditions in LPB. Over the two European regions a seasonality is evident, with an increase of ~ 25% in precipitation for DJF 

and a decrease of ~ 35% in JJA. The atmospheric water budget drivers of precipitation change vary by region and season. 

For example, in DJF the main drivers are related to the large-scale moisture lux convergence, while in JJA over the AMZ 

atmospheric moisture lux convergence plays only a minor role and local processes dominate. For JJA in the GCMs the high 

values of the residual term do not allow us to assess which mechanisms drive the precipitation change signal over the AMZ 

and LPB, respectively. Same conclusions are found for the RegCM4 JJA simulations over the LPB and EA. This points to 

the importance of the spatial resolution of climate simulations and the role of parameterization schemes in climate models. 

Our work illustrates the usefulness of analyzing regional water budgets for a better understanding of precipitation change 

patterns around our globe.

Keywords Atmospheric water balance · CORDEX-CORE · Climate change · RegCM4

1 Introduction

Changes in precipitation around the globe have been 

assessed by the Fifth Assessment Report from Intergov-

ernmental Panel on Climate Change (IPCC-AR5 2013). 

Regional climate studies for South America (SAM; Reboita 
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et al. 2014a; da Rocha et al. 2014; Llopart et al. 2014, 2020; 

Chou et al. 2014; Sánchez et al. 2015) and Europe (EUR; 

Kotlarski et al. 2012; Kovats et al. 2014; Jacob et al. 2014, 

2018) have assessed changes in precipitation variabil-

ity due to global warming and to remote drivers such as 

the El Niño Southern Oscillation. Although in a warmer 

world the atmospheric moisture is expected to increase due 

to enhanced evaporation and water holding capacity (Lu 

and Cai 2009; Ruscica et al. 2016), precipitation does not 

linearly respond to these changes (IPCC-AR5 2013). For 

instance, projections show a strong future drying signal 

in the eastern portion of the Amazon basin (AMZ) and an 

increase of precipitation in central Brazil and the La Plata 

basin (LPB), resulting in a dipolar response of precipita-

tion change over SAM (e.g. Chou et al. 2014; da Rocha 

et al. 2014; Sánchez et al. 2015; Solman 2016; Llopart et al. 

2020). In addition, the precipitation change signal in Europe 

shows a north–south dipole pattern, more precisely, there is 

a signiicant summer precipitation decrease projected over 

the Mediterranean region and an increase over northern 

Europe by the end of the twenty-irst century (e.g. Giorgi 

and Lionello 2008; Giorgi and Coppola 2009; Jacob et al. 

2014).

Pronounced regional precipitation variability around the 

world has been associated with local factors (land surface 

processes, mesoscale drivers: Torma et al. 2015; Ruscica 

et al. 2016), remote factors (inluence of the sea surface 

temperature from Paciic and Atlantic Oceans: Brönnimann 

et al. 2007; Llopart et al. 2014) and global climate change 

(IPCC-AR5 2013; Christensen et al. 2007). One of the tools 

that can be used to understand what drives the precipitation 

change signal, is the analysis of the components of the water 

cycle, which can be separated into an atmospheric and a ter-

restrial branch. Both branches conserve mass over time, and 

when the local variation of water storage is negligible, the 

changes in precipitation may be linked to evapotranspiration, 

runof or moisture lux convergence.

In the atmospheric branch of the water cycle, the amount 

of precipitation can be associated with local feedbacks (e.g. 

evapotranspiration), remote feedbacks (moisture lux con-

vergence), or both (Nascimento et al. 2016; Furusho-Percot 

et al. 2019). A few studies analyzed separately the com-

ponents of the water cycle for present and future climates 

under diferent greenhouse gas concentrations (e.g. Mariotti 

et al. 2011; Dirmeyer et al. 2014; Brêda et al. 2020; Llopart 

et al. 2020), inding that projected changes in evapotranspi-

ration and precipitation are among the major drivers of the 

water balance over regions in EUR (e.g. Dezsi et al. 2018) 

and SAM (e.g. Ruscica et al. 2016; Menéndez et al. 2016; 

Zaninelli et al. 2019; Llopart et al. 2020).

As Regional Climate Models (RCMs) are increasingly 

used to downscale Global Climate Models (GCMs) to pro-

duce more reined regional climate information (Gutowski 

et al. 2016; Giorgi 2019), assessing the components of the 

water balance change signal using both GCMs and RCMs 

is an important strategy to increase understanding of cli-

mate change signals and related uncertainties. Two regions 

for which such exercise has been carried out are Europe 

(Dezsi et al. 2018) and South America (Zaninelli et al. 2019; 

Llopart et al. 2020). The recent completion of a new set of 

high-resolution dynamically downscaled projections under 

the CORDEX-CORE (Gutowski et al. 2016) and EURO-

CORDEX (Jacob et al. 2014, 2020) initiatives provides the 

opportunity to revisit the issue of how changes in the water 

budget afect precipitation projections.

Therefore, the purpose of this study is to assess the pre-

cipitation change signal under the RCP8.5 scenario, focusing 

over two domains from the Coordinated Regional Downs-

caling Experiment (CORDEX, Giorgi et al. 2009), Europe 

(EUR) and South America (SAM), and using a new set of 

projections completed with the Regional Climate Model 

version 4 (RegCM4, Giorgi et al. 2012) driven by a set of 

CMIP5 GCMs. Speciically, our aim is to determine the driv-

ers of the projected precipitation changes through the water 

balance approach and to illustrate the usefulness and limita-

tions of this method.

2  Methodology

2.1  Climate projections

The projections in this study are part of the CORDEX-

CORE—Coordinated Output from Regional Evaluations 

(CORE; Gutowski et al. 2016) experiment, performed with 

the regional model RegCM4 (Giorgi et al. 2012). For the last 

three decades the RegCM system has been used for several 

studies and purposes worldwide (Giorgi 2019).

For the present study, RegCM4 was nested into four 

GCMs from Coupled Model Intercomparison Project—

Phase 5 (CMIP5, Meehl and Bony 2011) over two diferent 

CORDEX domains: South America (SAM) and Europe 

(EUR) (Fig. 1). The GCMs are: Max Planck Institute for 

Meteorology-Earth system model (MPI-ESM-MR and 

MPI-ESM-LR; Giorgetta et  al. 2012); Hadley Global 

Environment Model 2-Earth System (HadGEM2-ES; 

Jones et al. 2011); and Norwegian Earth System Model 

1 (NorESM-1 M; Bentsen et  al. 2012). HadGEM2-ES 

was used to drive RegCM4 for both domains, while 

NorESM-1 M and MPI-ESM-MR only for SAM-22, and 

MPI-ESM-LR only for EUR-11. In total, we analyze three 

regional projections for SAM and two for EUR under 

the RCP8.5 scenario, as summarized in Table 1. Difer-

ent Representative Concentration Pathways (RCPs, van 

Vuuren et al. 2011) are available to investigate future cli-

mate at continental or regional scales, and the RCP8.5 is 
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considered the most extreme one, comprising the highest 

greenhouse gas concentration by the end of the twenty-

first century (corresponding to a radiative forcing of 

8.5 W m−2).

RegCM4 is a limited area model that solves the primitive 

equations in sigma-pressure vertical coordinate and includes 

diferent physics parameterization schemes (Giorgi et al. 

2012). In this study, RegCM4 was integrated with 25 km 

(SAM) and 12 km (EUR) horizontal grid spacing and 23 

sigma-pressure vertical levels. The simulations cover the 

period 1970–2100 where the projections refer to the period 

2006–2100 (Moss et al. 2010). For both domains, the Com-

munity Land Model version 4.5 (CLM4.5; Oleson et al. 

2013) is used to represent land-surface processes, whereas 

cumulus convection is described through a mixed conigu-

ration in which the Tiedtke scheme (Tiedtke 1996) is used 

over land and the Kain-Fritsch scheme (Kain and Fritsch 

1990) over ocean. The model coniguration for each domain 

was selected according to preliminary simulations as giv-

ing a relatively good performance over the selected domains 

(Sines et al. 2018; Ciarlo et al. 2018). In order to compare 

global and regional simulations, as they do not share the 

same grid or resolution, all data were interpolated onto a 

regular 0.22° × 0.22° grid (the grid spacing of the major-

ity of the analyzed RegCM4 simulations) using a bilinear 

method.

2.2  Atmospheric water balance

The hydrological cycle describes the physical processes in 

which water moves from continental/oceanic surfaces to the 

atmosphere, and vice-versa, comprising components such 

as evaporation/transpiration (ET), precipitation (P), surface 

runof (R), water storage/transport in the soil and atmos-

phere. Focusing on a given area, the water balance accounts 

for water sources and sinks over such region, and it is com-

monly separated in two branches: the atmospheric and sur-

face balances (Peixoto and Oort 1992; Llopart et al. 2020).

The surface water balance can be expressed as 
�S

�t
= P − ET − R , where 

�S

�t
 is the variation in time of 

soil water storage (mm  day−1) at a given location, which 

is normally neglected for long term periods. Therefore, 

on climate time scales the surface water balance can be 

simpliied as: ET = P–R (Peixoto and Oort 1992). In the 

atmospheric branch, the water balance can be expressed 

as: 
�W

�t
= C + ET − P , where the irst term is the temporal 

Fig. 1  CORDEX-CORE 
SAM and EUR domains and 
topography (shaded, with units 
in meter). Boxes indicate the 
subdomains selected for the 
analysis. LPB (thin yellow box) 
and AMZ (thick red box) for 
South America; ME (thin yel-
low box) and EA (thick red box) 
for Europe

Table 1  RegCM4 version, 
horizontal resolution and GCMs 
forcing used in Europe and 
South America domains

LR and MR refer to low and medium resolution, respectively

Domain Acronym Horizontal 
resolution

RegCM4 version GCM

MPI-ESM HadGEM2-
ES

NorESM-1 M

Europe EUR 0.11° 4.6.1 LR X

South America SAM 0.22° 4.7.0 MR X X
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derivative of the precipitable water in a unit area column 

(mm  day−1), and C is the vertically integrated moisture 

flux convergence (mm  day−1). The latter is calculated 

asC = −��⃗∇.(��⃗Vq) , q (g  kg−1) and ��⃗V  (m  s−1) are the air spe-

ciic humidity and the horizontal wind vector, respectively. 

Similarly to the surface water balance, for long periods, 
�W

�t
 

can be ignored, and thus the atmospheric balance equation 

can be reduced to P = ET + C (Peixoto and Oort 1992). It 

follows from this simpliication that, over a speciic region, 

P depends on the moisture lux convergence, and on the 

local evapotranspiration source from the land surface not 

transported to other regions (Brubaker et al. 1993). The con-

nection between the two branches of the hydrological cycle 

(surface and atmospheric water balances), when the deriva-

tive terms are null, is that C is equal to R.

In this work, we analyze the atmospheric branch of the 

hydrological cycle. C was integrated in the atmospheric ver-

tical column from the surface to 200 hPa and using time 

series of daily mean horizontal wind components, speciic 

humidity and surface pressure. The water budget at the 

global climatological scale is approximately in balance 

(Brutsaert 2008), but regionally it is often out of balance 

(Palmer et al. 2008), presenting a residual term due to uncer-

tainties in the model calculations and in the water storage 

terms. As the global average temperature is projected to 

increase (IPCC-AR5 2013), speciic humidity in the tropo-

sphere increases as well, following the Clausius-Clapeyron 

relationship (Held and Soden 2006), and the storage term 

from the atmospheric water balance becomes part of the 

residual term.

The goal of our analysis is to understand the relative roles 

of land–atmosphere feedbacks (i.e., ET) and large-scale cir-

culation patterns (i.e. C) in determining the regional precipi-

tation change signals over the selected regions.

2.3  Analysis

Although the simulations cover the period 1970–2100, we 

analyze two time slices: 1995–2014, considered as present 

climate, and 2080–2100, as far future climate under the 

RCP8.5 scenario. These periods follow the IPCC recommen-

dation for the AR6 report and the evaluation of the RegCM4 

model for present climate over the two domains is given by 

Ciarlo et al. (2020) and Ashfaq et al. (2020).

Precipitation and wind change signals for Decem-

ber–January–February (DJF) and June–July–August (JJA) 

are evaluated by comparing the climatology of the far future 

(2080–2100) with that of the present climate (1995–2014) 

using ensembles for both GCM and RegCM4 simulations.

In order to attribute the precipitation change signal to 

large scale versus local/regional forcings, following the 

methodology of Coppola and Giorgi (2010) and Llopart 

et  al. (2020), we calculated the 20-year running mean 

anomalies with respect to the reference period (1995–2014) 

climatology for each atmospheric water balance component 

(P, ET, C and residual term). Also, we selected two subdo-

mains for each continent as shown in Fig. 1: Amazon (AMZ; 

15° S–0°, 65°50° W), La Plata Basin (LPB; 32.5°–20° S, 

63°–48.9° W), Mid-Europe (ME; 48.5°–55° N, 2°–16° E) 

and Eastern Europe (EA; 44°–55° N, 16°–30° E).

The AMZ and LPB are the most important watersheds in 

SAM. AMZ contains a large area of tropical rainforest while 

the LPB is the second most extensive basin in SAM and cov-

ers parts of ive countries. These two basins are connected 

to each other since the AMZ is one of the moisture sources 

for LPB via the South America Low Level Jet (SALLJ; 

Marengo et al. 2004; Drumond et al. 2008).

The ME and EA regions were deined and analyzed dur-

ing the PRUDENCE project (Christensen and Christensen 

2007). They cover fully or partially important European 

river catchment basins (e.g. Danube and Rhine rivers in 

ME and Danube and Vistula rivers in EA) and have already 

been used in several climate studies (Christensen et al. 2008; 

Giorgi and Lionello 2008; Kotlarski et al. 2012, 2014; Jacob 

et al. 2018).

3  Results

3.1  Spatial precipitation and wind change signal

Figures 2 and 3 present the GCM and RegCM4 ensemble 

average changes (2080–2100 minus 1995–2014) in precipi-

tation and horizontal wind components at 850 hPa over the 

SAM and EUR domains for DJF and JJA, respectively. The 

850 hPa is the most representative level of the low-level jet 

core over the SAM (Montini et al. 2019) and appropriate for 

similar studies over Europe (Grønås 1995).

Clearly, over both domains, the main broad scale precipi-

tation change patterns are driven by the GCMs and "inher-

ited" by the RCM, however, some signiicant diferences 

between GCM and RCM patterns are found. Over SAM, for 

DJF, both the global and RegCM4 ensembles (Fig. 2a, b) 

show enhanced precipitation along the Intertropical Conver-

gence Zone (ITCZ), with an adjacent decrease in precipita-

tion over its subsidence branch to the north. The trade winds 

are weakened, as already pointed out in previous studies 

(Marengo et al. 2012; Reboita et al. 2014a; Llopart et al. 

2014; Ambrizzi et al. 2019), so that less moisture enters the 

Amazon region, which becomes drier than in present climate 

conditions. The area of reduced precipitation is larger in 

the RCM than the GCM ensemble, extending in particu-

lar over Colombia, Equator and Northern Peru. Over the 

South Atlantic Ocean, there is an anomalous anticyclonic 

circulation near south and southeastern Brazil in the GCM 

ensemble, which is weakly cyclonic in the RegCM4 (Fig. 2a, 
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b) and results in a more southward extension of the drying 

area in these regional model projections. However, in both 

ensembles, there are winds from the ocean to the LPB con-

tributing to moisture supply in this region.

In both ensembles, the SALLJ is weakened and the South 

Atlantic Convergence Zone (SACZ) is delected, resulting 

in a positive anomaly of precipitation in central/eastern Bra-

zil. Moving towards the south, the area of increased pre-

cipitation is larger in the RegCM4 ensemble, particularly 

over Bolivia, Paraguay and southern Brazil. Conversely, 

the RegCM4 shows an area of reduced precipitation over 

the LPB, while in the GCMs this reduced precipitation 

zone is conined to the Atlantic Ocean. Finally, both the 

RegCM4 and GCM ensembles project reduced precipita-

tion over Southern South America and Northern Chile. In 

summary, in DJF, both ensembles indicate a precipitation 

dipole pattern with a precipitation decrease in the Northern 

regions and an increase in the Central regions of SAM. This 

feature is basically associated with weaker trade winds and 

anomalous circulation over the Subtropical South Atlantic. 

In addition, the signal in the RegCM4 ensemble has greater 

magnitude than in the GCMs.

The European precipitation change pattern shows the 

well-known dipole of increased precipitation to the north 

and decreased to the south, with the transition region of 

sign reversal moving from about 40° N in DJF to about 60° 

N in JJA (e.g. Giorgi and Coppola 2007). This pattern is 

generally followed by the ensembles shown in Fig. 2c, d, 

however we do ind some signiicant diferences between the 

GCM and RegCM4 patterns. Speciically, during DJF in our 

simulations we ind a positive precipitation change signal 

in RegCM4 over areas of the Iberian Peninsula, southern 

Fig. 2  DJF precipitation (mm  day−1) and wind at 850 hPa  (ms−1) changes, far future minus reference period, for: a, c GCM ensemble and b, d 
RegCM4 ensemble. SAM is shown left and EUR in the right column. Boxes indicate the subdomains selected for the analysis
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Italy, Greece and southern Turkey for which the GCMs show 

decreased precipitation. These appear to be associated with 

the ocean-land mask and topography in the models. In fact, 

the models project a prevailing decrease of DJF precipita-

tion over the Mediterranean ocean surfaces in response of 

an enhanced anticyclonic circulation over the Mediterranean 

Sea. Conversely, the RegCM4 shows increased precipita-

tion over the land areas of the Iberian, Italian and Hellenic 

peninsulas. This positive signal is thus related to the topo-

graphic forcing over these regions, which is not present in 

the GCMs, whose grid does not capture complex topography 

and coastline features (Figure S1).

More generally, we note the topographic efect on the 

precipitation change signal in correspondence of the main 

mountain chains such as the Alps, Pyrenees and Carpathians 

(Fig. 2c, d). This signal is mostly of dynamical nature in 

winter, and it depends on the orientation of the mountain 

chains (e.g. the Pyrenees or Carpathians) with respect to 

the prevailing wind changes (Torma and Giorgi 2020). For 

example, we can see a reduced precipitation signal north 

of the Pyrenees, in response to the precipitation shadowing 

efect on the increased southerly winds over the area.

In JJA, the change patterns at the broad scale are gen-

erally similar between the GCM and RegCM4 ensembles 

(Fig. 3), especially in the SAM domain. In the equatorial 

region, both ensembles (Fig. 3a, b) show a discontinuity of 

the ITCZ over Northern South America, with a strong pre-

cipitation reduction over Venezuela, Colombia and North-

ern Brazil, and weakly reduced precipitation throughout the 

Amazon basin, Paraguay and Bolivia, maybe a consequence 

of transient systems not advancing northward (Blázquez and 

Solman 2019). In addition, both ensembles show a positive 

anomaly in Southern Brazil, including the LPB, which may 

be due to the action of the transient systems in this region 

Fig. 3  Similar to Fig. 2, but for JJA
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(Blázquez and Solman 2019; Reboita et al. 2020). Again, the 

magnitude of the signal is greater in the RegCM4 ensemble.

Turning our attention to the European region, most of 

central to southern Europe experience summer (JJA) drying 

in both ensembles, but this signal is much more pronounced 

and more extended in the GCMs (Fig. 3c, d). In fact, in 

areas of Northern and Northeastern Europe the RegCM4 

projects increased precipitation, while the GCM signal is of 

opposite sign. The general features of the summer precipi-

tation change signal for Europe is consistent with indings 

of previous analyses (Giorgi and Lionello 2008; Giorgi and 

Coppola 2009; Jacob et al. 2014, 2020). The reduced area 

of summer drying in the RegCM4 compared to the driving 

GCMs, which is consistent across the diferent members 

of the ensemble (Figure S2) is not a result speciic to this 

model, but it is common to the EURO-CORDEX ensem-

ble (Jacob et al. 2014; Boé et al. 2020). Boé et al. (2020) 

attribute it to a number of factors: diferences in cloudiness 

simulations, absence in the RCMs of time varying aerosol 

concentrations, larger increases in evapotranspiration from 

the Mediterranean Sea and land areas.

Another important contribution to the diferent summer 

precipitation response between GCMs and RegCM is the 

representation of convective processes at iner resolution 

(Torma et al. 2015; Giorgi et al. 2016). Figure S3 indeed 

shows that the precipitation change signal in the RegCM4 

has a convective origin. More speciically the RegCM4 

simulations indicate a convective precipitation increase over 

North Europe and decrease over central to southern Europe, 

while the large-scale precipitation change signal is found to 

be small (Figure S3). In addition, in summer, topography 

can strongly modify the precipitation change signal through 

thermodynamic efects and convection generation induced 

by high elevation heating (Giorgi et al. 2016; Torma and 

Giorgi 2020). Therefore, it is likely that a major driver of 

the diferences between GCM and RCM responses is the 

representation of convection at the respective diferent reso-

lutions (Figure S1).

Table 2 reports the GCM and RegCM4 precipitation 

change signal in both seasons over the subdomains shown 

in Fig. 1. The sign of the regionally averaged change agrees 

between the two ensembles in all regions, being mostly 

positive in DJF (except for AMZ) and negative in JJA 

(except for LPB). The SAM regions show the same change 

sign in the two seasons, most noticeably consistent drying 

over AMZ, while the European subregions show a sign 

reversal. However, as already discussed the magnitude of 

the change can be quite diferent between the ensembles, 

especially in JJA. Speciically, in JJA the RegCM4 indicates 

stronger drying over AMZ and weaker drying over ME and 

EA than the GCMs.

Given the precipitation change patterns found in this sec-

tion, in the next one we will attempt to understand their 

causes through a water budget analysis.

3.2  What drives the precipitation change signal?

In order to understand the driving mechanisms of the 

regional precipitation signals, we analyze the trends of 

anomalies (relative to 1995–2014) in the atmospheric water 

budget components, i.e., precipitation (P), evapotranspira-

tion (ET), moisture lux convergence (C), and the residual 

term (Res = P-ET-C), estimated for each subdomain of 

Fig. 1. For each term, we present the box average of global 

and regional model projections individually, with their 

respective ensemble average. Average changes of water bal-

ance components in Figs. 4 and 5 are summarized in Table 3 

for all ensembles, seasons and subdomains and for the pre-

sent climate and the change (future minus present climate). 

We also show in the Supplementary Material (Figure S4) the 

linear regression for each combination of P and ET and P 

and C (scatter plots and regression its) components. Slopes 

of the regression it are presented in Table 4.

Table 3 shows that in the reference period over most sub-

domains the residual terms have the same signal in the GCM 

and RegCM4 ensembles, except over the LPB during DJF 

and the EA in DJF and JJA. During DJF, we note that ET 

is the main driving component of the AMZ and LPB pre-

cipitation for both the GCM and RegCM4 ensembles, and 

the residual term is one order of magnitude smaller than the 

remaining components. On the other hand, the convergence 

term C drives the precipitation in the European domains, and 

the residual term is relatively larger with respect to precipita-

tion than in the SAM.

During JJA precipitation in the AMZ and LPB regions is 

also mostly controlled by ET. The moisture lux divergence 

acts to reduce precipitation in both the GCM and RegCM4 

ensembles over the AMZ, while over the LPB this occurs 

only in the RegCM4 ensemble. The residual term in JJA is 

generally similar to the DJF one, except in the GCMs for 

the LPB (− 1.0 mm day−1). Opposite to the DJF case, in JJA 

the precipitation in the ME and EA regions is driven by the 

ET, while moisture lux divergence acts to reduce rainfall in 

both ensembles.

Table 2  Precipitation changes (%) projected for the end of the cen-
tury (2080–2100 minus 1995–2014) under RCP8.5 scenario, for DJF 
and JJA (values in parentheses)

Regions GCM ensemble RegCM4 ensemble

AMZ − 7 (− 14) − 9 (− 36)

LPB 5 (1) 11 (2)

ME 23 (− 36) 29 (− 7)

EA 21 (− 35) 24 (− 5)
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Figure 4 shows the trends of the regional water budget 

components in DJF. Most projections indicate an increase 

in precipitation for AMZ until ~ 2060 (Fig. 4a), of higher 

magnitude in GCMs, due especially to an increase of 

moisture lux convergence in the basin (Fig. 4c). After the 

mid-century, however, there is a reversal in the trend, with 

all projections indicating a decrease in precipitation until 

the end of 2100, except NorESM1-M. Precipitation nega-

tive anomalies are especially high in HadGEM2-ES and 

RegCM4 HadGEM2-ES, with decreases of ~ 1 mm day−1 

by 2100, and in this case, the RegCM4 is strongly depend-

ent on the driving GCM. The pattern of anomalies of mois-

ture lux convergence essentially follows the precipitation 

pattern in both the global and regional projections, with 

prevailing positive anomalies in the irst half of the cen-

tury and negative ones in the second half until 2100. Simi-

larly, the evapotranspiration remains roughly constant for 

the irst half of the century and then slightly decreases, 

evidently in response to the reduced precipitation. We 

note that the residual term (Fig. 4d) is not necessarily null 

over the years, probably due to the increased water hold-

ing capacity of atmosphere, which makes the assumption 

of 
�W

�t
= 0 not strictly valid. However, the changes in pre-

cipitation and moisture lux convergence projected for the 

end of the century (Table 3) are around − 0.5 mm day−1 

and − 0.4 to − 0.3 mm day−1, respectively, and higher in 

magnitude than the changes in the residual term (~ 0.1 to 

− 0.2 mm day−1). Therefore, the moisture lux convergence 

stands as the main driver of the precipitation reduction in 

global and regional projections at the end of the century, 

as a response to the weaker trade winds (Fig. 2a, b). Note 

that the diference in changes between P and C (Table 4) is 

higher than between P and ET for both global and regional 

ensembles, especially in the GCM (0.58, against 0.30 in 

RegCM4). Therefore, the reduced ET in the same period 

would be a result of the decreased P.

Fig. 4  20-years moving average of anomalies of precipitation (P), 
evapotranspiration (ET), moisture lux convergence (C) and the resid-
ual term (P-ET-C), in mm  day−1, from 1995 to 2100, for each individ-

ual GCM and RegCM4 and ensemble mean, for DJF in: a–d AMZ, 
e–h LPB, i–l ME and m–p EA. The black (red) line represents the 
GCM (RegCM4) ensemble mean
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In the LPB during DJF there is a considerable spread 

between the projections until ~ 2055 (Fig. 4e), with the 

regional ensemble projecting increasing precipitation and 

the global ones the opposite. During this period, the precipi-

tation change signal in both ensembles is driven by ET and C 

(Figs. 4f, g). After 2055, an increase in precipitation is noted 

in all projections, except MPI-ESM-MR, driven especially 

by the moisture lux convergence (see the high slopes in 

Table 4), due to the anomalous cyclonic circulation shown in 

Fig. 2a, b. The regional ensemble projects a greater increase 

in precipitation than the global one due to the higher contri-

bution of ET and C. We note that the residual term is close 

to zero in both the global and regional ensembles (Fig. 4h). 

In the global ensemble the small residual is due to large con-

tributions of the individual ensemble members of opposite 

signals, whereas in the regional one the residual is small for 

each ensemble members. Similarly to the AMZ, for the LPB 

the changes in moisture lux convergence are higher than 

the residual term (Table 3) and are driving the precipita-

tion change signal at the end of the century. Interestingly, in 

the GCM ensemble the ET decreases in the late twenty-irst 

century even though precipitation increases, which implies 

an increase in runof or water storage to balance the surface 

water cycle. The LPB is within a strong hotspot area for 

land-surface feedbacks and these projections support the 

indings from Ruscica et al. (2016), which propose the disap-

pearance or a weakening of this hotspot region in the future.

Both the global and regional ensembles project a clear 

increasing trend in DJF precipitation over the two selected 

European subdomains (Fig. 4 l, m). Following precipita-

tion, ET has an increasing trend as well, with higher val-

ues in the GCMs (Fig. 4j–n). Conversely, the moisture lux 

convergence shows an irregular behavior, particularly in 

the EA region, where an increase of moisture lux conver-

gence is clear only in the latter part of the century, while 

large oscillations are found prior to the last decade of the 

twenty-irst century in the RegCM4 ensemble (Fig. 4o). At 

the same time, a clear positive trend of moisture lux conver-

gence during the second half of the century in the RegCM4 

simulations is more pronounced than in the driving GCM 

Fig. 5  Similar to Fig. 4, but for JJA
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projections over the ME region (Fig. 4k). Consequently, 

for this region, the residual term is higher in the RegCM4 

ensemble than in the GCMs (Fig. 4l). Note that the regional 

model has a great potential to substantially modulate the 

driving GCM signals in these relatively small regions placed 

far away from the domain’s boundaries (e.g. RegCM4 MPI-

ESM-LR). For both ME and EA regions the residual trend 

is smaller than the precipitation change signal (Table 3). 

Therefore, the increase of ET stands as the main driver of 

the precipitation change signal over the EA, which presents 

high slope for both ensembles (Table 4). In the ME region, 

the comparison of slope coeicients indicates that the pre-

cipitation change signal is mostly driven by the moisture lux 

convergence (Table 4).

During JJA (Fig. 5), over the AMZ the precipitation 

in both the global and regional projections progressively 

decreases throughout the century (Fig. 5a). This decline 

is mainly linked to a corresponding ET decrease (Fig. 5b). 

On the other hand, most of global and regional projections 

show an increment in moisture lux convergence (Fig. 5c), 

especially after 2050, indicating that the large-scale atmos-

pheric moisture transport is not the main driver of the pre-

cipitation decline. Rather, the ET signal might point to be 

of greater relevance due to local P-ET feedbacks, as also 

indicated by the strong slopes in both P and ET, as shown in 

Table 4. In this case, it is important to highlight the added 

value of RegCM4 in reducing the moisture lux convergence 

of HadGEM2-ES, which stands out in comparison to the 

other projections (see the reduced slope in RegCM4 with 

respect to the GCM in Table 4). As the tropical Atlantic 

moisture transported to AMZ in JJA is lower than in DJF, 

it is expected that the ET exerts a greater inluence on pre-

cipitation. Only the regional ensemble presents changes in 

ET and P larger than the residual term (Table 3), which sup-

ports the previous arguments. Over the AMZ, GCMs have 

a change in the residual term of ~ − 0.6 mm day−1, which 

is higher than the diference of precipitation between the 

future and reference periods (− 0.1 mm day−1; Table 4). This 

does not allow us to identify which mechanism drives the 

JJA precipitation change signal for the end of the century in 

AMZ for the GCMs.

In LPB (Fig. 5e–h), the precipitation barely changes 

until around 2060, after which the global ensemble pro-

jects an increase with respect to the reference of less than 

0.2 mm day−1 and the regional ensemble a smaller increase 

around 0.1 mm day−1 later in the century. In the global model 

ensemble, the moisture lux convergence would be the main 

driver of precipitation changes, as suggested by the slopes 

of the regression curves, while the ET is the main driver for 

the regional model ensemble (Table 4). Precipitation over 

the LPB is mainly associated with transient synoptic system 

(Reboita et al. 2010; de Jesus et al. 2016) and both the global 

and regional models have systematic underestimation errors 

Table 3  Water balance components [P: precipitation. ET: evapotran-
spiration. C: moisture lux convergence] over the subdomains for the 
reference period (1995–2014) and the trends (diferences between 
2080–2100 and 1995–2014) in DJF and JJA

Units: mm  day−1

WB compo-
nents

AMZ LPB ME EA

GCMs (RegCM4) Reference Period – DJF

P 8.5 (6.5) 6.0 (5.6) 2.7 (1.8) 1.9 (1.6)

ET 4.2 (4.1) 4.7 (4.2) 0.8 (0.6) 0.5 (0.5)

C 3.7 (2.2) 1.4 (0.8) 2.3 (2.4) 1.3 (0.6)

P-ET-C 0.6 (0.2) − 0.1 (0.6) − 0.4 (− 
1.2)

0.1 (0.5)

GCMs (RegCM4) trends (future minus reference) – DJF

P − 0.5 (− 
0.5)

0.3 (0.6) 0.6 (0.5) 0.5 (0.3)

ET − 0.2 (0.0) − 0.2 (0.1) 0.2 (0.1) 0.1 (0.2)

C − 0.4 (− 
0.3)

0.5 (0.7) 0.5 (0.8) 0.1 (0.1)

P-ET-C 0.1 (− 0.2) 0.0 (− 0.2) − 0.1 (− 
0.4)

0.3 (0.0)

GCMs (RegCM4) Reference Period – JJA

P 1.3 (1.1) 1.7 (1.4) 2.2 (2.3) 2.0 (1.9)

ET 3.0 (2.4) 1.5 (1.5) 2.8 (3.0) 3.0 (2.6)

C − 1.4 (− 
1.0)

1.2 (− 0.5) − 0.5 (− 
0.3)

− 0.5 (− 1.4)

P-ET-C − 0.3 (− 
0.3)

− 1.0 (0.4) − 0.1 (− 
0.4)

− 0.5 (0.7)

GCMs (RegCM4) trends (future minus reference) – JJA

P − 0.1 (− 
0.4)

0.0 (0.0) − 0.8 (− 
0.2)

− 0.7 (− 0.1)

ET − 0.4 (− 
0.7)

− 0.1 (0.0) − 0.4 (0.0) − 0.6 (0.0)

C 0.9 (0.3) 0.3 (− 0.1) − 0.6 (− 
0.2)

0.0 (− 0.4)

P-ET-C − 0.6 (0.0) − 0.2 (0.1) 0.2 (0.0) − 0.1 (0.3)

Table 4  Slope of the linear regression model between trends of pre-
cipitation and evapotranspiration (P, ET), and precipitation and 
convergence (P, C), depicted in the trimesters DJF and JJA for each 
region

Global (RegCM4) values are shown outside (inside) the parenthesis. 
All slopes present p value < 0.05 except when marked with*

DJF JJA

Region P, ET P, C P, ET P, C

AMZ 0.22 (0.09) 0.58 (0.30) 1.70 (1.50) − 3.50 (− 0.63)

LPB − 0.23 (0.08) 1.40 (0.98) − 0.10 (0.42) 2.70 (0.00*)

ME 0.29 (0.18) 0.78 (1.43) 0.48 (-0.33) 0.82 (0.44)

EA 0.46 (0.36) 0.38 (0.11) 0.88 (0.52) − 0.08 (1.00)
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in representing these systems (de Jesus et al. 2016; Llopart 

et al. 2020), which might explain the residual term exceed-

ing the precipitation change signal at the end of the century 

(see Fig. 5h and Table 3). Also in this case, as the residual 

is higher than the precipitation change signal it is diicult to 

separate which component drives the precipitation changes.

Analysis of the JJA water budget over the two European 

regions ofers some interesting considerations (Fig. 5i–p). In 

all GCM simulations, we ind a general decrease of moisture 

lux convergence over the ME region throughout the century 

(Fig. 5k). However, while this clearly drives a corresponding 

decrease of precipitation and ET in the global models, it is 

not relected in corresponding trends in the RegCM4 simu-

lations (Fig. 5i, j). Rather, precipitation shows a much less 

pronounced reduction, while the ET anomalies exhibit either 

some oscillations or even a small increase over both Euro-

pean domains. In contrast, over the EA the GCM ensemble 

shows a moisture lux convergence increase by the end of the 

century, which instead decreases in the RegCM4 ensemble 

(Fig. 5o). Therefore, in EA the precipitation change signal in 

the regional and global projections indicate diferent driving 

mechanisms (Tables 3 and 4). In the GCMs the residual term 

is smaller than the precipitation decrease and this decrease 

is explained mainly by a reduction in ET (slopes in Table 4). 

Conversely, in the regional model projections the residual 

exceeds the precipitation trend, making diicult to isolate 

what process is controlling the precipitation trends, although 

the ET appears to still have an important role. One factor 

in this diference, can be the higher resolution topography, 

which has already been shown to modulate the boreal sum-

mer precipitation change signal through high elevation heat-

ing and resulting convection (Figure S3, Giorgi et al. 2016; 

Torma and Giorgi 2020).

In the analysis, it is important to point out that the resid-

ual of the atmospheric water balance equation can have the 

same order of magnitude as the other terms during a warm-

ing period, because of the increasing water holding capacity 

of warmer air and possible changes in relative humidity. In 

fact, a relatively large residual term in Table 3 is seen for 

JJA in the GCMs (AMZ and LPB) and RegCM4 (LPB and 

EA), making it diicult to identify which component drives 

the changes in precipitation.

For DJF, the residual term is much smaller than the 

changes in precipitation in both the global and regional 

ensembles. For the AMZ region, the GCM and RegCM4 

ensembles show a decrease in ET and C, i.e., both contribute 

to the precipitation change signal (with a higher contribu-

tion of C). This implies that remote processes are the main 

drivers of the precipitation change signal, associated with 

a weakening of the trade winds (Fig. 2a, b). On the other 

hand, in JJA over the AMZ, the reduction of precipitation 

projected by RegCM4 (~ − 0.4 mm day−1) is linked to a 

decrease in ET (~ − 0.7 mm day−1) indicating that local 

feedbacks are dominant in driving the precipitation change 

signal. Regarding the LPB region, for DJF, the main driver 

of the precipitation change at the end of the century is the 

moisture flux convergence from the Southern Atlantic 

Ocean, i.e. a remote process dominates the change signal 

(Fig. 2a, b; Table 4).

Over the ME, the increase (decrease) in precipitation 

during DJF (JJA) can be linked to both components of the 

atmospheric water balance, with a higher contribution of C 

than ET (Table 3). This means that the moisture lux con-

vergence (divergence) is the main driver of the precipitation 

change signal (Figs. 2 and 3). Over the EA region, during 

DJF there is a prevailing efect of local feedbacks, i.e., ET 

drives the increase in precipitation in the RegCM4 ensemble 

(Table 4).

4  Conclusions

In this study, the atmospheric water budget is used to assess 

the sources of the future climate precipitation change sig-

nal over South America and Europe in an ensemble of 

CORDEX-CORE simulations. In particular, we focus on 

the Amazon (AMZ), La Plata basin (LPB), Mid-Europe 

(ME) and Eastern Europe (EA) regions in an ensemble of 

twenty-irst century projections (from 1970 to 2100) of ive 

RegCM4 simulations under the RCP8.5 scenario driven by 

four GCMs (MPI-ESM-MR, MPI-ESM-LR, NorESM1-M 

and HadGEM2-ES).

In general, the precipitation changes for DJF and JJA 

over both domains are in agreement with previous studies 

(Sánchez et al. 2015; Llopart et al. 2020; Christensen and 

Christensen 2007; Giorgi and Lionello 2008; Jacob et al. 

2014, 2020). Over the SAM, there is a dipole pattern of 

change in precipitation, i.e. drier conditions in the northern 

regions and wetter conditions in central-eastern parts of the 

continent, which can be associated with changes in the cir-

culation pattern at 850 hPa. Over Europe, the precipitation 

change signal shows a strong seasonality, i.e. during DJF 

(JJA) the projections indicate wet (dry) conditions, while in 

SAM this seasonality is not found. Over the European sub-

domains, the projected changes in precipitation, following 

Giorgi and Lionello (2008), might be attributed to the sea-

sonal northward migration of the mid-latitude storms track.

The evaluation of the atmospheric water budget for the 

reference period shows that during the summer (DJF in SA 

and JJA in Europe) the evapotranspiration stands out as the 

main feature controlling precipitation in all subdomains. 

While in SAM the moisture lux convergence adds a contri-

bution to the precipitation, in Europe it acts in the opposite 

direction, since moisture lux divergence predominates. In 

winter (JJA in SA and DJF in Europe), the moisture lux con-

vergence is the main driver of precipitation for the European 
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subdomains, while evapotranspiration continues be the main 

driver for the SAM subdomains.

Focusing on the changes in the selected subdomains, the 

spread among the ensemble members for precipitation is 

largest after 2050 and during the rainy seasons. According 

to the atmospheric water budget, during the boreal winter the 

precipitation change signals in the European subregions are 

controlled by the changes of both large-scale moisture lux 

convergence (most important in ME) and evapotranspiration 

(most important in EA). In EA during boreal summer the 

climate change signals of the water budget terms are dif-

ferent between the GCM and RegCM4 ensembles, making 

it diicult to conclude what process is controlling the pre-

cipitation changes. Over SAM, the evapotranspiration and 

moisture lux convergence change signals are not necessar-

ily the same, and consistent with the precipitation changes, 

depending on region and season.

The global and regional model ensembles indicate an 

increase of precipitation in the LPB, mainly in DJF (11%), 

due to remote forcings, i.e., an increase in moisture conver-

gence transported from the South Atlantic Ocean. During 

the austral summer, the LPB region has a strong land-surface 

feedback (hotspot) in present climate conditions (Sörensson 

et al. 2010; Sörensson and Menéndez 2011). Therefore, our 

result suggest that this hotspot tends to be reduced in future 

climate conditions, which agrees with previous studies (Rus-

cica et al. 2016).

The projections show a precipitation decrease over the 

AMZ, more pronounced in the RegCM4 ensemble than in 

the GCMs, mainly in JJA (− 40%). In this season, the pre-

cipitation decrease is associated with a reduction in evapo-

transpiration, which may imply that in the future the AMZ 

might become a hotspot for land-surface feedback during 

the austral winter. For DJF, moisture lux convergence is the 

main driver of the precipitation change signal in the AMZ 

and LPB, while for the ME region the opposite is projected 

to occur, i.e., ET drives the precipitation change signal.

The residual term in the atmospheric water budget is an 

important feature to be considered in our analysis. In most 

cases, the precipitation change signal is greater than the 

residual term, and in these cases the water budget approach 

provides a great potential to improve understanding of the 

mechanisms controlling the precipitation change signal. 

However, in a few cases (GCMs in AMZ and LPB, RegCM4 

in LPB and EA, all in JJA) the residual term is greater than 

the precipitation change term and therefore it does not allow 

us to conclude what is driving the precipitation changes. 

This may be due to the parameterizations of convection and 

land surface schemes, but also to an increase in tropospheric 

speciic humidity in response to a greater water holding 

capacity in warmer conditions.

Our results indicate that different driving processes 

related to the atmospheric and surface water budgets may 

be the main controls of precipitation change. This has impor-

tant implications for modeling and understanding regional 

precipitation changes, since in cases where local rather than 

large scale atmospheric drivers dominate, the use of difer-

ent physical schemes in the models can add another level of 

uncertainty.
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