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ABSTRACT. We prove the following sparse approximation result for polytopes. Assume
that @ is a polytope in John’s position. Then there exist at most 2d vertices of @) whose
convex hull Q' satisfies Q C —2d? Q’. As a consequence, we retrieve the best bound for
the quantitative Helly-type result for the volume, achieved by Brazitikos, and improve on
the strongest bound for the quantitative Helly-type theorem for the diameter, shown by
Ivanov and Naszédi: We prove that given a finite family F of convex bodies in R? with
intersection K, we may select at most 2d members of F such that their intersection has
volume at most (¢d)>¥/2 vol K, and it has diameter at most 2d? diam K, for some absolute
constant ¢ > 0.

1. HISTORY AND RESULTS

Helly’s theorem, dated from 1923 [H23], is a cornerstone result in convex geometry. Its
finitary version states that the intersection of a finite family of convex sets is empty if and
only if there exists a subfamily of d + 1 sets such that its intersection is empty. In 1982,
Barany, Katchalski and Pach [BKP82| introduced the following quantitative versions of
Helly’s theorem: there exist positive constants v(d),d(d) such that for a finite family F of
convex bodies, one may select 2d members such that their intersection has volume at most
v(d) vol(( F), or has diameter at most §(d) diam(() F).

The problem of finding the optimal values of §(d) and v(d) has enjoyed special interest in
recent years (see e.g. the excellent survey article [BK21]). In [BKP82] (see also [BKP8&4])
the authors proved that v(d) < d2¥ and §(d) < d?, and they conjectured that v(d) ~ d?
and §(d) ~ cod!/? for some positive constants ¢;,co > 0.

For the volume problem, in a breakthrough paper, Naszédi [N16] proved that v(d) <
ed+1d2d+%, while v(d) > d%? must hold. Improving upon his ideas, Brazitikos [B17] found
the current best upper bound for volume: v(d) < (ed)?¥? for a constant ¢ > 0.

For the diameter question, Brazitikos [B18] proved the first polynomial bound on d(d)
by showing that §(d) < cd''/? for some ¢ > 0. In 2021, Ivanov and Naszédi [IN21] found
the best known upper bound, §(d) < (2d)?, and also proved that 6(d) > cd'/?. Thus, the
value conjectured in [BKP82] for (d) would be asymptotically sharp.

In the present note, we show that given a finite family F of closed convex sets, one can
select at most 2d members such that their intersection sits inside a scaled version of (| F for
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a suitable location of the origin. Clearly, it suffices to prove this statement for the special
case when F consists of closed halfspaces intersecting in a convex body. As an application,
we obtain an improvement on the diameter bound, 6(d) < 2d?, and retrieve the best known
bound for v(d). The crux of the argument is the following sparse approximation result for
polytopes, which is a strengthening of Theorem 2 in [IN21].

Theorem 1. Let A > 0 and Q C R? be a convex polytope such that Q C —\Q. Then there
exist at most 2d vertices of Q whose convex hull Q' satisfies

QC—-(\+2)dqQ".

We immediately obtain the following corollary.

Corollary 2. Assume that Q = —Q is a symmetric convex polytope in RE. Then we may
select a set of at most 2d vertices of QQ with convex hull Q' such that
QC3dQ.

As usual, let B¢ denote the unit ball of R and let S*~! be the unit sphere of R?. A
standard consequence of Fritz John’s theorem [J48] states that if K C R is a convex

body in John’s position, that is, the largest volume ellipsoid inscribed in K is B?, then
B C K CdB?C —dK (see e.g. [B97]). Thus, we derive

Corollary 3. Assume that Q C R? is a convex polytope in John’s position. Then there
exists a subset of at most 2d vertices of QQ whose convex hull Q' satisfies

QC —2d*Q.

For a family of sets {Kj,...,K,} C R? and for a subset o C [n] = {1,...,n}, we will
use the notation

K, = ﬂ Ki,
1€0
as in [IN21]. Also, (zl,]g) stands for the set of all subsets of [n] with cardinality at most k.
Using this terminology, we are ready to state our quantitative Helly-type result.

Theorem 4. Let {Ky,...,K,} be a family of closed convex sets in R® with d > 2 such that
their intersection K = K1 N---N K, is a convex body. Then there exists a o € (<[g}d) such
that

volg Ky < (ed)®¥?voly K and diam K, < 2d? diam K

for some constant ¢ > 0.

To conclude the section we formulate the following conjecture, which was essentially
stated already in [BKP82]. This would imply the asymptotically sharp bound for v(d).

Conjecture 5. Assume that {ui,...,u,} C S¥ ! is a set of unit vectors satisfying the
conditions of Fritz John’s theorem. That is, there exist positive numbers ay,...,ay, for
which Y77 aiu; = 0 and Y. aju; @ u; = Iy, the identity operator on R?. Then there
exists a subset o C [n] with cardinality at most 2d so that

B c cdconv{u; : i € o}
with an absolute constant ¢ > 0.

That the above estimate would be asymptotically sharp is shown by taking n = d + 1
and letting {uy,...,u,} to be the set of vertices of a regular simplex inscribed in S9!,
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2. PROOFS

Proof of Theorem[1. The condition @ C —AQ ensures that 0 € int ). Among all simplices
with d vertices from the vertices of ) and one vertex at the origin, consider a simplex

S = conv{0,vy,...,v4} with maximal volume. We write S in the form
d

(1) S = {xERd:w:alvl—i—...—i—advd for a; > 0 and Zai < 1}.
i=1

For every i = 1,...,d, let H; be the hyperplane spanned by {0,v1,...,v4} \ {v;}, and let
L; be the strip between the hyperplanes v; + H; and —v; + H;. Define P = ﬂz‘e[d} L; (see
Figure 1).

Note that
(2) P = {z € R : voly(conv({0,z,v1,...,v4} \ {vi}) < volg(S) for all i =1,...,d}.
This follows from the volume formula

1
volg(conv{0,wr, ..., wq}) = E‘det(wl wy - wg)|
for arbitrary wi,...,wq € R which implies that for all z € R?% of the form = = cv; + w
with w € H;, 1 =1,...,d,
volg(conv({0,z,v1,...,vq} \ {vi}) = |¢| volg(5).

Next, we show that

(3) P={zecR¥:z=puv +...+ Bavq for B; € [-1,1]}.

Indeed, since v, ..., vq are linearly independent, we may consider the linear transformation
A with A(v;) = e; for i =1,...,d. Note that

A(P) = A( ﬂ L,‘) = ﬂ A(L;) ={x € R?: x = pier + - -+ Bgeq for p; € [—1,1]}.
i€(d] i€(d]
Thus, (3) holds.
Since S is chosen maximally, equation (2] shows that for any vertex w of Q, w € P. By
convexity,

(4) QCP
Let 8" = —2dS + (v1 + ...+ vq). By (@),

d
(5) S = {x eR: z = ~yv1 + ... +yquq for ; < 1 and Z% > —d}.
i=1

Then, from (B]) and (&),
(6) pPcCS.

Let u = 2(v1 + ... + vq) be the centroid of the facet conv{vi,...,vq} of S. Let y be
the intersection of the ray from 0 through —u and the boundary of ). By Carathéodory’s
theorem, we can choose k < d vertices {v],...,v}} of @ such that y € conv{v],..., v }.
Set Q" = conv{vy,...,vg,v],..., v}

Note that [y,u] C @', which implies 0 € Q. Thus,

(7) Scq.
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FiGURE 1.

Since Q C —AQ), we have that —u € AQ. Since Ay is on the boundary of AQ, we also have
that —u € [0, A\y]. We know that 0, \y € AQ’, so

(8) ue -\Q'.
Combining @), (@), (), and (8]):
(9) QCPCS =-2dS+duC —-2dQ — Q' =—-(\+2)dQ". O

Proof of Theorem[] As shown in [BKP82], we may assume that {K7,..., K,} consists of
closed halfspaces such that K = (| K; is a d-dimensional polytope. Let T be the affine
transformation sending K to John’s position. Let K, =TK; for i € [n], K = TK, and
for some o C [n], let K, = Nico K;. We claim that there exists o € ( <[Z]d) such that the
following two properties hold:

(10) K, C —2d°K, and
(11) voly K, < (cd)?’d/2 voly K
for some constant ¢ > 0. Statements (I0) and (II]) are affine invariant, so this will suffice
to prove Theorem [d N

Recall that since K is in John’s position, B C K C dB? (see [B97] or [GLMP04,
Theorem 5.1]). Setting @ = (K)°, this yields that éBd C Q C B In particular, Q C —dQ.
Hence, we may apply Theorem [l to Q with A = d, we obtain a subset of at most 2d vertices
of @ such that their convex hull Q’ satisfies

(12) Q C —(d+2)dQ' € —2d*Q'.
The family of closed halfspaces supporting the facets of (Q’)° is a subset of {I~( Tyeon ,I?n}

with at most 2d elements. Thus, we can choose o € ( <[g}d) such that K, = (Q')°. Taking
the polar of (I2]), we obtain -

K, C —(d+2)dK C 242K,
which shows (I0).
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Let P be the parallelotope enclosing @ from the proof of Theorem [l and set P’ = —ﬁP.
Statement (@) implies
Qo P.
Since S is chosen maximally, the volume of S is at least the volume of the simplex obtained
from the Dvoretzky-Rogers lemma [DR50] (see also [N16, Lemma 1.4]):

1
Using (13)),
(14) volg(P') = (2d%) "% volg(P) = (2d*)~% - 2d! voly(S) > d~>¥2(d!)/2.

Note that P’ is centrally symmetric, so we can use the Blaschke-Santal6 inequality (see
[AGM15, Theorem 1.5.10]) for P’

(15) volg(P') - volg((P')°) < voly(BS)%.
Using the inclusions K D B and K, = (Q')° C (P')°, as well as () and (I5):
voly Ky _ vola((P')°) _ voly(BY) _ n*2d>(d)~72 _
voly K~ wvolg(Bg) = volg(P’) = T((d/2)+1) =

for some absolute constant ¢ > 0. This shows (II]) and concludes the proof. (]

d)3d/2
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