QUANTITATIVE HELLY-TYPE THEOREMS VIA SPARSE APPROXIMATION

VÍCTOR HUGO ALMENDRA-HERNÁNDEZ, GERGELY AMBRUS, MATTHEW KENDALL

ABSTRACT. We prove the following sparse approximation result for polytopes. Assume that Q is a polytope in John's position. Then there exist at most 2d vertices of Q whose convex hull Q' satisfies $Q \subseteq -2d^2 Q'$. As a consequence, we retrieve the best bound for the quantitative Helly-type result for the volume, achieved by Brazitikos, and improve on the strongest bound for the quantitative Helly-type theorem for the diameter, shown by Ivanov and Naszódi: We prove that given a finite family \mathcal{F} of convex bodies in \mathbb{R}^d with intersection K, we may select at most 2d members of \mathcal{F} such that their intersection has volume at most $(cd)^{3d/2}$ vol K, and it has diameter at most $2d^2$ diam K, for some absolute constant c > 0.

1. HISTORY AND RESULTS

Helly's theorem, dated from 1923 [H23], is a cornerstone result in convex geometry. Its finitary version states that the intersection of a finite family of convex sets is empty if and only if there exists a subfamily of d + 1 sets such that its intersection is empty. In 1982, Bárány, Katchalski and Pach [BKP82] introduced the following quantitative versions of Helly's theorem: there exist positive constants $v(d), \delta(d)$ such that for a finite family \mathcal{F} of convex bodies, one may select 2d members such that their intersection has volume at most $v(d) \operatorname{vol}(\bigcap \mathcal{F})$, or has diameter at most $\delta(d) \operatorname{diam}(\bigcap \mathcal{F})$.

The problem of finding the optimal values of $\delta(d)$ and v(d) has enjoyed special interest in recent years (see e.g. the excellent survey article [BK21]). In [BKP82] (see also [BKP84]) the authors proved that $v(d) \leq d^{2d^2}$ and $\delta(d) \leq d^{2d}$, and they conjectured that $v(d) \approx d^{c_1d}$ and $\delta(d) \approx c_2 d^{1/2}$ for some positive constants $c_1, c_2 > 0$. For the volume problem, in a breakthrough paper, Naszódi [N16] proved that $v(d) \leq$

For the volume problem, in a breakthrough paper, Naszódi [N16] proved that $v(d) \leq e^{d+1}d^{2d+\frac{1}{2}}$, while $v(d) \geq d^{d/2}$ must hold. Improving upon his ideas, Brazitikos [B17] found the current best upper bound for volume: $v(d) \leq (cd)^{3d/2}$ for a constant c > 0.

For the diameter question, Brazitikos [B18] proved the first polynomial bound on $\delta(d)$ by showing that $\delta(d) \leq cd^{11/2}$ for some c > 0. In 2021, Ivanov and Naszódi [IN21] found the best known upper bound, $\delta(d) \leq (2d)^3$, and also proved that $\delta(d) \geq cd^{1/2}$. Thus, the value conjectured in [BKP82] for $\delta(d)$ would be asymptotically sharp.

In the present note, we show that given a finite family \mathcal{F} of closed convex sets, one can select at most 2*d* members such that their intersection sits inside a scaled version of $\bigcap \mathcal{F}$ for

Date: August 17, 2021.

²⁰²⁰ Mathematics Subject Classification. 52A35, 52A27.

Key words and phrases. Helly-type theorem, volume, diameter, sparse approximation, John's ellipsoid.

Research of the second named author was supported by NKFIH grant KKP-133819 and by the EFOP-3.6.1-16-2016-00008 project, which in turn has been supported by the European Union, co-financed by the European Social Fund.

a suitable location of the origin. Clearly, it suffices to prove this statement for the special case when \mathcal{F} consists of closed halfspaces intersecting in a convex body. As an application, we obtain an improvement on the diameter bound, $\delta(d) \leq 2d^2$, and retrieve the best known bound for v(d). The crux of the argument is the following sparse approximation result for polytopes, which is a strengthening of Theorem 2 in [IN21].

Theorem 1. Let $\lambda > 0$ and $Q \subset \mathbb{R}^d$ be a convex polytope such that $Q \subseteq -\lambda Q$. Then there exist at most 2d vertices of Q whose convex hull Q' satisfies

$$Q \subseteq -(\lambda + 2)dQ'.$$

We immediately obtain the following corollary.

Corollary 2. Assume that Q = -Q is a symmetric convex polytope in \mathbb{R}^d . Then we may select a set of at most 2d vertices of Q with convex hull Q' such that

$$Q \subseteq 3d Q'.$$

As usual, let B^d denote the unit ball of \mathbb{R}^d and let S^{d-1} be the unit sphere of \mathbb{R}^d . A standard consequence of Fritz John's theorem [J48] states that if $K \subset \mathbb{R}^d$ is a convex body in John's position, that is, the largest volume ellipsoid inscribed in K is B^d , then $B^d \subseteq K \subseteq dB^d \subseteq -dK$ (see e.g. [B97]). Thus, we derive

Corollary 3. Assume that $Q \subset \mathbb{R}^d$ is a convex polytope in John's position. Then there exists a subset of at most 2d vertices of Q whose convex hull Q' satisfies

$$Q \subseteq -2d^2 Q'.$$

For a family of sets $\{K_1, \ldots, K_n\} \subset \mathbb{R}^d$ and for a subset $\sigma \subset [n] = \{1, \ldots, n\}$, we will use the notation

$$K_{\sigma} = \bigcap_{i \in \sigma} K_i,$$

as in [IN21]. Also, $\binom{[n]}{\leq k}$ stands for the set of all subsets of [n] with cardinality at most k. Using this terminology, we are ready to state our quantitative Helly-type result.

Theorem 4. Let $\{K_1, \ldots, K_n\}$ be a family of closed convex sets in \mathbb{R}^d with $d \ge 2$ such that their intersection $K = K_1 \cap \cdots \cap K_n$ is a convex body. Then there exists a $\sigma \in {\binom{[n]}{\leq 2d}}$ such that

$$\operatorname{vol}_d K_{\sigma} \leq (cd)^{3d/2} \operatorname{vol}_d K$$
 and $\operatorname{diam} K_{\sigma} \leq 2d^2 \operatorname{diam} K$

for some constant c > 0.

To conclude the section we formulate the following conjecture, which was essentially stated already in [BKP82]. This would imply the asymptotically sharp bound for v(d).

Conjecture 5. Assume that $\{u_1, \ldots, u_n\} \subset S^{d-1}$ is a set of unit vectors satisfying the conditions of Fritz John's theorem. That is, there exist positive numbers $\alpha_1, \ldots, \alpha_n$ for which $\sum_{i=1}^n \alpha_i u_i = 0$ and $\sum_{i=1}^n \alpha_i u_i \otimes u_i = I_d$, the identity operator on \mathbb{R}^d . Then there exists a subset $\sigma \subset [n]$ with cardinality at most 2d so that

$$B^d \subset c \, d \operatorname{conv} \{ u_i : i \in \sigma \}$$

with an absolute constant c > 0.

That the above estimate would be asymptotically sharp is shown by taking n = d + 1and letting $\{u_1, \ldots, u_n\}$ to be the set of vertices of a regular simplex inscribed in S^{d-1} .

2. Proofs

Proof of Theorem 1. The condition $Q \subseteq -\lambda Q$ ensures that $0 \in \text{int } Q$. Among all simplices with d vertices from the vertices of Q and one vertex at the origin, consider a simplex $S = \text{conv}\{0, v_1, \ldots, v_d\}$ with maximal volume. We write S in the form

(1)
$$S = \left\{ x \in \mathbb{R}^d : x = \alpha_1 v_1 + \ldots + \alpha_d v_d \text{ for } \alpha_i \ge 0 \text{ and } \sum_{i=1}^d \alpha_i \le 1 \right\}.$$

For every i = 1, ..., d, let H_i be the hyperplane spanned by $\{0, v_1, ..., v_d\} \setminus \{v_i\}$, and let L_i be the strip between the hyperplanes $v_i + H_i$ and $-v_i + H_i$. Define $P = \bigcap_{i \in [d]} L_i$ (see Figure 1).

Note that

(2)
$$P = \{x \in \mathbb{R}^d : \operatorname{vol}_d(\operatorname{conv}(\{0, x, v_1, \dots, v_d\} \setminus \{v_i\}) \le \operatorname{vol}_d(S) \text{ for all } i = 1, \dots, d\}.$$

This follows from the volume formula

$$\operatorname{vol}_d(\operatorname{conv}\{0, w_1, \dots, w_d\}) = \frac{1}{d!} \left| \det(w_1 \, w_2 \, \cdots \, w_d) \right|$$

for arbitrary $w_1, \ldots, w_d \in \mathbb{R}^d$, which implies that for all $x \in \mathbb{R}^d$ of the form $x = cv_i + w$ with $w \in H_i$, $i = 1, \ldots, d$,

$$\operatorname{vol}_d(\operatorname{conv}(\{0, x, v_1, \dots, v_d\} \setminus \{v_i\}) = |c| \operatorname{vol}_d(S).$$

Next, we show that

(3)
$$P = \{ x \in \mathbb{R}^d : x = \beta_1 v_1 + \ldots + \beta_d v_d \text{ for } \beta_i \in [-1, 1] \}$$

Indeed, since v_1, \ldots, v_d are linearly independent, we may consider the linear transformation A with $A(v_i) = e_i$ for $i = 1, \ldots, d$. Note that

$$A(P) = A\left(\bigcap_{i \in [d]} L_i\right) = \bigcap_{i \in [d]} A(L_i) = \{x \in \mathbb{R}^d : x = \beta_1 e_1 + \dots + \beta_d e_d \text{ for } \beta_i \in [-1, 1]\}.$$

Thus, (3) holds.

Since S is chosen maximally, equation (2) shows that for any vertex w of $Q, w \in P$. By convexity,

Let
$$S' = -2dS + (v_1 + \ldots + v_d)$$
. By (1),

(5)
$$S' = \left\{ x \in \mathbb{R}^d : x = \gamma_1 v_1 + \ldots + \gamma_d v_d \text{ for } \gamma_i \le 1 \text{ and } \sum_{i=1}^d \gamma_i \ge -d \right\}.$$

Then, from (3) and (5),

$$(6) P \subseteq S'$$

Let $u = \frac{1}{d}(v_1 + \ldots + v_d)$ be the centroid of the facet $\operatorname{conv}\{v_1, \ldots, v_d\}$ of S. Let y be the intersection of the ray from 0 through -u and the boundary of Q. By Carathéodory's theorem, we can choose $k \leq d$ vertices $\{v'_1, \ldots, v'_k\}$ of Q such that $y \in \operatorname{conv}\{v'_1, \ldots, v'_k\}$. Set $Q' = \operatorname{conv}\{v_1, \ldots, v_d, v'_1, \ldots, v'_k\}$.

Note that $[y, u] \subseteq Q'$, which implies $0 \in Q'$. Thus,

$$(7) S \subseteq Q'.$$

Since $Q \subseteq -\lambda Q$, we have that $-u \in \lambda Q$. Since λy is on the boundary of λQ , we also have that $-u \in [0, \lambda y]$. We know that $0, \lambda y \in \lambda Q'$, so

(8)
$$u \in -\lambda Q'$$

Combining (4), (6), (7), and (8):

(9)
$$Q \subseteq P \subseteq S' = -2dS + du \subseteq -2dQ' - \lambda dQ' = -(\lambda + 2)dQ'.$$

Proof of Theorem 4. As shown in [BKP82], we may assume that $\{K_1, \ldots, K_n\}$ consists of closed halfspaces such that $K = \bigcap K_i$ is a *d*-dimensional polytope. Let *T* be the affine transformation sending *K* to John's position. Let $\widetilde{K}_i = TK_i$ for $i \in [n]$, $\widetilde{K} = TK$, and for some $\sigma \subset [n]$, let $\widetilde{K}_{\sigma} = \bigcap_{i \in \sigma} \widetilde{K}_i$. We claim that there exists $\sigma \in {[n] \choose \leq 2d}$ such that the following two properties hold:

(10)
$$\widetilde{K}_{\sigma} \subseteq -2d^2 \widetilde{K}$$
, and

(11)
$$\operatorname{vol}_d \widetilde{K}_\sigma \le (cd)^{3d/2} \operatorname{vol}_d \widetilde{K}$$

for some constant c > 0. Statements (10) and (11) are affine invariant, so this will suffice to prove Theorem 4.

Recall that since \widetilde{K} is in John's position, $B^d \subseteq \widetilde{K} \subseteq dB^d$ (see [B97] or [GLMP04, Theorem 5.1]). Setting $Q = (\widetilde{K})^\circ$, this yields that $\frac{1}{d}B^d \subseteq Q \subseteq B^d$. In particular, $Q \subseteq -dQ$. Hence, we may apply Theorem 1 to Q with $\lambda = d$, we obtain a subset of at most 2d vertices of Q such that their convex hull Q' satisfies

(12)
$$Q \subseteq -(d+2)dQ' \subseteq -2d^2Q'.$$

The family of closed halfspaces supporting the facets of $(Q')^{\circ}$ is a subset of $\{\widetilde{K}_1, \ldots, \widetilde{K}_n\}$ with at most 2*d* elements. Thus, we can choose $\sigma \in {[n] \choose \leq 2d}$ such that $\widetilde{K}_{\sigma} = (Q')^{\circ}$. Taking the polar of (12), we obtain

$$\widetilde{K}_{\sigma} \subseteq -(d+2)d\widetilde{K} \subseteq -2d^2\widetilde{K},$$

which shows (10).

Let P be the parallelotope enclosing Q from the proof of Theorem 1 and set $P' = -\frac{1}{2d^2}P$. Statement (9) implies

$$Q' \supseteq P'$$

Since S is chosen maximally, the volume of S is at least the volume of the simplex obtained from the Dvoretzky-Rogers lemma [DR50] (see also [N16, Lemma 1.4]):

(13)
$$\operatorname{vol}_d(S) \ge \frac{1}{\sqrt{d!} d^{d/2}}.$$

Using (13),

(14)
$$\operatorname{vol}_d(P') = (2d^2)^{-d} \operatorname{vol}_d(P) = (2d^2)^{-d} \cdot 2^d d! \operatorname{vol}_d(S) \ge d^{-5d/2} (d!)^{1/2}$$

Note that P' is centrally symmetric, so we can use the Blaschke-Santaló inequality (see [AGM15, Theorem 1.5.10]) for P':

(15)
$$\operatorname{vol}_d(P') \cdot \operatorname{vol}_d((P')^\circ) \le \operatorname{vol}_d(B_2^d)^2.$$

Using the inclusions $\widetilde{K} \supseteq B_2^d$ and $\widetilde{K}_{\sigma} = (Q')^{\circ} \subseteq (P')^{\circ}$, as well as (14) and (15):

$$\frac{\operatorname{vol}_d \widetilde{K}_{\sigma}}{\operatorname{vol}_d \widetilde{K}} \le \frac{\operatorname{vol}_d((P')^{\circ})}{\operatorname{vol}_d(B_2^d)} \le \frac{\operatorname{vol}_d(B_2^d)}{\operatorname{vol}_d(P')} \le \frac{\pi^{d/2} d^{5d/2} (d!)^{-1/2}}{\Gamma((d/2)+1)} \le (cd)^{3d/2}$$

for some absolute constant c > 0. This shows (11) and concludes the proof.

3. Acknowledgements

This research was done under the auspices of the Budapest Semesters in Mathematics program.

References

- [AGM15] S. Artstein-Avidan, A. Giannopoulos and V. D. Milman, Asymptotic Geometric Analysis, Part I. Mathematical Surveys and Monographs 202, American Mathematical Society, Providence, RI, 2015.
- [B97] K. Ball, An elementary introduction to modern convex geometry. Math. Sci. Res. Inst. Publ. 31, Cambridge Univ. Press, Cambridge, 1997.
- [BK21] I. Bárány and G. Kalai, *Helly-type problems*. Manuscript, 2021.
- [BKP82] I. Bárány, M. Katchalski and J. Pach, Quantitative Helly-type theorems. Proc. Amer. Math. Soc. 86 (1982), no. 1, 109–114.
- [BKP84] I. Bárány, M. Katchalski and J. Pach, Helly's theorem with volumes. Am. Math. Mon. 91 (1984), no. 6, 362–365.
- [B17] S. Brazitikos, Brascamp-Lieb inequality and quantitative versions of Helly's theorem. Mathematika 63 (2017), 272–291.
- [B18] S. Brazitikos, Polynomial estimates towards a sharp Helly-type theorem for the diameter of convex sets. Bull. Hellenic Math. Soc. 62 (2018), 19–25.
- [DR50] A. Dvoretzky and C.A. Rogers, Absolute and unconditional convergence in normed linear spaces. Proc. Nat. Acad. Sci. U.S.A. 36 (1950), 192–197.
- [GLMP04] Y. Gordon, A.E. Litvak, M. Meyer and A. Pajor, John's decomposition in the general case and applications. J. Differential Geom. 68 (2004), no. 1, 99–114.
- [H23] E. Helly, Über Mengen konvexer Körper mit gemeinschaftlichen Punkten. Jahresber. Deutsch. Math.-Verein. 32 (1923), 175–176.
- [IN21] G. Ivanov and M. Naszódi, A quantitative Helly-type theorem: containment in a homothet. arXiv preprint arXiv:2103.04122 (2021).
- [J48] F. John, Extremum problems with inequalities as subsidiary conditions. In: Studies and essays presented to R. Courant on his 60th birthday (Jan. 8, 1948), Interscience, New York, 1948, pp. 187–204.
- [N16] M. Naszódi, Proof of a conjecture of Bárány, Katchalski and Pach. Discrete Comput. Geom. 55 (2016), no. 1, 243–248.

6 QUANTITATIVE HELLY-TYPE THEOREMS VIA SPARSE APPROXIMATION

Víctor Hugo Almendra-Hernández

Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México

e-mail address: vh.almendra.h@ciencias.unam.mx

GERGELY AMBRUS Alfréd Rényi Institute of Mathematics, Eötvös Loránd Research Network, Budapest, Hungary and Bolyai Institute, University of Szeged, Hungary e-mail address: ambrus@renyi.hu

MATTHEW KENDALL

Department of Mathematics, Princeton University, Princeton, NJ, USA e-mail address: mskendall@princeton.edu