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QUANTITATIVE HELLY-TYPE THEOREMS VIA SPARSE

APPROXIMATION

VÍCTOR HUGO ALMENDRA-HERNÁNDEZ, GERGELY AMBRUS,
MATTHEW KENDALL

Abstract. We prove the following sparse approximation result for polytopes. Assume
that Q is a polytope in John’s position. Then there exist at most 2d vertices of Q whose
convex hull Q′ satisfies Q ⊆ −2d2 Q′. As a consequence, we retrieve the best bound for
the quantitative Helly-type result for the volume, achieved by Brazitikos, and improve on
the strongest bound for the quantitative Helly-type theorem for the diameter, shown by
Ivanov and Naszódi: We prove that given a finite family F of convex bodies in R

d with
intersection K, we may select at most 2d members of F such that their intersection has
volume at most (cd)3d/2 volK, and it has diameter at most 2d2 diamK, for some absolute
constant c > 0.

1. History and results

Helly’s theorem, dated from 1923 [H23], is a cornerstone result in convex geometry. Its
finitary version states that the intersection of a finite family of convex sets is empty if and
only if there exists a subfamily of d + 1 sets such that its intersection is empty. In 1982,
Bárány, Katchalski and Pach [BKP82] introduced the following quantitative versions of
Helly’s theorem: there exist positive constants v(d), δ(d) such that for a finite family F of
convex bodies, one may select 2d members such that their intersection has volume at most
v(d) vol(

⋂F), or has diameter at most δ(d) diam(
⋂F).

The problem of finding the optimal values of δ(d) and v(d) has enjoyed special interest in
recent years (see e.g. the excellent survey article [BK21]). In [BKP82] (see also [BKP84])

the authors proved that v(d) ≤ d2d
2

and δ(d) ≤ d2d, and they conjectured that v(d) ≈ dc1d

and δ(d) ≈ c2d
1/2 for some positive constants c1, c2 > 0.

For the volume problem, in a breakthrough paper, Naszódi [N16] proved that v(d) ≤
ed+1d2d+

1

2 , while v(d) ≥ dd/2 must hold. Improving upon his ideas, Brazitikos [B17] found

the current best upper bound for volume: v(d) ≤ (cd)3d/2 for a constant c > 0.
For the diameter question, Brazitikos [B18] proved the first polynomial bound on δ(d)

by showing that δ(d) ≤ cd11/2 for some c > 0. In 2021, Ivanov and Naszódi [IN21] found

the best known upper bound, δ(d) ≤ (2d)3, and also proved that δ(d) ≥ cd1/2. Thus, the
value conjectured in [BKP82] for δ(d) would be asymptotically sharp.

In the present note, we show that given a finite family F of closed convex sets, one can
select at most 2d members such that their intersection sits inside a scaled version of

⋂F for
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a suitable location of the origin. Clearly, it suffices to prove this statement for the special
case when F consists of closed halfspaces intersecting in a convex body. As an application,
we obtain an improvement on the diameter bound, δ(d) ≤ 2d2, and retrieve the best known
bound for v(d). The crux of the argument is the following sparse approximation result for
polytopes, which is a strengthening of Theorem 2 in [IN21].

Theorem 1. Let λ > 0 and Q ⊂ R
d be a convex polytope such that Q ⊆ −λQ. Then there

exist at most 2d vertices of Q whose convex hull Q′ satisfies

Q ⊆ −(λ+ 2)dQ′.

We immediately obtain the following corollary.

Corollary 2. Assume that Q = −Q is a symmetric convex polytope in R
d. Then we may

select a set of at most 2d vertices of Q with convex hull Q′ such that

Q ⊆ 3dQ′.

As usual, let Bd denote the unit ball of Rd and let Sd−1 be the unit sphere of Rd. A
standard consequence of Fritz John’s theorem [J48] states that if K ⊂ R

d is a convex
body in John’s position, that is, the largest volume ellipsoid inscribed in K is Bd, then
Bd ⊆ K ⊆ dBd ⊆ −dK (see e.g. [B97]). Thus, we derive

Corollary 3. Assume that Q ⊂ R
d is a convex polytope in John’s position. Then there

exists a subset of at most 2d vertices of Q whose convex hull Q′ satisfies

Q ⊆ −2d2 Q′.

For a family of sets {K1, . . . ,Kn} ⊂ R
d and for a subset σ ⊂ [n] = {1, . . . , n}, we will

use the notation

Kσ =
⋂

i∈σ

Ki,

as in [IN21]. Also,
( [n]
≤k

)
stands for the set of all subsets of [n] with cardinality at most k.

Using this terminology, we are ready to state our quantitative Helly-type result.

Theorem 4. Let {K1, . . . ,Kn} be a family of closed convex sets in R
d with d ≥ 2 such that

their intersection K = K1 ∩ · · · ∩Kn is a convex body. Then there exists a σ ∈
( [n]
≤2d

)
such

that

vold Kσ ≤ (cd)3d/2 vold K and diamKσ ≤ 2d2 diamK

for some constant c > 0.

To conclude the section we formulate the following conjecture, which was essentially
stated already in [BKP82]. This would imply the asymptotically sharp bound for v(d).

Conjecture 5. Assume that {u1, . . . , un} ⊂ Sd−1 is a set of unit vectors satisfying the

conditions of Fritz John’s theorem. That is, there exist positive numbers α1, . . . , αn for

which
∑n

i=1 αiui = 0 and
∑n

i=1 αiui ⊗ ui = Id, the identity operator on R
d. Then there

exists a subset σ ⊂ [n] with cardinality at most 2d so that

Bd ⊂ c d conv{ui : i ∈ σ}
with an absolute constant c > 0.

That the above estimate would be asymptotically sharp is shown by taking n = d + 1
and letting {u1, . . . , un} to be the set of vertices of a regular simplex inscribed in Sd−1.
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2. Proofs

Proof of Theorem 1. The condition Q ⊆ −λQ ensures that 0 ∈ intQ. Among all simplices
with d vertices from the vertices of Q and one vertex at the origin, consider a simplex
S = conv{0, v1, . . . , vd} with maximal volume. We write S in the form

(1) S =

{
x ∈ R

d : x = α1v1 + . . .+ αdvd for αi ≥ 0 and
d∑

i=1

αi ≤ 1

}
.

For every i = 1, . . . , d, let Hi be the hyperplane spanned by {0, v1, . . . , vd} \ {vi}, and let
Li be the strip between the hyperplanes vi +Hi and −vi +Hi. Define P =

⋂
i∈[d]Li (see

Figure 1).
Note that

(2) P = {x ∈ R
d : vold(conv({0, x, v1, . . . , vd} \ {vi}) ≤ vold(S) for all i = 1, . . . , d}.

This follows from the volume formula

vold(conv{0, w1, . . . , wd}) =
1

d!

∣∣det(w1 w2 · · · wd)
∣∣

for arbitrary w1, . . . , wd ∈ R
d, which implies that for all x ∈ R

d of the form x = cvi + w
with w ∈ Hi, i = 1, . . . , d,

vold(conv({0, x, v1, . . . , vd} \ {vi}) = |c| vold(S).
Next, we show that

(3) P = {x ∈ R
d : x = β1v1 + . . . + βdvd for βi ∈ [−1, 1]}.

Indeed, since v1, . . . , vd are linearly independent, we may consider the linear transformation
A with A(vi) = ei for i = 1, . . . , d. Note that

A(P ) = A

( ⋂

i∈[d]

Li

)
=

⋂

i∈[d]

A(Li) = {x ∈ R
d : x = β1e1 + · · ·+ βded for βi ∈ [−1, 1]}.

Thus, (3) holds.
Since S is chosen maximally, equation (2) shows that for any vertex w of Q, w ∈ P . By

convexity,

(4) Q ⊆ P.

Let S′ = −2dS + (v1 + . . .+ vd). By (1),

(5) S′ =

{
x ∈ R

d : x = γ1v1 + . . .+ γdvd for γi ≤ 1 and

d∑

i=1

γi ≥ −d

}
.

Then, from (3) and (5),

(6) P ⊆ S′.

Let u = 1
d (v1 + . . . + vd) be the centroid of the facet conv{v1, . . . , vd} of S. Let y be

the intersection of the ray from 0 through −u and the boundary of Q. By Carathéodory’s
theorem, we can choose k ≤ d vertices {v′1, . . . , v′k} of Q such that y ∈ conv{v′1, . . . , v′k}.
Set Q′ = conv{v1, . . . , vd, v′1, . . . , v′k}.

Note that [y, u] ⊆ Q′, which implies 0 ∈ Q′. Thus,

(7) S ⊆ Q′.
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Since Q ⊆ −λQ, we have that −u ∈ λQ. Since λy is on the boundary of λQ, we also have
that −u ∈ [0, λy]. We know that 0, λy ∈ λQ′, so

(8) u ∈ −λQ′.

Combining (4), (6), (7), and (8):

�(9) Q ⊆ P ⊆ S′ = −2dS + du ⊆ −2dQ′ − λdQ′ = −(λ+ 2)dQ′.

Proof of Theorem 4. As shown in [BKP82], we may assume that {K1, . . . ,Kn} consists of
closed halfspaces such that K =

⋂
Ki is a d-dimensional polytope. Let T be the affine

transformation sending K to John’s position. Let K̃i = TKi for i ∈ [n], K̃ = TK, and

for some σ ⊂ [n], let K̃σ =
⋂

i∈σ K̃i. We claim that there exists σ ∈
( [n]
≤2d

)
such that the

following two properties hold:

K̃σ ⊆ −2d2K̃, and(10)

vold K̃σ ≤ (cd)3d/2 vold K̃(11)

for some constant c > 0. Statements (10) and (11) are affine invariant, so this will suffice
to prove Theorem 4.

Recall that since K̃ is in John’s position, Bd ⊆ K̃ ⊆ dBd (see [B97] or [GLMP04,

Theorem 5.1]). Setting Q = (K̃)◦, this yields that 1
dB

d ⊆ Q ⊆ Bd. In particular, Q ⊆ −dQ.
Hence, we may apply Theorem 1 to Q with λ = d, we obtain a subset of at most 2d vertices
of Q such that their convex hull Q′ satisfies

(12) Q ⊆ −(d+ 2)dQ′ ⊆ −2d2Q′.

The family of closed halfspaces supporting the facets of (Q′)◦ is a subset of {K̃1, . . . , K̃n}
with at most 2d elements. Thus, we can choose σ ∈

( [n]
≤2d

)
such that K̃σ = (Q′)◦. Taking

the polar of (12), we obtain

K̃σ ⊆ −(d+ 2)dK̃ ⊆ −2d2K̃,

which shows (10).
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Let P be the parallelotope enclosing Q from the proof of Theorem 1 and set P ′ = − 1
2d2P .

Statement (9) implies
Q′ ⊇ P ′.

Since S is chosen maximally, the volume of S is at least the volume of the simplex obtained
from the Dvoretzky-Rogers lemma [DR50] (see also [N16, Lemma 1.4]):

(13) vold(S) ≥
1√

d!dd/2
.

Using (13),

(14) vold(P
′) = (2d2)−d vold(P ) = (2d2)−d · 2dd! vold(S) ≥ d−5d/2(d!)1/2.

Note that P ′ is centrally symmetric, so we can use the Blaschke-Santaló inequality (see
[AGM15, Theorem 1.5.10]) for P ′:

(15) vold(P
′) · vold((P ′)◦) ≤ vold(B

d
2)

2.

Using the inclusions K̃ ⊇ Bd
2 and K̃σ = (Q′)◦ ⊆ (P ′)◦, as well as (14) and (15):

vold K̃σ

vold K̃
≤ vold((P

′)◦)

vold(B
d
2)

≤ vold(B
d
2 )

vold(P ′)
≤ πd/2d5d/2(d!)−1/2

Γ((d/2) + 1)
≤ (cd)3d/2

for some absolute constant c > 0. This shows (11) and concludes the proof. �
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