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Background: While decreased alpha and beta-band functional connectivity (FC) and
changes in network topology have been reported in Alzheimer’s disease, it is not yet
entirely known whether these differences can mark cognitive decline in the early stages
of the disease. Our study aimed to analyze EEG FC and network differences in the
alpha and beta frequency band during visuospatial memory maintenance between
Mild Cognitive Impairment (MCI) patients and healthy elderly with subjective memory
complaints.

Methods: Functional connectivity and network structure of 17 MCI patients and 20
control participants were studied with 128-channel EEG during a visuospatial memory
task with varying memory load. FC between EEG channels was measured by amplitude
envelope correlation with leakage correction (AEC-c), while network analysis was
performed by applying the Minimum Spanning Tree (MST) approach, which reconstructs
the critical backbone of the original network.

Results: Memory load (increasing number of to-be-learned items) enhanced the mean
AEC-c in the control group in both frequency bands. In contrast to that, after an initial
increase, the MCI group showed significantly (p < 0.05) diminished FC in the alpha
band in the highest memory load condition, while in the beta band this modulation
was absent. Moreover, mean alpha and beta AEC-c correlated significantly with the
size of medial temporal lobe structures in the entire sample. The network analysis
revealed increased maximum degree, betweenness centrality, and degree divergence,
and decreased diameter and eccentricity in the MCI group compared to the control
group in both frequency bands independently of the memory load. This suggests a
rerouted network in the MCI group with a more centralized topology and a more unequal
traffic load distribution.
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Conclusion: Alpha- and beta-band FC measured by AEC-c correlates with cognitive
load-related modulation, with subtle medial temporal lobe atrophy, and with the
disruption of hippocampal fiber integrity in the earliest stages of cognitive decline. The
more integrated network topology of the MCI group is in line with the “hub overload and
failure” framework and might be part of a compensatory mechanism or a consequence
of neural disinhibition.

Keywords: mild cognitive impairment (MCI), Q15electroencephalography (EEG), working memory (WM), functional
connectivity, functional networks, minimum spanning tree (MST)

INTRODUCTION

Deteriorated workingQ16 memory maintenance and the impairment
of visuospatial memory are early symptoms of Mild Cognitive
Impairment (MCI) and Alzheimer’s disease (AD) (Bird et al.,
2010; Parra et al., 2010; Gillis et al., 2013; Moodley et al., 2015)
and can serve as a sensitive marker of early cognitive decline
(Tierney et al., 1996; Sano et al., 2011). Visuospatial memory tests,
such as the Paired Associates Learning (PAL) test are considered
especially effective in the early diagnosis of MCI (Sirály et al.,
2013) and in the prediction of a higher risk of developing
dementia in later life (Blackwell et al., 2004).

Cognitive functions arise from the interactions between
functionally connected regions of the brain (Rubinov and Sporns,
2010; Park and Friston, 2013; Stam, 2014). However, besides
sufficient connections, proper cognitive functioning relies on an
optimal organization of brain network (Bullmore and Sporns,
2009) and the coordinated interaction of local information
processing (“segregation”) and the long-range integration of this
information (Sporns, 2013; Stam, 2014). A growing body of
evidence suggests that healthy brain networks are cost-efficient
small-world networks combining strong local connectivity with
efficient long-distance connections (Bullmore and Sporns, 2012).
Furthermore, it has been shown that brain network efficiency
is related to cognitive performance (van den Heuvel et al.,
2009) and network measures derived from electrophysiological
data can discriminate cortical network features in healthy
brain and neurodegenerative brain aging (Miraglia et al., 2017;
Vecchio et al., 2017).

The pathological process of AD initially affects synaptic
transmission with an overall disconnection (Delbeuck et al.,
2003), which could be assessed using a network approach as
the structural components of the brain form a complex network
at different spatial scale (from neurons to anatomical regions)
from which functional dynamics arise (Vecchio et al., 2017). The
abnormal functional brain network in AD has been characterized
by a loss of efficiency, disturbed community structure, and
selective hub vulnerability in both structural and functional
network studies (Tijms et al., 2013; Stam, 2014; Miraglia et al.,
2017). Furthermore, the extent of network changes correlates
with the extent of the underlying structural pathology, with the
severity of the clinical symptoms, and with disease duration
(Stam, 2014).

There is an increasing demand for functional markers of early
cognitive decline to identify patient populations that have an
increased risk of developing dementia as these individuals are

the best applicants for therapeutic intervention. Previous EEG
studies revealed potential spectral and functional connectivity
(FC) biomarkers that are able to predict the future progression of
cognitive decline (Moretti et al., 2011; Toth et al., 2014; Mazaheri
et al., 2018; Sharma et al., 2019).

The assessment of functional connectivity and network
topology can provide an integrative approach that can reflect
progressive brain dysfunction in MCI and AD (Pievani et al.,
2011; Stam, 2014; Hallett et al., 2020). Moreover, graph theory
approach could provide a general language that could help us to
understand how cortical atrophy and functional disruptions are
linked together in the pathological processes of AD (Bullmore
and Sporns, 2009; Stam, 2014; Miraglia et al., 2017; Douw
et al., 2019) and to discover novel early diagnostic and
predictive neurophysiological markers (Rossini et al., 2016;
Horvath et al., 2018).

There is a considerable amount of literature reporting
decreased resting-state functional connectivity in MCI and AD
in the alpha- and beta frequency range (Stam et al., 2003; Stam,
2014; Babiloni et al., 2016; Koelewijn et al., 2017; Horvath
et al., 2018; Núñez et al., 2019; Briels et al., 2020). Changes
in memory task-related functional connectivity are much less
investigated and former studies reported mixed results (Hogan
et al., 2003; Pijnenburg et al., 2004; Jiang and Zheng, 2006; Hou
et al., 2018). The conflicting results might be partly explained
by differences in the diagnostic criteria of the study groups
(clinical or biomarker-based, MCI or AD patients), sample size,
and the choice of functional connectivity measure, some of
which are not corrected for the effect of volume conduction,
which might influence previous results (de Waal et al., 2014;
Herreras, 2016).

Regarding the overall network structure, previous studies
observed a progressive derangement of brain organization during
the disease course causing a deviation from the optimal small-
world architecture to a more random type configuration leading
to a less efficient information transfer during resting state (de
Haan et al., 2009; Stam et al., 2009; Stam, 2014; Wei et al., 2015;
Miraglia et al., 2017), and cognitive tasks (Wei et al., 2015; Das
and Puthankattil, 2020), firstly affecting alpha-band networks in
MCI (Miraglia et al., 2017).

Former studies highlighted the role of hubs in network
disturbances in MCI and AD (Stam, 2014), which are nodes
with high values of relative importance—such as node degree
or betweenness centrality—and take a central role in network
organization by facilitating the optimal flow within healthy brain
networks (van den Heuvel and Sporns, 2013; Stam, 2014). Hub
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regions have been found especially vulnerable in AD (Stam et al.,
2009; D’Amelio and Rossini, 2012; de Haan et al., 2012; Tijms
et al., 2013; Crossley et al., 2014; Stam, 2014; Miraglia et al.,
2017; Yu et al., 2017) and disruption of the global network
structure in AD has been explained by the overload and failure
of hub nodes (de Haan et al., 2012; Stam, 2014). Throughout the
disease progression neural activity, functional connectivity, and
hub activity follow an inverted U shape: increasing in early MCI,
followed by a decrease in late MCI and AD (de Haan et al., 2012).

From a network perspective, visuospatial memory in MCI is
an area of particular interest, as neuronal networks associated
with this cognitive function are particularly affected by the
neuropathological process of AD (Pievani et al., 2011), especially
frontoparietal and frontotemporal connections (Babiloni
et al., 2016). Moreover, using memory tasks enhances EEG
abnormalities related to MCI and improves the classification
accuracy of healthy subjects and patients (van der Hiele
et al., 2007a; San-Martin et al., 2021). Therefore we applied a
computerized implementation of a visuospatial memory task in
the current study.

Our study aimed to analyze EEG functional connectivity and
network differences in the alpha and beta frequency band during
memory maintenance between MCI patients and healthy elderly
with subjective memory complaints.

Former studies reported decreased alpha and beta-band AEC-
c in AD (Koelewijn et al., 2017; Núñez et al., 2019; Briels et al.,
2020), therefore we hypothesized a decreased alpha- and beta-
band functional connectivity in MCI patients and we expected
that the memory load-related modulation of global functional
connectivity will be less prominent in the MCI patients than the
control subjects, since their reduced available cognitive capacity.

In accordance with the early increase of network integration
suggested by the “hub overload and failure” framework (Stam,
2014) and based on previous MST network studies (Engels et al.,
2015; Lopez et al., 2017; Wang et al., 2018) we hypothesized
a more centralized network topology in MCI patients. As hub
nodes are exposed to an increased traffic load in a more
centralized network, this transition might lead to the overload
and subsequent failure of these hub nodes and the disturbance of
the modular system of the network (Stam, 2014). Therefore, the
shift to a more integrated network configuration might reflect the
increased vulnerability of brain networks in MCI.

MATERIALS AND METHODS

Participants and Clinical Measures
The study was carried out in the Department of Psychiatry
and Psychotherapy, Semmelweis University, Budapest, Hungary.
EEG was recorded from 17 MCI patients and 20 healthy
control participants during a visuospatial memory task. Among
them, structural MRI data of 13 MCI patient and 13 control
participant and diffusion-weighted MRI (DW-MRI) data of
10 MCI patient and 17 control participant was available (10
MCI patient and 13 healthy control subject had both structural
and functional MRI data). Participants had subjective memory
complaints and applied to take part in a cognitive training

program announced among general practitioners and in a
Retirement Home (The study is registered at ClinicalTrials.gov,
the identifier is “NCT02310620”). Every participant underwent
a regular psychiatric assessment to evaluate possible excluding
comorbidity. After that, cognitive functions were assessed with
neuropsychological tests to specify the diagnosis [Addenbrooke’s
Cognitive Examination (ACE), Rey Auditory Verbal Learning
Test (RAVLT), Trail Making Test (TMT)]. Participants were
not financially compensated for their participation but received
a detailed written feedback on their performance on the
neuropsychological tests.

The diagnostic procedure of MCI was based on the
Petersen criteria (Petersen, 2004), including subjective
memory complaints corroborated by an informant, preserved
everyday activities, memory impairment based on a standard
neuropsychological test, preserved global cognitive functions,
and the exclusion of dementia. For the detailed assessment
of memory impairment, we applied the Rey Auditory Verbal
Learning Test (RAVLT) (Strauss, 2006) Q18. Attention, executive
functions, and cognitive flexibility were examined with the
Trail Making Test (TMT) Part A and Part B (Tombaugh, 2004;
Strauss, 2006), global cognitive performance was estimated with
the Addenbrooke’s Cognitive Examination (ACE) (Mathuranath
et al., 2000). For the differentiation between MCI and healthy
controls, we applied a cut-off score of 1 SD under population
mean standardized for age and gender/education in these
neuropsychological tests. Participants, who scored under the
cut-off value in the delayed recall subscore or the total score of
RAVLT or the TMT Part B or the ACE, were put into the MCI
group. Subjects with dementia were excluded based on cognitive
impairment according to the Mini-Mental State Examination
(MMSE) scores standardized for age and education (Strauss
et al., 2006) and on the loss of ability to perform activities
of daily living. The Geriatric Depression Scale (GDS) was
used to assess depressive symptoms (Yesavage, 1988), while
anxiety symptoms were measured by the Spielberger State-Trait
Anxiety Inventory (STAI) (Spielberger et al., 1970). Exclusion
criteria were history of head trauma with loss of consciousness,
prior CNS infection, epileptic seizure, clinically significant
brain lesions (stroke, severe periventricular white matter
disease, clinically significant white matter infarcts), multiple
sclerosis or other demyelinating disorders, hydrocephalus,
untreated vitamin B12 deficiency, untreated hypothyroidism,
syphilis or HIV infection, mental retardation, major depression,
schizophrenia, other acute psychiatric disorder, electroconvulsive
therapy, renal insufficiency, liver disease, significant systemic
medical illness, alcohol, or substance use dependency.
Demographic and neuropsychological data are summarized
in Table 1.

Electroencephalography Paradigm and
Procedures
Electroencephalography examinations were carried out on
weekdays between 10 a.m. and 4 p.m. Participants were seated in
a dimly lit, sound-attenuated room. All participants had normal
or corrected-to-normal vision.
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TABLE 1 | Demographic dataQ19 and results of basic neuropsychological tests.

control (n = 20) MCI (n = 17) p-value

Age [Mean (SD)] 65.2 (6.9) 69.9 (6.5) p = 0.04

Educationa 15%/15%/70% 18%/18%/65% n.s.*

Gender (female) 70% 41.2% n.s.*

Rey Auditory Verbal
Learning Test 1–5 sumb

54.3 (7.8) 40.0 (11.3) p < 0.0001

Rey Auditory Verbal
Learning Test delayed
recallc (MCI: n = 13)

11.4 (2.6) 7.2 (4.4) p = 0.007

ACE total scored 94.9 (2.9) 86.2 (8.3) p = 0.0006

ACE VL/OM-ratioe 2.6 (0.3) 2.8 (0.6) n.s.*

Mini mental state
examination total scoref

29 (1.2) 27.9 (1.4) p = 0.02

Trail Making Test Part
Ag

34.9 (10.8) 70.6 (52.9) p = 0.006

Trail Making Test Part
Bg (MCI: n = 16)

69.0 (22.7) 143.5 (69.2) p < 0.0001

Geriatric Depression
Scale scoreh (Control:
n = 19)

3.6 (2.9) 4.3 (3.5) n.s.*

STAI scorei 39.4 (11.0) 35.8 (9.4) n.s.*

MCI, Mild cognitive impairment; ACE, Addenbrooke’s cognitive examination; STAI,
State-trait anxiety inventory.
aParticipants were categorized into three education groups: 1 = less than
12 years; 2 = high school graduation (12 years education); 3 = more than
12 years of education.
bSum of all words in the first five trials. The maximum score is 75.
cThe maximum score is 15.
dThe maximum score is 100.
eVL/OM: verbal fluency and language points/orientation and delayed recall ratio can
be defined based on ACE. A result below 2.2 indicate frontotemporal dementia and
a result over 3.2 indicate Alzheimer’s disease.
f The maximum score is 30.
gTime needed for completing the task in seconds.
hThe maximum score is 15.
iThe maximum score is 80.
jResponse accuracy in the Sternberg task.
*n.s. (not significant) = p > 0.05.

To measure visuospatial memory, during the EEG recording
participants performed an implementation of the PAL test used
in several neuropsychological test batteries (Sirály et al., 2013).
White windows and colored shapes sized 2.65 cm × 2.65 cm

were presented as stimuli on a computer screen at approximately
50 cm distance with Presentation 13.0 software (Neurobehavioral
Systems, Inc.; Albany, CA). At the onset of each trial, eight
blank windows appeared on the screen for 1,500 ms. After that,
two, three, or four random windows opened up sequentially for
1,500 ms with abstract shapes shown in them, separated by a
fixation cross for 450–500 ms. Meanwhile, other windows remain
blank depending on the difficulty level. For the retention period,
a fixation cross appeared for 3,800–4,000 ms. During the retrieval
period, the previously shown shapes reappeared in the windows,
and participants were instructed to indicate by clicking with
the mouse (yes-right/no-left) whether the shapes popped up in
the same positions they saw them before (Figure 1). The test
consisted of 72 trials in total (32 two-item, 24 three-item, 16
four-item). The response assignment was counterbalanced across
trials. Efficiency was measured by response accuracy.

It was carefully monitored that the participants understood
the instructions and stayed alert during the session to bypass
the possible distorting effect of extended eye closure on the EEG
activity, especially in the alpha frequency range (Barry et al.,
2007). For the same purpose, participants completed the task in
three parts separated by a 3-min rest period.

Electroencephalography Recording and
Processing
Electroencephalography was recorded from DC with a low-
pass filter at 100 Hz using a high-density 128-channel BioSemi
ActiveTwo amplifier (Metting van Rijn et al., 1990). Electrode
caps had an equidistant layout and covered the whole head
according to the Biosemi equiradial montage. Eye movements
were monitored with EOG electrodes placed below the left and
above the right external canthi. Data were digitized at a sampling
rate of 1,024 Hz. Built-in and self-developed functions as well as
the freeware EEGLAB toolbox (Delorme and Makeig, 2004) in
the Matlab (MathWorks, Natick, MA) development environment
was used for subsequent off-line data analyses. EEG was re-
referenced to the common average reference and filtered off-line
between 0.5 and 45 Hz using zero-phase shift forward, and
reverse IIR Butterworth filter. As four channels (P2, FT7h, P7,

FIGURE 1 | The PairedQ5

Q6

Associates Learning (PAL) task. Following the memory sequence, participants indicated, whether the shapes appeared in the previously
presented positions. Epochs of 4,000 ms duration of the retention period (from 200 ms pre-stimulus to 3,800 ms post-stimulus, highlighted) were included in the
analysis.
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P9) were exceptionally noisy across multiple subjects, they were
removed from the recordings for all subjects prior to the analysis.
Epochs from 500 ms pre-stimulus to 4,500 ms post-stimulus
for the retention period were extracted from the continuous
EEG. Removal of muscle, blinking, and eye movement artifacts
(detected by EOG) were performed by the Multiple Artifact
Rejection Algorithm (MARA), a machine-learning algorithm
that evaluates the ICA- (Independent Component Analysis)
derived components (Winkler et al., 2011, 2014), Furthermore,
epochs with a voltage exceeding ±100 µV on any channel were
rejected from the analysis. After artifact rejection, the average
number of trials in the control group and in the MCI group
were 71.7 (SD = 0.7) and 71.1 (SD = 2.3) for the retention
condition, respectively.

Electroencephalography Data Analysis
After artifact rejection, epochs of 4,000 ms duration of the
retention period (from 200 ms pre-stimulus to 3,800 ms post-
stimulus, sampling rate 1,024 Hz, 4,096 time points) were
extracted from the EEG recording, which, based on previous
studies, we assumed to be sufficient to measure oscillatory activity
in the alpha and beta frequency band (Fraschini et al., 2016). EEG
connectivity analyses were performed with open-access software
BrainWave (version 0.9.152.12.26; available at http://home.kpn.
nl/stam7883/brainwave.html). Functional connectivity between
EEG channels was analyzed by measuring the amplitude envelope
correlation with leakage correction (AEC-c) calculated for all
EEG epochs of each subject, after having band-pass filtered
the EEG time-series in the alpha (8–13 Hz) and beta (13–
30 Hz) frequency band. The amplitude envelope correlation
(AEC) measures the linear correlations of the envelopes of the
band-pass filtered and Hilbert-transformed signals (Bruns et al.,
2000). The leakage-corrected version of the AEC (Hipp et al.,
2012) uses a pair-wise symmetric orthogonalization procedure
before the calculations of the AEC to remove zero-lag correlation
correlations that could be attributed to spurious connectivity
caused by volume conduction. Therefore, it is considered a
reliable measure of genuine functional connectivity (Brookes
et al., 2011; Hipp et al., 2012; Colclough et al., 2016; Briels
et al., 2020). Connectivity metrics were averaged over epochs
creating values for each electrode at the patient level. Global
functional connectivity values were calculated by averaging the
AEC-c of all electrodes.

We carried out a spectral analysis to assess whether the
detected effects were solely driven by differences in spectral power
or peak frequency. Relative power in alpha and beta frequency
band and peak frequency (Hz; dominant frequency between 4
and 13 Hz) were calculated with the BrainWave software using
Fast Fourier Transformation.

Graph-Theoretical Analysis
The graph-theoretical representation of the functional
connectivity matrix was constructed by the Minimum Spanning
Tree (MST), which is a simplified representation of the core
network containing the strongest and most relevant “backbone”
connections (Stam et al., 2014; Tewarie et al., 2015) that can
reflect topological changes (Tewarie et al., 2015). Former studies

pointed out that graph theoretical measures are dependent on
network size and density, which can make the comparison across
different groups and conditions by using conventional network
analytical methods challenging (van Wijk et al., 2010; Fornito
et al., 2013; Stam et al., 2014). The MST calculation overcomes
the bias of network density and degree without any additional
normalization step by forming an acyclic subnetwork using
the strongest available connections without forming loops and
connecting all nodes with a fixed number [(number of nodes)
- 1) of edges. MST graphs were generated for each participant,
epoch for alpha and beta frequency band, based on the full
connectivity matrix constructed from the AEC-c values obtained
for each pair of electrodes. MST metrics were averaged over
epochs for each subject.

Two extreme topologies of MST can be distinguished: a path-
like and a star-like shape. In a path, all nodes are linked to
exactly two other nodes, except the two nodes at the extremities
of the tree. These nodes are connected to only one other node
and are referred to as the leaves of the tree. In the case of a
star shape, all but one node are linked to a central node (Stam
et al., 2014). Between these two shapes, MST-s can have various
configurations (Figure 2).

The diameter of the tree is the maximum number of edges
between any two nodes of the network. Leaf fraction is the
number of nodes with exactly one connection divided by the
total number of nodes of the tree. Degree refers to the number
of edges connected to a node. Betweenness centrality (BC) of a
node refers to the normalized fraction of all paths connecting two
nodes that pass through the selected node, and it characterizes the
“hubness” of the node within the network. The eccentricity of a
node denotes the longest shortest path to any other node in the
MST. Degree divergence (kappa—κ) measures the broadness of
the degree distribution, which shows high value in networks with
high-degree hubs, and it is related to the resilience of the network
against attacks. In an MST the most efficient communication
can be achieved in a star-like configuration, as it has the
shortest possible average path length between two arbitrary
nodes, however, in this case, the central node might easily be
overloaded. This trade-off between large-scale integration and the
overload of central nodes is quantified by the tree hierarchy. The
optimal MST topology balances efficiency and node load.

Global and node-specific parameters were computed with the
Brainwave software, based on the measures described by previous
studies (Stam et al., 2014; Tewarie et al., 2015), summarized in
Table 2. Degree, betweenness centrality, and eccentricity were
calculated for each node separately, and the maximum degree,
maximum BC, and mean eccentricity were included in the
statistical analysis as global characteristics of the MST. Global
MST network parameters were averaged across epochs.

MR Image Acquisition and Processing
and Diffusion Tensor Fitting
The obtained structural gray matter volumetric (cortical
thickness and subcortical brain structure volumes) and the
diffusion-weighted data were previously published by our study
group (Csukly et al., 2016; Gyebnár et al., 2018).
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FIGURE 2 | Schematic representation of three minimum spanning trees (MSTs). MST structures can range from a path-like tree (i.e., minimally integrated network) to
a star-like tree (i.e., maximally integrated network). Green nodes represent leaf nodes (i.e., end-nodes in the graph), while red nodes represent central nodes. The
hierarchical tree combines the relatively small diameter with the relatively low betweenness centrality (BCmax) value, which prevents information overload on the
central node making this an optimal configuration (Stam and van Straaten, 2012). The Figure was adjusted from van Dellen et al. (2014) and
van Lutterveld et al. (2017).

TABLE 2 | Explanation of concepts and terminology based on Tewarie et al. (2015) and van Dellen et al. (2015).

Measure Explanation Formula

Nodes (N) Number of nodes

Links (M) Number of links/maximum leaf number

Degree (k) Number of links for a given node. Nodes with a high degree may be
considered hubs. We used the maximum degree to characterize the
strength of the most important node of the network.

ki =
∑
j∈N

aij

Leaf fraction (Lf ) Fraction of leaf nodes (L) in the MST where a leaf node is defined as a
node with only one connection. It describes to what extent the network
has a central organization. A high leaf fraction indicates, that
communication is largely dependent on hub nodes.

Lf = L/M

Diameter Longest distance between any two nodes in an MST, normalized by the
total number of connections. In a network with a low diameter, information
is efficiently processed between remote brain regions. The diameter is also
related to the leaf number: the value of the diameter decreases when the
leaf number increases.

D = d/M

Eccentricity Longest shortest path from a reference node to any other node in the MST.
Eccentricity is low if the node is located in the center of the tree.
Eccentricity of the network describes how efficient information is
communicated from the least central node.

Betweenness centrality (BC) Fraction of all shortest paths that pass through a particular node. BC
ranges between 0 (leaf node) and 1 (central node in a star-like network).
Nodes with a high BC are considered hub nodes based on their
importance for global communication in the network. The BC of the tree
was characterized by the maximum BC value, which describes the
importance of the most central node and it is a measure of central network
organization.

BCi =
1

(n−1)(n−2)

∑
h, j ∈ N

h=/ j, h=/ i, =/ i

ρ
(i)
hj

ρhj

ρih is the number of shortest paths between h and j,
and ρih(i) is the number of shortest paths between h
and j that pass through i

Degree divergence (κ) Measure of the broadness of the degree distribution. Related to resilience
against attacks, epidemic spreading and the synchronizability of complex
networks

κ =

〈
k2

〉
〈k〉

Tree hierarchy (TH ) Quantifies the trade-off between large scale integration in the MST and the
overload of central nodes It characterizes the hypothesized optimal
topology of brain network organization, where information is transferred
between brain regions in the fewest possible steps, while preventing
information overload of central brain regions.

TH =
L

2MBCmax
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Participants underwent a routine brain MR examination,
producing high-resolution anatomical images used for analysis.
Image acquisitions were made at the MR Research Center,
Semmelweis University, Budapest on a 3 Tesla Philips Achieva
clinical MRI scanner equipped with an 8-channel SENSE
head coil. High resolution, whole-brain anatomical images
were obtained using a T1 weighted 3-dimensional spoiled
gradient echo (T1W 3D TFE) sequence. 180 contiguous slices
were acquired from each subject with the following imaging
parameters: TR = 9.7 ms; TE = 4.6 ms; flip angle = 8◦; FOV of
240 mm× 240 mm; voxel size of 1.0× 1.0× 1.0 mm. Brain DW-
MRI images were collected with a single shot SE-EPI sequence,
with b = 800 s/mm2 diffusion weighting in 32 directions and
one b = 0 image. In-plane resolution was 1.67 × 1.67 mm;
whole-brain coverage was achieved with 70 consecutive, 2 mm
thick axial slices; TR = 9,660 ms repetition time, TE = 75.6 ms
echo time, and 90◦ flip angle was used; the total acquisition
time was 8:32 min.

Cortical reconstruction, volumetric segmentation and
parcellation of the MRI data into standardized region of interest
(ROIs) were performed automatically by Freesurfer 5.3 image
analysis suite1 (see details in Csukly et al., 2016), however,
segmentation and cortical models were checked and corrected
manually on each subject. Volumetric measurements were
normalized by dividing by the intracranial volume (ICV) also
computed during the Freesurfer pipeline, while cortical thickness
measurements were included in the analysis without further
normalization based on previous results (Westman et al., 2013).

DWI data were preprocessed using the Matlab-based
ExploreDTI software package (Leemans et al., 2009). Processing
steps included coordinate system transformation, rigid body
transformations for correcting subject motion, non-rigid
transformations for correcting susceptibility-related and EPI-
induced distortions, with the local rotation of the b-matrix (the
diffusion weighting directions) to avoid angular inaccuracies
(Leemans and Jones, 2009). The high-resolution T1-weighted
images were used as templates for registration to correct the
distortions inherent to the EPI-acquisition method (Jezzard
et al., 1998); thereby DW-images were spatially aligned to the
T1W images. After tensor fitting, using the RESTORE (Robust
Estimation of Tensors by Outlier Rejection) (Chang et al., 2005)
algorithm, two voxel-wise DTI-measures, fractional anisotropy
(FA) and mean diffusivity (MD) (Pierpaoli and Basser, 1996;
Alexander et al., 2011; Basser and Pierpaoli, 2011) were calculated
from the tensor eigenvalues, following their well-established
definitions, to be used in voxel-level and ROI-based analyses
(see Gyebnár et al., 2018 for details on tensor fitting and DTI
scalar calculations).

Statistical Analysis
Demographic characteristics, results of the neuropsychological
tests, and response accuracy of the study groups were compared
with independent samples t-tests, Mann-Whitney U tests, or χ2

tests where appropriate. Normal distribution of variables was
tested using the Kolmogorov–Smirnov test.

1Q20 http://surfer.nmr.mgh.harvard.edu/

Group comparisons of global functional connectivity and
MST metrics were performed on the EEG from three levels of
memory load conditions (two-item, three-item, four-item), while
we used the average of these conditions for the correlational
analysis with the size of medial temporal lobe structures and
hippocampal fiber integrity.

Functional connectivity and network parameters of the two
study groups were tested by two-way analysis of covariance
(ANCOVA) of the study group (HC vs. MCI) × memory load
(two- vs. three vs. four-item sequence). All the main effects
including age as a covariate and two-way interactions were
included in the ANCOVA model. Statistical significance was
determined at p < 0.05.

Post-hoc pairwise contrasts were conducted to investigate the
interactions. Since between-group comparisons were evaluated
over three levels of memory load, Hochberg correction for
multiple comparisons was applied to the post-hoc contrasts
(Hochberg, 1988; Hochberg and Benjamini, 1990). To
characterize the magnitude of the reported effects we reported
the values of effect size (Cohen’s d) (Ferguson, 2009).

Structural and DW-MRI results were derived from previously
published parts of our study (Siraly et al., 2015; Csukly et al.,
2016; Gyebnár et al., 2018). We followed a ROI-based approach
and assessed the association between functional connectivity and
early-stage medial temporal lobe atrophy and hippocampal fiber
integrity as these are important early markers of MCI (Márquez
and Yassa, 2019). As the MRI results of some participants
were outlier values, we applied the Spearman correlation in the
analyses which is robust against the effect of outliers.

RESULTS

Demographic and Neuropsychological
Characteristics
In total, 17 MCI patients (mean age 69.9 ± 6.5 years; 7 females)
and 20 healthy control participants (mean age 65.2 ± 6.9
years; 14 females) were included in the study. Groups did
not differ with regard to gender, level of education, depressive
symptoms (GDS score), and anxiety symptoms (STAI-score).
However, MCI patients were older than the control participants,
therefore statistical tests were corrected for age as a covariate.
Furthermore, patients with MCI had a significantly lower score
on the neuropsychological tests (ACE, MMSE, RAVLT, MMSE)
than the control participants (Table 1).

Behavioral Results
In the PAL task response accuracy of the MCI patients showed
a trend level decrease compared to the control group (MCI:
mean = 77.2% SD = 21.2, HC: mean 88.4 = % SD = 7.2, U = 106.5,
Z = 1.9, p = 0.05, Cohen’s d = 0.8). The control group had a
significantly lower score in the high memory load (four-item)
condition compared to the low memory load (two-item) (Z = –
3.4, p = 0.0006) and to the medium memory load (three-item)
condition (Z = 2.9, p = 0.0041), while in the MCI group no
significant memory load-related differences were observed in
response accuracy.
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Functional Connectivity in the Alpha
Band
During the retention period of the PAL test memory load had a
significant modulatory effect on alpha AEC-c [F(2, 34) = 5.92,
p = 0.006] (Figure 3). Furthermore, a trend-level interaction
of group and memory load was observed [F(2, 34) = 3.03,
p = 0.06]. The mean alpha AEC-c and the topography of average
connectedness (i.e., mean AEC-c of each electrode) are shown
in Figure 3. Post-hoc analysis of this interaction revealed, that

the memory load-related modulation of AEC-c followed different
dynamics in the two study groups: in the control group compared
to the low memory load condition (two-item), a significantly
increased mean AEC-c was observable in the medium memory
load condition (three-item; t = 2.59, df = 34, p = 0.01, Cohen’s
d = 0.4) and in the high memory load condition (four-item;
t = 2.88, df = 34, p = 0.007, Cohen’s d = 0.4) and these memory
load-related differences remained significant after correction for
multiple comparisons.

FIGURE 3 | Mean alpha AEC-c in the retention condition of the PAL test. Functional connectivity in the alpha frequency band (measured by AEC-c) during the
retention period of the PAL test and topographical representation of the mean AEC-c values of EEG electrodes (i.e., the average functional connectivity strength to all
other electrodes). *p < 0.05.
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In contrast to that, the MCI group showed a significantly
increased mean AEC-c in the medium memory load condition
compared to low memory load (t = 2.28, df = 34, p = 0.03,
Cohen’s d = 0.3), while in the high memory load condition
a significantly diminished mean functional connectivity was
observable compared to medium memory load (t = 2.5, df = 34,
p = 0.02, Cohen’s d = 0.3), however, these differences became
trend level after correction for multiple comparisons (corrected
p = 0.06 and 0.05, respectively). Study group and age did

not have a significant effect on alpha functional connectivity
(p > 0.05).

Functional Connectivity in the Beta Band
During the retention period of the PAL test study group, memory
load and age did not have a significant effect on beta AEC-c
(p > 0.05). The mean beta AEC-c and the topography of average
connectedness (i.e., mean AEC-c of each electrode) are shown
in Figure 4. Interaction of study group and memory load was

FIGURE 4 | Mean beta AEC-c in the retention condition of the PAL test. Functional connectivity in the beta frequency band (measured by AEC-c) during the
retention period of the PAL test and topographical representation of the mean AEC-c values of EEG electrodes (i.e., the average functional connectivity strength to all
other electrodes). *p < 0.05.
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not significant, however, the post-hoc analysis revealed that in
the control group mean beta functional connectivity in the high
memory load condition was significantly increased compared to
the low memory load condition (t = 2.82, df = 34, p = 0.008,
Cohen’s d = 0.4), which remained significant after correction
for multiple comparisons, while in the MCI group no memory
load-related differences were observable (Figure 4).

Correlational Analysis of Alpha and Beta
Functional Connectivity and the Size and
Fiber Integrity of the Medial Temporal
Lobe Structures
Correlational analysis of mean functional connectivity averaged
over all conditions and structural and DW-MRI results of
medial temporal lobe structures (relative hippocampal volume,
cortical thickness of the parahippocampal and the entorhinal
gyrus, mean diffusivity (MD), and fractional anisotropy (FA)
of the right and left cingulum—hippocampal subdivision) was
performed on the entire sample. Mean alpha and beta AEC-c
showed a significant positive correlation with the total relative
hippocampal volume (alpha AEC-c: Spearman r = 0.47, p = 0.02,
beta AEC-c: Spearman r = 0.54, p = 0.004), and with the cortical
thickness of the parahippocampal gyrus (alpha AEC-c: Spearman
r = 0.40, p = 0.04, beta AEC-c: Spearman r = 0.48, p = 0.01)
and a significant negative correlation with the mean diffusivity
of the right cingulum—hippocampal subdivision (alpha AEC-
c: Spearman r = –0.41, p = 0.03, beta AEC-c: Spearman
r = –0.50, p = 0.008). Furthermore, mean beta AEC-c correlated
significantly with the cortical thickness of the entorhinal gyrus
(beta AEC-c: Spearman r = 0.44, p = 0.02) (Figure 5).

Correlations of the mean beta AEC-c and structural MRI
results were driven by the MCI group (relative hippocampal
volume: Spearman r = 0.72, p = 0.008, parahippocampal gyrus
Spearman r = 0.60, p = 0.04, entorhinal gyrus Spearman r = 0.70,
p = 0.01). Moreover, correlations between the mean alpha and
beta AEC-c and the mean diffusivity of the right hippocampal
cingulum were driven by the MCI group (alpha AEC-c: Spearman
r = –0.83, p = 0.003, beta AEC-c: Spearman r = –0.67, p = 0.03).
Detailed results of the correlational analysis with stratified by
diagnosis can be found in Supplementary Table 1.

Spectral Analysis
Our results showed that while study group [F(1, 34) = 0.02,
p = 0.88] and age [F(1, 34) = 1.07, p = 0.30] did not have
a significant effect on relative alpha power, memory load had
a modulatory effect on relative alpha power [F(2, 34) = 4.04,
p = 0.03]. Interaction of study group and memory load showed a
trend level effect [F(2, 34) = 3.13, p = 0.06]. The post-hoc analysis
revealed that in the control group the relative alpha power
in the high memory load condition was significantly increased
compared to the low memory load condition (t = 3.69, df = 34,
p = 0.0006, Cohen’s d = 0.3), which remained significant after
correction for multiple comparisons.

In the beta band neither study group [F(1, 34) = 1.26, p = 0.27]
nor memory load [F(2, 34) = 0.41, p = 0.67] or age [F(1,
34) = 0.90, p= 0.35] had a significant effect on relative beta power.

FIGURE 5 | Correlation of mean functional connectivity (AEC-c) in the alpha
and beta band with the size (n = 26) and DTI measures (n = 27) of medial
temporal lobe structures. Spearman r and p-values are reported for the total
sample (black) and for the two study groups (Control group: blue, MCI group:
red). Significant correlations are marked with an asterisk.

Interaction of study group and memory load showed a trend level
effect [F(2, 34) = 0.06, p = 0.94]. The post-hoc analysis revealed
no significant effects.

Furthermore, study groups did not have a significantly
different peak frequency [F(1, 34) = 0.21, p = 0.65], however
memory load had a significant modulatory effect on the peak
frequency values [F(2, 34) = 6.44, p = 0.043]. Interaction of group
and memory load showed a trend level effect [F(2, 34) = 2.97,
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FIGURE 6 | Group MSTs and maximum Betweenness Centrality in the alpha and beta frequency band. Group-average MSTs of the two study groups (average of all
levels of memory load). The size of the nodes are proportional to the number of their connections (degree). Hubs with the most connections are indicated by
asterisks. Betweenness centrality is considered as one of the most important parameters for the identification of network hubs.

p = 0.07], however, the post-hoc analysis revealed that in
the control group the peak frequency in the high memory
load condition was significantly increased compared to the low
memory load condition (t = 3.87, df = 34, p = 0.0005, Cohen’s
d = 0.3), which remained significant after correction for multiple
comparisons. Furthermore, there was no significant difference
between the two study groups regarding the mean peak frequency
values (averaged over memory loads) (MCI: mean = 8.5 Hz,
SD = 1.4, HC: mean = 8.2 Hz, SD = 1.3, t = 0.75, df = 35,
p = 0.46). Distribution of mean relative power in the alpha and
beta frequency band and peak frequency by study groups can be
found in Supplementary Figure 1.

Minimum Spanning Tree Parameters in
the Alpha Band
The network analysis (calculated over all memory load
conditions) indicated that the MCI group had a significantly
decreased MST diameter compared to the control group [F(1,
34) = 5.36, p = 0.03]. Furthermore, a decreased eccentricity was
observed in the MCI group [F(1, 34) = 4.85, p = 0.03]. However,
age also had a significant mean effect on these parameters [F(1,
34) = 4.64, p = 0.04 and F(1, 34) = 4.14, p = 0.05, respectively].

The MCI group had a significantly increased maximum MST
degree [F(1, 34) = 5.69, p = 0.02], degree divergence [F(1,
34) = 6.12, p = 0.02], and maximum betweenness centrality

[F(1, 34) = 7.37, p = 0.01] (Figure 6) compared to the control
group. Furthermore, memory load had a significant modulatory
effect on betweenness centrality [F(2, 34) = 3.53, p = 0.04],
indicating a significantly increased BC in the medium memory
load condition compared to the low memory load condition
(t = 2.6, df = 34, p = 0.01). Leaf fraction and tree hierarchy did
not differ significantly in the two groups. Group-average MSTs
of the two study groups (average of all levels of memory load)
are shown in Figure 6, represented in sensor space. The central
hub (the node with the most connections) was the right temporal
electrode T8 in both study groups. Detailed results of the MST
analysis are summarized in Supplementary Table 2.

Minimum Spanning Tree Parameters in
the Beta Band
The network analysis (calculated over all memory load
conditions) indicated that the MCI group had a significantly
decreased MST diameter compared to the control group [F(1,
34) = 4.58, p = 0.04]. Meanwhile, a decreased eccentricity was
observed in the MCI group [F(1, 34) = 5.62, p = 0.02].

The MCI group had a significantly increased maximum MST
degree [F(1, 34) = 7.55, p = 0.01], degree divergence [F(1,
34) = 7.15, p = 0.01], and maximum betweenness centrality [F(1,
34) = 6.95, p = 0.01] (Figure 6) compared to the control group.
However, age also had a significant mean effect on maximum
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MST degree and degree divergence [F(1, 34) = 5.2, p = 0.03
and F(1, 34) = 5.44, p = 0.03, respectively]. There was no
significant difference in leaf fraction and tree hierarchy. Group-
average MSTs of the two study groups (average of all levels of
memory load) are shown in Figure 6, represented in sensor
space. The central hub (the node with the most connections)
in the control group was the right temporal electrode T8, while
in the MCI group it was the left frontal-temporal electrode
FT7. Detailed results of the MST analysis are summarized in
Supplementary Table 2.

DISCUSSION

In this study, we aimed to examine functional connectivity and
network structure during memory maintenance in MCI patients
and healthy controls.

We used the orthogonalized Amplitude Envelope Correction
(AEC-c) for the measurement of functional connectivity, which
corrects to the effect of volume conduction, is independent of
relative power (Briels et al., 2020), gives reliable estimates of the
underlying network topology (Lai et al., 2018), and has been
found the most sensitive measure of functional connectivity
in the alpha and beta frequency bands (Hipp et al., 2012).
Moreover, the AEC-c produced the most reproducible and valid
results in AD compared with other measures of functional
connectivity, such as mean global coherence (Coh), imaginary
coherence (iCoh), phase locking value (PLV), phase lag index
(PLI), weighted PLI (wPLI), and the AEC without leakage-
correction (Briels et al., 2020).

Alpha and beta-band oscillatory synchrony play an important
role in cognitive tasks by mediating top-down directed influences
on task-relevant cortical areas (Fries, 2015). Furthermore, alpha
synchronization is instrumental in controlling the flow of
information especially in the thalamo-cortical and cortico-
cortical networks and in the timing of working memory-related
processing by the modulation of neural excitability (Klimesch,
1999, 2012; Pfurtscheller and Lopes da Silva, 1999; Palva and
Palva, 2011; Wang et al., 2014; Miraglia et al., 2016; Wianda
and Ross, 2019) while beta oscillations have been linked to the
active maintenance of newly acquired information for further
task requirements (Onton et al., 2005; Deiber et al., 2007;
Missonnier et al., 2007; Chen and Huang, 2015; Fodor et al.,
2018) and to the facilitation of long-range connections in
cortical networks (Kopell et al., 2000; Varela et al., 2001; Engel
and Fries, 2010; Benchenane et al., 2011; Donner and Siegel,
2011; Kilavik et al., 2013), especially during attentional and
memory processes (Benchenane et al., 2011) and endogenous
content reactivation (Spitzer and Haegens, 2017). However, many
of these previous studies measured functional connectivity by
amplitude correlation, whose exact relation to the correlation
of amplitude envelopes (which has been used as the measure
of connectivity in the present study) and the exact mechanism
underlying communication by amplitude envelopes are still not
fully understood.

According to our results, memory load modulated the mean
functional connectivity in the alpha band, but it had a different

modulatory effect in the two study groups. In the control
group, increasing task difficulty enhanced the mean functional
connectivity. In contrast to that, after an initial increase of the
mean AEC-c in the medium memory load condition the MCI
group showed significantly diminished functional connectivity in
the high memory load condition. The control group showed a
similar memory load-related increase in the mean AEC-c in the
beta band, while in the MCI group this modulation was absent.

Cognitive load-related increase of alpha and beta band
functional connectivity is in line with previous studies which
observed the same phenomenon in healthy subjects as well as
in MCI and AD patients in alpha and beta band (Pijnenburg
et al., 2004; Palva et al., 2010; Wianda and Ross, 2019) and
in broadband (Jiang and Zheng, 2006). However, other studies
observed the diminishment of task-related increase of coherence
of alpha oscillations in AD patients in the dementia phase (based
on clinical diagnosis) (Hidasi et al., 2007).

Our results suggest that the AEC-c is a sensitive measure that
can follow the modulation of functional connectivity by cognitive
demand, especially in the alpha frequency band, which has been
associated with attentional functions (Palva et al., 2010; Sato et al.,
2018; Marzetti et al., 2019).

We observed that the initial increase of alpha-band functional
connectivity in the medium memory load condition was followed
by a decrease in the high memory load condition in the
MCI group. As former studies linked the increase of alpha-
band functional connectivity to enhanced cognitive demand
(Pijnenburg et al., 2004; Palva et al., 2010; Wianda and Ross,
2019), and we found a similar modulation in the control
group, we hypothesized that the initial increase of alpha
connectivity in the MCI group in the medium memory load
condition indicates the increased utilization of working memory.
However, due to the limited cognitive reserve, MCI patients
are unable to act likewise in the high memory load condition
as task difficulty exceeds their cognitive capacity. Therefore,
the reduction of alpha functional connectivity in the high
memory load condition might indicate the reduced cognitive
reserve and the impairment of working memory maintenance
in MCI, although this was not reflected by a decrease in
task performance.

In the beta band, while increasing memory load enhanced
functional connectivity in the control group, the MCI group did
not show memory load-related modulation. This might indicate a
more extensive failure of working memory maintenance in MCI
in the beta frequency band. Another possible explanation might
be the general “slowing” of EEG in MCI (Dauwels et al., 2010a),
namely that task-related dynamics of higher frequency bands got
shifted toward lower frequency bands in MCI. The study group
did not have a significant modulatory effect on the mean (whole
head) AEC-c, which is in line with a previous study on alpha
coherence during a working memory task which did not find
significant differences between aMCI patients and healthy older
adults (van der Hiele et al., 2007b). However, in MCI patients
some studies found increased alpha and beta synchronization
(Pijnenburg et al., 2004; Jiang, 2005; Jiang and Zheng, 2006),
which has been attributed to compensatory mechanisms (Bajo
et al., 2010; Dauwels et al., 2010b).
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The relatively small sample size of our study may be a
factor contributing to the observed lack of between-group
differences in mean functional connectivity. A different potential
explanation might be that MCI is characterized by increased and
decreased functional connectivity in different cortical regions
simultaneously (Lopez et al., 2017), and therefore during
averaging these changes might be smoothed out. Moreover,
most of the previous studies assessed eyes-closed resting-state
recordings, while we analyzed eyes-open task-related EEG, which
might be another influencing factor.

Alpha and beta AEC-c showed a significant positive
correlation with the size of medial temporal lobe structures
and a significant negative correlation with the mean diffusivity
(MD, a scalar measure of overall water diffusion) of the right
hippocampal cingulum in the entire sample. MD increases
in the presence of tissue damage and is typically used to
assess the microstructural integrity of gray matter (Stebbins and
Murphy, 2009). Elevation of hippocampal, parahippocampal, and
temporal lobe MD are considered as important early markers of
neuronal loss and disruption of myelin sheaths in MCI and AD
(Kantarci et al., 2001, 2005; Fellgiebel et al., 2004; Ray et al., 2006;
Stebbins and Murphy, 2009; Zhang et al., 2014).

Therefore, our results suggest that functional connectivity and
specifically the AEC-c in the alpha and beta frequency band
can reflect the subtle medial temporal lobe atrophy and the
disruption of hippocampal fiber integrity in the earliest stages
of cognitive decline. This is also corroborated by the fact, that
these correlations were driven by the MCI subjects, who had
a more pronounced hippocampal degeneration compared to
the control group.

There is some evidence that changes in MD are more typical in
MCI whereas as changes in MD and fractional anisotropy (FA, a
measure of the directionality of diffusion) are more typical in AD
(Rogalski et al., 2009; Stebbins and Murphy, 2009), which might
be the reason why hippocampal FA did not show a significant
correlation with mean functional connectivity. Altogether, our
results are in line with previous DTI studies reporting a
correlation between alpha-band functional connectivity and fiber
tract integrity reduction in MCI and mild to moderate AD
patients (Teipel et al., 2009; Vecchio et al., 2015).

The two study groups did not differ significantly regarding
relative alpha and beta power and peak frequency, in contrast to
former studies reporting a widespread decrease of alpha activity
in the prefrontal, temporal, parietal, and occipital cortices during
the n-back task (San-Martin et al., 2021). In the control group, we
found a significant increase of alpha power in the high memory
load compared to the low memory load condition in line with
former studies (Jensen et al., 2002; Tuladhar et al., 2007; Palva
et al., 2011), while this modulatory effect was absent in the MCI
group. In the beta band, we did not detect a memory load-related
modulation. However, in contrast to the functional connectivity
results, the outcome of the power spectrum analysis did not
show a load-related modulation of the MCI group in the alpha
band (an initial increase followed by a decrease parallel with the
enhancement of cognitive load). Therefore, we conclude that the
detected differences in functional connectivity are not entirely
the consequence of differences of spectral properties, although we

cannot rule out the possibility that it might have an influence on
the results, especially in the alpha frequency band, which might
be a potential limitation.

We performed the network analysis by applying the MST
approach, which provides an unbiased reconstruction of the
critical backbone of the original network (Stam, 2014; Stam et al.,
2014; Tewarie et al., 2015; Wang et al., 2018; Musaeus et al.,
2019), and can capture the subtle changes of network topology in
MCI more sensitively than traditional graph theoretical measures
(Lopez et al., 2017).

We found a decreased MST diameter and eccentricity and
increased maximum degree, degree divergence, and maximum
betweenness centrality in the MCI group, suggesting a more
centralized and integrated network topology compared to the
control subjects both in the alpha as well as in the beta frequency
band. Our results are in line with former studies, which reported
increased BC values and node degree in MCI and AD patients
(Engels et al., 2015; Lopez et al., 2017).

The central hub (the node with the most connections) of the
group-averaged MST network was the temporal electrode T8 in
the alpha band in both study groups and in the beta band in
the control group, while it was the left frontal-temporal electrode
FT7 in the beta-band MST of the MCI group. The right superior
temporal gyrus has been previously identified as an important
hub region during working memory maintenance (Park et al.,
2011) based on cross-frequency power correlations, however, as
our analysis was performed on sensor-space data, we are not able
to make precise assumptions about the exact spatial locations of
the nodes of the networks. We found a left and slight frontal shift
of hub location in the MCI group in the beta frequency band.
Interestingly, a frontal shift of hub location (center of mass of BC)
was observed with increasing disease severity in AD patients and
has been attributed to the earlier impact of the disease pathology
on the posterior regions (Engels et al., 2015).

Previous studies interpreted the global network disturbances
in MCI and AD by the “hub overload and failure” framework,
which states that the initial disturbance of nodes leads to the
abnormal rerouting of the information flow in the network to
hub nodes with higher centrality leading to an increase of traffic
load, and eventually to an overload and subsequent failure of
these hub nodes. This stage might also coincide with the initial
ascending phase in early MCI of the inverted U shape course
of hub activity (de Haan et al., 2012). This initial increase of
hub activity and the transition to a more integrated network
topology might be part of a compensatory mechanism, but it
might as well be a part of the degeneration process itself due to
the early impairment of inhibitory neurons (disinhibition) (de
Haan et al., 2012). Subsequently, in the chronic “hub failure”
phase, these overloaded hubs break down and the rerouting is
constrained locally to nodes with a lower level in the hierarchy in
the remaining part of the network. This stage also corresponds to
the descending phase of the trajectory of hub activity in late MCI
and AD (de Haan et al., 2012). This will eventually lead to the
disturbance of the modular system of the network (Stam, 2014).

The global network topology reflects this by an initial increase
of centralization and a shift from local to global processing
followed by a decrease of centrality (Stam, 2014). This transition
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has been confirmed by fMRI as well, where the MST of MCI
patients showed a more star-like topology, while the MST of AD
patients deviated toward a more line-like topology compared to
healthy controls (Wang et al., 2018).

Our results suggest that brain networks of MCI patients
show a transient shift to a more centralized, star-like topology
to compensate for the initial impairments in accordance with
the “hub overload” stage, and complement former EEG studies,
which reported the deviation of the network topology from
the optimal small-world architecture to a more random type
configuration (Wei et al., 2015) and the shifting of the MST
toward a more decentralized, line-like structure of AD patients
in the “hub failure” stage during resting state (Yu et al., 2016;
Peraza et al., 2018; Das and Puthankattil, 2020) and cognitive
tasks (Das and Puthankattil, 2020).

Interestingly, while functional connectivity sensitively
reflected changes in cognitive demand, MST network measures
did not show significant memory load-related modulation except
for maximum BC in the alpha band. This suggests that the AEC-c
might be a more state-like attribute, which reflects cognitive
demand, while MST network parameters are more trait-like
characteristics of MCI and are less dependent on the actual
cognitive state.

LIMITATIONS

The present study was limited by the small sample size and a
slight age difference between groups, therefore statistical tests
were corrected for age as a covariate. However, age had a
significant effect on some of the network parameters, which limits
the generalizability of our results. Moreover, the PAL test did
not have an equal number of trials in the different difficulty
levels, which might have influenced the signal-to-noise ratio of
the EEG analysis.

Furthermore, we analyzed global functional connectivity to
assess robust differences that could be considered as potential
biomarkers of cognitive decline. However, a regional analysis
focusing especially on the connectivity of the working memory
network [prefrontal cortex, the parietal and temporal lobe, and
task-specific posterior areas (Ranganath, 2006; Campo and Poch,
2012)] could have provided a more detailed picture of the exact
topological distribution of MCI-related differences.

Moreover, in this study, we did not analyze functional
connectivity in the theta-band, as the AEC-c produces less
reliable and reproducible results in the theta band in contrast
to the alpha and beta-band and therefore, it has been suggested
that for the assessment of theta-band functional connectivity
phase-based measures (PLI) should be used instead of amplitude-
based measures (Briels et al., 2020). However, this might be
a potential limitation since frontal midline theta activity is
an important marker of working memory processing (Jensen
and Tesche, 2002; Griesmayr et al., 2010; Sauseng et al., 2010;
Kardos et al., 2014).

Furthermore, we performed a scalp-level EEG analysis, which
does not allow inferences in terms of underlying neuroanatomy
as the location of EEG channels do not relate trivially to the

location of the underlying sources, which is a further limitation.
It has been suggested, that results derived from scalp-level EEG
network should be interpreted cautiously, however, the AEC-c
may allow for more reliable estimates of the underlying global
network organization compared to metrics that do not correct for
the effect of volume conduction (Lai et al., 2018).

Furthermore, while the diagnosis of MCI patients was based
on a detailed clinical examination, cerebrospinal fluid biomarkers
were not available during the diagnostic procedure. Therefore,
AD as the underlying cause of the cognitive disturbance could
not be fully proven. Finally, follow-up data is not yet available
to examine the predictive value of functional connectivity and
network structure in the conversion rate to dementia. Our study
provides a cross-sectional view of the changes in functional
connectivity and network topology during working memory
maintenance in MCI, although further studies in AD biomarker-
proven subjects and applying similar paradigms are required to
verify our results.

CONCLUSION

Our results suggest that the AEC-c sensitively reflects cognitive
load-related modulation and impairment of memory retention in
MCI. Moreover, alpha and beta-band AEC-c showed a significant
correlation with the size of medial temporal lobe structures and
with the mean diffusivity of the right hippocampal cingulum,
therefore, the AEC-c can reflect subtle medial temporal lobe
atrophy and the disruption of hippocampal fiber integrity in the
earliest stages of cognitive decline.

Furthermore, the MST network topology of the MCI
group showed a more centralized and integrated configuration
compared to the healthy control subject, which is in line
with the “hub overload and failure” framework, and might
be part of a compensatory mechanism or a consequence of
neural disinhibition.

Therefore, the assessment of EEG functional connectivity
and network structure in the alpha and beta frequency range
may provide a useful complementary diagnostic tool for the
early detection of cognitive impairment and might be a
step toward establishing functional biomarkers (Sharma et al.,
2019). However, future research applying similar paradigms is
required to further develop and confirm these initial findings
by using follow-up data to determine the predictive value of
functional connectivity measures and network parameters for
future conversion to dementia.
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