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Abstract: BACKGROUND: Sensor technologies and data collection practices are changing and
improving quality metrics across various domains. Surgical skill assessment in Robot-Assisted
Minimally Invasive Surgery (RAMIS) is essential for training and quality assurance. The mental
workload on the surgeon (such as time criticality, task complexity, distractions) and non-technical
surgical skills (including situational awareness, decision making, stress resilience, communication,
leadership) may directly influence the clinical outcome of the surgery. METHODS: A literature
search in PubMed, Scopus and PsycNet databases was conducted for relevant scientific publications.
The standard PRISMA method was followed to filter the search results, including non-technical skill
assessment and mental/cognitive load and workload estimation in RAMIS. Publications related
to traditional manual Minimally Invasive Surgery were excluded, and also the usability studies
on the surgical tools were not assessed. RESULTS: 50 relevant publications were identified for
non-technical skill assessment and mental load and workload estimation in the domain of RAMIS.
The identified assessment techniques ranged from self-rating questionnaires and expert ratings to
autonomous techniques, citing their most important benefits and disadvantages. CONCLUSIONS:
Despite the systematic research, only a limited number of articles was found, indicating that non-
technical skill and mental load assessment in RAMIS is not a well-studied area. Workload assessment
and soft skill measurement do not constitute part of the regular clinical training and practice yet.
Meanwhile, the importance of the research domain is clear based on the publicly available surgical
error statistics. Questionnaires and expert-rating techniques are widely employed in traditional
surgical skill assessment; nevertheless, recent technological development in sensors and Internet of
Things-type devices show that skill assessment approaches in RAMIS can be much more profound
employing automated solutions. Measurements and especially big data type analysis may introduce
more objectivity and transparency to this critical domain as well. SIGNIFICANCE: Non-technical
skill assessment and mental load evaluation in Robot-Assisted Minimally Invasive Surgery is not a
well-studied area yet; while the importance of this domain from the clinical outcome’s point of view
is clearly indicated by the available surgical error statistics.

Keywords: non-technical skills; Robot-Assisted Minimally Invasive Surgery; skill assessment;
surgical skills

1. Introduction

Minimally Invasive Surgery (MIS) induced a paradigm change in medicine; however,
it presented new challenges for surgeons [1,2]. In the case of MIS—against traditional, open-
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access surgery—inside organs are reached through small skin incisions with laparoscopic
instruments, and the operating area is visualized with an endoscopic camera. During MIS,
the operator (surgeon) has to work in a team as a leader, he/she gives instructions to a
camera handler assistant and the other operating room members, while he/she has to
constantly monitor the operating area on a 2D screen in an uncomfortable position. Thus,
despite the clear benefits of MIS, including the smaller scars and faster recovery time, there
are drawbacks for the physicians, such as the limited motion space, complicated instrument
control, not ergonomic environment and the two dimensional endoscopic camera image.

Robot-Assisted Minimally Invasive Surgery (RAMIS) was the next step in the evolu-
tion of MIS: it provided an improved vision system, more accurate and intuitive instrument
control and an ergonomic master console [3–5]. The most successful RAMIS system is the
da Vinci Surgical System (Intuitive Surgical Inc., Sunnyvale, CA), which is a teleoperated,
master–slave type surgical robot (Figure 1). The basic concept of a remote-controlled
telesurgical system was created at the National Aeronautics and Space Administration
(NASA) in around 1971, originally planned to be used for remote surgeries, where the
slave robot is on the spaceship. In the case of the da Vinci Surgical System, the surgeon sits
at an ergonomic master console, where he can operate with intuitively-controlled master
arms. The surgeon can use pedals for special surgical instruments, such as a clutch, and to
control the endoscopic arm, thus camera handling is only in the hands of the surgeon.
At the patient side of the da Vinci, there are the remotely controlled slave arms, which
accomplish the interventions minimally invasively with a motion mechanism called “Re-
mote Center of Motion” (RCM), which can guarantee patient safety. The assistant crew
works at the patient side of the da Vinci, where they can help the surgeon and support
the intervention, such as they can change the surgical instruments during the operation.
At the slave side, there is a 3D endoscopic camera, in which images are visualized in the
screens placed in the master console; thus, the surgeon can see a 3D image of the operating
area. The motion of the surgeon can be re-scaled on the patient side of the da Vinci, which
can provide more accurate motion. However, the original idea of remote surgery was to
operate with long distances; for safety reasons, at the moment it is not part of the clinical
practice. It is important to note, against the name ‘robot’, the da Vinci Surgical System
does not perform any kind of automation or decision making, neither decision support,
the only very low-level automation in the da Vinci is tremor and abrupt motion filtering.
A steep learning curve has been identified with the da Vinci [5,6]. Thus, despite the fact
that RAMIS can decrease the mental workload of the surgeon as shown through by studies,
RAMIS remains a challenging operation to perform not just physically, but mentally as
well, because of the constant communication, teamwork, leadership, decision making and
workload conditions (Figure 1) [7–9].
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Figure 1. The da Vinci Surgical System with the identified non-technical skills and workload. The surgeon operates at
the master side of the system, while the assistants can help them work at the patient side. The patient side arms are
controlled by the surgeon with the master arms. Robot-Assisted Minimally Invasive Surgery requires not just technical
skills, but non-technical skills as well from the operating crew, namely inter-personal skills, leadership, cognitive skills and
personal resource skills, while they have to deal with the workload. Original image credit: Intuitive Surgical Inc. [10].

The improvements of RAMIS can help the surgeon, however, RAMIS is still a hard task
to master; continuous training and feedback about the performance is crucial. Furthermore,
the skills of the surgeon directly influence the outcome of the surgery. In surgical skill
assessment, the Dreyfus model is often introduced [11]. The Dreyfus model shows the
evolution of the learning process, and it can describe the typical features of the expertise
levels at the different learning phases, such as a novice usually can only follow simple in-
structions, but an expert can well react to previously unseen situations. The Dreyfus model
was fitted to surgical skills as well [12]. Surgical skill assessment improves training and
provides quality assurance; therefore, it has benefits for surgeons and patients. While sur-
gical skill assessment is available during training (such as with RAMIS simulators [13,14]),
it is not the part of the everyday clinical practice yet [15,16]. Technical skill assessment is a
well-studied area not just in traditional MIS, but in RAMIS as well [17]. Technical skills
in RAMIS are related to the basic skills of the surgeon (knowing the instruments, using
the right tools, etc.), the control of the robot and MIS tools (bimanual dexterity, endoscopic
camera handling, clutch handling, instruments kept in view, etc.) and tissue handling
(force sensitivity). Nevertheless, non-technical skill assessment is less objective.

The workload on the surgeon—which represents the effort to perform a task—can be
high in several domains of a procedure: there are mental, physical and temporal demands.
Furthermore, task complexity (including multitasking, task novelty), situational stress and
distractions can influence the outcome of the surgery [18,19] (Figure 2). Naturally, the same
task can cause different workload to different operators. Non-technical skills related to
the workload on the surgeon, furthermore, can directly affect surgical outcome [20]. Non-
technical skills include communication, teamwork, task management, leadership, decision
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making, situational awareness and cope with stress, fatigue and distractions based on
validated metrics, such as NOTSS and ICARS [21,22] (Figure 2). Situation Awareness
(SA) has been recently investigated in other safety-critical domains, such as self-driving
technologies, nevertheless, the SA assessment and quantification methods are very similar
in both application areas [23]. While it is straightforward that technical skills are crucial
for better surgical outcomes, non-technical surgical skills can be as important as technical
skills. Clinical failures in the operating room may come from low non-technical skills of
the surgeon rather than the lack of technical skills [24–26].

Figure 2. Workload categories and non-technical skills in Robot-Assisted Minimally Invasive Surgery (RAMIS), based on
the SURG-TLX workload questionnaire and the ICARS expert-rating assessment tool. At the moment, there is no universal
solution for mental workload assessment specifically created for RAMIS.

In the literature, three approaches for surgical performance assessment can be identi-
fied [17,27,28]:

• self-rating questionnaires,
• expert-based scoring and
• automated (sensor-based) skill assessment.

Questionnaires are filled out by the operator; thus, it is easy to implement and is sub-
jective. Objective scoring is done by an expert panel, based on a standardized method [29].
Expert ratings are supposedly objective, but may be biased for personal reasons. Fur-
thermore, they can be hard to implement, being human resource intensive. Automated
skill assessment is based on objectively measurable parameters (such as applied forces,
movement velocity, etc.), however, in most cases it is technically not easy to implement.
Robotic surgical systems can provide a unique platform for objective skill assessment due
to their built-in sensors providing a continuous flow of recordable kinematic and video
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data [3]. The original da Vinci Surgical System alone had 48 sensors. The mentioned
surgical skill assessment approaches can be found in technical skill, non-technical skill and
mental workload assessment as well. For mental workload assessment, questionnaires and
automated solutions can be useful tools, and for non-technical skill assessment all of the
methods (questionnaires, expert-rating and automated techniques) can be utilized.

The difference between traditional MIS and RAMIS mental workload was examined in
some studies [30,31], demonstrating lower mental workload in the case of RAMIS. However,
in these studies questionnaires created for traditional MIS were used, the main workload
parameters in RAMIS are not yet defined. For RAMIS, non-technical skill assessment expert-
rating methods originally created for traditional MIS can be found [32,33]. There is one
metric specifically created for RAMIS non-technical expert-rating assessment (ICARS, [22]),
which describes the most important non-technical skills in RAMIS (Figure 2). Non-technical
skills are naturally hard to be measured automatically. The possibilities for automated
RAMIS non-technical skill assessment are similar to traditional MIS, such as relying on
physiological signals measured by additional sensors [34].

The goal of any kind of skill assessment is to employ automated and objective methods
to measure the skills of the surgeon; thus avoiding biased assessment and the need for
human resources. The built-in sensors of RAMIS can significantly ease automated skill
assessment, since there are recordable kinematic and video parameters of the surgery (such
as tool trajectory, orientation, velocity, etc.), which can provide input for skill assessment
algorithms (statistical analysis or machine learning methods), towards traditional MIS,
where these data are only available with additional sensors. Da Vinci Surgical System is a
closed system; therefore, to analyze surgical data recorders is necessary, such as the da Vinci
Research Kit (DVRK, developed by a consortium led by Johns Hopkins University and
Worcester Polytechnic Institute), which can provide open-source hardware and software
elements with complete read and write access to the first generation da Vinci arms [35].

To understand where non-technical skills can be identified in the case of RAMIS, high
priority (interaction and communication) channels and interfaces have to be identified and
analyzed. International Electrotechnical Commission (IEC) and International Organization
for Standardization (ISO) published a new safety standard for surgical robots, the IEC
80601-2-77. In the standard, the components of RAMIS are defined, and a basic diagram of
RAMIS is introduced [36,37]. Based on the proposed working diagram, we highlighted
the most important components in non-technical skill assessment (Figure 3). For this,
the following definitions were used from IEC 80601-2-77, following the taxonomy of the
IEC 60601 medical device core standard:

• Robotically Assisted Surgical Equipment—RASE: ‘Medical electrical equipment that
incorporates programmable electrical medical system actuated mechanism intended to facilitate
the placement or manipulation of a robotic surgical instrument’ (the ISO 8373 standard
strictly defines the term "robot" in the ISO domain, therefore the working group
decided to use the more inclusive "Robotically Assisted" expression within RAMIS,
while it is less commonly used in the domain).

• Robotic surgical instrument: ‘Invasive device with applied part, intended to be manipulated
by RASE to perform tasks in surgery’.

• High frequency (HF): ‘less than 5 MHz and generally greater than 200 kHz’.
• HF surgical equipment: ‘medical electrical equipment which generates HF currents in-

tended for the performance of surgical tasks, such as the cutting or coagulation of biological
tissue by means of these HF currents’.

• Interface conditions: conditions that shall be fulfilled to achieve basic safety for any func-
tional connection between RAMIS and other medical electrical equipment or non-medical
electrical equipment in the robotic surgery configuration.

• Mechanical interface: mounting surface on RAMIS that allows for attachment of detachable
accessories, components or parts that are mechanically manipulated by the RAMIS.

• Endoscopic equipment: ‘energized endoscope together with its supply unit(s), as required
for its intended use’ [36,37].
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It is worth mentioning that the terminology of the ISO standard with respect to RASE
slightly differs from RAMIS, mostly due to the fact that in ISO sense, the term “robot” is
defined in a much narrower meaning.

In Figure 3 the components of RAMIS and the most important components in non-
technical skill assessment are shown. Based on the literature findings, non-technical skill
and workload can be assessed with the communication channel between the surgeon
and the assistants, and with the cognitive and personal resource skills of the operating
room crew, such as based on physiological signals or questionnaires, as it can be seen
on the image, the surgeon’s decisions are inseparable from the control loop of RAMIS
systems. It suggests that non-technical skills and workload might be shown in objectively
measurable parameters, which means non-technical skill assessment is not necessarily
different from technical skill assessment [38]. This may ease objective, automated non-
technical surgical skill assessment in RAMIS. However, in the case of RAMIS, not many
studies have examined this correlation.

Figure 3. A Robot-Assisted Minimally Invasive Surgical system architecture and typical layout diagram with the most
important sensor components in the case of non-technical skill assessment and mental load evaluation based on the
International Electrotechnical Commission (IEC) 80601-2-77 robotic surgery safety standard [37].
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In this paper, we review the recent results of non-technical skill and mental workload
assessment in the case of Robot-Assisted Minimally Invasive Surgery. In the materials
and methods section, we introduce the literature search strategy, following the standard
PRISMA method. In Section 3.1, we show the mental workload assessment techniques in
RAMIS (NASA-TLX, SURG-TLX, Multiple Resources Questionnaire, etc.). In Section 3.2, we
show the expert rating techniques in RAMIS non-technical skill assessment. In Section 3.3,
we overview the recent results in automated non-technical skill assessment techniques,
furthermore, the possibilities and limitations of algorithm-based non-technical skill as-
sessment. At the end of the paper, we review the relevant publications in a tabular form
(Table 5), containing the following columns for easy comparability: reference, year of the
publication, number of subjects involved, experimental environment, used assessment
technique, measured non-technical skill, conclusion and quality of evidence. The paper
ends with an appropriate discussion and conclusion.

2. Materials and Methods

To find relevant publications in the field of non-technical skill and mental workload
assessment in RAMIS, the PubMed, Scopus and PsycNet databases were searched. The last
search was performed in August 2020. To find relevant publications for mental work-
load assessment in RAMIS, we used the keywords ‘surgical robotics’ or ‘robotic surgery’
or ‘robot-assisted minimally invasive surgery’ and ‘workload assessment’ or ‘cognitive
assessment’ or ‘NASA-TLX’ or ‘SURG-TLX’. In the case of expert rating and automated
non-technical assessment, we use the keywords ‘surgical robotics’ or ‘robotic surgery’
or ‘robot-assisted surgery’ and ‘non-technical skill’ or ‘non-technical skill assessment’ or
‘NOTSS’ or ‘ICARS’. We included original articles about non-technical skills and mental
workload assessment in RAMIS. We could not find any patents or software products
matching the above criteria. We excluded publications that studied these assessment tech-
niques in traditional MIS, not RAMIS, but included those which compared the two types
of surgery with the non-technical skill assessment perspective. Due to the fact that we
wanted to focus on RAMIS non-technical skills, we excluded publications about surgical
process modeling, ergonomy (which considered physical workload only), technical skill
assessment techniques, workflow assessments and reviews.

Fifty relevant publications were found in the field of non-technical skill and mental
workload assessment in surgical robotics (Figure 4). From the relevant publications, the fol-
lowing research topics were identified: workload (42), brain activity (11), communication
(9), stress (7), leadership (3), decision making (3), situation awareness (3) and teamwork
(2) (Figure 5). The summarized results can be found in Table 5. We defined the quality
of evidence based on the GRADE approach [39]. Study limitations, inconsistency of re-
sults, indirectness of evidence, imprecision and publication bias can decrease, and large
magnitude of effect, plausible confounding and dose–response gradient can increase the
quality of evidence in GRADE. To decide the quality of evidence, we carefully considered
the impact of RAMIS workload and non-technical skill assessment research (which can
increase or decrease the quality class). Based on the quality of evidence and the strength of
recommendation, the following classes were defined:

• High: high-level of confidence in the effects;
• Moderate: confidence in the effects may change with future research findings;
• Low: confidence in the effects is very likely to change with future research findings;
• Very low: uncertainty about the effects.
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Figure 4. PRISMA chart of the literature search results.

Figure 5. Bar chart of the literature search results. Each bar refers to the number of references identified and examined the
particular feature/non-technical skill in RAMIS.
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3. Technical Approaches for Non-Technical Skill and Mental Workload Assessment
in RAMIS
3.1. Mental Workload Assessment—Self-Rating Techniques

Performing a surgical procedure can be very stressful to the whole crew of the op-
erating room. Fatigue (mental and physical) can naturally influence the outcome of the
surgery; furthermore, time limits can cause serious stress and cognitive load on the surgeon,
and working in a team can be disturbing in some cases. Workload is a term that represents
the psychological cost to perform a task; it is human-specific, however, there are situations
which can take a serious amount of mental workload from every operator. Workload can be
defined with self-rating techniques, where a subject fills a questionnaire about his/her per-
sonal experience about the task workload. It is naturally a subjective technique, however,
there are works in the literature which studied both subjective workload measurements
and objective non-technical skill assessment metrics [32,40], or objective physiological
parameters [30,34,41–46]. Workload measurements do not only help to assess the personal
workload index, but also to define the main stressors and disturbing factors in surgery in
general, furthermore, to provide personal training for novices as well.

NASA Task Load Index (NASA-TLX, created by NASA’s Ames Research Center in
1988) is a workload self-rate estimation metric, originally created for assessing workload in
aviation [18,47]. NASA-TLX measures the workload on a subject with questions related to
mental, physical and temporal demand, effort, performance and frustration level. The sub-
ject (which can be only one person or all team members) has to answer the questions on
a 100-point-scale with 5-point steps (Table 1). NASA-TLX is a widely used technique for
workload measurement in aviation, military and healthcare. NASA-TLX can be found in
traditional MIS mental workload estimation [48–52], and employed in the case of surgical
robotics workload assessment as well [8,32,34,40,41,43,45,53–76]. There are additional men-
tal workload assessment techniques that are not originally created for surgery, and used in
workload assessment for RAMIS. Such examples are:

• Multiple Resources Questionnaire (MRQ) [31,60,62,77,78].
• Dundee Stress State Questionnaire (DSSQ) [31,78,79].
• Rating Scale for Mental Effort (RSME) [42,80].
• Psychometric Testing of Interpersonal Communication Skills Questionnaire

(PTICSQ) [81].
• Safety Attitudes Questionnaire (SAQ) [81,82]
• Wisconsin Card Sorting Test (WCST) [57,83].
• Coping Inventory of Task Stress (CITS) [31,84].
• Subjective Mental Effort Questionnaire (SMEQ) [85].
• Local Experienced Discomfort (LED) [85].
• Short Stress State Questionnaire (SSSQ) [62,86].

Table 1. NASA-TLX mental workload self-rating questionnaire [18].

Title Endpoint Description

Mental demands low/high How much mental activity was required?
Physical demands low/high How much physical activity was required?
Temporal demands low/high How much time pressure did you feel?
Effort low/high How hard did you have to work?
Performance good/poor How stressful do you think you were?
Frustration level low/high How frustrated did you feel?

MRQ estimates workload with 17 items, and it is specifically useful for multitasking
workload measurements [77]. SSSQ is based on DSSQ, and both target stress measure-
ment [86], such as CITS [84]. RSME and SMEQ estimate mental effort on a 9-point scale
from extreme effort to absolutely no effort. RSME is validated in healthcare as well [80].
LED examines physical discomfort during a task [85]. For team communication quality
estimation PTICSQ was created [81]. SAQ was developed for healthcare, which examines
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employees’ satisfaction with the job, teamwork, management, safety, stress and working
conditions [82]. WCST is a neuropsychological tool, which was originally created for
cognitive strategy adaptation measurements [83].

Surgery Task Load Index (SURG-TLX) (created by the cooperation of the University of
Hong Kong, University of Exeter and the Department of Urology, Royal Devon and Exeter
Hospital in 2011) is a modified NASA-TLX metric for surgical workload measurements [87].
SURG-TLX estimates the workload based on mental demands, physical demands, temporal
demands, task complexity, situational stress and distractions (Table 2, Figure 2). SURG-TLX
was tested on the Fundamentals of Laparoscopic Surgery (FLS) peg transfer task under
stress, such as fatigue, multitasking, distraction and task novelty. However, the metric
was validated for surgery but we could only find a few RAMIS publications on this
topic [42,44,54]. Nevertheless, this topic is well-studied in traditional MIS [88–92], and
to the best of the authors’ knowledge there is no workload self-rating measurement metric
specifically created for RAMIS.

Self-rating techniques are not resource-intensive to implement, and they do not require
human support, however, they typically show a bias. After all, it is still necessary to
consider the usage of self-rating techniques in automated or expert-rating focused NTS and
workload assessment studies, because these questionnaires can provide an easy validation
tool for correlation examinations. With self-rating tools, the real stressors of the surgery
can be observed, and other approaches have to fit to the clinical relevance. Self-rating
studies can be found in Table 5 under the following references: [30–32,34,40–44,50,56,57,59–
64,66,68–72,75,76,81,85,93–95].

Table 2. SURG-TLX mental workload self-rating questionnaire [87].

Title Endpoint Description

Mental demands low/high How mentally fatiguing was the procedure?
Physical demands low/high How physically fatiguing was the procedure?
Temporal demands low/high How hurried or rushed was the pace of the procedure?
Task complexity low/high How complex was the procedure?
Situational stress low/high How anxious did you feel while performing the procedure?
Distractions low/high How distracting was the operating environment?

3.2. Non-Technical Skill Assessment—Expert Rating

In surgical skill assessment, expert rating techniques are widely used, not just in the
case of technical skill assessment, but for non-technical skill assessment as well. Therein,
an expert panel (usually 8–10 expert surgeons) assesses the skills of the practicing surgeon,
based on a video recording of the procedure/training session, based on a validated set
of requirements. Expert rating assessment is relatively easy to complete (compared to
automated techniques), more objective than self-assessment, but it definitely requires
significant human resources, and it can still be biased for personal reasons. At the moment,
expert rating technique is the gold standard for automated skill assessment.

In the case of non-technical skill assessment, there are several different expert-rating
metrics for traditional MIS, such as NOTECHS, OTAS and NOTSS (Table 3). A few pub-
lications were identified which studied NOTSS in the case of RAMIS [32,33,96]. For sur-
gical robotics, there is one metric which specifically measures the non-technical skills of
robotic surgeons [22]; the Interpersonal and Cognitive Assessment for Robotic Surgery
(ICARS), developed by Raison et al. in 2017. It was created by 16 expert surgeons with
the Delphi methodology [97]. In ICARS, there were 28 non-technical skills identified
(Figure 2), in 3 main non-technical skill categories, namely interpersonal skills (commu-
nication/teamwork and leadership), cognitive skills (decision making and situational
awareness) and personal resource skills (cope with stress and distractions, Table 4. How-
ever, we could only find one clinical study which used ICARS for non-technical surgical
skill assessment [96]. Despite the disadvantages of expert-rating techniques (need for an
expert surgeon’s input, time, bias), they can still be a more objective tool for automated
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technique validation. They can provide a model for NTS assessment through the critical
NTS categories and the given points. Expert-rating studies can be found in Table 5 under
the following references: [8,22,32,40,42,45,53–55,57,58,60,64,65,67,73,74,96,98,99].

Table 3. Behavioral rating systems in traditional surgery compared to ICARS, the only established non-technical skill
assessment metric particularly for RAMIS [21,22].

Revised NOTECHS NOTSS OTAS ICARS

Date 2008 2006 2006 2017

Reference [100] [101] [102] [22]

Non-technical skills

• Communication and
interaction

• Situational awareness
• Team skills
• Leadership and

management
• Decision making

• Situational
awareness

• Decision making
• Task management
• Leadership
• Communication
• Teamwork

• Task checklist
• Shared monitoring
• Communication
• Cooperation
• Coordination
• Shared leadership

• Communication and
teamwork

• Leadership
• Decision making
• Situational awareness
• Cope with stress and

distractors

Content validity X X X

Construct validity X

Inter-rater reliability X X X X

Sensitivity n.a.
not acceptable

in some
categories

n.a. n.a.

Feasibility X(especially for
self-assessment) X

limited to
certain

procedures
X

Table 4. Interpersonal and Cognitive Assessment for Robotic Surgery (ICARS) expert rating metrics [22].

NTS Category NTS Group NTS

Interpersonal skills

Communication and teamwork

Effective verbal communication
Appropriate interaction with bedside surgeon
Appropriate interaction with operating room staff
Engages/initiates in confirmatory feedback with OR staff

Leadership

Appropriate and polite instructions
Effective workload management
Coordination of the team from the console
Coordination of the team at the bedside
Delegating tasks to team members
Maintenance of professional standards

Cognitive skills

Decision making

Appropriate decision making in case of equipment failure
Appropriate decision making at the bedside
Quick diagnosis of unexpected patient events
Quick decision making in case of emergency
Generation, selection and implementation of solutions
Outcome review of decision

Situation awareness

Awareness of patient status
Ability to deal with patient at the bedside
Ability of quick adaptation to problems
Anticipation of potential problems
Role awareness of surrounding team members at the console

Personal resource skills Cope with stress and distractors

Understands personal limitations and asks for help
(if necessary)
Identification of stressor
Maintenance of cognitive skills
Maintenance of technical skills
Professional and appropriate choice of resolution
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3.3. Automated Non-Technical Skill and Mental Workload Assessment in RAMIS

Establishing the correlation between physiological signals, kinematic data or other
objectively measurable features and non-technical skills or mental workload can lead to
autonomous non-technical skill assessment in RAMIS.

A common approach to assess the non-technical skills of the surgeon is through the
measurement of physiological signals. However, this has limitations: the physiological
signals are often linked to a particular non-technical skill, such as stress level, but they do
not show other important factors (situational awareness, teamwork, etc.). In the literature,
we can find physiological measurements related to the stress level, such as:

• brain activity [103];
• skin temperature [104,105];
• nose temperature [106];
• heart rate [107];
• skin conductance [107];
• blood pressure [107];
• respiratory period [107];
• tremor [108];
• eye movement [109].

While these physiological signals are proven to be related to stress, they naturally
have limitations in the usage of non-technical skills and cognitive load assessment. Such
an example is skin conductance, which can be a useful technique to estimate workload [30],
but it can be influenced by other physiological factors. Brain activity, heart rate and eye
movement are the most studied signals in RAMIS, which can refer to more complex
underlying behavior, such as technical skills [110], but the correlation between these signals
and non-technical skills is harder to established.

In the literature, there are examples of the usage of an electroencephalogram (EEG) [34,
43,45,69,70,72,93,111], given the fact that EEG measures the electrical activity of the brain [112].
While EEG is the most trivial physiological signal measurement technique for non-technical
surgical skill assessment, the proven correlation between the measurable brain activity and
non-technical skills is limited. Another approach for physiological signal-based mental
workload assessment is the measurement of the heart rate (HR) [7,42,44,72,85]. However,
the accuracy of HR measurements for cognitive load assessment was not enough in some cases,
because there is no scale for maximum tolerated workload levels, and their related effects on
the surgeon’s health [7]. The following forms of HR can be found in the non-technical skill
assessment literature, however, the usage of them can be cumbersome [112,113]:

• simple HR;
• Heart Rate Variability (HRV);
• mean square of successive differences between consecutive heartbeats (MSSD);
• average heart rate (HRA).

Another objective method for non-technical skill or mental workload assessment
is Functional Near-Infrared Spectroscopy (fNIRS) [44,114,115]. FNIRS is a functional
neuroimaging technique to track the brain activity by monitoring the blood flow in the
prefrontal lobe [116]. FNIRS shows a strong correlation with PET and fMRI data, yet it has
better temporal resolution than fMRI but is limited compared to EEG; spatial resolution
is more limited compared to fMRI, but better compared to EEG [117,118]. Furthermore,
time of isovolumetric contraction (PEP) [119], electromyography and electrodermal [72]
can also be used in mental workload assessment [85]; however, these signals can be
influenced by the surgeon’s general health. Pupillary response is also studied in workload
assessment [46].

As a summary, the following sensors/imaging techniques were studied in NTS and
workload assessment in RAMIS (detailed in Table 5):

• magnetic pose trackers;
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• EEG;
• ECG;
• fNIRS;
• skin conductance sensor;
• electromyograph (EMG);
• eye-gaze tracker;
• nose temperature and dryness sensor;
• heart rate monitor.

Adequate sensor solutions in RAMIS do not only constitute external ones, but there
are built-in internal sensors as well, which can greatly facilitate NTS skill assessment (see
Section 4 for future works) and have become proven tools for technical skill assessment
in RAMIS:

• position sensors (encoders);
• gyroscopes;
• 2D/3D endoscopic camera.

In RAMIS research, there are typically integrated/employed sensors which are not
directly related to NTS and workload assessment, but in most of the cases, their modalities
show correlation with technical skills [17]. These sensor types include, but are not limited
to, the following devices [120–123]:

• force sensors (strain gauges, capacitive sensors, piezoelectric sensors, optical sensors);
• tool position sensing (optical, electromagnetic);
• master/surgeon arm position sensing (external);
• wearable eyeglasses (Oculus Rift, Google Glass);
• tool thermal sensor;
• pressure sensors;
• camera (RGBD, external);
• communication (RF sensors);
• speech (microspeaker);
• sound (microphones).

Automated, sensory data-based NTS and workload assessment can be a key to an
objective, reproducible approach to measure the surgeon’s skills without bias and the need
of human resources. However, these techniques are typically costly, harder to implement
and the usage of additional digital tools can be a problem in a clinical environment, even
in an Internet of Things setup. Nevertheless, NTS and workload might be demonstrable
in objective, technical skills, as suggested in [93], which means these sensors can provide
an option for NTS assessment as well. As shown in this article, this research field is not
studied widely yet. Automated technology-based studies can be found in Table 5 under
the following references: [7,30,34,41–46,69,70,72,85,93,111,114,115].
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Table 5. Non-technical skill and mental workload assessment in surgical robotics. Used abbreviations: RAMIS: Robot-
Assisted Minimally Invasive Surgery, OR: Operating Room, VR: Virtual Reality, EEG: electroencephalogram, NASA-TLX:
NASA Task Load Index, SURG-TLX: Surgery Task Load Index, NOTSS: Non-Technical Skills for Surgeons, MRQ: Multiple
Resources Questionnaire, DSSQ: Dundee Stress State Questionnaire, ECG: electrocardiogram, HR: heart rate, HRV: heart
rate variability, RSME: Rating Scale for Mental Effort, PTICSQ: Psychometric Testing of Interpersonal Communication Skills
Questionnaire, SAQ: Safety Attitudes Questionnaire, fNIRS: Functional Near-Infrared Spectroscopy, PVT: Psychomotor
Vigilance Test, WCST: Wisconsin Card Sorting Test, CITS: Coping Inventory of Task Stress, MSSD: mean square of successive
differences between consecutive heartbeats, PEP: time of isovolumetric contraction, HRA: average heart rate, SMEQ:
Subjective Mental Effort Questionnaire, LED: Local Experienced Discomfort, SSSQ: Short Stress State Questionnaire, p.:
procedures (where no subject data were available), QoE: Quality of Evidence, mod.: moderate.

Ref. Date Subj. Environment Input Measured
Feature/NTS Conclusion QoE

[30] 2006 10 Dry lab Skin conductance
Self-rating (custom)

Workload
Stress

Stress is less in the case of RAMIS
compared to traditional MIS. mod.

[58] 2006 5 VR simulator NASA-TLX Workload
Workload can be increased in

proportion to delay time with the
proposed simulators.

low

[31] 2008 15 Dry lab
DSSQ
MRQ
CITS

Workload
Stress

Stress is less, workload and stress
coping strategies are the same in the

case of RAMIS compared to
traditional MIS.

low

[65] 2009 20 VR simulator NASA-TLX Workload Mimic dV-Trainer shows reasonable
workload results. low

[60] 2009 15 Dry lab NASA-TLX
MRQ Workload

The usage of the da Vinci 3D view
causes less workload compared to

the 2D view in some cases.
low

[67] 2009 6 VR simulator NASA-TLX Workload Time delay in teleoperation can
significantly increase the workload. low

[85] 2009 16 Dry lab

MSSD
PEP
HRA

SMEQ
LED

Workload
Stress

RAMIS causes less cognitive
workload compared to

traditional MIS.
low

[8] 2010 34 Live porcine NASA-TLX Workload RAMIS poses less mental workload
compared to traditional MIS. mod.

[73] 2010 3 VR simulator NASA-TLX Workload
Workload is not improved under

delays of 300 ms and 400 ms in the
simulated environment.

low

[115] 2010 21 VR simulator fNIRS Workload FNIRS can show the cognitive
burden during training. high

[78] 2012 15 Dry lab MRQ
DSSQ

Workload
Stress

Novices have less stress when
working with the da Vinci

compared to traditional MIS.
low

[74] 2012 12 Dry lab NASA-TLX Workload
After the proposed training, mental

workload is similar between
novices and experts.

low

[114] 2012 21 VR simulator fNIRS Cortical activity

There is a significant difference
between expert and non-expert
subjects with Gaze-Contingent

Motor Channeling.

mod.

[7] 2014 2 OR HR
HRV Stress

RAMIS poses less mental workload
compared to traditional MIS.

Workload measurement with HRV
is cumbersome.

mod.

[55] 2014 28 Dry lab NASA-TLX Workload
RAMIS poses significantly better

workload perception compared to
traditional MIS.

low
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Table 5. Cont.

Ref. Date Subj. Environment Input Measured
Feature/NTS Conclusion QoE

[54] 2014 13 Dry lab NASA-TLX Workload

Physiological and cognitive
ergonomics with robotic surgery are

significantly less challenging
compared to traditional MIS.

low

[53] 2014 52 VR simulator NASA-TLX Workload
Urethrovesical anastomosis VR
training improves technical skill

acquisition with cognitive demand.
mod.

[93] 2015 10 Dry lab EEG
Cognitive engagement

Mental workload
Mental state

Cognitive assessment can define the
expertise levels. high

[42] 2015 32 Dry lab
SURG-TLX

RSME
Heart rate monitor

Workload
HRV

RAMIS poses less mental workload
compared to traditional MIS. mod.

[99] 2015 6 Simulated OR Expert rating
(custom)

Communication
Leadership

Repeated simulations and increased
leadership mean faster and less
flawed conversions in the OR.

mod.

[64] 2015 24 Image display NASA-TLX Workload
Increasing the level of cognitive

load is significantly increasing the
inattention blindness.

mod.

[45] 2015 1 OR EEG
NASA-TLX

Workload
Distractions
Mental state

Expert surgeons use different
mental resources based on

their needs.
mod.

[98] 2016 89 OR Expert rating
(custom)

Communication
Decision making

RAMIS increases communication
requirements for the team of

the OR.
mod.

[63] 2016 28 VR simulator NASA-TLX Workload Xperience Team Trainer emphasizes
the importance of teamwork. mod.

[81] 2016 32 OR PTICSQ
SAQ Communication

There is a significant correlation
between team communication and

surgical outcome.
mod.

[43] 2016 1 OR EEG
NASA-TLX Workload

A surgical expert during mentoring
concerned while he was observed

the surgery.
low

[40] 2016 89 OR
Expert rating

(custom)
NASA-TLX

Communication
Workload

The proposed method is capable of
capturing team activities

during RAMIS.
mod.

[56] 2016 21 Live porcine
VR simulator NASA-TLX Workload

Live animal and VR simulator
training provide a

comparable workload.
low

[70] 2016 8 VR simulator EEG
NASA-TLX

Procedural memory
Attention level

Workload

EEG can show the learning progress
in the case of RAMIS. high

[59] 2017 55 OR NASA-TLX Workload
The study proposes a workload
variety analysis with different

members of the OR.
mod.

[94] 2017 25 p. OR NASA-TLX Workload
NASA-TLX is a useful tool for

determining the appropriate staff
member mix for RAMIS procedures.

mod.

[95] 2017 10 OR SURG-TLX Workload
Mental demands are higher for

surgeons at the console than
are assisting.

mod.

[66] 2018 24 Live porcine NASA-TLX Workload Single-site access surgery can
significantly reduce the workload. mod.
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Table 5. Cont.

Ref. Date Subj. Environment Input Measured
Feature/NTS Conclusion QoE

[34] 2018 27 VR simulator EEG
NASA-TLX

Cognitive features
Mental workload

Engagement
Asymmetry index
Brain functional

features
Communication

Integration
Recruitment

Workload

EEG features can be used for
objective non-technical

skill assessment.
high

[61] 2018 27 OR
OR efficiency

(custom)
NASA-TLX

Communication
Workload

Anticipation causes shorter
operating time. Team familiarity
causes less inconveniences. Less

anticipation causes less
cognitive load.

mod.

[62] 2018 32 VR simulator
NASA-TLX

SSSQ
MRQ

Workload
Stress

Training with a VR simulator can
decrease the workload and stress. mod.

[33] 2018 62 Dry lab
Simulated OR NOTSS

Situational awareness
Decision making

Leadership
Communication

Teamwork

Motor imaginary training technique
is not effective in non-technical

skill training.
mod.

[44] 2018 8 Dry lab
fNIRS

SURG-TLX
HRV

Prefrontal activation
Workload

Stress response

RAMIS improves performance
during high workload conditions. high

[69] 2018 4 OR EEG
NASA-TLX

Cognitive features
Functional features
Mental workload

Mental load
Engagement

Situation awareness
Blink rate

Asymmetry index
Completion time
Communication

During a simple surgical task,
functional brain features are

sufficient to classify
mentor–trainee trust.

high

[111] 2018 32 VR simulator EEG
Electrocortical activity
in temporoparietal and

left frontal regions

There are significant differences in
electrocortical activity between

novices and experts.
high

[72] 2018 12 VR simulator

HRV
NASA-TLX

Wrist motion
EMG

Electrodermal
EEG

Workload
Expertise

The proposed skill and workload
evaluation framework is accurate. high

[32] 2019 20 OR NOTSS
NASA-TLX

Situational awareness
Decision making

Leadership
Communication

Teamwork
Workload

Non-technical skills are associated
with team efficiency, surgical flow

disruptions and
self-perceived performance.

high

[75] 2019 5 OR NASA-TLX Workload

Workload is less in the case of
robot-assisted submucosal
dissection compared to the

traditional case.

low

[68] 2019 31 VR simulator NASA-TLX Workload

Specific self-directed robotic
simulation curriculum was

introduced, which can significantly
decrease the workload.

mod.

[41] 2019 8 VR simulator NASA-TLX
Eye movements Workload Eye movements correlate with

the workload. high
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Table 5. Cont.

Ref. Date Subj. Environment Input Measured
Feature/NTS Conclusion QoE

[71] 2019 264 p. OR NASA-TLX Workload

Mental workload is similar in the
case of RAMIS, traditional MIS,

hand-assisted MIS and
open surgery.

mod.

[57] 2019 30 Wet lab
NASA-TLX

PVT
WCST

Workload
Concentration

Cognitive function

Robotic assistance does not provide
less mental workload with novices.
Robotic assistance may be mentally

taxing for robotic novices.

mod.

[76] 2020 7 OR NASA-TLX Workload

RAMIS requires less mental
demand and effort compared to

open access surgery and
traditional MIS.

mod.

[46] 2020 26 Dry lab Task-evoked
pupillary response Workload

Under high cognitive workload,
there can be a divergence in robotic

movement profiles between
expertise levels.

high

[96] 2020 n.a. OR

OTAS
NOTSS
ICARS

NOTECHS II

Situation awareness
Decision making
Communication

Teamwork
Leadership

Stress

The study proposed a structured
approach to the analysis of

non-technical skill using
extracorporeal videos of both open

radical cystectomy and RAMIS
radical cystectomy

mod.

4. Discussion

RAMIS related skill assessment is a relatively young research field, and the strong
societal need for NTS and workload assessment have not appeared extensively in the
literature yet. A few publications suggested objective, sensor-based non-technical skill and
mental load evaluation in RAMIS. These approaches can provide a bias-free, reproducible
solution in the clinical environment, and allow for the effortless collection of large datasets.
Furthermore, during surgical education, personalized skill training would provide a more
effective learning procedure, which can be achieved more easily when provided objective
metrics. Nevertheless, such metrics are hard to implement, additional sensor usage can
always be problematic in the surgical environment, and at the moment, there are no vali-
dated objective and automated metrics in NTS assessment. On the other hand, there are
close relations in manual MIS and RAMIS, and in manual MIS, it is already suggested to
approach NTS assessment with technical skill assessment metrics [38,124], which is a much
more deeply studied area in RAMIS. It is assumed that technical and non-technical skills
are not different in RAMIS, thus the connections of these two seemingly diverse research
approaches shall be studied further. A validated manual technique could be achieved by
a relatively simple statistical analysis, but in the case of automated techniques, appropri-
ate test environment, amount of data, sensor usage, feature extraction and classification
techniques should all be examined and validated.

For technical skill assessment, there are accurate results with kinematic [125] and
video data [126] already. However, these studies only focused on the surgeon and not on
the whole staff of the operating room. With external sensors (such as cameras) workflow
and NTS (such as communication and teamwork) correlation can be further studied [127].
However, the first step of these studies is to examine the different sensor outputs, which
can both correlate with technical and non-technical metrics. RAMIS built-in sensors
(3D endoscopic camera and kinematic sensors) can significantly ease NTS and workload
assessment, leading to established correlations between sensor outputs and/or self/expert-
rating results.
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5. Conclusions

In this article, we presented the findings of an extensive literature search, performed
based on the standard PRISMA method, focusing on the domain of non-technical skill
and mental load assessment in Robot-Assisted Minimally Invasive Surgery. Non-technical
skills and mental workload directly influence the surgeon’s performance, and thereby the
surgical outcome. The importance of non-technical skill assessment in robotic surgery
is already recognized, however, there are not too many studies targeting this particular
field. In traditional manual MIS, there are already validated metrics for non-technical skill
assessment, yet it is clear that robotic surgery requires different non-technical skills from
the surgeon, which might be monitored with alternative sensor systems. Alternative skills
include advanced teamwork, capabilities to deal with new stress sources and different
decisions to make. In the case of RAMIS for mental load assessment, authors often use
self-rating techniques, such as NASA-TLX and SURG-TLX, meanwhile, there are no self-
rating questionnaires specifically created for RAMIS yet. The existing primary technique
for traditional surgery, SURG-TLX, defines the following workload categories: mental
demands, physical demands, temporal demands, task complexity, situational stress and
distractions. While SURG-TLX is similar to the general NASA-TLX, there are significant
differences, such as the examination of distractions in the operating room. It concludes that
workload factors for RAMIS can be different as well. For non-technical skill assessment,
an often-used technique is expert rating, where a group of expert surgeons assesses the
skills of the surgeon based on a validated metric, but this technique can be biased, and may
require significant human resources.

The only established expert-rating tool for RAMIS is ICARS, which defines the fol-
lowing non-technical skills for surgeons: communication, teamwork, leadership, decision
making, situation awareness and ability to cope with stress and distractions. The final
frontier is a sensor-based objective, automated non-technical skill assessment method for
RAMIS. Towards this, there are preliminary studies that use physiological signals, such as
heart rate or the electrical activity of the brain. Most of the publications examined workload
in RAMIS, a significant amount studied brain activity, but specific non-technical skills (in
descending order: communication, stress, leadership, decision making, situation awareness
and teamwork) can be found in the state-of-the-art as well. At the moment, there exists
no widely accepted non-technical skill and mental workload assessment method in the
clinical practice of RAMIS.
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