
Abstract

The fourth age of quantum chemistry o�ers fully flexible, black-box-type protocols for
the accurate and detailed study of nuclear motions, applicable equally well to semirigid,
floppy, flexible, polytopic, fluxional, and quasistructural polyatomic molecular systems,
including complexes and clusters. Several codes, based on advanced fourth-age proto-
cols, have been developed for the variational (or variational-like) solution of the time-
independent nuclear-motion (rotational-vibrational) Schrödinger equation. These codes
yield accurate rovibrational energy levels, wavefunctions, and to some extent quantum-
number assignments for bound, resonance, and scattering states, revealing important spec-
troscopic and dynamical characteristics about the systems studied. When no approxima-
tions are introduced to the kinetic energy part of the rovibrational Hamiltonian, the accuracy
of the computed results, assuming the validity of the Born–Oppenheimer approximation,
depends solely on the accuracy of the representation of the potential energy surface utilized
during these computations. From the point of view of potential applications it is important
to emphasize that the most general codes can be employed both in full and any number of
reduced dimensions. Several a posteriori analysis tools are available to improve the un-
derstanding of the extreme amount of numerical results produced by the stationary-state
nuclear-motion computations. As shown through a few examples, these stationary-state
solutions can straightforwardly be utilized for detailed quantum-dynamics studies. The
applications briefly detailed at the end of this chapter help appreciate the power of the
fourth-age quantum-chemical techniques developed and available to the spectroscopic and
dynamics communities.

Keywords: bound and unbound rovibronic states; nuclear motion theory; flexible, poly-
topic, fluxional, and quasistructural molecules; quantum dynamics
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1 Introduction

Over the last few decades there has been a steady increase in the number of gas-phase species,
including molecules, molecular complexes, and clusters, in all feasible neutral and charged
(cationic and anionic) forms, whose internal motions (rotations and vibrations) have been stud-
ied at high resolution by advanced techniques of molecular spectroscopy (Merkt and Quack,
2011). For systems confined to a finite region of configuration space or adsorbed on a surface,
translational degrees of freedom (dof) may also need to be considered explicitly in a quantum
treatment of nuclear motions (Dosch, 2001, Xu et al., 2008a, 2009b, 2008b, 2009a, McAfee
and Poirier, 2009, Matanović et al., 2009, McAfee and Poirier, 2011, Matanović et al., 2012,
Xu et al., 2013, Firmino et al., 2014, Xu et al., 2015, Poirier, 2015, Felker and Bačić, 2017,
Zanuttini et al., 2018); nevertheless, such systems and situations are not considered in what
follows.

It is highly desirable, almost mandatory in certain cases, to accompany high-resolution experi-
mental spectroscopic studies with ever more sophisticated quantum-chemical [electronic struc-
ture (Helgaker et al., 2000, Császár et al., 2000) and nuclear motion (Merkt and Quack, 2011,
Bowman et al., 2008, Császár et al., 2012, Tennyson, 2016, Carrington, 2017)] computations
(note that the emphasis here is on the joint sophisticated treatment of the two distinct but equally
relevant fields of quantum chemistry for a proper dynamical description of simple as well as
complex molecular systems). This is especially important when the experimental absorption,
emission, and action spectra become highly complex, in the simplest sense dense, which hap-
pens due to (a) the sheer size of the molecule under investigation, (b) the complexity of the
internal motions when the dynamics leaves the so-called “semirigid” region [in cases when the
results based on the rigid rotor (RR) (Kroto, 1992) and harmonic oscillator (HO) (Wilson Jr.
et al., 1955) approximations, perhaps after a slight extension based on second-order vibrational
perturbation theory (VPT2) (Papoušek and Aliev, 1982, Nielsen, 1951, Clabo Jr. et al., 1988,
Allen et al., 1990, Barone et al., 2014), provide an outstanding qualitative and even a semiquan-
titative understanding of spectral regularities, the molecule is said to be semirigid], (c) high level
of rovibronic excitation (at higher excitation energies all molecules become “floppy”), and (d)
interaction of several electronic states [in what follows we mostly neglect these cases, focusing
our attention on a single, well-separated electronic state, by default the ground electronic state
(Császár et al., 2000)]. In the 21st century sophisticated quantum-chemical computations have
been used to aid (or even make possible) the deduction of information encoded in exceedingly
complex observed spectra.

There is growing evidence that the rovibrational energy-level structure of certain molecular
species, due to their complex rovibrational dynamics, defies the conceptually simple, tradi-
tional interpretation attempts, building upon the RRHO approximation. This means that cer-
tain molecular parameters [e.g., the geometric structure (Demaison et al., 2011) and the ro-
tational constants (Kroto, 1992) corresponding to a minimum on the potential energy surface
(PES)] as well as the rovibrational energy level structure of these species strongly disagree with
the corresponding data computed by (even the most sophisticated) electronic-structure tech-
niques (Helgaker et al., 2000) within the RRHO approximation. It is thus important to note
that the structure and spectra of “flexible”, “polytopic” (Clementi et al., 1973, Nielsen et al.,
1997), “fluxional” (McKee, 2011), and “quasistructural” (Fábri et al., 2014c, 2017, Fábri and
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Császár, 2018, Császár et al., 2019) molecules, the course of reactions and collisions of molec-
ular systems (Schinke, 1993, Wyatt and Zhang, 1996, Zhang, 1999), and the extended dynamics
characterizing rovibrational resonances (Papp et al., 2017a,b, 2018), playing a special role, for
example, in bimolecular reactions, can all be computed and interpreted via sophisticated fourth-
age (Császár et al., 2012) variational quantum-chemical techniques. In this chapter all time-
independent nuclear-motion techniques which employ basis sets, represent the rovibrational
Hamiltonian, ĤVR, in this basis as a matrix, H, and solve the resulting matrix eigenvalue prob-
lem via a “diagonalization” technique will be referred to as “variational”, irrespective whether
the matrix elements are computed accurately or not (Szalay et al., 2012). Detailed description
of the best of these variational techniques utilizing exact kinetic energy operators expressed in
curvilinear internal (shape) coordinates is the main aim of the first part of this chapter. This
restriction on the algorithms addressed is dictated partly by the fact that only these techniques
will generally be applicable for complex stationary-state-based dynamical computations. This
choice also means that certain popular nuclear-motion techniques, especially those built upon
the Eckart–Watson Hamiltonians (Eckart, 1935, Watson, 1968, 1970), are not considered here
in detail. The reader is referred to review articles (Bowman et al., 2008, Carrington, 2017, Car-
ney et al., 1978, Beck et al., 2000, Christiansen, 2007, Ne� and Rauhut, 2009, Seidler et al.,
2010) if interested in other extremely useful nuclear-motion techniques, whose applicability,
however, is basically constrained to low excitations of semirigid molecular systems. It is also
not the purpose of this chapter to discuss certain highly useful simplification techniques (Sadri
et al., 2014) built upon certain choices of the form of the PES or computational techniques
(Fábri et al., 2014a, Pavlyuchko et al., 2015) not designed to treat systems exhibiting arbitrarily
large-amplitude motions (LAM).

At this point it is instructive to return briefly to what is considered to be the standard model in the
field of stationary rovibrational states of free molecules. First, without external forces the three
translational dofs of molecular systems can be separated exactly from the rest of the motions.
Second, the approximate separation of the three rotational dofs from the 3N�6 vibrational dofs
of an N-atomic nonlinear molecule is part of the RRHO-based treatment of molecular vibrations
and rotations (Wilson Jr. et al., 1955, Kroto, 1992). Third, using normal coordinates within the
HO approximation to the PES leads to perfect separation of the vibrational modes, i.e., to one-
dimensional (1D) model vibrations [the adiabatic separation of certain molecular vibrations
remains a highly useful concept much beyond the HO approximation (Hougen et al., 1970,
Miller et al., 1980, Carrington Jr. and Miller, 1984, Lauvergnat, 2001, Fehrensen et al., 2003)].
Finally, note that in linear molecules, including diatomics, rotation around the internuclear axis
is not a proper internal motion. Therefore, these molecules have only two rotational dofs and
one extra vibrational dof.

As the next point, it is noted that observable rovibrational energy-level splittings, assuming a
molecular Hamiltonian without hyperfine interaction terms, are considered by many to be due
to (multidimensional) quantum tunneling (Hund, 1927, Nordheim, 1928, Frenkel, 1932, Bell,
1980) (think of ammonia and its “umbrella” motion (Al Derzi et al., 2015) as a principally 1D
tunneling case). Clearly, if tunneling occurs in a molecule then all of its vibrational and rota-
tional dofs are a�ected (Császár and Furtenbacher, 2016). This simple picture is complicated by
the fact that splitting, perhaps with a rather complex splitting pattern (Fábri et al., 2017, Fábri
and Császár, 2018), also occurs if LAMs among symmetrically equivalent versions (Longuet-
Higgins, 1963, Bunker and Jensen, 1998) of a molecule take place. A LAM coordinate can
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be associated with chemical isomerization [e.g., HNC ! HCN for the [H,C,N] system (van
Mourik et al., 2001, Mellau, 2011a,b)], but here the picture of tunneling splitting is less useful
due partly to the asymmetry of the wells. Energy-level splitting in just slightly asymmetric
potentials introduces interesting dynamical phenomena, like tunneling switching (Quack, 1986,
Albert et al., 2013, 2016, Šmydke et al., 2019). Deep tunneling (Bell, 1980, Schreiner et al.,
2008) along a single path can be treated as a simple, well understood and utilized concept simi-
lar in spirit to the RRHO approximation. However, there are complex motions where treatment
of tunneling and energy-level splittings requires sophisticated variational modeling e�orts, way
beyond the simple 1D picture. It must be emphasized that often it is hard to separate tunneling
and other large-amplitude motions. For the variational nuclear-motion techniques described in
this chapter this separation causes no particular di�culties.

A molecule is considered semirigid if its (ground) electronic state contains a single, well-
defined, and conveniently deep minimum. For the 3N�3 internal degrees of freedom of a semi-
rigid molecule the rovibrational eigenstates can be labelled by the irreducible representations
(irreps) of the point group [isomorphic to a molecular symmetry (MS) group (Longuet-Higgins,
1963, Bunker and Jensen, 1998) for semirigid molecules] characterizing the unique equilibrium
structure of the molecule, the vibrational spacing decreases, almost without exception, with the
increase in vibrational excitation, and the rotational states can be assigned to a certain vibra-
tional state, as implied by the RRHO approximation (from now on these vibrational states will
be called the vibrational parents (Mátyus et al., 2010, Wang et al., 2011, Szidarovszky et al.,
2012) of certain rovibrational states). For molecules considered to be semirigid, (a) the vibra-
tional and rotational motions can be treated separately (they have su�ciently di�erent energy
and time scales); (b) the rotational spectrum provides important and accurate information about
the (temperature-dependent, e�ective) structure (Demaison et al., 2011) of the molecule; and
(c) the simple RR picture is perfectly adequate to explain not only the characteristics of the ob-
served microwave (MW) or millimeterwave (MMW) spectra, though hyperfine splittings may
also need to be considered, but it is also su�cient to derive the (equilibrium) structure (Demai-
son et al., 2011) of the molecule via the determination of rotational constants [the lowest-order
terms in an e�ective rotational Hamiltonian (Kroto, 1992)]. For semirigid molecules there are
traditional quantum-chemical treatments, such as vibrational perturbation theory based on the
Eckart–Watson (EW) Hamiltonians (Eckart, 1935, Watson, 1968, 1970) carried out to second
order (Nielsen, 1951, Mills, 1972, Papoušek and Aliev, 1982) and beyond (Sibert III, 1988,
Aarset et al., 2000, Iung et al., 2006) or even variational treatments utilizing the exact EW
Hamiltonians. Note that extensions o�ered to the variational EW Hamiltonian treatment [like
the Reaction Path Hamiltonian (RPH) (Miller et al., 1980) extension of the widely utilized pro-
tocol and code Multimode (Carter et al., 1998, Bowman et al., 2003)] would still allow the
treatment of a LAM only along a single coordinate.

As noted above, there is a large number of molecules for which RRHO-based treatments are
not adequate. The extent how far one needs to go beyond the RRHO, the VPT2, and the
EW-based variational treatments depends greatly upon the complexity of the nuclear motions.
Nuclear motions of molecules exhibiting LAM, as well as polytopic, fluxional, and quasistruc-
tural molecules require quantum treatments of di�ering sophistication. Furthermore, treating
dynamical processes (e.g., reactions and collisions) also calls for sophisticated variational pro-
cedures. Dealing with motions of such molecules and molecular systems leads us closer to the
techniques required in complex quantum-dynamical treatments. Systems where understanding
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complex internal motions, as well as their spectral manifestations, required the development
of fourth-age variational quantum-chemical techniques insensitive to the number of minima
and the corresponding equilibrium structures, rBO

e , the PES possesses are as follows: fluxional
(McKee, 2011), polytopic (Clementi et al., 1973, Nielsen et al., 1997, Bogey et al., 1991), and
quasistructural (Fábri et al., 2014c, 2017, Fábri and Császár, 2018, Mills and Thompson, 1954,
Bunker and Longuet-Higgins, 1964, Sarka et al., 2015, Sarka and Császár, 2016, Császár et al.,
2019) molecules, as well as van der Waals (vdW) complexes (Nesbitt and Naaman, 1989, Sarka
et al., 2016, 2017).

In the fourth age of quantum chemistry (Császár et al., 2012) the nuclear motions of rigid,
semirigid, floppy, flexible, polytopic, fluxional, and quasistructural molecular systems, includ-
ing molecular clusters, van der Waals complexes, and molecules exhibiting highly unusual
bonds, like three-center–two-electron (3c-2e) bonds [e.g., in protonated H2, H+

3 (Polyansky
et al., 2012), and protonated methane, CH+

5 (Fábri et al., 2017)], can all be treated with so-
phisticated variational techniques solving the time-independent nuclear Schrödinger equation
in a numerically exact fashion. Time-independent variational techniques employed in compu-
tational molecular spectroscopy, a field of nuclear-motion theory, have traditionally been built
around the use of rectilinear normal coordinates, the Eckart embedding, and the resulting EW
Hamiltonians (Eckart, 1935, Watson, 1968, 1970). Nevertheless, for large-amplitude motions
one must use curvilinear internal coordinates as only they provide a suitable and e�cient, physi-
cally motivated description of the dynamics and allow to move away arbitrarily far from a single
reference configuration and allow the use of arbitrary body-fixed frame embeddings. Further-
more, since in many cases there is only a small number of (but more than one) internal coordi-
nates that dominate the large-amplitude motions (the other vibrational dofs can be considered
as “spectator” modes) even in relatively complex and large molecules, development of reduced-
dimensional (variational) nuclear-motion treatments is highly desirable. It is hard to expect that
“regular” stretching dofs will have a significant role in complex nuclear dynamics, unless dis-
sociation is part of the motions considered. On the other end of vibrational softness, torsional
vibrations and other LAMs appear to be the best candidates of the vibrational dofs which could
couple extremely strongly with the rotational dofs. During the last two decades e�cient and
black-box-type protocols relying on the use of a Hamiltonian expressed in arbitrary internal
coordinates and body-fixed frames have been developed (Fehrensen et al., 1999a,b, Luckhaus,
2000, 2003, Lauvergnat and Nauts, 2002, Yurchenko et al., 2007, Mátyus et al., 2009, Changala,
2019). The most desirable features of these protocols are as follows: (a) they are completely
general in the sense that a single code can treat all molecular systems of feasible size, irre-
spective of the fact whether their PESs contain a single minimum or easily accessible multiple
minima and what the choices of internal coordinates and coordinate system embeddings are; (b)
the always very complex form of the exact kinetic energy operator in internal coordinates, see,
e.g., Handy (1987), Császár and Handy (1995a), and Császár and Handy (1995b), may not need
to be known explicitly; and (c) they allow the use of arbitrary reduced-dimensional nuclear mo-
tion treatments and PESs of arbitrary functional form within the same code. All these features of
a time-independent variational nuclear-motion protocol become especially important when the
aim is to treat large-amplitude motions of larger fluxional and quasistructural molecular systems
or highly excited rovibrational states of molecules [the extreme case is the determination of the
complete set of rovibrational (bound) states (Szidarovszky et al., 2010, Császár et al., 2010)].
Furthermore, these are the computations which can provide all the necessary rovibrational states
for dynamical studies. Several codes have been developed which can perform these numerically
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very demanding quantum-chemical computations: ElVibRot (Lauvergnat and Nauts, 2002, Lau-
vergnat, 2019), GENIUSH (Mátyus et al., 2009, Fábri et al., 2011a), MCTDH (Meyer et al.,
2009), NITROGEN (Changala, 2019), TROVE (Yurchenko et al., 2007), codes due to Carring-
ton (Manzhos et al., 2009, 2015, Manzhos and Carrington, Jr., 2016), Poirier (Poirier, 2003b,
Chen and Poirier, 2006, 2010, Petty and Poirier, 2014), Yu (Yu, 2002, 2004a,b, 2006), and per-
haps there are others, as well. Note that for triatomic systems, for which a completely general
internal-coordinate Hamiltonian, often referred to as the Sutcli�e–Tennyson Hamiltonian (Sut-
cli�e and Tennyson, 1991), could be developed, there are lot more codes available which are
similar in spirit to those mentioned above, e.g., DVR3D (Tennyson et al., 2004), ScalIT (Petty
and Poirier, 2014), D2FOPI (Szidarovszky et al., 2010), and codes due to Guo (Ma et al., 1999)
and Schwenke (Schwenke, 1992, Klepeis et al., 1993). For four-atomic molecules it is not
possible to develop a Hamiltonian which would cover all possible internal coordinate systems.
Nevertheless, there are excellent variational nuclear-motion codes which can handle a number
of internal coordinate systems, e.g., WAVR4 (Kozin et al., 2004, 2005) and codes developed by
Schwenke (Schwenke, 1996) and Mladenović (Mladenović, 2002a,b).

It is appropriate to add at the end that there are significant e�orts and advanced variational codes
which do not make the BO separation of nuclear and electronic dofs and allow the “full” treat-
ment of quantum systems, at present up to five bodies (Armour et al., 2005, Stanke et al., 2006,
Pavanello et al., 2010, Pachucki and Komasa, 2010, Mátyus et al., 2011, Mátyus and Reiher,
2012, Mátyus, 2013). These extremely accurate computations are not yet applicable for poly-
electronic and polyatomic systems and the eigenstates may not be amenable to a straightforward
dynamical interpretation.

2 Molecular Hamiltonians

Let our isolated molecular system contain N nuclei with masses mi, i = 1; :::;N, and let Xi be
the position vectors of the nuclei in the space-fixed (SF) Cartesian coordinate frame (X;Y;Z).
The set of nuclear positions fX1;X2; :::;XNg is called the configuration of the molecular system.
Then,

Xi = XCOM + Rxi; i = 1; : : : ;N; (1)

where R is an orthogonal rotation matrix depending on the three rotational coordinates �1,
�2, and �3, and xi = xi(t) are the body-fixed position vectors of each nucleus, a function of
time t, in the body-fixed (BF) reference frame (x; y; z), and COM stands for center-of-mass. It
is customary to describe the motions of the molecular system in terms of some set of scalar
variables qi(t) (i = 1; 2; :::; As). The xi = xi(q1; q2; :::; qAs; t) BF atomic position vectors are
functions of the qi internal (shape) coordinates, of which As are active (As < 3N � 6 holds for
reduced-dimensional, while As = 3N � 6 holds for full-dimensional rovibrational treatment of
nonlinear molecules). Furthermore, let V denote the PES of the system, depending on a given
set of shape coordinates (in this chapter we are dealing solely with conservative forces).
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2.1 Coordinate systems

When choosing the 3N coordinates, su�cient to describe the complete nuclear dynamics of an
N-atomic molecular system, it is desirable to choose coordinates which simultaneously fulfill
the criteria of simplicity, separability, and factorizability. Since there is no single coordinate
system which exhibits all these important characteristics at the same time, several proposals
have been made (Stefanski and Taylor, 1985, Bačić and Light, 1989, Colbert and Sibert III,
1989, Bramley et al., 1991, Mayrhofer and Sibert III, 1995, Rauhut, 2007, Yagi et al., 2012,
Thomsen et al., 2014, Klinting et al., 2015) how to generate optimal/optimized coordinate sys-
tems for treating nuclear dynamics.

Simplicity in this context means that the form of the kinetic energy operator (KEO), based on
the chosen set of coordinates, is as simple as possible. The simplest way to achieve simplicity
goes through the selection of orthogonal shape coordinates, including the Jacobi (body-fixed
scattering) (Jacobi, 1843, Smith, 1959, Tennyson and Sutcli�e, 1982) and Radau (Radau, 1868,
Smith, 1980) coordinates.

Separability means that the complete nuclear-motion (rotational-vibrational) Hamiltonian, ĤVR,
can be written as the finite sum of independent operators:

ĤVR = Ĥ1;i(q1; :::; qi) + Ĥi+1; j(qi+1; :::; q j) + ::: + Ĥk;As(qk; :::; qAs) + Ĥ0(q1; :::; qAs); (2)

and Ĥ0 remains small. In an ideal case each term is one-dimensional and the product(s) of the
one-dimensional eigenfunctions approximates well the exact eigenfunction(s) of ĤVR. We talk
about exact separation when Ĥ0 = 0, but this is rarely the case. Note that in a field-free case the
translational motion can be separated exactly from the other nuclear motions.

Factorizability means that the complete Hamiltonian can be written as the sum of products
(SOP) (Carrington, 2017) of one-dimensional operators,

ĤVR =
X

i

As+3Y
j=1

Ĥi j(q j): (3)

This form of the Hamiltonian is advantageous from a computational point of view, as well, as
the matrix elements of a representation of ĤVR of this form can be computed through simple
one-dimensional integrations.

Next, let us briefly discuss the di�erent choices of shape coordinates that can be employed
during nuclear-motion computations.

Let us start with a set of rectilinear Cartesian coordinates. Although Cartesian coordinates are
simple and their use is simple, as well, as in Cartesian coordinates both the classical and the
quantum-mechanical expressions for the kinetic energy have by far the simplest form, Cartesian
coordinates are considered to be not well suited for rovibrational computations. Nevertheless,
some aspects of the use of SF Cartesians in variational nuclear motion computations have been
explored (Blanco and Heller, 1983, Broeckhove and Lathouwers, 1993, Suarez et al., 2009,
Manzhos and Carrington, Jr., 2016). Manzhos and Carrington, Jr. (2016) demonstrated that
if the kinetic energy operator is expressed in space-fixed Cartesians but the basis functions
depend only on shape coordinates then one obtains only vibrational energy levels. The use
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of KEOs in SF Cartesians is still uncommon, partly because these days derivation (Handy,
1987, Lukka, 1995, Császár and Handy, 1995a,b, Pesonen, 2013, 2014) or numerical handling
(Meyer, 1979, Laane et al., 1982, Harthcock and Laane, 1982, McCoy et al., 1991, Luckhaus,
2000, Lauvergnat and Nauts, 2002, Mátyus et al., 2009, Fábri et al., 2011a) of kinetic energy
operators in curvilinear coordinates is relatively straightforward. In nuclear-motion theory there
are only a few methods, like the quantum Monte Carlo technique (Hammond et al., 1994), which
work in Cartesian space, mostly out of algorithmic convenience.

Normal coordinates are defined in quantum chemistry analogously to their classical mechanical
definition (Hestenes, 1999, Goldstein et al., 2014). They are defined with respect to a single
minimum and they are excellent choice for the description of small-amplitude vibrations of
semirigid molecules. Nevertheless, normal coordinates are unsuitable to describe LAMs as
they are strongly attached to a single deep minimum and its immediate surrounding. Note that
not only rectilinear but also curvilinear normal coordinates have been defined (Quade, 1976).

Curvilinear internal (shape) coordinates appear to be the best choice for performing variational
nuclear-motion computations. Even in harmonic vibrational analysis (Wilson Jr. et al., 1955,
Califano, 1970) they have been employed extensively by spectroscopists and quantum chemists
(Pulay et al., 1979). Properly selected internal coordinates can describe straightforwardly the
full configuration space. For variational nuclear-motion computations the use of orthogonal
variants (e.g., generalized Jacobi (Jacobi, 1843, Hirschfelder and Dahler, 1956, Jepsen and
Hirschfelder, 1959, Smith, 1959, Pack, 1984) and Radau (Radau, 1868, Smith, 1980) coor-
dinates) is advantageous, so they should be selected whenever feasible. For traditional reasons,
bond length–bond angle coordinates are often referred to as valence coordinates. A number
of KEOs have been obtained analytically for valence coordinates (Handy, 1987, Sutcli�e and
Tennyson, 1991, Chapuisat and Iung, 1992, Császár and Handy, 1995a,b, Lukka, 1995, Mlade-
nović, 2000b, Pesonen and Halonen, 2003). Curvilinear internal coordinates tend to reduce the
coupling in the potential, though usually at the expense of enhanced coupling in the KEO. Poly-
spherical coordinates (Chapuisat and Iung, 1992, Gatti and Iung, 2009, Mladenović, 2000a,b,c),
providing a spherical polar parametrization, have also been used to derive analytic KEOs for
nuclear-motion computations. For an N-atomic molecule polyspherical coordinates are com-
prised of N � 1 radial coordinates (“stretches”) and 2N � 5 angular coordinates, usually further
classified to N � 2 bends and N � 3 torsional (dihedral) angles in a spherical polar parametriza-
tion. Many valence coordinate systems can be considered as polyspherical coordinate systems.
As to hyperspherical coordinates, they are defined by one hyperradius, and all the other coordi-
nate elements are hyperangles (Delves, 1959, Smith, 1959, Louck and Galbraith, 1972, Johnson,
1980, 1983, Pack, 1984). Hyperspherical coordinates have special symmetry properties, these
can be exploited during nuclear-motion computations (Louck and Galbraith, 1972).

A di�culty in nuclear-motion computations of flexible systems is that if one uses normal co-
ordinates or certain internal coordinates not describing well the actual complex motions of the
system, the basis functions associated with these coordinates are often strongly coupled. A
judicious choice of internal coordinates and basis functions is thus very basic to converge the
usually very large number of computed (ro)vibrational eigenstates (De Leon and Heller, 1984,
Colbert and Sibert III, 1989) and allow for the improved interpretation of the wavefunctions,
important to understand the dynamics of the system.

From what is noted above it follows that the choice of curvilinear (generalized, orthogonal)
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internal coordinate systems is by far the best choice for variational nuclear-motion computations
(Watson, 2004). Redundancy conditions (Wilson Jr. et al., 1955, Califano, 1970, Hoy et al.,
1972) should always be checked when selecting the shape coordinates.

2.2 Formulation of the classical Hamiltonian in generalized internal co-
ordinates

We follow the generally applied approach to derive the quantum Hamiltonian by first deriving
the classical Lagrangian and Hamiltonian forms and then performing the quantization. The
nonrelativistic Lagrangian L of the molecule is of the form (Sørensen, 1979, Hestenes, 1999,
Pesonen, 2013, 2014)

L =
1
2

As+6X
k=1

As+6X
l=1

gqkql q̇kq̇l � V; (4)

where

gkl � gqkql =

NX
i=1

mi
@XT

i

@qk

@Xi

@ql
=

NX
i=1

mitT
iktil; k; l = 1; : : : ; As + 6 (5)

is the covariant metric tensor of the coordinate transformation from the space-fixed mass-
weighted Cartesian coordinates to the generalized coordinates qk, based on the covariant mea-
suring vectors e(i)

k =
@Xi
@qk

(Hestenes, 1999). As in Eq. (5), the covariant measuring vectors are
often referred to as the t vectors (Sørensen, 1979), corresponding to the qk generalized coordi-
nate on atom i.

The classical Hamiltonian can then be expressed as

H =
1
2

As+6X
k=1

As+6X
l=1

Gkl pk pl + V; (6)

where G = g�1 is the contravariant metric tensor and pk = @L
@q̇k

(k = 1; : : : ; As + 6) is the
canonical momentum conjugate to qk. There is a well-known reciprocality relation (Hestenes,
1999) connecting the covariant and contravariant measuring vectors:

NX
i=1

e(i)
j � e

k
(i) = � jk: (7)

The contravariant measuring vectors are known in the theory of the rovibrational motion of
molecules as s vectors (Wilson Jr. et al., 1955, Pesonen, 2014).

To construct the covariant g and the contravariant G metric tensors, let us describe the con-
figuration of the system by the qk = qk active (k = 1; : : : ; As) and constrained (k = As +

1; : : : ; 3N � 6) internal coordinates, the three rotational (�1; �2, and �3) and the three center-of-
mass (XCOM

1 ; XCOM
2 , and XCOM

3 ) coordinates describing the translation of the system. Derivation
of the gkl matrix elements is equivalent, see Eq. (5), to constructing the tik vectors (Sørensen,
1979) in terms of the generalized coordinates.
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The translational ti;k+As+3 (k = 1; 2; 3) vectors are simply

ta
i;k+As+3 =

@Xia

@XCOM
k

= �ak; (8)

where a = 1; 2; 3 refers to the three components of the vector t. Thus, the translational g matrix
elements are obtained as

gk+As+3;l+As+3 = M � �kl; k; l = 1; 2; 3; (9)

where M =
PN

i=1 mi is the total mass of the system.

The rotational-translational and the vibrational-translational coupling matrix elements of g
are all equal to zero. Therefore, the COM motion can be separated exactly from the rest of the
coordinates. This allows the introduction of the

Hint = T int + V =
1
2

As+3X
k=1

As+3X
l=1

Gkl pk pl + V (10)

internal-motion (rovibrational) Hamiltonian.

The rotational ti;k+As (k = 1; 2; 3) vectors take the form

ta
i;k+As

=
@Xia

@�k
=

3X
b=1

@Rab

@�k
xib (11)

and the rotational g matrix elements are equal to

gk+As;l+As =

NX
i=1

mi(uk � xi)T(ul � xi); (12)

where the direction of the unit vector uk coincides with the axis of rotation corresponding to the
rotational coordinate �k.

The vibrational tik (k = 1; : : : ; As) vectors are

ta
ik =

@Xia

@qk
=

3X
b=1

Rab
@xib

@qk
: (13)

Thus, the vibrational g matrix elements are given as

gkl =

NX
i=1

mi
@xT

i

@qk

@xi

@ql
; (14)

where k; l = 1; : : : ; As.

Finally, the rotational-vibrational coupling (often called Coriolis coupling) g matrix elements
have the form

gk;l+As =

NX
i=1

mi
@xT

i

@qk
(ul � xi); (15)
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where k = 1; : : : ; As and l = 1; 2; 3. To determine g, the body-fixed frame embedding has to
be defined, which gives the dependence of the xi body-fixed nuclear position vectors on the qk

shape coordinates (see also Section 2.4).

If larger molecules are examined, it is often necessary and at the same time a good approxima-
tion to introduce reduced-dimensional rovibrational models. The two possible ways of reducing
the dimensionality of the problem are to delete rows and the corresponding columns of g or G.
The first case, when the ith row and column (i = 1; : : : ; 3N � 6) of g are deleted, implies the
q̇i = 0 constraint, while the second approach, when the ith row and column of G are discarded,
is equivalent to pi = 0. If orthogonal coordinates are employed to describe the rovibrational dy-
namics of molecules, the two approaches are equivalent. However, in general the two strategies
provide di�erent reduced-dimensional models and numerical results (Fábri et al., 2009, Mátyus
et al., 2009).

2.3 Formulation of the quantum-mechanical Hamiltonian in generalized
internal coordinates

In this subsection the internal-motion (rovibrational) quantum-mechanical Hamiltonian Ĥint is
introduced in analogy to the internal-motion (rovibrational) classical Hamiltonian Hint (Nauts
and Chapuisat, 1985, Littlejohn and Reinsch, 1997), see Eq. (10). Within the Born–Oppenheimer
(BO) separation of nuclear and electronic dofs (Born and Oppenheimer, 1927), the potential en-
ergy acting on the nuclei, V̂ , can be obtained by electronic-structure computations (Murrell
et al., 1984, Mezey, 1987, Császár et al., 2000, 2001) (see Section 2.5). Here, we focus on
constructing the rovibrational kinetic energy operator in the set of qk (k = 1; : : : ; As) vibrational
and �k (k = 1; 2; 3) rotational coordinates. According to di�erential geometry (Podolsky, 1928,
Schutz, 1980), T̂ int becomes

T̂ int =
1
2

As+3X
k=1

As+3X
l=1

g̃�1=4 p̂y

kG
klg̃1=2 p̂lg̃�1=4; (16)

where g̃ = det(g), the integration volume element contains no extra factors, and in units of ~,
for the vibrational coordinates p̂k = �i @

@qk
(k = 1; : : : ; As); while for the rotational coordinates

p̂k+As = �i @
@�k

(k = 1; 2; 3), where i2 = �1.

Next, let us utilize that the angular momentum Ĵ is the infinitesimal generator of rotations (Zare,
1988),

nĴ = �i
@

@�
; (17)

where n is a unit vector specifying the rotational axis and � is an angle associated with the
rotation. According to Eq. (17), it is straightforward to identify the rotational p̂k+As operators as
the projections of the total angular momentum. After specifying three unique rotational axes,
three successive rotations can be performed, defining the transformation between the SF and BF
frames. As the �k rotational coordinate describes a rotation around the kth of the three rotational
axes,

p̂k+As = �i
@

@�k
= Ĵk; (18)
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where Ĵk is the component of the total angular momentum vector along the kth rotational axis.
If the three rotational axes are chosen to coincide with the three axes of the body-fixed frame,
the Ĵk operators correspond to the angular momentum components expressed in the body-fixed
frame, and the �k rotational angles define three successive rotations around the three orthogonal
axes of the body-fixed system. It is advantageous to employ these infinitesimal rotational coor-
dinates (Lukka, 1995, Colwell and Handy, 1997) instead of the widely-used Eulerian angles for
at least two reasons: (a) one can directly insert the body-fixed components of the total angular
momentum into the rovibrational Hamiltonian by utilizing Eq. (18); and (b) the matrix elements
gkl can be computed trivially, as according to Eqs. (12) and (15) one only needs to evaluate the
uk � xi cross products.

2.4 Body-fixed frame embeddings

While the SF form of the nuclear-motion Hamiltonian expressed in internal coordinates is avail-
able (Mladenović, 2000a), it is much more common to work with BF frame embeddings. Defin-
ing a convenient set of rotating BF axes has become an important issue in modern nuclear-
motion theory (Born and Heisenberg, 1924, Louck and Galbraith, 1976, Bunker and Jensen,
1998, Mladenović, 2000a,b,c). The orientation of the BF axis system with respect to the SF
frame is specified by the three rotational coordinates. Although all embeddings provide the
same rovibrational energy levels and eigenstates during numerically exact variational rovibra-
tional computations, it is of great importance to find embeddings that provide an optimal sepa-
ration between rotations and vibrations. Many conceptually simple embeddings based on geo-
metric definitions do not meet this requirement. For example, in the case of XY2 molecules the
bisector embedding, especially if it is coupled with the choice of orthogonal Radau shape coor-
dinates, provides a much more perfect separation of rotations and vibrations than the so-called
r1 or r2 embeddings.

It was Eckart (Eckart, 1935) who formulated equations that lead to a good separation of rota-
tions and vibrations, yielding exactly zero rotational-vibrational coupling at a chosen reference
structure (actually this is how the Eckart embedding is defined). The optimal separation of the
rotational and vibrational dofs is often crucial for obtaining converged rovibrational energy lev-
els and eigenstates in practical nuclear-motion computations. Other possible motivations for
using the Eckart frame include the assignment of rovibrational eigenstates (Mátyus et al., 2010,
Szidarovszky et al., 2012), the computation of vibrational band intensities (Le Sueur et al.,
1992), and minimizing the root-mean-square deviation between two molecular conformations
(Kudin and Dymarsky, 2005).

The translational Eckart condition,
NX

i=1

mixi = 0; (19)

where the vectors xi denote the instantaneous position vectors of the N nuclei in the Eckart
frame, is supplemented with the rotational Eckart condition,

NX
i=1

mi(xi � ai) = 0; (20)
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where the vectors ai specify the reference configuration, whereby the rovibrational coupling
vanishes. The translational Eckart condition can be satisfied by placing the origin of the body-
fixed frame at the center of mass, while fulfilling the rotational Eckart condition is equivalent
to finding a T (pseudo)rotation matrix which transforms the x0

i initial position vectors into the
xi = Tx0

i position vectors corresponding to the Eckart frame. Following Eckart (1935), Strauss
and Pickett (1970) devised a procedure for finding the T transformation matrix. An important
shortcoming of the methods of Eckart (1935) and of Strauss and Pickett (1970) is the need for
computing the inverse of a matrix which can be singular for certain nuclear configurations. Two
new methods, achieving the same task but free of the singularity problem, have been developed
recently (Dymarsky and Kudin, 2005, Krasnoshchekov et al., 2014).

As the Eckart frame is crucial to obtain good separation of vibrations and rotations, there has
been a considerable e�ort to derive Eckart-embedded KEOs. For rectilinear vibrational co-
ordinates, including normal coordinates, the theory has been worked out by Watson (Watson,
1968, 1970). For curvilinear internal coordinates, analytic Eckart-embedded KEOs have been
derived for the limiting class of triatomic (Wei and Carrington Jr., 1997, Wei and Carrington,
1997, Wei and Carrington Jr., 1998) as well as the more general class of planar molecules (Wei,
2003a,b). Unfortunately, the Eckart-embedded KEOs expressed in curvilinear coordinates have
rather bulky forms preventing their widespread use. It is worth noting at this point that flex-
ible reference configurations, as opposed to the choice of a rigid, e.g., equilibrium structure,
have been introduced in several spectroscopic models, including the Hougen–Bunker–Johns
approach (Hougen et al., 1970) and several of its extensions and variants (Špirko, 1983, Szalay,
1988, Yurchenko et al., 2005).

The challenge to construct general analytic Eckart-embedded KEOs expressed in arbitrary
curvilinear coordinates for arbitrary molecules can be circumvented if the KEO is treated nu-
merically (Luckhaus, 2000, Lauvergnat and Nauts, 2002, Yurchenko et al., 2007, Mátyus et al.,
2009, Strobusch and Scheurer, 2011a,b, Fábri et al., 2011a). This can be achieved in grid-based
codes (Fábri et al., 2014b) by transforming the body-fixed position vectors xi to the Eckart
frame using the quaternion-based transformation method outlined in (Krasnoshchekov et al.,
2014) and then evaluating the @xi

@qk
vectors [see Eq. (14)] by numerical di�erentiation of the

Eckart-embedded xi vectors (Szidarovszky et al., 2012, Fábri et al., 2014b), while the compu-
tation of the uk � xi vectors used in Eqs. (12) and (15) simply require the Eckart-embedded
xi vectors (Szidarovszky et al., 2012, Fábri et al., 2014b). This allows the user to employ the
Eckart frame for arbitrary vibrational coordinates with either fixed or flexible reference struc-
tures. Other approaches for the application of the Eckart frame have also been reported (McCoy
et al., 1991, Wang and Carrington Jr., 2013, Sadri et al., 2014, Pesonen, 2014, Szalay, 2014,
2015a,b, Yachmenev and Yurchenko, 2015, Szalay, 2017).

2.5 Potential energy hypersurfaces

The concept of a PES (Murrell et al., 1984, Mezey, 1987, Császár et al., 2001, Marquardt and
Quack, 2011) is fundamental to the understanding of most modern fields of chemistry, PESs are
especially relevant for studies in high-resolution spectroscopy, detailed chemical kinetics, and
nuclear dynamics. For an arbitrary chemical system, PESs describe the variation of the total
electronic energy as a function of the (relative) nuclear positions. In computational molecular
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spectroscopy it is still usual to focus on cases where a single BO-PES is su�ciently uncoupled
from the other surfaces (electronic states) that their interaction may safely be ignored. This is
usually true for the PES characterizing the lowest (ground) electronic state, as the error thus
introduced is smaller than the intrinsic error of the PES. In dynamical studies it is more usual to
couple a few selected PESs, perhaps just two, and define adiabatic and diabatic representations
(Smith, 1969, Song and Gao, 2008).

Although PESs developed for rovibrational spectroscopy, chemical reactions, and intermolecu-
lar interactions representing systems of non-covalent chemistry have a lot in common, there are
many important di�erences in their construction. These di�erences originate from the fact that
these surfaces need to concentrate on di�erent configuration regions where di�erent electronic-
structure techniques are suitable, and that they aim to interpret di�erent types of experimental
information of widely di�erent accuracy. The four distinct types of (global) PESs available in
the literature are empirical, semiempirical, semitheoretical, and theoretical. Empirical poten-
tials are rather inaccurate even for triatomic systems and they are basically unavailable for larger
ones. As to theoretical PESs, due to well recognized inadequacies of most electronic structure
computations (Császár et al., 2001), it is still not possible to even approach the accuracy re-
quired by high-resolution spectroscopic measurements, except perhaps for the smallest systems
(vide infra). Even today, the highest quality PESs are obtained by a combination of theoretical
and experimental approaches.

Excellent books (Murrell et al., 1984, Mezey, 1987) and reviews (Császár et al., 2001, 2000,
Majumder et al., 2016) are available discussing the generation and utilization of local as well
as global PESs; thus, they are not discussed in detail here. We are only mentioning a couple of
recent developments worth emphasizing.

The n-mode (or multimode) representation of the PES (Carter et al., 1997a,b, Bowman et al.,
2003, Rauhut, 2004, Sibaev and Crittenden, 2016, Ziegler and Rauhut, 2016) is highly useful for
several types of nuclear-motion applications, especially those employing the EW Hamiltonians.
These PESs may prove less useful when large configuration regions need to be sampled. The
use of permutationally invariant PESs (Braams and Bowman, 2009) is particularly advantageous
for systems containing more than 4-5 atoms and this concept leads to an almost automatic
generation of a “global” PES. Almost automatic generation of the PES is highly desirable; thus,
use of neural networks and artificial intelligence have been explored (Handley and Popelier,
2010, Majumder et al., 2015, Jiang et al., 2016, Petty et al., 2018) for this purpose. For chemical
reactions proper representation of the surface close to an intrinsic reaction path (IRP) (Fukui,
1981), a minimum-energy path (MEP) (Fukui, 1970), or some other path (Müller, 1980) is often
what is used to determine the location of the points underlying the PES (Klepeis et al., 1993).
Stationary points (beyond minima and first-order transition states) characterizing the given PES
form are rarely reported, not even for molecular complexes, though they may serve important
qualitative and quantitative purposes.

2.6 Basis sets and representations

Basis sets and the representation of Ĥint in the chosen basis play an extremely important role
in the e�ectiveness of the variational approaches characterizing nuclear-motion theory. Thus, it
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is not surprising that a considerable number of e�cient numerical techniques have been devel-
oped, with a concerted e�ort to tailor the basis sets and the representations to the usual need of
computing an exceedingly large number of rovibrational eigenstates.

Today it appears that the solution of the time-independent rovibrational Schrödinger equation
is achieved perhaps most e�ciently by grid-based techniques. The utility and the basic aspects
of grid-based techniques were realized by di�erent groups working in di�erent fields inde-
pendently and thus several somewhat distinct methods were developed, including the discrete
variable representation (DVR) (Harris et al., 1965, Dickinson and Certain, 1968, Lill et al.,
1982, Light et al., 1985, Light and Carrington Jr., 2000), the Lagrange-mesh (Baye and Hee-
nen, 1986), the quadrature discretization (Shizgal and Blackmore, 1984, Blackmore and Shiz-
gal, 1985), and the Fourier grid (Koslo� and Koslo�, 1983, Marston and Bálint-Kürti, 1989,
Layton, 1993) methods. Of these we will concentrate here only on the DVR technique.

When the Hamiltonian is represented by a DVR, one basically employs both a set of basis func-
tions and a set of grid points. Within the DVR and finite basis representation (FBR) methods
the operators of the physical quantities considered are represented by matrices with indices re-
ferring either to grid points or spectral basis functions, respectively. The DVR of the potential
energy operator is extremely simple, a diagonal matrix with the (nn)th diagonal element equal to
the value of the PES function taken at the nth grid point. The FBR of the potential energy oper-
ator corresponds to evaluating integrals in the spectral basis by numerical quadrature, whereby
the quadrature grid is identical to the one defining the DVR. The DVR and FBR of an operator
of a physical quantity are related by a unitary transformation.

At the beginning (Harris et al., 1965, Dickinson and Certain, 1968), the DVR developed was
based on standard orthogonal polynomial bases and the associated Gaussian quadratures. Within
this simplest DVR scheme the same number of basis functions and quadrature points are em-
ployed. Later, generalizations of the DVR method to more general basis functions depending
on a single variable and to multidimensional nondirect product basis sets have been developed
(Light et al., 1985, Kanfer and Shapiro, 1984, Corey and Tromp, 1995, Szalay, 1996, Little-
john et al., 2002, Szalay et al., 2003, Dawes and Carrington Jr., 2004, Yu, 2005). A family of
generalized DVR (GDVR) techniques, including the optimal GDVR, was introduced by Sza-
lay (Szalay, 1996). Similar to the relation between DVR and FBR schemes, GDVR techniques
have a strong connection with generalized FBR (GFBR) techniques (Szalay, 1996, Czakó et al.,
2006). In a GFBR one is allowed to use more grid points than basis functions, leading to
an improved accuracy of the results. Consideration of boundary conditions and singularities
(Szalay et al., 2012) is extremely important for the application of all flavors of FBR and DVR
techniques. This becomes especially important when one does not know the actual form of the
kinetic energy operator as it is used just numerically on a grid. A particularly important char-
acteristic of DVR bases is that they provide numerically exact solution of the time-independent
rovibrational Schrödinger equation without computing the Hamiltonian matrix elements exactly
(Szalay et al., 2012). For this reason, techniques based on DVR should not be considered strictly
variational.

There are di�erent strategies toward selecting the most useful and practical form of the rovi-
brational Hamiltonian. One possible strategy is to define lower-dimensional but non-sparse
and non-direct-product matrices. Contraction of the vibrational basis (Carter and Handy, 1988,
Bačić and Light, 1989) o�ers considerable numerical advantages, while other strategies, based
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on direct-product bases, produce often enormous-dimensional but sparse matrices with a special
structure. There is not much choice how rotational basis functions can be chosen. A very practi-
cal and e�cient choice of a rotational basis involves Wang functions (Zare, 1988), as discussed
in Section 3.1. Naturally, di�erent “diagonalization” techniques are required for the di�erent
Hamiltonians (see Section 2.7). Some further details, relevant to this chapter, will be given in
Section 3.

2.7 Determination of eigenstates

Each variational technique, at least in principle, requires the diagonalization of the Hamiltonian
yielding rovibrational eigenvalues and eigenvectors. In order to compute the required many
(often tens of thousands of) eigenpairs for medium-sized molecules, an iterative eigensolver
[the usual choice is the Lanczos technique (Lanczos, 1950, Cullum and Willoughby, 1985)]
must be implemented, adapted to the features and requirements of nuclear-motion theory (Wang
and Carrington Jr., 2001, Mátyus et al., 2009).

The conventional iterative Lanczos algorithm (Lanczos, 1950) converges to the dominant eigen-
values of the matrix. The convergence rate of the Lanczos iteration is largely determined by the
relative separation of the eigenvalues. To compute the lowest or interior eigenvalues and speed
up convergence, in variational nuclear-motion theory one needs to introduce spectral transfor-
mation techniques (Ericsson and Ruhe, 1980, Kono, 1993, Wyatt, 1995). Thus, families of
polynomial transformation techniques (Sorensen, 1992, Wang and Zunger, 1994), exponential
filters using a Chebyshev expansion (Yu and Nyman, 1998, 1999), and shift-invert (Ericsson
and Ruhe, 1980, Mátyus et al., 2009) filtering techniques using the conjugate gradient method
(CGM) have been introduced. Nevertheless, construction of an e�cient black-box Lanczos
variant, for instance, a method that is e�cient for any spectral range of a rotation-vibration
Hamiltonian, remains a challenge. In each Lanczos step the original matrix is transformed,
requiring a certain number of matrix-vector multiplications. These multiplications form the
most CPU-intensive part of the computation; thus, the number of matrix-vector multiplications
required determines the “cost” of a specific spectral transformation. The spectral properties
of matrices corresponding to di�erent spectral transformation methods can be very di�erent.
This is an important consideration as the relative separation of the eigenvalues of the matrix
introduced in the Lanczos iteration influences strongly the convergence rate of the iteration.

Under exact arithmetics, the Lanczos vectors are orthogonal by construction (Saad, 2003).
In the presence of computational round-o� errors, this orthogonality is not maintained. The
loss of orthogonality manifests itself in the appearance of (a) spurious eigenvalues, and (b)
copies of correct ones. To remove the extra and spurious eigenvalues a posteriori, Cullum
and Willoughby (Cullum and Willoughby, 1985) as well as Wang and Carrington (Wang and
Carrington Jr., 2002) suggested useful and relatively inexpensive algorithms. A somewhat ex-
pensive alternative is to maintain (semi)orthogonality among the Lanczos vectors throughout
the iterations. It has also been demonstrated (Simon, 1984, Wu and Simon, 1998, Mátyus et al.,
2009) that maintaining full orthogonality is not necessary and semiorthogonality of Lanczos
vectors, provided by partial reorthogonalization, is su�cient, accurate eigenpairs without extra
and spurious levels entering the spectrum can be computed this way. To keep storage require-
ments under control, the Lanczos algorithm must be occasionally restarted (Wu and Simon,
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1998, Wu et al., 1999, Mátyus et al., 2009).

3 Computation of bound rovibrational states

There are three distinct classes of methods for the variational solution of the time-independent
nuclear Schrödinger equation,

Ĥint	i = Ei	i; (21)

based on Hamiltonians detailed in Section 2: (a) the first one is based on tailor-made Hamilto-
nians, with explicitly derived kinetic energy operators expressed in terms of orthogonal or non-
orthogonal internal coordinates (Shipsey, 1998, Bramley et al., 1991, Chapuisat and Iung, 1992,
Klepeis et al., 1993, Henderson and Tennyson, 1993, Schwenke, 1996, Mladenović, 2000a,b,c,
Czakó et al., 2004, Tennyson et al., 2004, Kozin et al., 2004, Huang et al., 2008, Szidarovszky
et al., 2010); (b) the second one utilizes the EW Hamiltonians, relying on a single reference
structure, rectilinear coordinates, and the Eckart embedding (Carter et al., 1998, Tew et al.,
2001, Bowman et al., 2003, Mátyus et al., 2007, 2009); and (c) the third one uses arbitrary
vibrational (shape) coordinates preferably supplemented with the numerical construction of the
kinetic-energy operator (Lauvergnat and Nauts, 2002, Yurchenko et al., 2007, Mátyus et al.,
2009, Sadri et al., 2014, Changala, 2019), so that the exact form of the kinetic-energy operator
does not need to be known a priori.

Tailor-made Hamiltonians have been employed extensively (Sutcli�e and Tennyson, 1991, Klepeis
et al., 1993, Tennyson et al., 2004, Kozin et al., 2004, Szidarovszky et al., 2010). As noted more
than three decades ago, the “disadvantage with [tailor-made Hamiltonians] is that a separate pro-
gram has to be developed for each molecule and for each chosen coordinate system” (Handy,
1987). Therefore, codes belonging to this class cannot be considered as “black-box” approaches
to variational nuclear-motion computations for polyatomic molecules. For this reason this class
of approaches is not discussed here further.

There are a number of codes available which are based on the use of the EW Hamiltonians
(Bowman et al., 2003, Mátyus et al., 2007, Christiansen, 2007, Ne� and Rauhut, 2009). These
codes are completely general, can be employed for rather large systems, especially after the
introduction of special sophisticated algorithms. Nevertheless, they cannot be applied to com-
plex nuclear motions and for molecules exhibiting several LAMs. Therefore, their discussion
is terminated here, the interested reader is referred to the extensive literature (Bowman et al.,
2003, Mátyus et al., 2007) on their form and use. From here on only approach (c) from above
is considered.

3.1 On the variational solution

To compute bound rovibrational states variationally, the matrix representation of Ĥint needs to
be considered. For this, it is advantageous to split T̂ int into three terms:

Ĥint = T̂ int + V̂ = T̂ v + T̂ r + T̂ rv + V̂ ; (22)
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where (see Eq. (16))

T̂ v =
1
2

AsX
k=1

AsX
l=1

g̃�1=4 p̂y

kG
klg̃1=2 p̂lg̃�1=4; (23)

T̂ r =
1
2

3X
k=1

Gk+As;k+As Ĵ2
k +

1
2

3X
k=1

3X
l>k

Gk+As;l+As [Ĵk; Ĵl]+; (24)

and

T̂ rv =
1
2

3X
l=1

AsX
k=1

�
p̂y

kG
k;l+As +Gk;l+As p̂k

�
Ĵl: (25)

In Eqs. (23)–(25), T̂ v and T̂ r are the vibrational and rotational kinetic energy operator parts,
respectively, and T̂ rv gives the coupling between vibrations and rotations (often referred to as
the Coriolis term). In Eq. (24), Ĵk is the kth body-fixed component of Ĵ and [Ĵk; Ĵl]+ refers to
the anticommutator of Ĵk and Ĵl. As the Ĵk angular momentum components correspond to the
body-fixed frame, they satisfy the anomalous commutation relations (Zare, 1988)

[Ĵk; Ĵl] = �i�klm Ĵm; (26)

where �klm is the Levi–Cività permutation symbol, and the Einstein summation convention is
applied.

The multidimensional vibrational basis functions can be constructed as the direct product of
one-dimensional primitive or potential-optimized (PO) (Echave and Clary, 1992, Wei and Car-
rington Jr., 1992, Szalay et al., 2003) DVR functions,

Fi(q) =
AsY
�=1

fi�(q�); (27)

where fi�(q�) denote a 1D DVR function associated with vibrational dof � and 1D DVR grid
point q(�)

i�
. This choice assures that the coordinate-dependent Gkl, g̃, and V̂ operators are rep-

resented by diagonal matrices in the direct-product DVR basis. Moreover, the diagonal matrix
elements

hFijÔjF ji = O(q(1)
i1
; : : : ; q(As)

iAs
)

AsY
�=1

�i�; j� (28)

are equal to the values of the given coordinate-dependent operator Ô evaluated at the DVR grid
points. Therefore, the t vectors needed to construct T̂ int have to be evaluated at the DVR grid
points, which can be done either analytically or numerically for a specific choice of internal
coordinates and body-fixed frame embeddings. This is what makes the numerical construction
of T̂ int possible and obviates the need for tailor-made kinetic-energy operators. Matrix elements
of the vibrational p̂k operators can be expressed as

hFij p̂kjF ji = h fik(qk)jp̂kj f jk(qk)i
AsY

�=1;�,k

�i�; j� ; (29)

where h fik(qk)j p̂kj f jk(qk)i is proportional to the corresponding matrix element of the first deriva-
tive operator @

@qk
in the DVR basis applied (Szalay, 1993).

20



For a given rotational angular momentum quantum number J (note that the molecular system
is isolated and no external fields are present), the set of 2J + 1 orthonormal jJKMi symmetric
rigid-rotor eigenfunctions serve as a suitable basis to set up the matrix representation of Ĥint.
According to Eqs. (24) and (25), the matrix representation of Ĵk, Ĵ2

k and [Ĵk; Ĵl]+ is required to
solve the rovibrational problem. The complete set of nonzero Ĵk matrix elements (Zare, 1988)
is given by

hJKMjĴxjJ(K � 1)Mi =
1
2

p
J(J + 1) � K(K � 1);

hJKMjĴyjJ(K � 1)Mi = �
i
2

p
J(J + 1) � K(K � 1); (30)

hJKMjĴzjJKMi = K;

where K = �J; : : : ; J corresponds to the body-fixed z, while M = �J; : : : ; J to the space-fixed Z
components of the overall angular momentum. The Ĵ2

k and [Ĵk; Ĵl]+ matrices can be computed
exactly by inserting the resolution of identity between Ĵk and Ĵl, and thus

hJKMjĴk ĴljJK0Mi =
JX

K00
=�J

hJKMjĴkjJK00MihJK00MjĴljJK0Mi: (31)

In practice, a good choice for the rotational basis involves the Wang functions that yield real
Hamiltonian matrix elements and transform according to the irreducible representations of the
D2 rotational group (Zare, 1988).

Construction of Hint requires the introduction of a rovibrational basis. For this purpose one
can employ the direct product of the multidimensional direct-product DVR vibrational basis
functions and the 2J + 1 Wang rotational basis functions. Using Eqs. (22)–(25), Hint takes the
form

Hint = Tint + V = Tv + Tr + Trv + V; (32)

where

Tv =
1
2

I2J+1 


AsX
k=1

AsX
l=1

g̃�1=4py

kGklg̃1=2plg̃�1=4; (33)

Tr =
1
2

3X
k=1

J2
k 
Gk+As;k+As +

1
2

3X
k=1

3X
l>k

[Jk; Jl]+ 
Gk+As;l+As ; (34)

Trv =
1
2

3X
l=1

Jl 


AsX
k=1

�
py

kGk;l+As +Gk;l+Aspk

�
; (35)

and
V = I2J+1 
 VJ=0; (36)

where I2J+1 is the identity matrix of dimension 2J + 1, 
 refers to the direct product operation,
VJ=0 denotes the diagonal potential-energy matrix in the direct-product DVR vibrational basis,
and multiple resolutions of identity have been inserted in between some of the neighboring
operators.

The iterative Lanczos algorithm (Lanczos, 1950, Cullum and Willoughby, 1985) can be uti-
lized to compute the required eigenvalues and eigenvectors of Hint. Then one must evaluate
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the e�ect of Hint on an arbitrary vector of the same dimension. As Hint has a special and very
sparse structure, the explicit construction and storage of Hint can be avoided during the compu-
tation. Instead, one has to implement the Hintx matrix-vector multiplication, which can be done
e�ciently due to the special sparse structure of Hint (Mátyus et al., 2009, Fábri et al., 2011a).

An alternative solution of the rovibrational problem is provided by the vibrational subspace
(VS) method (Fábri et al., 2011b, 2019) relying on the

Ĥint = Ĥv + T̂ r + T̂ rv (37)

partition of Ĥint, where Ĥv = T̂ v + V̂ refers to the vibrational Hamiltonian. After solving the

Ĥv� j = E j� j (38)

vibrational Schrödinger equation and obtaining the E j vibrational energy levels and � j vibra-
tional eigenstates, the rovibrational eigenstates can be expanded in the form

	i =

nX
j=1

2J+1X
k=1

c(i)
jk� jRk; (39)

where Rk denotes rotational basis functions (symmetric top eigenfunctions, Wang functions, or
rigid rotor eigenfunctions of the molecule under investigation). The VS ansatz of Eq. (39) of-
fers a compact representation of the rovibrational eigenstates as the size of the VS rovibrational
Hamiltonian remains moderate compared to the size of the DVR Hamiltonian even for high J
values. We found (Fábri et al., 2011b) that it is inevitable to apply the Eckart frame in con-
junction with the VS method to achieve satisfactory convergence of the computed rovibrational
energy levels and eigenstates.

Finally, note that it is possible to simplify T̂ v of Eq. (23) at the cost of adding the so-called
extrapotential term

Û =
1

32

AsX
k=1

AsX
l=1

"
Gkl

g̃2

@g̃
@qk

@g̃
@ql

+ 4
@

@qk

 
Gkl

g̃
@g̃
@ql

!#
(40)

to the potential energy. The so-called rearranged vibrational Hamiltonian becomes

Ĥv,rearr =
1
2

AsX
k=1

AsX
l=1

p̂y

kG
kl p̂l + Û + V̂ ; (41)

while the operators T̂ r and T̂ rv do not change. Although the vibrational kinetic energy operator
is simplified with the introduction of Û, the rearranged form is more prone to numerical insta-
bilities than the so-called Podolsky form defined in Eq. (16); therefore, the Podolsky form is
preferred over the rearranged form in practical applications (Mátyus et al., 2009).

3.2 Symmetry in nuclear-motion computations

The symmetry group of Ĥint contains all symmetry operations that commute with Ĥint. These
symmetry operations are the permutations of identical nuclei and the operation of space in-
version, and they form the complete nuclear permutation inversion (CNPI) group (Bunker and
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Jensen, 1998), while the symmetry group constituted by the so-called feasible permutation-
inversion symmetry elements is called the molecular symmetry (MS) group, G = fgiji =

1; : : : ; jGjg, where jGj denotes the order of G (Longuet-Higgins, 1963, Quack, 1977, Bunker
and Jensen, 1998, Mills and Quack, 2002, Quack, 2011, Schnell, 2011, Oka, 2011).

As [gi; Ĥint] = 0, the n-fold degenerate  i j eigenfunctions corresponding to the energy eigen-
value Ei span an n-dimensional irreducible representation of G. According to the grand orthog-
onality theorem (GOT) (Wigner, 1959), basis functions spanning the �� irreducible representa-
tion can be constructed by the projector

P� j =
n�

jGj

jGjX
i=1

D��

j j (gi)gi; (42)

where the dimension of the irreducible representation �� is n�, j = 1; : : : ; n�, and D�(gi) is the
matrix representation of gi in ��. Although P� j commutes with Ĥint, in practical computations
the matrix representations of certain symmetry operations may not commute with the Hamil-
tonian matrix due to numerical errors (Wang and Carrington, 2003, Poirier, 2003a, Wang and
Carrington Jr., 2003a, 2005). In this section we provide a brief account of the implementation
of molecular symmetry in a DVR-based code (Fábri et al., 2017). For alternative approaches we
refer the reader to the literature (Wang and Carrington Jr., 2001, Wang and Carrington, 2003,
Poirier, 2003a, Wang and Carrington Jr., 2003a,b, 2004, 2005, Yurchenko et al., 2017).

In order to obtain symmetry-adapted linear combinations of the grid-based vibrational basis
functions, P� j must act on direct-product DVR functions denoted by Fk. We require that each
direct-product DVR function (or equivalently the associated multidimensional grid point) is
mapped onto another DVR function (or onto itself in special cases) by any of the gi symmetry
operations. The symmetry-adapted vibrational basis functions

��i =
X

k

A�
ikFk (43)

can be expressed as the linear combination of direct-product DVR functions.

As the iterative Lanczos algorithm is used usually to diagonalize the vibrational Hamiltonian,
we need to devise a procedure to evaluate matrix-vector products

y�i =
X

j

h��i jĤ
intj��j ix

�
j =

X
k

A��

ik

X
l

hFkjĤintjFli
X

j

A�
jlx

�
j (44)

in the symmetry-adapted vibrational basis. First, a symmetrized input vector x� from �� is
transformed to the original unsymmetrized vibrational basis (sum over j), then the resulting full-
dimensional vector is multiplied by the unsymmetrized Hamiltonian (sum over l), and, finally,
the full-dimensional result vector is transformed back to the symmetry-adapted basis (sum over
k), yielding the symmetry-adapted output vector y�. Thus, while the dimension of the input x
and output y vectors is reduced due to symmetry, the second step involves a multiplication with
the Hamiltonian represented in the unsymmetrized vibrational basis. Although it is possible to
evaluate matrix-vector products directly in the symmetry-adapted basis, we have found it more
convenient to apply the matrix-vector product algorithm outlined in Eq. (44), also related to
the symmetry-adapted Lanczos method (Wang and Carrington Jr., 2001, Wang and Carrington,
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2003, Poirier, 2003a, Wang and Carrington Jr., 2003a,b, 2004, 2005). The symmetry-adapted
computation provides degenerate energy levels only once, since projectors P� j are applied with
a single j index. This implies that we get only one eigenstate ( i j) for each degenerate manifold
of dimension n. The missing n � 1 eigenstates can be obtained by applying symmetry opera-
tions on  i j and generating an orthonormal basis from the gk i j functions, similar to Wang and
Carrington Jr. (2008).

It is important to emphasize that the symmetrization algorithm presented is completely gen-
eral and has the following advantages over the unsymmetrized treatment: (a) the dimension
of the Lanczos vectors spanning the so-called Krylov subspace (Lanczos, 1950, Cullum and
Willoughby, 1985) is reduced, therefore the memory requirement is reduced; (b) the computed
energy levels and eigenstates are automatically labeled with ��; (c) as the convergence rate of
the Lanczos algorithm deteriorates with the increasing density of the energy levels, it is ad-
vantageous to decrease the spectral density of the Hamiltonian by separating the eigenstates
according to symmetry. The only limitation of the vibrational symmetrization approach out-
lined is that the image of each direct-product grid point generated by any kind of symmetry
operation has to be an element of the multidimensional DVR grid. Unfortunately, this require-
ment may limit the practically applicable symmetry group to a subgroup of the full MS group.
One such case is that of the CH+

5 molecule, described in Section 5.

3.3 Nuclear spin statistics

Knowledge of the nuclear spin (ns) statistical weights (Landau and Lifshitz, 1977, Bunker and
Jensen, 1998) of rovibronic (in the simplest case rovibrational) eigenstates of a molecule is
necessary for a detailed understanding of molecular high-resolution spectra for at least two
important reasons: (a) only levels with a nonzero ns statistical weight will be involved in mea-
sured transitions, and (b) the intensities of measured lines is directly related to the ns statistical
weights. The interaction of nuclear-spin angular momenta with other angular momenta charac-
terizing the molecule is extremely weak; thus, it is an excellent approximation to separate the
total molecular wavefunction into nuclear spin and rotation–vibration–electronic–electron-spin
parts:

j	totali = j	nsi 
 j	r,v,e,esi: (45)

Knowing the symmetry of j	totali and j	nsi restricts the symmetry of j	r,v,e,esi. The nuclear spin
statistics, and consequently the degeneracy factors also depend on the nuclear spin I of the non-
permuting nuclei. The ns statistical weights can be determined via di�erent methods (Landau
and Lifshitz, 1977, Bunker and Jensen, 1998).

Molecules containing identical nuclei with non-zero nuclear spins, I, can exist as more than
one nuclear-spin isomers. An old example is the H2 molecule (Bonhoe�er and Harteck, 1929),
with two spin-1/2 H nuclei, it can exist in ortho (I = 1) and para (I = 0) forms. para-H2,
once prepared (Bonhoe�er and Harteck, 1929), can exist in an appropriate container at room
temperature for months. Polyatomic molecules may have more nuclear-spin isomers than H2.
CH4, for example, has ortho (I = 1), meta (I = 2), and para (I = 0) forms. Larger molecules
may have even more nuclear-spin isomers.

Related to nuclear-spin isomers and the related states one must note an important peculiarity
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of time-independent variational nuclear-motion computations: they tend to yield eigenstates
which may not exist in nature due to the Pauli exclusion principle (Herzberg, 1945). This is
the result of not considering nuclear spin explicitly during the standard variational rovibra-
tional computations (this is advantageous as this way the same code, the same BO-PES, and the
same variational parameters can be used for nuclear-motion computations involving di�erent
isotopologues and isotopomers). Thus, computed rovibrational eigenstates must be checked a
posteriori whether they exist or not.

As a straightforward example, let us consider a triatomic molecule where two identical spin-1/2
nuclei (fermions) can be exchanged. In the case of the three H2

nO, n = 16; 17, and 18, isotopo-
logues of water, there are two separate rovibrational energy level sets corresponding to the two
distinct molecules. The two sets are traditionally called ortho and para, with the convention that
the ortho form has the higher spin-statistical weight. In the case of water, these distinct principal
components of the spectroscopic network (SN) (Császár and Furtenbacher, 2011, Furtenbacher
and Császár, 2012) of the H2

nO molecules are not connected by measured transitions. Note,
however, that due to the allowed coupling of nuclear spin with rovibronic motions, nuclear
spin symmetry-breaking mixings and ortho to para transitions have been observed (Ozier et al.,
1970, Bordé et al., 1980, Pique et al., 1984, Quack, 2011).

3.4 Wavefunction analysis tools via projection techniques

Besides the exact J and �� labels introduced in the previous sections it is useful to assign
approximate quantum numbers to the computed rovibrational eigenstates, such as the zeroth-
order HO and RR quantum numbers, as these labels are widely used in experimental high-
resolution spectroscopy and they also help capture the dynamics embodied in the eigenstates.
This task can be completed by decomposing the numerically exact variational eigenstates in the
basis of appropriately chosen zeroth-order states.

The normal mode decomposition (NMD) technique (Mátyus et al., 2010) has been developed to
facilitate the assignment of zeroth-order HO quantum numbers to variational vibrational eigen-
states �i by calculating the

NMDi j = jh�ij�
HO
j ij

2 (46)

coe�cients, where �HO
j denotes a HO eigenstate. Labelling �i with HO quantum numbers can

be accomplished by finding the dominant NMDia coe�cient (if it exists) and assign �i with the
HO quantum numbers of �HO

a .

The rigid rotor decomposition (RRD) method (Mátyus et al., 2010, Szidarovszky et al., 2012)
is a useful tool for the assignment of variationally-computed rovibrational energy levels and
eigenstates. The initial step is the evaluation of the

RRDi; jk = jh	ij� jRkij
2 (47)

coe�cients, where	i is the rovibrational eigenstate to be assigned with approximate vibrational
and rotational quantum numbers, while � j and Rk denote variational vibrational and rigid-rotor
eigenstates, respectively. After finding the dominant �aRb contribution in 	i, it is straight-
forward to assign 	i with the vibrational labels of �a and the rigid-rotor quantum numbers
[(J;Ka;Kc) for asymmetric tops, and (J;K) for symmetric tops] of Rb.
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Projection techniques are also useful to attach rovibrational labels to the intermolecular motions
of clusters, in particular dimers, highlighting their dynamical behavior. These techniques can be
employed both for bound and resonance states, as demonstrated for the CH4�H2O dimer (Sarka
et al., 2016, 2017) and the HeH+

2 complex (Papp et al., 2018), respectively.

The so-called coupled-rotor decomposition (CRD) technique (Sarka et al., 2017) is relevant to
weakly-bound dimers, where the intermonomer bonding is very weak compared to the bonding
within the monomer units, denoted as A and B. In these dimers, an example is CH4�H2O,
considering the two monomer units rigid is an excellent model. Then the description of the low-
energy vibrational motions of the dimer requires only six dofs. To obtain a description of the
6D eigenstates of the dimer based on the picture of coupled monomers with hindered rotation,
one needs to do the following: (a) Fix the A � B separation at a given value. (b) Set the PES to
zero and compute the rovibrational states in this 5D model using exactly the same coordinate
and grid representation as employed for the 6D model. (c) Calculate the eigenenergies of the
CR model, characterized by the J total angular momentum quantum number, with respect to
the energies of states of the rigid monomers characterized by jA and jB:

ECR( jA; jB; j; J) = ERR
A ( jA) + ERR

B ( jB) + Ec( j; J); (48)

where j is the internal angular momentum quantum number of the AB diatomic, responsible for
coupling the angular momenta of A and B, and Ec( j; J) is the related coupling energy, whose
computation is detailed in Brocks et al. (1983). (d) At “infinite” separation, ECR( jA; jB; j; J) is
simply the sum of the rigid-rotor energies of the monomers, allowing straightforward labeling
of the CR states. (e) In a DVR representation it is also straightforward to compute the overlaps
of the 5D and 6D eigenstates (Sarka et al., 2017); computation and analysis of the CRD overlap
coe�cients completes the CRD assignment of the 6D eigenstates. A scheme very similar to the
CRD one can be employed for the characterization of computed rovibrational resonance states,
as described by Papp et al. (2018).

Note in the end that sometimes it seems more e�ective to base the assignment of dynamical
labels to the computed eigenstates not on wavefunctions but on one- and two-mode reduced
density matrices (Šmydke and Császár, 2019). Overlaps computed between densities of states
already assigned and the list of new, assignable states seemingly provides an e�cient route
toward developing a large set of semi-automatically assigned states.

4 Computation of rovibrational resonances

Rovibrational resonances, also known as metastable or quasibound rovibrational states, are not
mere curiosities of nuclear-motion theory arising within the BO approximation but they are at
the heart of chemistry, especially when bimolecular chemical reactions, including reactive colli-
sions, are considered. Rovibrational resonances are also met in predissociation and photodisso-
ciation studies as well as in unimolecular decays of polyatomics. The e�cient computation and
characterization of rovibrational resonances forms an essential and extremely important part of
modern quantum chemistry.

While bound rovibrational states are assumed to have infinite lifetimes, resonances are usually
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characterized by two parameters: resonance positions and resonance lifetimes. These param-
eters can be computed within time-dependent and time-independent frameworks (Moiseyev,
2011, Klaiman and Gilary, 2012).

Hereby we restrict ourselves to time-independent approaches, in which resonances are identified
as eigenstates of the rovibrational Hamiltonian having complex eigenvalues. These eigenvalues
are usually written, in atomic units, as

Eres
n = �n �

i
2
�n; (49)

where �n = Re(Eres
n ) is the resonance position, while �n is the resonance width, related to the

inverse lifetime,
�(Q; t) = j	res

n j
2 / e��nt; (50)

where Q represents a point in coordinate space. Due to the complex nature of the eigenvalues,
the corresponding 	res

n wavefunctions are not normalizable, i.e., they diverge exponentially as
the dissociation coordinate goes to infinity. This makes it necessary to apply special computa-
tional tools, some of which are detailed below, for the determination of resonance eigenstates.
Similar to bound states, analysis of resonance wavefunctions gives insight into the physical
properties of the metastable eigenstates, for example into the mechanisms responsible for their
dissociation (or other dynamical behavior).

We briefly review in this section three techniques for computing rovibrational resonances: the
stabilization method (Hazi and Taylor, 1970, Lefebvre, 1985, Riera, 1993, Mandelshtam et al.,
1993, Moiseyev, 2011), the technique of complex coordinate scaling (CCS) (Moiseyev et al.,
1981, Moiseyev, 2011), and the use of complex absorbing potentials (CAP) (Vibók and Balint-
Kurti, 1992, Riss and Meyer, 1993, Skokov et al., 1999, Halász and Vibók, 2000, Mussa and
Tennyson, 2002, Poirier and Carrington Jr., 2003a,b, Muga et al., 2004).

4.1 The stabilization method

The simplest approach to compute long-lived rovibrational resonances is o�ered by the so-
called stabilization method (Hazi and Taylor, 1970, Lefebvre, 1985, Riera, 1993, Mandelshtam
et al., 1993, Moiseyev, 2011). The attractiveness of the stabilization method lies in its simplic-
ity, since it allows the use of bound-state variational nuclear-motion codes for computations
yielding rovibrational resonance positions and even resonance widths (Simons, 1981, Macías
and Riera, 1984, 1989).

In the stabilization method the eigenvalues above the first dissociation asymptote are moni-
tored, while several (on the order of 10-20) standard, Hermitian, variational nuclear-motion
computations are carried out with slightly di�erent computational parameters chosen along the
coordinate describing dissociation. These parameters can be a scaling factor in a basis (Macías
and Riera, 1984), the size of the box containing the system (Lefebvre, 1985), and/or the number
of DVR basis functions. The “continuum” energies obtained vary significantly with changes
in the bases. Resonance energies are obtained by identifying eigenvalues which are converged
well and are insensitive to the (small) changes in the dissociative parameters.

27



The results obtained from the stabilization method can most easily be visualized in the form of
a histogram. In the stabilization histogram, the eigenvalues computed at di�erent ranges of the
dissociation coordinate that fall in the respective bins are counted. Resonance energies, which
are located above the dissociation threshold and are converged tightly appear in the histogram as
clear peaks (Hazi and Taylor, 1970, Mandelshtam et al., 1993, Papp et al., 2017a). Resonance
widths can also be obtained using the stabilization method; see, for example, citet81Simons,
Macías and Riera (1989), Mandelshtam et al. (1994), and Haritan and Moiseyev (2017).

4.2 The technique of complex coordinate scaling (CCS)

An alternative approach for computing resonance eigenstates using bound-state nuclear-motion
algorithms is to transform the time-independent nuclear Schrödinger equation, Ĥ	res = Eres	res,
to

Ŝ ĤŜ �1Ŝ	res = EresŜ	res = (Ŝ ĤŜ �1)� = Eres�; (51)

such that� = Ŝ	res becomes square integrable and can be expanded using standard bound-state
basis sets. The probably best known transformation is the so-called complex coordinate scaling
(CCS) (Moiseyev et al., 1981, Moiseyev, 2011). The simplest implementation of CCS involves
a parameter-dependent operator Ŝ (�), which rotates the dissociation coordinate R in the complex
plane by the angle �, Ŝ (�) f (R) = f (Rei�) (Moiseyev, 2011). In practice, the eigenvalues of the
non-Hermitian Ŝ (�)ĤŜ �1(�) operator are computed for many di�erent values of �, forming
eigenvalue trajectories on the complex plane, and resonance eigenvalues are identified as cusps
or similar features (Moiseyev et al., 1981) in the trajectories.

The authors’ implementation of the CCS method, called D2FOPI-CCS (Szidarovszky et al.,
2010, Szidarovszky and Császár, 2013), was obtained by extending the tailor-made variational
nuclear-motion code D2FOPI (Szidarovszky et al., 2010) with the conventional CCS as well as
the standard exterior CCS methods, detailed to some extent in Szidarovszky and Császár (2013)
and Papp et al. (2018), respectively. In the D2FOPI-CCS protocol all the bound rovibrational
eigenstates and hundreds of eigenpairs above the first dissociation threshold are computed as a
first step, then these eigenstates are used as basis functions to construct the matrix representation
of the complex-coordinate-scaled rovibrational Hamiltonian.

4.3 Complex absorbing potentials (CAP)

A third possibility to compute rovibrational resonances is o�ered by the technique of complex
absorbing potentials (CAP) (Riss and Meyer, 1993, Muga et al., 2004, Mussa and Tennyson,
2002, Skokov et al., 1999), which involves perturbing the rovibrational Hamiltonian by a CAP
function that is non-zero only in the asymptotic region of the dissociative coordinate. The CAP
is chosen such that the perturbed non-Hermitian Hamiltonian has square-integrable wavefunc-
tions with corresponding complex eigenvalues that are good approximations to the resonance
eigenvalues. In practice, the CAP function is associated with a strength parameter �, so that the
perturbation of the Hamiltonian can be written as

Ĥ ! Ĥ(�) = Ĥ � i�Ŵ; (52)
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where Ŵ is the CAP function, its argument(s) are the dissociation coordinate(s). Ŵ is typically
chosen to be non-zero only in the asymptotic regions of the PES, and the optimal functional
form of Ŵ has been the topic of many studies, see, for example, Vibók and Balint-Kurti (1992),
Halász and Vibók (2000), Poirier and Carrington Jr. (2003a), and Poirier and Carrington Jr.
(2003b). The eigenvalues of the non-Hermitian operator Ĥ(�) are computed for many di�erent
values of �, forming eigenvalue trajectories on the complex plane, and resonance eigenvalues
are identified as cusps in the trajectories.

The authors’ implementation of the CAP method, called GENIUSH-CAP (Papp et al., 2017b,
Simkó et al., 2019), is an extension of the GENIUSH code (Mátyus et al., 2009, Fábri et al.,
2011a) in which a CAP is added to the standard rovibrational Hamiltonian, and the matrix
representation of the CAP-perturbed Hamiltonian is constructed in the basis of the eigenvec-
tors of the unperturbed Hamiltonian. The GENIUSH-CAP code inherits all the advantages of
the GENIUSH code; thus, it allows full- and reduced-dimensional computations of rovibra-
tional resonances in a black-box-type fashion. E�cient algorithms moving the computation
of rovibrational resonances toward a black-box-type technique have appeared (Tremblay and
Carrington, 2005, Simkó et al., 2019).

4.4 Wavefunction analysis tools

One of the advantages of the GENIUSH-CAP code (Papp et al., 2017b, Simkó et al., 2019)
is that beyond full- and reduced-dimensional resonance computations, reduced-dimensional
model computations can be carried out with the GENIUSH code (Mátyus et al., 2009, Fábri
et al., 2011a) for the system whose resonances are investigated. This allows for a straightfor-
ward computation of overlaps between the resonance wave functions determined by GENIUSH-
CAP and model wavefunctions computed by GENIUSH. Based on such overlaps, quantum
numbers, dissociation branching ratios, etc. can be determined in a rigorous and e�cient way,
see, for example, Papp et al. (2017a) and Papp et al. (2018). This type of overlap-based analy-
sis is very similar in spirit to the RRD (Mátyus et al., 2010) and the CRD (Sarka et al., 2017)
schemes described above.

5 Applications

Up to now we have focused on the most important technical details characterizing some of the
fourth-age quantum-chemical nuclear-motion protocols, allowing the e�cient variational com-
putation of rovibrational bound states and resonances. Next, we present a couple of represen-
tative results of computations based on these protocols, obtained mostly in our laboratory. The
results, i.e., energy levels, eigenstates, assignments, and time-dependent quantum-dynamical
results, have applications in many di�erent areas of science and engineering, which, in order to
save space, we are going to cover only occasionally.

The computations whose results are reported in this section utilized the following in-house
codes: D2FOPI (Czakó et al., 2004, Furtenbacher et al., 2006, Szidarovszky et al., 2010),
D2FOPI-CCS (Szidarovszky et al., 2010, Szidarovszky and Császár, 2013), GENIUSH (Má-
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tyus et al., 2009, Fábri et al., 2011a), and GENIUSH-CAP (Papp et al., 2017b). D2FOPI
is a tailor-made DVR-based code designed for computing bound rovibrational states of tri-
atomic molecules. D2FOPI-CCS is an extension of D2FOPI, utilizing the CCS (Moiseyev,
2011) method, and allows the computation of rovibrational resonance states. In D2FOPI-CCS
the CCS Hamiltonian is represented in the eigenstate basis of the untransformed rovibrational
Hamiltonian. GENIUSH, which stands for a general (GE) rovibrational code with a numer-
ical (N), internal-coordinate (I), user-specified (US) Hamiltonian (H), computes rovibrational
bound states by numerically representing not only the potential (through a DVR) but also the
kinetic energy operator of a molecular system. Any number of reduced-dimensional models of
vibrating-rotating molecules can straightforwardly be defined within GENIUSH. GENIUSH-
CAP is an extension of GENIUSH, in which a CAP (Riss and Meyer, 1993, Muga et al., 2004,
Mussa and Tennyson, 2002, Skokov et al., 1999) is added to the standard rovibrational Hamilto-
nian, allowing for the computation of resonance states. In GENIUSH-CAP the matrix represen-
tation of the CAP-perturbed Hamiltonian is constructed using the basis of the eigenvectors of
the unperturbed Hamiltonian. In all the codes mentioned di�erent versions of iterative Lanczos
eigensolvers are used to determine the desired eigenvalues and eigenvectors.

5.1 Computation of all the bound (ro)vibrational eigenstates

There are only a few strongly-bound polyatomic molecules for which all the bound (ro)vibrational
eigenstates have been computed. This is not surprising when one considers the fact that even for
a triatomic molecule this may involve the computation of a couple of million eigenstates (Simkó
et al., 2017). The formidable task of computing these eigenstates is helped tremendously by the
fact that the quantum number corresponding to overall rotation, J, is one of the good quantum
numbers in a field-free case; thus, the Hamiltonian H is block-diagonal in J, with block sizes
proportional to 2J + 1. Due to dissociation limit(s) the largest block is at a J value considerably
smaller than the Jmax value characterizing the highest bound rovibrational state.

5.1.1 H2
16O and its isotopologues

Several BO and adiabatic PESs are available for water and its isotopologues (Partridge and
Schwenke, 1997, Polyansky et al., 2003, Barletta et al., 2006, Shirin et al., 2008, Polyansky
et al., 2018), most facilitate the determination of all bound states of these molecules (Maksyutenko
et al., 2007). The first-principles (ab initio) PESs of water, especially after including several
small correction terms [scalar relativistic (Császár et al., 1998b, Quiney et al., 2001), diago-
nal Born–Oppenheimer (Zobov et al., 1996), and quantum electrodynamics (QED) (Pyykkö
et al., 2001) corrections], all become fairly accurate. In fact, water is the first polyatomic, poly-
electronic molecule for which a purely ab initio PES could provide sub-cm�1 accuracy in a
variational computation of all measured transitions (Polyansky et al., 2003). When ab initio
PESs are adjusted to the large number of “measured” rovibrational energy levels (Tennyson
et al., 2013), the accuracy of the thus derived semiempirical PESs increases by somewhat more
than an order of magnitude. Nevertheless, the accuracy of rovibrational states computed with
the best semiempirical PES and an exact KEO is still orders of magnitude lower than those of
high-resolution spectroscopic measurements (Tennyson et al., 2009, 2010, 2013, 2014a,b).
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H2
16O has about 1150 vibrational (J = 0) states (Császár et al., 2010). The corresponding nu-

merical results, the wavefunction plots (Császár et al., 2010), and the assignments reveal inter-
esting characteristics about the energy-level structure and the dynamics of the H2

16O molecule.
The plots and the assignments show, for example, how the convenient normal-mode picture of
vibrations characterizing states of H2

16O with low excitation changes to a local-mode picture,
the e�ect the low barrier to linearity (Császár et al., 1998a, Valeev et al., 2001) has on the
characteristics of the states, and the onset of quantum monodromy (Zobov et al., 2005).

As water is the most prevalent polyatomic molecule in the universe, generation of a detailed line
list of the rovibrational transitions is of utmost importance for many scientific and engineering
applications. Thus, it is not surprising that several line lists have been developed, the most
important ones are probably Partridge and Schwenke (1997), Barber et al. (2006), Gordon et al.
(2017), and Polyansky et al. (2018). Note that while Partridge and Schwenke (1997) and Barber
et al. (2006) contain 300 and 500 million transitions, respectively, Polyansky et al. (2018) lists
5 billion rovibrational transitions. These transitions have been computed variationally based on
a highly accurate semiexperimental PES (Furtenbacher et al., 2016, Polyansky et al., 2018).

If all the bound rovibrational energies are available from detailed nuclear-motion computations,
they can be used to determine ideal-gas partition functions of molecules (Mayer and Mayer,
1940, Herzberg, 1945, Lewis et al., 1961, McQuarrie, 2000, Furtenbacher et al., 2016, Simkó
et al., 2017). For this purpose, the total partition function is assumed to be the product of the
internal and the translational partition functions. The latter can be computed exactly, only the
internal partition function will be approximate, even for an ideal gas. As also well known, the
internal partition function, Qint, of a free molecule can be calculated as

Qint = gs

X
i

gi(2Ji + 1)exp
��c2Ei

T

�
; (53)

called direct summation, where c2 = hc=kB is the second radiation constant, Ji is the rotational
quantum number, Ei is the rovibrational energy level given in cm�1 (the zero is taken as the
lowest existing (ro)vibrational state), T is the thermodynamic temperature in K, gs is a state-
independent nuclear-spin degeneracy factor for atoms not exchanged under rotation (Herzberg,
1945), gi is the nuclear-spin degeneracy factor for identical atoms interchanged under rotation,
and the index i runs over all possible rovibronic energies considered. The availability of about
20 000 “measured” (better say “empirical”) rovibrational energy levels (with an almost com-
plete coverage up to 9200 cm�1) for H2

16O (Tennyson et al., 2013), augmented with all the
computed bound energy levels, means that Qint of H2

16O (Furtenbacher et al., 2016), as well
as Qints of D2

16O (Simkó et al., 2017), D2
17O (Simkó et al., 2017), and D2

18O (Simkó et al.,
2017), and thus that of heavy water (Simkó et al., 2017), have the ultimate accuracy at lower
temperatures and an accuracy better than 1% even at 6000 K. Note that due to their lower ZPVE
values and lower fundamentals, the D2O species have almost three million bound rovibrational
states (Simkó et al., 2017), while H2

16O has only less than one million.

5.1.2 H+

3 and its deuterated isotopologues

H+

3 is an extremely important molecule in interstellar space as it governs basically the whole
gas-phase chemistry of the interstellar medium (ISM) (Herbst, 2000).
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In 2006, based on a PES (Munro et al., 2006) with correct asymptotic behavior, Tennyson et
al. (Tennyson et al., 2006, Munro et al., 2006) computed almost all of the vibrational energy
levels corresponding to the electronic ground state of H+

3 . Szidarovszky et al. (2010), using the
same PES but a di�erent protocol, confirmed the results of the earlier study and determined
1287 (counting the E-symmetry states twice) bound vibrational states. It is believed that a
convergence of at least 1 cm�1 was achieved in even for states very close to the first dissociation
asymptote, placed at D0 = 34 911:6 cm�1.

H+

3 is the polyatomic molecule for which the most accurate ab initio adiabatic PES has been
computed (Pavanello et al., 2012b,a, Polyansky et al., 2012). To achieve this accuracy required
the use of special techniques of electronic structure theory and the consideration of (scalar)
relativistic (Cowan and Gri�n, 1976, Tarczay et al., 2001), quantum electrodynamics (Pyykkö
et al., 2001), and diagonal Born–Oppenheimer (Handy et al., 1986) corrections obtained based
on highly-accurate electronic wavefunctions. The accuracy achieved allowed the straightfor-
ward assignment of near-IR measured spectra (Pavanello et al., 2012b). The accuracy of the
adiabatic PES is in fact so high that comparison of the computed and measured rovibrational
energies clearly revealed the role of nonadiabatic e�ects on the computed levels (Furtenbacher
et al., 2013b). Modeling of nonadiabatic e�ects is one of the last frontiers of computational
molecular spectroscopy and it is likely that the advances will employ H+

3 as the test molecule.
These tests will likely utilize the empirical rovibrational energy level sets of H+

3 (Furtenbacher
et al., 2013b), H2D+ (Furtenbacher et al., 2013a), and HD+

2 (Furtenbacher et al., 2013a).

One of the great remaining challenges of H+

3 spectroscopy is the understanding of the Carrington–
Kennedy experiments (Carrington et al., 1982, Carrington and Kennedy, 1984), revealing an
extraordinary number of rovibrational transitions around the first dissociation asymptote. This
requires an extremely accurate PES, new methodological developments for the computation of
bound and resonance states, and even perhaps new experiments at low temperatures producing
much less cluttered spectra.

5.2 Rovibrational computations on quasistructural molecules

5.2.1 H+

5

The H+

5 molecular ion lacks the usual (heavier) central atom(s) that may form multiple strong
(covalent, often 2c–2e) bonds, typical for virtually all small molecular species. Thus, unlike in
the case of semirigid molecules (like H2O and H+

3 ), the lack of a well-defined (e�ective) struc-
ture makes the low- and especially the high-resolution spectra of H+

5 particularly challenging
to anticipate and interpret (Fábri et al., 2014c, Sarka et al., 2015, Sarka and Császár, 2016). It
has also become clear that it is not trivial to set up meaningful low-dimensional model Hamil-
tonians to describe the complex internal dynamics of this ion, governed by the following three
large-amplitude motions: hopping of the central proton (PH), torsion (T), and scrambling of
the hydrogens of the formal H+

3 subunit (SC). Nevertheless, even for this cation (formally H+

3
solvated by a H2 molecule at one of the vertices of H+

3 ) (a) free motion (no hindering poten-
tial) works well for describing the 1D torsional motion of the two H2 moieties in the sides of
the central proton; (b) coupling the torsional motion with one of the rotational dofs provides
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a meaningful model to interpret the structure of the lowest rovibrational energy levels; and (c)
the unfeasible scrambling motion, hindered by a relatively substantial barrier, lowers the high
permutational symmetry of the system.

The very unusual nuclear dynamics of H+

5 holds true for all D-substituted isotopomers and iso-
topologues, H5�nDn, n = 0 � 5 (Sarka and Császár, 2016). The computations strongly suggest
that the unusual dynamical behavior is connected to the shape of the PES and not to the five-
fold permutation symmetry of the molecule. Briefly, the detailed nuclear-motion computations
(Fábri et al., 2014c, Sarka et al., 2015, Sarka and Császár, 2016) suggest that (a) the six possi-
ble D-substituted isotopologues form 12 isotopomers; (b) to interpret the rovibrational energy
levels, one needs to explicitly consider that the e�ective value of the A rotational constant is
twice as large as its equilibrium value and the nearly-free torsion is strongly coupled to the
rotational dof corresponding to the torsional axis; (c) though some isotopomers, namely [DH–
H–DH]+ and [DH–D–DH]+, show more chaotic behavior than others, labeling of a number of
states involving coordinates corresponding to the T, PH, and SC motions is possible, yielding
some understanding of the quantum dynamics of these ions; (d) the splittings showed by certain
torsion-rotation energy level pairs can be attributed to the pertubation of free internal rotation
by the weak torsional potential instead of tunneling between the two equivalent torsional po-
tential wells; and (e) the hopping mode is sensitive to the identity of the middle atom but more
or less independent of the sides. These characteristics of the internal dynamics make H+

5 and
its deuterated isotopologues members of the family of quasistructural molecules (Császár et al.,
2019).

5.2.2 CH+

5

Based on a considerable number of experimental (White et al., 1999, Asvany et al., 2005, Ivanov
et al., 2010, Oka, 2015, Asvany et al., 2015, Brackertz et al., 2017), computational (Schreiner
et al., 1993, Padma Kumar and Marx, 2006, Huang et al., 2006, Wang and Carrington Jr., 2008,
Wodraszka and Manthe, 2015, Wang and Carrington Jr., 2016, Fábri et al., 2017), and modeling
(Bunker, 1996, Kolbuszewski and Bunker, 1996, East and Bunker, 1997, East et al., 1997,
Bunker et al., 2004, Schmiedt et al., 2016, 2017a,b, Fábri and Császár, 2018) studies, it is
transparent that the rovibrational energy level pattern of the protonated methane molecule, CH+

5 ,
defies any description attempts based on the RRHO model. The computations reported in Fábri
et al. (2017), Wang and Carrington Jr. (2016), and Wang and Carrington Jr. (2008) yielded
vibrational and rovibrational energy levels for CH+

5 for 7D bend and 12D models. These results
prove numerically that the commonly applied separation of rotations and vibrations completely
breaks down for CH+

5 , as predicted by group-theoretical arguments (Wodraszka and Manthe,
2015, Schmiedt et al., 2015).

Given the extraordinary di�culties related to the dynamics of CH+

5 , it is of considerable in-
terest to note that a simple and intuitive model, the vibrational quantum-graph model (Fábri
and Császár, 2018), is able to provide a qualitative explanation for the unusual low-energy vi-
brational quantum dynamics of CH+

5 . The vertices of the quantum graph represent versions of
the equilibrium structure with distinct atom numbering (120 possibilities for CH+

5 ), while the
edges refer to collective nuclear motions (torsional and flip motions for CH+

5 ) transforming the
versions of the equilibrium structure into one another. Note that it was (Nefedova et al., 1993)
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who introduced to chemistry the graphical representation “of the symmetries of [the] PES of
nonrigid molecule[s], whose nuclear motion wavefunctions are delocalized over several equal-
energy global minima” (the molecules considered were ArH+

3 , C2H+

3 , CH+

4 , and LiBH+

4 ). The
novel vibrational quantum-graph model allows the mapping of the complex vibrational quantum
dynamics of CH+

5 onto the motion of a particle confined in a quantum graph. The vibrational en-
ergy levels are obtained by solving the one-dimensional time-independent nuclear Schrödinger
equation, subject to appropriate boundary conditions. Furthermore, due to the low barriers hin-
dering the torsional and flip motions in CH+

5 , the motion along the edges of the quantum graph
can safely be assumed to be free. The quantum-graph model is able to reproduce the lowest-
lying vibrational energy levels of CH+

5 (and CD+

5 ) with remarkable accuracy (Fábri and Császár,
2018). Note that a five-dimensional rigid-rotor model, based on the combination of the three
rotational dofs with the two soft vibrational modes (torsion and flip), is also able to explain the
unusual rovibrational energy structure of CH+

5 (Schmiedt et al., 2016, 2017a,b).

In summary, while we are close to understanding the highly unusual nuclear dynamics, and
even perhaps the related spectra, of CH+

5 via variational nuclear-motion computations, it is safe
to say that this cation remains the premier representative of quasistructural molecules (Császár
et al., 2019), providing a very challenging playground for both experiment and theory.

5.3 Computation of rovibrational resonances

5.3.1 H2O

Szidarovszky and Császár (2013) computed the low-lying rovibrational resonances of the strongly-
bound H2O molecule using the CCS method. The calculations aided the proper assignment of
some observed rovibrational transitions beyond the first dissociation limit of H2

16O (Zobov
et al., 2011). Furthermore, by inspecting the vibrational probability density plots from the
stationary resonance calculations, several types of (dynamical) dissociation behavior, varying
among the states, could be identified.

5.3.2 Ar�NO+

Vibrational resonances of the vdW complex Ar�NO+ were studied in Papp et al. (2017a) us-
ing the CAP technique and the stabilization method. It was found that the results obtained are
in good agreement with those derived from close-coupling scattering computations (Stoeck-
lin et al., 2002), and that the close-coupling scattering and rovibrational resonance approaches
complement each other remarkably well. Comparison with the limited experimental informa-
tion confirmed the experimental results obtained, and shed light to more subtle dynamics than
initially predicted based on the observations.

A particularly interesting feature of the computed rovibrational resonances of Ar�NO+ is the
repetition of the basically same set of levels for each vibrational excitation of the NO+ stretch.
The dissociation energy of Ar�NO+ is about 800 cm�1 but due to the almost perfect adiabatic
separation of the NO+ stretch from the other two vibrational dofs, basically the same energy-
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level structure is computed even at about 8000 cm�1.

5.3.3 H2He+

Using the CCS, the CAP, and the stabilization methods, a large number of rovibrational reso-
nances have been computed and characterized in Papp et al. (2018) for H2He+. It is hoped that
these accurate computations facilitate the first experimental observation of rovibrational transi-
tions of this fundamental molecule, made up of the two most abundant elements of the universe.
Note that HHe+ has just been observed in the interstellar medium (Güsten et al., 2019).

Alongside the spectroscopic data valuable for future high-resolution experiments, the stabiliza-
tion mechanism of the long-lived resonances, possible dissociation pathways, and dissociation
branching ratios could also be determined from the quantum-chemical computations. These
results provide insight into the complex physics and the rich dynamics characterizing this sys-
tem. Because the H–H stretching fundamental lies above the first dissociation threshold of
D0 = 1775:4 cm�1, resonances are expected to play a crucial role in the collision and asso-
ciation reaction involving H2He+, including radiative association and radiative charge-transfer
reactions.

5.3.4 H2�CO

Papp et al. (2017b) computed the vibrational resonances of the weakly-bound complex H2�CO
using the GENIUSH-CAP approach and a four-dimensional model PES. This was one of the
first examples where vibrational resonances could be determined for a system containing more
than three atoms.

The computations allowed to identify and characterize resonances of both para- and ortho-
H2�CO. Quantum number assignments for the resonances were achieved by inspecting the vi-
brational probability density plots and by computing wavefunction overlaps with eigenstates of
reduced-dimensional models, as discussed briefly in Section 4.4.

5.4 Stationary-state computations serving dynamical studies

In this penultimate section we mention briefly a few enlightening examples where variational
stationary-state computations have been utilized to obtain detailed information on certain dy-
namical processes of molecular systems.

Szidarovszky and Yamanouchi (2017) simulated the laser-induced alignment dynamics of the
weakly-bound H2He+ complex to investigate the e�ects of non-rigidity and rovibrational cou-
plings on the rotational dynamics of the system. For this, variationally-computed rovibrational
states of the H2He+ complex were used as basis functions to expand the laser-induced rovibra-
tional wave packet. It was shown that centrifugal distortion and rovibrational couplings indeed
influence strongly the laser-induced rotational dynamics of the system; thus, the standard pro-
tocol of applying the RR approximation for simulating such processes needs to be used with
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considerable care.

In the case of H2O, a molecule much more rigid than H2He+, deviations from the RR approxi-
mation in its laser-induced alignment dynamics can also arise, mostly when one-photon transi-
tions inducing vibrational excitations occur (Szidarovszky and Yamanouchi, 2018). In this case
the origin of the deviation is due less to centrifugal distortion, it stems mostly from the inad-
equacy of the RR model to describe optical selection rules of rotational transitions associated
with vibrational excitation.

In the experiments described in Larimian et al. (2016), the C2H2+
2 and C2H2+

4 dications were
generated by doubly ionizing their neutral parents using few-cycle intense laser pulses. For
both C2H2+

2 and C2H2+
4 , in the deprotonation pathway of their Coulomb explosion, an ultra-

slow, microsecond timescale exponential decay channel was observed. Reduced-dimensional
resonance-state computations revealed that in both cases the slow decay channel is due to quasi-
bound states along the C–H vibrational mode, where tunneling through a barrier is responsible
for the exponential decay.

Due to the rapidly increasing amount of high-quality data placed into molecular spectroscopy
databases, it is worth mentioning here that laser-induced dynamics can also be simulated for
molecules for which spectroscopic databases, containing rovibrational energy levels as well
as transition amplitudes between the corresponding eigenstates, are available. This interesting
approach was pursued, for example, in Owens et al. (2017) and Schuh et al. (2017).

Fábri et al. (2019) reported the extension of the time-independent nuclear-motion code GE-
NIUSH with time-dependent quantum-dynamical features and results are presented there for
the coherent inhibition and enhancement of tunneling in NH3 isotopomers. The time-dependent
Schrödinger equation was solved in the basis of the rovibrational eigenstates of the isolated
molecule and the interaction of the molecule with a classical electromagnetic field was de-
scribed within the framework of the electric dipole approximation. The rovibrational eigen-
states were computed using contracted vibrational basis functions and the vibrational subspace
method introduced in Section 3.1. The quantum-dynamical schemes utilized in Fábri et al.
(2019) rely heavily on the concept of light-dressed states (Grossmann et al., 1991, Holthaus,
1992) and achieve the coherent inhibition and enhancement of tunneling by nonresonant laser
fields. An important feature of the work of Fábri et al. (2019) is that, in contrast to previous
vibration-only studies (Marquardt et al., 2003, 2010, Gatti and Marquardt, 2012, Sala et al.,
2012, 2014), all rotational and vibrational degrees of freedom are treated in a numerically exact
way and neither the alignment nor the orientation of the molecule are assumed.

6 Summary and outlook

Molecules are assemblies of electrons and nuclei. “E�ects” due to the rotational and/or the
vibrational motions of the nuclei are omnipresent whether one takes them into account explicitly
or not. Nevertheless, the Born–Oppenheimer separation of the motion of the electrons and the
nuclei is a remarkably good approximation for most of chemistry. As a result, in the majority of
quantum-dynamics computations one first solves the electronic motion problem adiabatically
decoupled from the motions of the nuclei. This can be done today in an almost black-box-like
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fashion with outstanding accuracy for quite large systems. Then the motion of the nuclei is
considered on a potential energy hypersurface (PES) provided by electronic-structure theory.

One of the simplest dynamical descriptions of molecules in motion is given by considering
the classical movement of the nuclei on a PES. This classical description is useful in a semi-
quantitative understanding of many dynamical processes. Nevertheless, the zero-point energy
of molecules and the tunneling of nuclei, most importantly that of protons, are not readily
incorporated in this model and must be considered as special “e�ects”, showing limitations of
this approach. Thus, one needs to move toward a quantum treatment of all the particles.

Spectroscopy, dealing with the results of the interaction between matter and electromagnetic
radiation, has been one of the greatest inventions of humankind. Its often extreme accuracy
and precision facilitates the understanding of the world around us from the extremely small
(atoms and molecules) to the extremely large (astronomical) objects. The remarkable successes
of experimental and observational spectroscopy could not have happened without the help from
theory, mostly quantum chemistry and molecular physics. Spectroscopic experiments provide
a very large amount of data that need to be interpreted and explained and the aim of a large part
of nuclear-motion computations is exactly this.

In the fourth age of quantum chemistry the algorithms and the codes developed became sophis-
ticated enough that they allow the interpretation of most high-resolution spectroscopic measure-
ments. Nevertheless, black-box-type techniques, like those of electronic structure theory, still
do not exist in nuclear-motion theory though the field is moving toward that direction with con-
siderable pace. Attempts to develop black-box-type quantum dynamics techniques will remain
with us for the foreseeable future.

As in all fields under intense development, there are various trends within nuclear-motion the-
ory. These include time-dependent and time-independent descriptions, perturbational and vari-
ational algorithms, various forms of rovibrational Hamiltonians, as well as di�erent numerical
representations of the Hamiltonians. In this chapter only time-independent variational tech-
niques have been treated in detail. One may wonder which is the best combination of the
numerous possible choices or whether a unified protocol would soon emerge.

At this point we have to leave these questions open and say that at present the application in
question determines the most appropriate choice. What can be said with confidence is that
the extensive use of the di�erent algorithms and protocols indicates that the current quantum-
chemical adaptation of quantum mechanics to molecular systems is highly successful all the
way from the semirigid to the quasistructural regime. As a result, the outcome of quantum-
chemical simulations based on the technology developed can be used in several applied fields
of science and engineering, an example is the improvement of the outcome of atmospheric
radiative models.

In the most modern times we are witnessing the merging of time-independent and time-dependent
approaches. This is due to the fact that time-dependent nuclear motion computations may fol-
low two basic approaches, a direct or an indirect one. The direct approach implies the numer-
ical solution of the time-dependent Schrödinger equation by an appropriate time-propagation
method, not requiring the usually expensive computation of eigenstates. In the indirect approach
the time-dependent problem is solved in two consecutive steps. First, the time-independent
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Schrödinger equation is solved via techniques described in this chapter, resulting in rovibra-
tional energy levels and eigenstates. The results of this step can be compared with experimen-
tal transitions and transition moments. In the second step the time-dependent wavefunction
is represented in the basis of eigenstates and the resulting set of coupled first-order di�eren-
tial equations is solved, yielding the time-dependent wavefunction and other time-dependent
molecular quantities. This step can be executed either for the isolated molecule or for the
system interacting with an electromagnetic field. In the second step one can design suitable ap-
proximations, such as the quasiresonant or the Floquet–Lyapunov approximation for coherent
excitation, which facilitate long-time propagation, not easily amenable to direct approaches.

Without discounting the considerable achievements of nuclear-motion theory, it must also be
stressed that there are several outstanding challenges which should be met in the near future
and require further developments of the existing methodologies. The so-called Carrington bands
close to the first dissociation limit of the molecular ion H+

3 still remain unassigned. In particular,
e�cient and black-box-type computation of resonance states requires further concerted method
developments. Treatment of highly-excited states of semirigid molecules, of almost all rovi-
bronic states of molecules “with no structure” (called quasistructural molecules, like CH+

5 ), as
well as of weakly-bound molecular systems, like those held together by dispersive interactions,
is far from being solved, especially not in full dimension. Computation of the hyperfine struc-
ture of measured spectra as well as the e�cient joint treatment of several PESs await further ex-
tensive studies. Extending the applicability of nearly exact nuclear-motion treatments to much
larger, flexible molecules requires further significant e�orts. Quantum-chemical computation
of rate constants and advancing quantum control are two areas where a lot of developments are
expected in the near future. In summary, it is clear that in the fourth age of quantum chem-
istry method development and the application of the new techniques to outstanding problems of
chemistry continue and continue with a hopefully increased speed.
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the small and large cages of structure I clathrate hydrate: Quantum six-dimensional calcula-
tions of the coupled translation-rotation eigenstates. J. Chem. Phys., 131:224308, 2009.
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M. Mladenović. Rovibrational Hamiltonians for general polyatomic molecules in spherical po-
lar parametrization. II. Nonorthogonal descriptions of internal molecular geometry. J. Chem.
Phys., 112:1082–1095, 2000b.
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M. Xu, F. Sebastianelli, and Z. Bačić. Coupled translation-rotation eigenstates of H2, HD, and
D2 in the large cage of structure II clathrate hydrate: Comparison with the small cage and
rotational Raman spectroscopy. J. Phys. Chem. A, 113:7601–7609, 2009a.

M. Xu, F. Sebastianelli, B. R. Gibbons, Z. Bačić, R. Lawler, and N. J. Turro. Coupled
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