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ABSTRACT  

Objective: To investigate the prognostic accuracy of longitudinal analysis of amplitude-

integrated electroencephalogram (aEEG) background and seizure activity to predict long-term 

neurodevelopmental outcome in hypoxic-ischemic encephalopathic (HIE) neonates receiving 

therapeutic hypothermia (TH).  

Study design: Prospective single-center cohort study of 149 neonates with moderate-to-severe 

HIE, gestational age ≥ 35 weeks at a tertiary Neonatal Intensive Care Unit. Single-channel 

aEEG background and seizure activity was monitored over 84 hours during TH and rewarming, 

then scored for every 6-hour interval.  Neurodevelopmental outcome was assessed using Bayley 

Scales of Infant Development (Second Edition). Good outcome was defined as having both 

mental development index (MDI) and psychomotor development index (PDI) scores ≥ 70 while 

poor outcome was defined as either MDI or PDI < 70 or death. Regression modelling for 

longitudinal analysis of repeatedly measured data with 5-fold cross validation was applied, and 

area under receiver operator characteristic curve (AUC) was calculated. 

Results: Ninety-three (62%) patients had good and 56 (38%) had poor outcome. Longitudinal 

aEEG background analysis combined with the information on both electrographic and clinical 

seizures had excellent predictive value (AUC: 0.90 (95% CI 0.85-0.95), better than single aEEG 

scores at any time point. The reclassification rate of this model compared to the conventional 

analysis of aEEG background at 48 hours was 19% (26 patients), of which 14% (19 patients) 

were reclassified correctly. An online outcome prediction tool was developed based on our data. 

Conclusions: Longitudinal analysis of aEEG background and seizure activity is a valuable and 

accurate prognostic tool. 
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INTRODUCTION  

Amplitude-integrated electroencephalogram (aEEG) is a bed-side tool that allows real-

time monitoring of cerebral activity in neonates, primarily during hypoxic-ischemic 

encephalopathy (HIE). 

The three key prognostic features of aEEG monitoring are background pattern, the 

emergence of sleep-wake cycling and seizure activity during the first days of life. Several 

studies and meta-analyses concluded that a persistently abnormal background aEEG pattern at 

48 hours or beyond during hypothermia treatment1,2,3,4 or the lack of sleep-wake cycles by 96 

hours of life are strong predictors of adverse neurodevelopmental outcome. 5,6,7 Less data is 

available regarding early seizures, but seizure activity is generally related to poor outcome,8,9 

and high seizure burden was described as an independent predictor of brain injury on magnetic 

resonance imaging (MRI).10 

Although it may seem to be an attractive approach to analyze a single cross-sectional 

segment, it will not take into consideration fluctuations of generalized trends, and may lead to 

information loss in individual patients. We hypothesized that a longitudinal analysis of aEEG 

background activity during TH and the subsequent rewarming period would better reflect the 

evolution pattern of brain injury. We analyzed the aEEG and seizure activity over the first 84 

hours of life in 6-hour intervals in a large cohort of neonates diagnosed with HIE treated with 

TH. Our aim was to determine the predictive power of aEEG longitudinal analysis on long-

term neurodevelopmental outcomes and evaluate the effect of electrographic and/or clinical 

seizures, sedation or anticonvulsive treatment and blood gas values. 

 

METHODS 

Study design 
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This was a prospective single-center cohort study conducted in the Neonatal Intensive 

Care Unit of the 1st Department of Pediatrics, Semmelweis University Budapest, Hungary. The 

study was approved by the Ethics Committee of the National Medical Research Council (ETT-

TUKEB 11790-2/2016/EKU). 

 

Participants 

We enrolled 213 consecutive neonates born between January 2013 and July 2018, 

diagnosed with moderate-to-severe HIE.11 Whole-body cooling was induced as described in the 

TOBY trial; initiated within the first 6 hours of life, maintained for 72-hours, followed by 

gradual rewarming.12 Exclusion criteria were gestational age of <35 weeks, postpartum 

asphyxia, congenital malformation or concurrent cerebral lesions. Patients where the cooling 

protocol or follow-up requirements were not adhered to were excluded. The CONSORT flow-

diagram of enrolment is shown in Figure 1 (online). 

 

Equipment 

Cerebral activity was recorded using continuous single channel (biparietal, P3-P4) 

aEEG monitoring (Olympic CFMTM 6000 Monitor, Olympic Medical, Natus Medical 

Incorporated, EEG-1200K Nihon Kohden Corporation). The signal was filtered to exclude 

frequencies lower than 2 Hz and higher than 20 Hz, rectified and displayed in microvolts on a 

semi-logarithmic scale at a speed of 6 cm per hour. Recording was started as soon as possible, 

but always before 6 hours of age, continued for the duration of therapeutic hypothermia and 

rewarming period for a total of 84 hours of study period.  

Scoring 

The aEEG background activity was scored for every 6-hour interval, converting the 

Hellström-Westas criteria13 to a numeric value: continuous normal voltage (CNV: score 1), 
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discontinuous normal voltage (DNV: score 2), burst suppression (BS: score 3), continuous low 

voltage (LV: score 4) and flat trace (FT: score 5).  

The frequency and duration of electrographic and clinical seizures in each interval was 

documented (0: no seizure, 1: seizure with duration less than 15 minutes, 2: repetitive seizures 

or lasting longer than 15 minutes or status epilepticus). The first appearance of sustained CNV 

or DNV (lasting over a 3-hour period) on the aEEG was defined as aEEG recovery.  

Clinical care 

All patients were mechanically ventilated during the hypothermia treatment as per our 

protocol. First line sedation was morphine sulphate infusion (loading dose of 100 µg/kg, 

followed by continuous infusion of 10 µg/kg/hour) adjusted based on response. Second line 

sedation was midazolam (boluses of 100 µg/kg or continuous infusion of 100 µg/kg/hour as 

required). Our first line anticonvulsive treatment was phenobarbital sodium (loading dose of 20 

mg/kg, maintenance dose: 5 mg/kg/day). Repetitive seizures / status were treated with either a 

second loading dose of phenobarbital or phenytoin sodium (loading dose of 20 mg/kg, 

maintenance: 4 mg/kg/day) or levetiracetam (loading dose: 30 mg/kg, maintenance dose: 20 

mg/kg 12 hourly).  

MRI was performed on 136 (91%) infants at a median age of 4.7 days at the Medical Imaging 

Center, Semmelweis University, Budapest, on a 3 Tesla Philips Achieva scanner (Philips 

Medical System, Best, The Netherlands). T1 and T2 diffusion-weighted images with apparent 

diffusion coefficient measurement were performed and were scored according to the grading 

system developed by Barkovich et al.14,15 MRI scans were classified as either no injury, mild 

injury (score of 1 in the deep nuclear grey matter or a score of 1-3 in a watershed pattern) or 

moderate-severe brain injury (score of >1 of in the deep nuclear grey matter or a score of ≥3 

in a watershed pattern).  
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Neurodevelopmental outcome 

Bayley Scales of Infant Development (Second Edition) score was used to assess 

neurodevelopmental outcome.16 The follow-up appointment was at 16-42 months of age 

undertaken by a trained pediatrician or psychologist blinded to the clinical history. Good 

outcome was defined as having both mental development index (MDI) and psychomotor 

development index (PDI) scores ≥ 70 while poor outcome was defined as either MDI or PDI < 

70 or death. 

 

Statistical analysis 

Descriptive statistics are presented as mean  standard deviation (SD) or median with 

interquartile ranges (IQR) for continuous variables and as percentage (%) for categorical 

variables. Student’s t test or Mann-Whitney test was used to compare continuous variables, as 

appropriate, while Fisher’s exact test was used for categorical variables. Interrater reliability of 

aEEG scoring was analyzed using intraclass correlation coefficient (ICC) in 100 randomly 

selected 6-hour periods. 

To calculate the predictive power of aEEG background activity, as a reference, we first 

analyzed the predictive power of numerical scores for each individual 6-hour period using the 

area under receiver operator characteristic curve (AUC-ROC). Next, we used seven different 

regression methods17 to handle a repeatedly measured predictor over time (aEEG background 

pattern in 6-hour intervals). Specific details of the mathematical models can be found online 

(Prediction model development). The best model, that was based on the linear regression slope-

coefficient and the mean of aEEG scores in each patient, was then validated with 5-fold cross 

validation repeated 1000 times to ensure the generalizability of our results (our dataset was 

partitioned for 5 rounds into complementary subsets, the analysis was performed on the training 

subsets and then validated on the other subset before the averaged validation results were 
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reported). We accepted p<0.05 as a level of significance. R Statistical Software, Version 4.0.3 

(R Foundation for Statistical Computing, Vienna, Austria) and GraphPad Prism, Version 9.0.2. 

(GraphPad Software, San Diego, CA, USA) were used for data analysis and plotting.  

 

RESULTS 

A total of 149 infants were included in our study after exclusions. Demographic and 

clinical characteristics of the population are shown in Table 1. Neurodevelopmental outcome 

assessment was performed at a median age of 24 months (IQR 19-35) with 93 (62%) patients 

classed as having good and 56 (38%) as poor outcome. Patients with poor outcome had a lower 

mean gestational age, birth weight, worse Apgar scores and initial blood gas values. A total of 

19 (13%) infants deceased, 10 of whom died within the 84-hour study period. 

 

aEEG background pattern 

The aEEG background pattern for each interval was assessed by two neonatologists 

blinded to the participants’ clinical history. Interrater reliability was high (ICC=0.915 (95% CI: 

0.865, 0.946, Cohen's =0.92). Median aEEG scores were analyzed in 6-hour intervals and 

improved with time in both outcome groups (Figure 2). There was a significant difference in 

the median aEEG scores calculated for 84 hours between the good and poor outcome groups 

(3.4 vs. 1.4 respectively, p<0.0001, Table 2).  

Further analysis of the aEEG background pattern in the two outcome groups is shown 

in Figure 3. CNV was observed in 22 infants (24%) at 6 hours, 58 (63%) at 48 hours and 54 

(59%) at 84 hours in the good outcome group, while in the poor outcome group, no infant had 

CNV at 6 hours, 7 (13%) at 48 hours and 6 (11%) at 84 hours.  

At 84 hours, aEEG recovery was attained in 86 (95%) patients in the good outcome 

group, and 21 (38%) in the poor outcome group.  
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Seizures 

During the 84 hours of the study period, clinical seizures were observed in 65 infants 

(44%), while electrographic seizures occurred in 68 (46%) both of which were more frequent 

in the poor outcome group (Table 2). The majority (70.5%) of the first electrographic seizures 

appeared within the first 24 hours. Electrographic and clinical seizures were detected in 44 

(29%) infants. There were 60 infants (40%) who had neither clinical nor electrographic 

seizures. The distribution of seizure activity over time is shown in Figure 4 (online).  

 

Prediction 

The predictive power of longitudinal aEEG analysis on neurodevelopmental outcome 

was evaluated using a three-step approach. First, we tested the performance of numerical aEEG 

scores for each 6-hour period in classifying infants to good and poor outcome groups using 

AUC-ROC analysis. The specificity for outcome prediction increased from 0.55 at 6 hours to 

0.94 at 84 hours, while the sensitivity decreased from 0.93 at 6 hours to 0.53 at 84 hours (Table 

3. online). There were 5 patients with abnormal aEEG background activity at 84 hours who had 

a good outcome.  

Secondly, we applied several different mathematical models17 to incorporate 

longitudinal predictor information from repeatedly measured aEEG background activity (Table 

4. online, and Prediction model development online). We used a statistically rigorous approach 

to avoid over fitting, and the best regression model yielded an AUC of 0.90 (95% CI 0.85-0.95). 

Next, we tested the effect of further covariates on outcome prediction. The presence of both 

electrographic and clinical seizures during the study period was found to slightly increase the 

predictive power (AUC: 0.91 (95% CI 0.86-0.96), sensitivity: 0.78, specificity: 0.88) (Figure 
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5.). Other variables including blood gas values (pH, BE, lactate), cumulative sedative or 

anticonvulsive treatment did not significantly improve outcome prediction.  

Finally, we performed a 5-fold cross validation repeated 1000 times, to ensure 

generalizability, which yielded an AUC of 0.90 (95% CI 0.85-0.95). The reclassification rate 

of this model compared to the conventional analysis of aEEG background at 48 hours was 19% 

(26 patients), of which 14% (19 patients) were reclassified correctly (17 patients from poor to 

good outcome).  

Based on these results, we developed an online outcome prediction tool and made it 

available at https://suneonatalgroup.shinyapps.io/aeegpredictiontool/ to be trialed for clinical 

use.  

  

DISCUSSION 

Our results suggest that in HIE patients treated with TH longitudinal analysis of aEEG 

background and seizure activity over 84 hours in 6-hour intervals had a higher predictive value 

for neurodevelopmental outcome than analyzing the aEEG at distinct time points. When 

compared with a conventional prediction model, our results have led to correct reclassification 

in 14% of the neonates, the majority of whom were reclassified from poor to good outcome 

groups.  

 The prognostic performance of aEEG monitoring in infants with HIE has been studied 

extensively before on smaller patient populations 3-6,18 and in combination with near infrared 

spectroscopy.19, 20 As therapeutic hypothermia became standard practice in HIE, the pattern of 

changes in aEEG has been shifted in time, most likely due to the neuroprotective effects of 

cooling.6  

A large meta-analysis based on a population extracted from three small studies assessed 

the role of aEEG as a prognostic tool on long-term development. When stratified for patients 
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receiving hypothermia, they found an AUC of 0.86, 0.85 and 0.91 at 24, 48 and 72 hours, 

respectively, with a maximum predictive reliability achieved at 72 hours of life.1 These data are 

comparable to our results based on aEEG scores in respective single time periods. The most 

comprehensive meta-analysis to date included 187 patients and reported pooled sensitivity and 

specificity values to describe the predictive value of abnormal aEEG background activity in 

cooled encephalopathic neonates.2 They calculated a sensitivity of 0.95, 0.85 and 0.67, and 

specificity of 0.75, 0.93 and 0.97 at 24, 48 and 72 hours of life, respectively. Of note, in this 

analysis, only CNV background activity was considered as normal. These results are again 

similar to our findings in the pre-defined time points. Finally, a recently published review based 

on nine studies analyzed the long-term predictive power of various clinical tests in 

encephalopathic neonates.21 Their prediction of an unfavorable neurodevelopmental outcome 

using aEEG background activity during the immediate postnatal period had an AUC 0.78, 

which is considerably lower than that of the longitudinal analysis proposed by our group. 

Seizure activity in HIE infants is reported in several publications, however, there seems 

to be a lack of consistency in the categories used.  The association between seizure activity and 

short term (MRI) outcome, independent of aEEG background, was described in a study of 85 

HIE infants treated with TH.10 It was found that 52% of the patients had seizures detectable on 

aEEG, 35% of which were repetitive or status epilepticus. This was confirmed by our findings. 

Multimodal cross-sectional evaluation was used by another group, where they combined aEEG 

background pattern, seizure activity and near-infrared spectroscopy data for short-term 

outcome prediction by MRI.19 Their combined AUC of 0.80, 0.84 and 0.67 at 24, 48 and 72 

hours, respectively represents a considerably lower prognostic performance compared to our 

results. 

Clearly, there are other factors that are worth taking into account that may influence 

long-term outcome, including the level of ongoing developmental care, the presence of a 
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supportive family background and socio-economic status or possibly unreported decision-

making processes that a poor aEEG may have on redirecting the focus of care. In our cohort 

there were 5 infants with abnormal aEEG background activity at 84 hours who went on to have 

a good outcome. These findings are in line with previous publications and suggest that 

additional variables should be considered to refine the accuracy of prognosis. 

The novelty of our approach is that instead of the conventional intermittent analysis, we 

propose a continuous evaluation of aEEG background activity. Using mathematical modelling, 

we were able to harness information about the variable’s trajectory or development over time, 

providing us with more accurate predictions than just single measurements.17  

We recognized, that complex regression models are difficult to apply in everyday use 

and a simple model may be more appealing to clinicians. Therefore, we developed an open-

access, online, user-friendly outcome prediction tool that makes our results easily applicable in 

clinical practice and presents results in the form of a subject specific probability of outcome. 

As the concept of precision medicine becomes embedded in neonatology, individual risk 

assessment of neonates increasingly relies on continuous neurointensive monitoring.22,23 To the 

best of our knowledge, ours is the first online tool used for longitudinal aEEG data assessment, 

which has the potential to benefit both clinical and research purposes.  

Admittedly, there are potential limitations to our study. Firstly, sleep-wake cycling were 

not consistently recorded when our study was commenced, so we could not include this data in 

our analysis. Secondly, 31 patients unfortunately had to be excluded as their 

neurodevelopmental follow-up was not performed within the required time, although an 

analysis of their demographic parameters did not show any significant difference from those 

included in the study. The results of internal validation are reassuring, but as the aEEG 

prediction tool is now available online, we hope that prospective external validation will 

become possible. 
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We believe however, that our study also has numerous strengths. Our 149 HIE infants 

receiving TH with continuous aEEG monitoring over 84 hours is one of the largest cohort 

reported to date. While most studies focus on early MRI findings as short term clinical outcome, 

our use of the Bailey II test performed at a median of 24-month age represented functional long-

term neurodevelopmental outcome. Finally, the application of seven different mathematical 

models for longitudinal analysis of aEEG background activity is a novel approach and provided 

us with a robust process for determining the best outcome prediction method.   

We conclude that longitudinal analysis of aEEG background and seizure activity is a 

valuable and accurate prognostic tool, which may assist clinicians in their discussion with 

families, help initiate early interventions and individualized treatment plans that are necessary 

to optimize outcomes for infants diagnosed with HIE. We hope our free online aEEG 

assessment tool will provide an accessible platform for our findings to be applied in daily 

clinical practice. 
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FIGURE LEGENDS: 

Figure 1. (online) CONSORT flow-diagram of patient selection for the study. 

 

Figure 2. Median aEEG score with interquartile ranges in the good and poor outcome groups 

over time. Scores are based on the Hellström-Westas criteria. The shaded area represents aEEG 

scores considered as normal (continuous normal voltage (CNV) and discontinuous normal 

voltage (DNV)). 

 

Figure 3a. Proportion of different aEEG background patterns over time in good outcome group. 

Figure 3b. Proportion of different aEEG background patterns over time in poor outcome group. 

 

Figure 4. (online) Electrographic (single, repetitive seizures, status epilepticus) and clinical 

seizures noted during the study period in the full cohort. 

 

Figure 5. AUC-ROC analysis of aEEG score at 48 hours (red line) and longitudinally analyzed 

aEEG background scores plus electrographic and clinical seizures (blue line) for classifying 

infants to good and poor outcome groups. 

 



Table 1. Clinical characteristics of the 149 study participants. 
 

 

 

Total 

(n=149) 

Good outcome 

(n=93) 

Poor outcome 

(n=56) 
p value 

Gestational age (weeks) 39 (38 - 40) 40 (38 - 40) 38.5 (37 - 39.8) 0.001 

Birth weight (grams) 3300 (2890 - 3650) 
3500 (3075 - 

3710) 

3100 (2490 - 

3480) 
<0.001 

Female sex 63 (42.2) 41 (44.1) 22 (39.3) 0.61 

Delivered by Caesarean 

Section 
88 (59.5) 50 (53.8) 38 (67.8) 0.12 

Apgar 1 minute 2 (1 - 4) 3 (1 - 5) 1 (0 - 2) <0.001 

Apgar 5 minutes 5 (3 - 7) 5 (4 - 7) 3 (1 - 5) <0.001 

Maternal age (years) 33.6 (28.6 - 37.6) 34.2 (30.0 - 38.4) 31.0 (26.8 - 36.7) 0.032 

Initial blood gas values  

pH  6.98 (6.8 - 7.13) 7.01 (6.9 - 7.14) 6.85 (6.7 - 7.07) <0.001 

Base deficit (mmol/l) 17.8 (13 - 22) 16 (12.6 - 20) 19.7  (15 - 24.6) <0.001 

Lactate (mmol/l) 14.4 (11.3 - 17.5) 13.4 (10.2 - 16) 16.7 (13.7 - 19.7) <0.001 

Blood gas values at 6 hours of age  

pH  7.22 (7.08 - 7.29) 7.24 (7.16 - 7.31) 7.18 (7.0 - 7.26) 0.001 

Base deficit (mmol/l) 6.8 (3.2 -13.3) 4.8 (2.3 - 9.7) 11.0 (6.7 -15.9) <0.001 

Lactate (mmol/l) 5.3 (2.2 - 10.3) 2.9 (1.7 - 6.7) 8.3 (4.8 - 14.2) <0.001 

Cooling started (hours) 2.1 (1.4 - 3.0) 2.08 (1.4 - 2.9) 2.0 (1.3 - 3) 0.93 

Age at MRI (days) 4.7 (3.3 - 6.2) 4.8 (3.8 - 6.3) 4.3 (2.2 -5.9) 0.11 

MRI (%)  

No injury 

Mild 

Moderate/severe 

86 (63) 

17 (13) 

33 (24) 

72 (81) 

10 (11) 

7 (8) 

14 (30) 

7 (15) 

26 (55) 

<0.001 

Age at Bayley II test 

(months) 
24 (19 - 35) 24 (20 - 34.5) 23 (18.8 - 36) 0.82 

MDI 95 (84 - 104) 96 (85 - 106) 50 (50 - 63) <0.001 

PDI 95 (89 - 103) 95.5 (89 - 103) 77 (50 - 86) <0.001 

Death 19 (13) 0 (0) 19 (34) <0.001 

Values are shown as median (IQR) or count, n (%). 

Abbreviations: BE: Base Excess, MRI: magnetic resonance imaging, MDI: Mental 

development Index, PDI: Psychomotor Development Index on Bayley Scales of Infant 

Development, Second Edition (Bayley II test).  
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Table 2. aEEG features, drugs affecting aEEG patterns and seizure activity during the study 

period.  

 

 n=149 Good outcome 

(n=93) 

Poor outcome 

(n=56) 

p value 

Median aEEG score for 84 hours 2.0 (1.2 - 3.2) 1.4 (1.1 - 2.1) 3.4 (2.4 - 4.5) p<0.001 

aEEG normalization (hours) n=98 15 (7 - 37) 14 (5 - 32) 42 (24.5 - 55) p<0.001 

aEEG recovery at 48 hours 99 (66.4) 82 (88.2) 17 (30.4) p<0.001 

Morphine cumulative dose at 84 hours 

(micrograms) 
810 (690-920) 850 (760-990) 740 (380-740) p<0.001 

Treated with anticonvulsants  78 (52.3) 34 (36.6) 44 (78.6) p<0.001 

Received repeated loading doses or 2nd line 

anticonvulsants 
45 (30) 16 (18) 29 (50) p<0.001 

No seizure activity 60 (40.3) 47 (50.5) 13 (23.2) p=0.011 

Clinical seizures 65 (43.6) 29 (31.1) 36 (64.3) p<0.001 

Electrographic seizures 68 (45.6) 32 (34.4) 36 (64.3) p<0.001 

Electrographic seizures score (% of patient 

category) 

          0: none  

          1: single  

          2: repetitive or status  

 

 

54.3 

14.8 

30.9 

 

 

65.5 

14.1 

20.4 

 

 

35.7 

16.1 

48.2 

 

 

p<0.001 

Electrographic and clinical seizures 44 (29.5) 15 (16.1) 29 (51.8) p<0.001 

 

Values are shown as median (IQR) or count, n (%).  

 

  



Table 3. (online) Neurodevelopmental outcome prediction based on the appearance of CNV or 

DNV in the aEEG background activity during each 6-hour period. 

 

Time period AUC 95% CI Specificity Sensitivity NPV PPV 

0-6 hours 0.84 0.78-0.90 0.55 0.93 0.93 0.55 

6-12 hours 0.88 0.82-0.93 0.62 0.95 0.95 0.60 

12-18 hours 0.89 0.83-0.94 0.72 0.90 0.93 0.65 

18-24 hours 0.88 0.82-0.93 0.74 0.86 0.91 0.65 

24-30 hours 0.86 0.80-0.92 0.77 0.80 0.88 0.66 

30-36 hours 0.85 0.78-0.92 0.83 0.74 0.85 0.70 

36-42 hours 0.86 0.80-0.92 0.86 0.72 0.85 0.74 

42-48 hours 0.84 0.77-0.91 0.89 0.66 0.83 0.77 

48-54 hours 0.82 0.75-0.90 0.89 0.63 0.82 0.76 

54-60 hours 0.83 0.76-0.90 0.90 0.65 0.83 0.77 

60-66 hours 0.80 0.72-0.88 0.90 0.62 0.82 0.76 

66-72 hours 0.80 0.73-0.88 0.90 0.54 0.80 0.73 

72-78 hours 0.82 0.74-0.89 0.88 0.56 0.80 0.70 

78-84 hours 0.83 0.75-0.90 0.94 0.53 0.80 0.83 

 

Abbreviations: CNV: continuous normal voltage; DNV: discontinuous normal voltage; AUC: 

area under the receiver operator characteristic curve; CI: confidence interval; NPV: negative 

predictive value, PPV: positive predictive value. 

  

 

 



Table 4. (online) Comparison of methods for outcome prediction modeling using repeatedly 

measured aEEG background activity scores. (Results before cross-validation) 

Methods Description AUC 95% CI Sensitivity Specificity 

All 

measurements 

model 

all 14 aEEG scores were 

used as separate 

predictors 

0.92 

 

0.87-0.96 0.73 0.97 

Best 

measurement 

model 

in our case the best 

aEEG score was found at 

18 hours 

0.89 0.83-0.94 0.90 0.72 

Summary 

measurement 

(mean) 

method 

mean aEEG score of the 

14 periods 

0.89 0.84-0.94 0.73 0.88 

Summary 

measurement 

(maximum) 

method  

worst aEEG score for 

each individual 

summarised 

0.84 0.78-0.91 0.73 0.79 

Changes 

between 

subsequent 

measurements 

method 

calculation is based on 

the difference between 

the consecutive aEEG 

scores 

0.92 0.87-0.96 0.73 0.97 



Conditional 

measurements 

method 

calculation is based on 

the difference between 

the measured and 

estimated aEEG scores 

using regression from 

the previous 

measurements 

0.92 0.87-0.96 0.73 0.97 

Growth curve 

method 

calculation is based on 

the mean and the slope 

coefficient of aEEG 

scores using a linear 

regression curve for each 

individual 

0.90 0.85-0.95 0.71 0.90 
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FOLLOW-UP 

 
  

Neonates with moderate to severe 
HIE, treated with hypothermia, 

monitored with aEEG for 84 hours  
(n= 213) 

Inclusion criteria not met 
♦  Postnatal asphyxia (n=7) 
♦  Low gestational age < 35 weeks (n= 4) 
♦  Congenital malformation (n= 6) 
♦  Concurrent cerebral lesions on MRI (n= 9)  
Protocol exclusion 
♦  Not adhering to cooling protocol (n=7)  
 

Patients with Bayley II 
neurodevelopmental 
outcome examination 
between 16-42 months 

(n= 149) 

Lost to follow-up 
♦  Follow-up not performed in time (n=31) 
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Prediction model development 

 

Models were developed for the prediction of neurodevelopmental outcome (good/poor) 

using 14 repeatedly measured aEEG background activity scores taken at 6-hour intervals. In all 

the investigated prediction models, linear relationships between the predictor variables and the 

outcome were assumed. The models were applied to patients who survived the TH period and 

had no missing aEEG data in the 14 time intervals.  Based on the prediction methods using 

repeatedly measured data by Welten et al.1 the following seven methods were applied: 

1. All measurements method. In this method, all the 14 aEEG background readings were 

used as separate predictors in a multivariable regression analysis. 

2. Changes between subsequent measurements method. In this method, the first aEEG 

background record and all the 13 subsequent changes between readings were used to calculate 

the aEEG trajectory for each individual. Mathematically, the equation yielded identical results 

to the all measurements regression method. 

3. Conditional measurements method. In this method, the first aEEG background record 

and all the 13 subsequent conditional records were used to calculate the aEEG trajectory for 

each individual. The conditional measurement of a certain time point is obtained by taking the 

aEEG record of that specific time point and all previous records were regressed on it. Again, 

mathematically, the equation yielded identical results to the all measurements regression 

method.  

4. Best measurement method. This method used a univariable analysis in which one of 

the 14 aEEG records was used as the single “best” predictor. This method is similar to that used 

currently in clinical practice, when a single cross-sectional 6-hour aEEG interval is used to 

determine neurological outcome. This method does not take into consideration longitudinal data 

and its trajectory when providing outcome estimates. 

Appendix



5. Summary measurement (mean) method. This method used a univariable analysis in 

which the mean value of all 14 aEEG recordings was used as a single variable representing the 

predictor in the model. This method does not take into consideration data trajectory when 

providing outcome estimates. 

6. Summary measurement (maximum) method. This method used a univariable analysis 

in which the maximum value of all 14 aEEG recordings was used as the single variable 

representing the predictor in the model. Again, the method does not take into consideration data 

trajectory when providing outcome estimates. 

7. Growth curve method. This method uses information from a two-step analysis. First, 

a linear regression is performed to provide patient specific aEEG trajectories. Second, the mean 

of all measurements and the patient-specific slope coefficient are entered in a model to predict 

the neurodevelopmental outcome.  

 

The following considerations were used when choosing the final regression model. We intended 

to take advantage of longitudinal data collection and tried to avoid single, cross-sectional data 

analysis that may lead to information loss in individual patients. Therefore, the “best” and 

“summary measurements” methods were ruled out. We also aimed for a statistically 

parsimonious approach to avoid overfitting. Therefore, the “all measurements” and the 

mathematically similar other two methods were also excluded, leaving us with the “growth 

curve” method (see Supplemental Table 2).  Overall, the growth curve method seems to be the 

most flexible method capable of incorporating longitudinal predictor information without loss 

in predictive quality. 

 

Subsequently, to address the question of internal validity, we performed a 5-fold cross-

validation using the growth-curve method, and repeated it a 1000 times. We also tested if 



prediction power could be enhanced by adding further covariates, including the presence of 

both clinical and electrographic seizures, initial and subsequent blood gas values (pH, base 

excess, lactate), cumulative sedative or anticonvulsive treatment. After establishing the model 

with the best predictive quality for longitudinal aEEG data, we compared it with the regular 

approach of a single 6-hour aEEG background analysis at 48 hours of age and reported the 

reclassification rate for the newly developed method in determining neurological outcome. 

The analysis script written in R Statistical Software, Version 4.0.3 (R Foundation for Statistical 

Computing, Vienna, Austria) is available online at GitHub 

(https://github.com/suneonatalgroup/aeegpredictiontool). A user friendly, outcome prediction 

tool was also developed for clinicians and made available at 

https://suneonatalgroup.shinyapps.io/aeegpredictiontool/ . 
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