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Abstract. We endow the disc D = {(x1, x2) ∈ R2 : x21 + x22 < 4} with a Poincaré-type Randers
metric Fλ, λ ∈ [0, 1], that ’linearly’ interpolates between the usual Riemannian Poincaré disc model
(λ = 0, having constant sectional curvature −1 and zero S-curvature) and the Finsler-Poincaré
metric (λ = 1, having constant flag curvature −1/4 and constant S-curvature with isotropic factor
1/2), respectively. Contrary to our intuition, we show that when λ↗ 1, both the flag and normalized
S-curvatures of the metric Fλ blow up close to ∂D for some particular choices of the flagpoles.

1. Introduction

In Finsler geometry, both the flag curvature (replacing the sectional curvature from Riemannian
geometry) and S-curvature (a typically Finslerian notion which gives the covariant derivative of the
distortion along geodesics) play crucial roles in the study of various non-Riemannian phenomena.
Unlike in Riemannian manifolds, Finsler manifolds with constant flag curvature and constant S-
curvature (i.e., there exists an isotropic factor c ∈ R such that S(x, y) = (n + 1)cF (x, y) for every
(x, y) ∈ TM , where n = dim(M)) are far to be fully classified. An important class of Finsler
manifolds where these curvature notions can be efficiently analysed represents the Randers metrics
that appear as solutions of the famous Zermelo navigation problem. Indeed, if (M, g) is a complete
n-dimensional (n ≥ 2) Riemannian manifold and W is a vector field on (M, g) describing the
influence of the wind/current, the paths of optimal travel time appear as geodesics with respect to
the metric defined by

F (x, y) =
√
gx(y, y) +Wx(y), x ∈M, y ∈ TxM, (1.1)

see Bao, Robles and Shen [2]. Metrics of the form (1.1) are called of Randers-type, which are

typically Finsler metrics whenever |Wx|g =
√
g∗x(Wx,Wx) < 1 for every x ∈M , where g∗ stands for

the co-metric of g. Although Randers metrics are well understood in a broad sense, see e.g. Cheng
and Shen [3], surprising phenomena continuously appear as peculiar features of the non-Riemannian
character of such structures, see e.g. Kristály and Rudas [5] and Shen [7, 8].

The present paper provides another surprising facts about the aforementioned curvatures of
Randers spaces. For simplicity of presentation, we focus on a 2-dimensional case which is modelled
on the disc

D = {(x1, x2) ∈ R2 : x2
1 + x2

2 < 4},
endowed with a special Randers metric

Fλ(x, y) = a(x)|y|+ λ〈∇b(x), y〉, x = (x1, x2) ∈ D, y = (y1, y2) ∈ TxD = R2, (1.2)

where λ ∈ [0, 1] and a, b : D → [0,∞) are the functions

a(x) =
4

4− |x|2 and b(x) = ln
4 + |x|2
4− |x|2 , x ∈ D. (1.3)

Hereafter, | · | and 〈·, ·〉 denote the usual norm and inner product in R2.

Date: 2020 December 22.
2000 Mathematics Subject Classification. Primary 53B40; Secondary 53C60.
Key words and phrases. Randers spaces; flag curvature; S-curvature; Finsler-Poincaré model.
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We note that Fλ interpolates between two famous metrics. On one hand, for λ = 0 the metric in
(1.2) reduces to the usual Riemannian Poincaré disc model having constant sectional curvature −1
and zero S-curvature. On the other hand, the metric (1.2) for λ = 1 turns out to be the Finsler-
Poincaré metric of constant flag curvature −1/4 and constant S-curvature with isotropic factor 1/2,
investigated by Bao, Chern and Shen [1, §12.6]; we also note that in the 2-dimensional case, the
flag curvature and Finslerian-Gaussian curvature coincide. Since the 1-form W = λ∇b is closed for
every λ ∈ [0, 1], it follows that the geodesics of Fλ are trajectory-wise the same as the geodesics of
the underlying Riemannian metric F0(x, y) = a(x)|y|, i.e., Euclidean circular arcs which meet the
boundary ∂D at Euclidean right angles, and Euclidean straight rays that emanate from/toward the
origin.

Having these particular features of the metric Fλ concerning the geodesics (for every λ ∈ [0, 1])
and the curvatures (for λ ∈ {0, 1}), the following natural question arises: are the flag and S-
curvatures of Fλ constant for any λ ∈ (0, 1)? After some computations we realized that the answers
to these questions are negative.

Accordingly, – if we restrict our attention e.g. to the flag curvature, – we conjectured that there
should be two bounded functions lλ and uλ serving as sharp upper and lower bounds of the flag
curvature of Fλ for every λ ∈ [0, 1], with the ends l0 = u0 = −1 and l1 = u1 = −1/4. Surprisingly, it
turns out that the lower bound lλ is neither bounded nor continuous. More precisely, by using the
notation Kλ(x, y) for flag curvature with non-zero flagpole y ∈ TxD (noticing that the transverse
edge is not relevant in the 2-dimensional case, see [1]) our first main result can be stated as follows:

Theorem 1.1. Let λ ∈ (0, 1). Then

lλ = − 1

(1− λ)2
< Kλ(x, y) < − 1

(1 + λ)2
= uλ, ∀(x, y) ∈ TD \ {0}.

Furthermore, both inequalities are sharp; more precisely, for every α > 0 one has

lim
|x|↗2

Kλ (x,−αx) = lλ and lim
|x|↗2

Kλ (x, αx) = uλ.

Obviously, one has limλ↘0Kλ (x, y) = −1 for every (x, y) ∈ TD \ {0}. However, while the upper
bound uλ behaves as expected, the lower bound has an essential discontinuity at λ = 1, i.e.,

lim
λ↗1

lim
|x|↗2

Kλ (x,−αx) = lim
λ↗1

lλ = −∞, ∀α > 0. (1.4)

Instead of S-curvature, we shall consider the normalized S-curvature Sλ = Sλ
3Fλ

of the metric Fλ
on TD \ {0}, λ ∈ (0, 1); in particular, whenever Sλ is isotropic (i.e. Sλ(x, y) = 3c(x)Fλ(x, y)), the
isotropic factor c(x) and Sλ coincide. Similarly to Theorem 1.1 we can state:

Theorem 1.2. Let λ ∈ (0, 1). Then

0 < Sλ(x, y) <
λ

2(1− λ2)
= wλ, ∀(x, y) ∈ TD \ {0}.

Furthermore, both inequalities are sharp; more precisely, for every α > 0 one has

lim
|x|↗2

Sλ (x,±αx) = 0 and lim
|x|↗2

Sλ
(
x, αR±λ (x)

)
= wλ,

where R±λ : R2 → R2 stands for the rotation with angle ± arccos(−λ) around the origin.

It is clear that limλ↘0 Sλ (x, y) = 0 for every (x, y) ∈ TD \ {0}, as expected. However,

lim
λ↗1

lim
|x|↗2

Sλ
(
x, αR±λ (x)

)
= lim

λ↗1
wλ = +∞, ∀α > 0, (1.5)

thus for a specific setting the normalized S-curvature of Fλ blows up as well.
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Relations (1.4) and (1.5) seem to be paradoxical with the behaviour of the usual Finsler-Poincaré
metric F1. However, these situations remind us to the density of the canonical measure of the
interpolated metric Fλ, given by

σFλ(x) =
16

(4− |x|2)2

(
1− 16λ2|x|2

(4 + |x|2)2

) 3
2

, x ∈ D, (1.6)

see Shen [6] and Farkas, Kristály and Varga [4]; indeed, while lim|x|↗2 σF1(x) = 0, it turns out that
for every fixed λ ∈ (0, 1) the function σFλ blows up close to the boundary ∂D (i.e., |x| ↗ 2).

Usually, the explicit computation of the flag and S-curvatures is not an easy task, see e.g. Bao,
Chern and Shen [1, §12.6]. However, another by-product of Theorems 1.1&1.2 is that we are able
to develop an explicit computation for the curvatures of Fλ which could be instructive for further
Randers metrics even in higher dimensions.

The paper is structured as follows. In Section 2 we provide a formula for the flag curvature of
a 2-dimensional manifold endowed with a generic Randers metric given by (1.2). In Section 3 we
turn our attention to the special case when a, b : D → (0,∞) are defined by (1.3), establishing the
precise dependence of the interpolated flag curvature Kλ by the parameter λ ∈ [0, 1]. Finally, in
Sections 3 and 4 we provide the proof of Theorems 1.1 and 1.2, i.e., we discuss the extrema of the
flag curvature Kλ and normalized S-curvature Sλ with respect to the point x ∈ D, the direction of
flagpole y ∈ TxD and parameter λ ∈ [0, 1].

2. Flag curvature formula for a class of special Randers spaces

In this section we deduce a general formula for the flag curvature of the 2-dimensional manifolds
endowed with the (parameter-free) Randers metric

F (x, y) = a(x)|y|+ 〈∇b(x), y〉, (x, y) ∈ TD, (2.1)

where a, b : D → (0,∞) are arbitrarily fixed smooth functions verifying the structural assumption
|∇b(x)| < a(x) for every x ∈ D; furthermore, when dealing with Theorems 1.1 and 1.2, we shall
consider the parameter-depending case b := λb with λ ∈ (0, 1).

Throughout this section denote L = F 2

2 . In case of a and b we use lower indexes to denote the
partial derivatives with respect to the components of x = (x1, x2) ∈ D. In case of F we use lower
indexes to denote the partial derivatives with respect to the components of y = (y1, y2) ∈ R2; for

example, a1 = ∂a
∂x1

, a12 = ∂2a
∂x1∂x2

, F1 = ∂F
∂y1

, etc. Moreover, we use the usual summation convention

Tiyi = T1y1 + T2y2.
Our strategy is the following. In the first step we explicitly compute the metric tensor

gij =
∂2L

∂yi∂yj

and its inverse gij . In the next step we compute the geodesic spray coefficients

Gi = gijGj , where Gj =
∂2L

∂xk∂yj
yk.

Finally we use the formula of the flag curvature from [1, relation (12.5.18)], given by

F 2K = (G
1
x1y2 −G

1
x2y1)y2 + (G

2
x2y1 −G

2
x1y2)y1

+ 2
(
G

1
G

1
y1y1 +G

2
G

2
y2y2 +G

2
G

1
y1y2 +G

1
G

2
y2y1

)
−
(
G

1
y1G

1
y1 +G

2
y2G

2
y2 + 2G

1
y2G

2
y1

)
, (2.2)

where G
i

= Gi

2 , and the subscripts denote partial derivatives.
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In our computations we frequently use the expressions of partial derivatives of F that we express
below, i.e.,

∂F

∂xi
= ai|y|+ bsiys,

∂F

∂yi
= a

yi
|y| + bi

∂2F

∂xi∂xj
= aij |y|+ bsijys,

∂2F

∂xi∂yj
= ai

yj
|y| + bji,

∂2F

∂yi∂yj
= a

δij
|y| − a

yiyj
|y|3 , i, j ∈ {1, 2}.

2.1. Metric and co-metric. The metric tensor can be written as

gij =
∂2L

∂yi∂yj
= FiFj + FFij =

(
a
yi
|y| + bi

)(
a
yj
|y| + bj

)
+ F ·

(
a
δij
|y| − a

yiyj
|y|3

)
;

in particular, one has

g11 =

(
a
y1

|y| + b1

)2

+
aFy2

2

|y|3 ,

g22 =

(
a
y2

|y| + b2

)2

+
aFy2

1

|y|3 ,

g12 =

(
a
y1

|y| + b1

)(
a
y2

|y| + b2

)
− aFy1y2

|y|3 ,

and

det g =
aF 3

|y|3 .

Its inverse gij has the components

g11 =
|y|3
aF 3

(
a
y2

|y| + b2

)2

+
y2

1

F 2
,

g22 =
|y|3
aF 3

(
a
y1

|y| + b1

)2

+
y2

2

F 2
,

g12 = − |y|
3

aF 3

(
a
y1

|y| + b1

)(
a
y2

|y| + b2

)
+
y1y2

F 2
.

2.2. Geodesic spray coefficients. Since

∂L

∂xk
= F

∂F

∂xk
and

∂2L

∂xk∂ys
=
∂F

∂xk
∂F

∂ys
+ F

∂2F

∂xk∂ys
,

we have

Gj =
∂2L

∂xk∂yj
yk −

∂L

∂xj
=
∂F

∂yj

∂F

∂xk
yk + F

∂2F

∂xk∂yj
yk − F

∂F

∂xj
and

Gi = gijGj =
yi
F

∂F

∂xk
yk + Fgij

(
∂2F

∂xk∂yj
yk −

∂F

∂xj

)
,

where we use relation yi
F = gijFj that follows by Euler’s theorem for homogeneous functions. We

focus on the second term. Observe that

Bj =
∂2F

∂xk∂yj
yk −

∂F

∂xj
= ak

yjyk
|y| + bjkyk − aj |y|+ bsjys = ak

yjyk
|y| − aj |y|;

in particular,

B1 =
y2

|y| (a2y1 − a1y2) =
y2D

|y| and B2 =
y1

|y| (a1y2 − a2y1) = −y1D

|y| ,
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where D = a2y1 − a1y2. By using these expressions it yields that

F (g11B1 + g12B2) =
D|y|2F2

aF
and F (g21B1 + g22B2) = −D|y|

2F1

aF
,

whence

G1 =
y1

F

∂F

∂xk
yk +

D|y|2F2

aF
,

G2 =
y2

F

∂F

∂xk
yk −

D|y|2F1

aF
.

2.3. Computation of flag curvature. In the sequel we compute the flag curvature K by using
formula (2.2) and certain computational/technical tricks. In our computations we use the following
auxiliary notations:

u =
1

2

∂F

∂xk
yk, v =

D|y|2
2a

, p = y1u+ F2v, q = y2u− F1v, (2.3)

thus we have

G
1

=
p

F
=
y1u+ F2v

F
and G

2
=

q

F
=
y2u− F1v

F
.

Since the first term of (2.2) involves derivatives with respect to x = (x1, x2), while the latter two
terms have only derivatives in y = (y1, y2), we compute them in two separate steps. In the following
computations, for p, q, u and v, we use lower indexes to denote partial derivatives with respect to
yi.

Step 1. We have

G
1
yi =

piF − pFi
F 2

and G
2
yi =

qiF − qFi
F 2

,

where

p1 = u+ y1u1 + F12v + F2v1, q1 = y2u1 − F11v − F1v1,

p2 = y1u2 + F22v + F2v2, q2 = u+ y2u2 − F12v − F1v2.

Accordingly, we have

e1 = (G
1
x1y2 −G

1
x2y1)y2 + (G

2
x2y1 −G

2
x1y2)y1

=
∂

∂x1

(
G

1
y2y2 −G2

y2y1

)
+

∂

∂x2

(
G

2
y1y1 −G1

y1y2

)
=

∂

∂x1

(
p2y2 − q2y1

F
+
F2(qy1 − py2)

F 2

)
+

∂

∂x2

(
q1y1 − p1y2

F
+
F1(py2 − qy1)

F 2

)

By Euler’s theorem, it follows that

p2y2 − q2y1 = (y1u2 + F22v + F2v2)y2 − (u+ y2u2 − F12v − F1v2)y1 = Fv2 − uy1

q1y1 − p1y2 = (y2u1 − F11v − F1v1)y1 − (u+ y1u1 + F12v + F2v1)y2 = −Fv1 − uy2

qy1 − py2 = (y2u− F1v)y1 − (y1u+ F2v)y2 = −Fv,
thus

e1 =
∂

∂x1

(
v2 −

uy1

F
− F2v

F

)
+

∂

∂x2

(
−v1 −

uy2

F
+
F1v

F

)
= ((v2)x1 − (v1)x2)− ux1y1 + ux2y2

F
+
u(y1Fx1 + y2Fx2)

F 2
+
v((F1)x2 − (F2)x1)

F

+
F1vx2 − F2vx1

F
− v(F1Fx2 − F2Fx1)

F 2
. (2.4)
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Since v = D|y|2
2a , where D = a2y1 − a1y2, its partial derivatives can be expressed as

v1 =
a2(3y2

1 + y2
2)− a1(2y1y2)

2a
, v2 =

a2(2y1y2)− a1(3y2
2 + y2

1)

2a
,

v11 =
3a2y1 − a1y2

a
, v12 =

a2y2 − a1y1

a
, v22 =

a2y1 − 3a1y2

a
.

In the sequel we introduce the notations Db = b2y1 − b1y2, w = a22y
2
1 + a11y

2
2 − a12(2y1y2), and for

any tensor T let T̃ = ∂T
∂xi
yi. Now let ♠i be the i-th term in (2.4). We express each term separately,

namely

♠1 = (v2)x1 − (v1)x2

=
(a12(2y1y2)− a11(3y2

2 + y2
1))a− (a2(2y1y2)− a1(3y2

2 + y2
1))a1

2a2

− (a22(3y2
1 + y2

2)− a12(2y1y2))a− (a2(3y2
1 + y2

2)− a1(2y1y2))a2

2a2

= −
˜̃a+ 3w

2a
+
ã2 + 3D2

2a2
,

♠2 = −ux1y1 + ux2y2

F
= −Fxixjyiyj

2F
= −|y|

˜̃a+
˜̃̃
b

2F
,

♠3 =
u(y1Fx1 + y2Fx2)

F 2
= 2

u2

F 2
=

(|y|ã+
˜̃
b)2

2F 2
,

♠4 =
v((F1)x2 − (F2)x1)

F
=
v(a2y1 + b12|y| − a1y2 − b12|y|

F |y| =
D2|y|
2aF

,

♠5 =
F1vx2 − F2vx1

F
=

(ay1 + b1|y|)
|y|F

|y|2((a22y1 − a12y2)a− (a2y1 − a1y2)a2)

2a2

− (ay2 + b2|y|)
|y|F

|y|2((a12y1 − a11y2)a− (a2y1 − a1y2)a1)

2a2

=
a|y|w + b1|y|2(a22y1 − a12y2) + b2|y|2(a11y2 − a12y1)

2aF
− a|y|D2 +D2b̃−DDbã

2a2F
,

♠6 = −v(F1Fx2 − F2Fx1)

F 2
= −v((ay1 + b1|y|)(a2|y|+ b̃2)− (ay2 + b2|y|)(a1|y|+ b̃1))

|y|F 2

= −D|y|(a|y|D + a(y1b̃2 − y2b̃1) + |y|2(b1a2 − b2a1) + |y|(b1b̃2 − b2b̃1))

2aF 2
.

Step 2. For further computations we need the following second order derivatives of Gi:

G
1
y1y1 =

(p11F − pF11)F − 2(p1F − pF1)F1

F 3
,

G
1
y1y2 =

(p12F + p1F2 − p2F1 − pF12)F − 2(p1F − pF1)F2

F 3
,

G
2
y2y1 =

(q12F + q2F1 − q1F2 − qF12)F − 2(q2F − qF2)F1

F 3
,

G
2
y2y2 =

(q22F − qF22)F − 2(q2F − qF2)F2

F 3
,



INTERPOLATED POINCARÉ METRIC 7

where

p11 = 2u1 + y1u11 + F112v + 2F12v1 + F2v11,

p12 = u2 + y1u12 + F122v + F22v1 + F12v2 + F2v12,

q12 = u1 + y2u12 − F112v − F11v2 − F12v1 − F1v12,

q22 = 2u2 + y2u22 − F122v − 2F12v2 − F1v22.

Thus, one has

e2 = G
1
G

1
y1y1 +G

2
G

2
y2y2 +G

2
G

1
y1y2 +G

1
G

2
y2y1

=
p

F

(p11F − pF11)F − 2(p1F − pF1)F1

F 3
+
q

F

(q22F − qF22)F − 2(q2F − qF2)F2

F 3

+
q

F

(p12F + p1F2 − p2F1 − pF12)F − 2(p1F − pF1)F2

F 3

+
p

F

(q12F + q2F1 − q1F2 − qF12)F − 2(q2F − qF2)F1

F 3

=
pp11 + qq22 + qp12 + pq12

F 2
− p2F11 + q2F22 + 2pqF12

F 3

− 2pp1F1 + 2qq2F2 + pq1F2 + pq2F1 + qp1F2 + qp2F1

F 3
+ 2

(pF1 + qF2)2

F 4
,

e3 = G
1
y1G

1
y1 +G

2
y2G

2
y2 + 2G

1
y2G

2
y1

=
p2

1 + q2
2 + 2p2q1

F 2
+

(pF 2
1 + qF2)2

F 4
− 2

pp1F1 + qq2F2 + pq1F2 + qp2F1

F 3
.

We observe that

2e2 − e3 = 2
(pp11 + qq22 + qp12 + pq12)

F 2
− p2

1 + q2
2 + 2p2q1

F 2
− 2

p2F11 + q2F22 + 2pqF12

F 3

− 2
pp1F1 + qq2F2 + pq2F1 + qp1F2

F 3
+ 3

(pF1 + qF2)2

F 4
. (2.5)

Now we may simplify 2e2 − e3. Let ♣i be the i-th term in (2.5). By using Euler’s theorem for the
2-homogeneous function u and 3-homogeneous v in y, it turns out that

♣1 = 2
pp11 + qq22 + qp12 + pq12

F 2
=

1

F 2
[16u2 + 4u(F2v1 − F1v2)) + 8v(F2u1 − F1u2)

+ 2v(F12v1F2 − F11v2F2 − F22v1F1 + F12v2F1) + 2v(v11F
2
2 + v22F

2
1 − 2v12F1F2)],

♣2 = −p
2
1 + q2

2 + 2p2q1

F 2

= − 1

F 2
[10u2 + 2u(F2v1 − F1v2) + 6v(u1F2 − u2F1) + 2v2(F 2

12 − F11F22)

+ 2v(F12F2v1 + F12F1v2 − F22F1v1 − F11F2v2) + (F2v1 − F1v2)2],

♣3 = −2
p2F11 + q2F22 + 2pqF12

F 3
= −2v2(F 2

2F11 + F 2
1F22 − 2F1F2F12)

F 3
,

♣4 = −2
pp1F1 + qq2F2 + pq2F1 + qp1F2

F 3
= −8u2 + 2u(F2v1 − F1v2)

F 2
,

♣5 = 3
(pF1 + qF2)2

F 4
=

3u2

F 2
.
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In conclusion, it yields

2e2 − e3 =
u2

F 2
− 2v2(F 2

2F11 + F 2
1F22 − 2F1F2F12)

F 3
+

2v(F2u1 − F1u2)

F 2

+
2v(v11F

2
2 + v22F

2
1 − 2v12F1F2)

F 2
− (F2v1 − F1v2)2

F 2
. (2.6)

Denoting the i-th term in (2.6) by ♦i we obtain

♦1 =
u2

F 2
=

(ã|y|+ ˜̃b)2

4F 2
,

♦2 = −2v2(F 2
2F11 + F 2

1F22 − 2F1F2F12)

F 3
= −D

2|y|
2aF

,

♦3 =
2v(F2u1 − F1u2)

F 2
=
D2|y|
2aF

+ 2♠6,

♦4 +♦5 =
2v(v11F

2
2 + v22F

2
1 − 2v12F1F2)

F 2
− (F2v1 − F1v2)2

F 2
,

=
D2

a2
+

3D2D2
b

4a2F 2
− ã2

4a2
+
ãDDb

2a2F
.

Summing up the spades and diamonds and performing some slight simplifications, it turns out that

F 2K = −
˜̃a+ 3w

2a
− |y|

˜̃a+
˜̃̃
b

2F
+

3(|y|ã+
˜̃
b)2

4F 2
+
a|y|w + b1|y|2(a22y1 − a12y2) + b2|y|2(a11y2 − a12y1)

2aF

− 3D|y|(a|y|D + a(y1b̃2 − y2b̃1) + |y|2(b1a2 − b2a1) + |y|(b1b̃2 − b2b̃1))

2aF 2

+
ã2 + 10D2

4a2
+
DDbã

a2F
− D2b̃

2a2F
+

3D2D2
b

4a2F 2
. (2.7)

One can see that the last formula contains w, D and variables with tilde. Our experience shows that
performing those substitutions provide a formally more complicated formula. However, under some
physically motivated, reasonable assumptions the above formula can be significantly simplified; we
present this result in the next subsection.

2.4. Effect of radial symmetry. When the function x 7→ F (x, y) from (2.1) is radially symmetric
for every y ∈ R2 (i.e., a = a(|x|) and b = b(|x|)), we can assume without loss of generality that
x2 = 0, y1 = cos t, y2 = sin t. In that case we have a2 = a12 = b2 = b12 = b112 = b222 = 0. Under
these assumptions (2.7) reduces to

F 2K = −a11(2a+ b1 cos t(1 + 2 sin2 t)) + a22(2a+ 2b1 cos t cos2 t)

2aF
− b111 cos3 t+ 3b122 cos t sin2 t

2F

+
4a2a2

1

4a2F 2
+

2aa2
1b1 cos t(cos2 t+ 11 sin2 t)

4a2F 2
+
a2

1b
2
1 cos2 t(cos2 t+ 12 sin2 t)

4a2F 2
+

3a2
1b

2
1 sin4 t

4a2F 2

+
3(b11 cos2 t+ b22 sin2 t)2

4F 2
+

3a1 cos t(b11(cos2 t− sin2 t) + 2b22 sin2 t)

2F 2

+
3a1b1b22 sin2 t

2aF 2
, (2.8)

where x = (x1, 0) ∈ D is the position and y = (cos t, sin t) is the flagpole, with t ∈ [0, 2π).



INTERPOLATED POINCARÉ METRIC 9

3. Behaviour of the flag curvature on the interpolated Poincaré metric

Let λ ∈ [0, 1]. By using formula (2.8), we are going to express the flag curvature Kλ for the
interpolating Poincaré metric (1.2) whenever the functions a, b : D → (0,∞) are given by (1.3). For
simplicity, let δ− = 1

4−x21
, δ+ = 1

4+x21
; thus a = 4δ−, b1 = 16x1δ−δ+ and the metric (1.2) reduces to

Fλ(x1, t) = 4δ− + 16x1λδ−δ+ cos t, x1 ∈ [0, 2), t ∈ [0, 2π).

Since the calculations are tedious, we only indicate the major steps and present the important
intermediate results.

Step 1. We express the derivatives of a and b in terms of x1, δ+ and δ−.
Step 2. Using these expressions (from Step 1) we substitute them into (2.8). After a suitable

rearrangement of the terms, the resulting expression takes the form

Kλ =
O0 +O1λ+O2λ

2

F 4
λ

,

where

O0 = −64δ3
− − 64x2

1δ
4
−,

O1 = x1 cos tδ2
−δ+ (−448δ− + 192δ+) + x3

1 cos tδ2
−δ+

(
−448δ2

− − 192δ2
+

)
+ x3

1 cos(3t)δ2
−δ+

(
−64δ2

− − 128δ−δ+ − 64δ2
+

)
,

O2 = x4
1 cos(4t)

(
−32δ4

−δ
2
+ − 64δ3

−δ
3
+ − 32δ2

−δ
4
+

)
+ x2

1 cos(2t)
(
−768δ3

−δ
2
+ − 896x2

1δ
4
−δ

2
+ − 256x2

1δ
3
−δ

3
+ − 128x2

1δ
2
−δ

4
+

)
+
(
192δ2

−δ
2
+ − 96x4

1δ
4
−δ

2
+ − 192x4

1δ
3
−δ

3
+ − 96x4

1δ
2
−δ

4
+

)
.

Step 3. Using the expressions for δ− and δ+, it follows that

Kλ(x1, t) = − 4(4 + x2
1)4

4(4 + x2
1 + 4x1λ cos t)4

− λ(16x1 cos(t)(4 + x2
1)(16 + 20x2

1 + x4
1) + 64x3

1 cos(3t)(4 + x2
1))

4(4 + x2
1 + 4x1λ cos t)4

− λ2(32x4
1 cos(4t) + 16x2

1(48 + 32x2
1 + 3x4

1) cos(2t)− 3(256− 64x4
1 + x8

1))

4(4 + x2
1 + 4x1λ cos t)4

. (3.1)

We observe that for λ ∈ {0, 1}, one has

K0(x1, t) = −1, K1(x1, t) = −1

4
, ∀x1 ∈ [0, 2), t ∈ [0, 2π).

Hereafter, let λ ∈ (0, 1). We have

∂Kλ

∂x1
= 0 ⇐⇒ (−16 + x4

1)λ(−1 + λ2) cos t(16 + x4
1 − 8x2

1 cos(2t))

4 + x2
1 + 4x1λ cos t

= 0,

∂Kλ

∂t
= 0 ⇐⇒ x1(4 + x2

1)λ(−1 + λ2)(16 + x4
1 − 8x2

1 cos(2t)) sin t

4 + x2
1 + 4x1λ cos t

= 0.

The above equations show that the extremal values of Kλ occur when t ∈ {0, π/2, π, 3π/2} and
either x1 = 0, or x1 ↗ 2; on Figure 1 one can see both the special directions corresponding to these
values and the evolution of Kλ(x1, t) by fixing different values of λ. We consider the following three
cases:

Case 1: If the position x = (x1, 0) and the flagpole y = (cos t, sin t) are orthogonal in the
Euclidean sense, that is either x1 = 0 or t ∈ {π/2, 3π/2}, then formula (3.1) reduces to

Kλ(0, t) = Kλ(x1, π/2) = Kλ(x1, 3π/2) = −1 +
3λ2

4
, ∀x1 ∈ [0, 2), t ∈ [0, 2π).
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−1 0 1
−1

0
1

−10

−20

0

t
x1

K

(a) −4 < K1/2 < −4/9; KT
1/2 = −13/16.

−1 0 1
−1

0
1

−10

−20

0

(b) −9 < K2/3 < −9/25; KT
2/3 = −2/3.

−1 0 1
−1

0
1

−10

−20

0

(c) −16 < K3/4 < −16/49; KT
3/4 = −37/64.

−1 0 1
−1

0
1

−10

−20

0

(d) −25 < K4/5 < −25/81; KT
4/5 = −13/25.

Figure 1. Representation of Kλ(x1, t) for the choices λ ∈ {1/2, 2/3, 3/4, 4/5},
where t ∈ [0, 2π) and x1 ∈ [0, 2). The special directions t ∈ {π/2, 3π/2} (green),
t = 0 (red) and t = π (blue) correspond to Cases 1-3, respectively. The sharp in-
equalities and the curvatures on transverse directions (KT

λ ) are presented as well.
The ’valley’ along the blue curve decreases to −∞ whenever λ↗ 1, see also (1.4).

Case 2: If x = (x1, 0) approaches the rim of the disc and the flagpole points “outward”, i.e.,
x1 ↗ 2 and t = 0, then

Kλ(2−, 0) = − 1

(1 + λ)2
.

Case 3: If x = (x1, 0) approaches the rim of the disc and the flagpole points “inward”, i.e.,
x1 ↗ 2 and t = π, then

lim
x1↗2

Kλ(x1, π) = − 1

(1− λ)2
.

Proof of Theorem 1.1. Cases 1-3 prove Theorem 1.1; indeed, since we provided sharp upper and
lower bounds of Kλ, one has for every λ ∈ (0, 1) that

− 1

(1− λ)2
< Kλ(x1, t) < −

1

(1 + λ)2
, ∀x1 ∈ [0, 2), t ∈ [0, 2π).

We can also observe that when λ↗ 1 the lower bound tends to −∞. �
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4. Behaviour of the S-curvature on the interpolated Poincaré metric

According to Chern and Shen [9], the S-curvature of an n-dimensional Finsler manifold (M,F )
can be calculated by

S =
∂G

m

∂ym
− ym

∂

∂xm
lnσF ,

where G
i

= Gi

2 are the geodesic spray coefficients and

σF (x) =
Vol(Bn(1))

Vol{y ∈ TxM : F (x, y) < 1}
is the density function of the natural measure (Bn(1) denotes the Euclidean unit n-ball and Vol is
the canonical Euclidean volume). In order to obtain an expression of degree zero, we normalize the
S-curvature by considering S

(n+1)F on TM \ {0}.
For the interpolated Poincaré metric (1.2) with functions a, b : D → R from (1.3), the density

function of the natural measure is

σFλ(x) = a(x)2(1− λ2|b|a(x)2)
3
2 ,

where a(x) = 4
4−|x|2 and |b|a(x) = 4|x|

4+|x|2 , see (1.6).

Similarly to the previous sections without loss of generality we can assume that x2 = 0, y1 = cos t,
y2 = sin t, thus we get the following

Sλ =
Sλ
3Fλ

(x, t) =
λ(O0 +O1λ+O2λ

2)

2((4 + x2
1)2 − 16x2

1λ
2)(4 + x2

1 + 4x1λ cos t)2
,

where

O0 = (4 + x2
1)2(16 + x4

1 − 8x2
1 cos(2t))

O1 = 8x1(−4 + x2
1)2(4 + x2

1) cos t

O2 = 16x2
1(−8x2

1 + (16 + x4
1) cos(2t)).

We observe that if λ = 0 or λ = 1 then Fλ has constant S-curvature, since

S0(x1, t) = 0, S1(x1, t) =
1

2
, ∀x1 ∈ [0, 2), t ∈ [0, 2π).

Suppose that λ ∈ (0, 1). If extremal values of Sλ are attained then the following equations hold:

∂Sλ
∂t

= 0 ⇐⇒ x1(4 + x2
1)λ(−1 + λ2)(4x1λ+ (4 + x2

1) cos t) sin t

((4 + x2
1)2 − 16x2

1λ
2)(4 + x2

1 + 4x1λ cos t)
= 0,

∂Sλ
∂x1

= 0 ⇐⇒ x1(x4
1 − 16)λ(λ2 − 1) cos t · T

((4 + x2
1)2 − 16x2

1λ
2)(4 + x2

1 + 4x1λ cos t)
= 0,

where T = (12x1(4 + x2
1)2λ+ (4 + x2

1)((4 + x2
1)2 + 48x2

1λ
2) cos t+ 64x3

1λ
3 cos(2t)) > 0.

The second equation holds when x1 = 0, x1 ↗ 2 or cos t = 0, while the first equation holds
when x1 = 0, sin t = 0, or both x1 ↗ 2 and cos t = −λ; Figure 2 illustrates the special directions
corresponding to these values and the evolution of Sλ(x1, t) for various values of λ. The following
three cases should be considered:

Case 1: If x1 = 0, then

Sλ(0, t) =
λ

2
, ∀t ∈ [0, 2π).

We also observe that Sλ(x1, π/2) = Sλ(x1, 3π/2) = λ
2 , ∀x1 ∈ [0, 2).
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−1 0 1 −1
0

1

0

2

4

t
x1

Sλ

(a) 0 < S1/2 < 1/3; S
T

1/2 = 1/4; tmax ≈ 2.09.

−1 0 1 −1
0

1

0

2

4

(b) 0 < S3/4 <
6
7 ; S

T

3/4 = 3/8; tmax ≈ 2.42.

−1 0 1 −1
0

1

0

2

4

(c) 0 < S7/8 <
28
15 ; S

T

7/8 = 7/16; tmax ≈ 2.64.

−1 0 1 −1
0

1

0

2

4

(d) 0 < S15/16 <
120
31 ; S

T

15/16 = 45/32; tmax ≈ 2.79.

Figure 2. Representation of Sλ(x1, t) for the choices λ ∈ {1/2, 3/4, 7/8, 15/16},
where t ∈ [0, 2π) and x1 ∈ [0, 2). The special directions t ∈ {π/2, 3π/2} (green),
t ∈ {arccos(−λ), 2π−arccos(−λ)} (red) and t ∈ {0, π} (blue) correspond to Cases 1-

3, respectively. The sharp inequalities, the curvatures on transverse directions (S
T
λ )

and the values tmax = arccos(−λ) (in radian) are presented as well. The ’peaks’
along the red curves increase to +∞ whenever λ↗ 1, see also (1.5).

Case 2: If x1 ↗ 2 and cos t = −λ, then

lim
x1↗2

Sλ(x1, t) =
λ

2(1− λ2)
.

Case 3: If x1 ↗ 2 and sin t = 0, then

lim
x1↗2

Sλ(x1, t) = 0.

Proof of Theorem 1.2. The above Cases 1-3 prove Theorem 1.2. Since we provided sharp upper
and lower bounds of Sλ, one has for every λ ∈ (0, 1) that

0 < Sλ(x1, t) <
λ

2(1− λ2)
, ∀x1 ∈ [0, 2), t ∈ [0, 2π).

We can also observe that when λ↗ 1 the upper bound tends to +∞. �



INTERPOLATED POINCARÉ METRIC 13
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Department of Mathematics, Babeş-Bolyai University, Cluj-Napoca, Romania
E-mail address: kajanto.sandor@math.ubbcluj.ro
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