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1

Preface 2

The present book provides a comprehensive presentation of a wide variety of nonsmooth 3

problems arising in nonlinear analysis, game theory, engineering, mathematical physics, 4

and contact mechanics. The subject matter of the monograph had its genesis in the early 5

works of F. Clarke, who paved the way for the modern development of nonsmooth analysis. 6

Our initial aim is to cover various topics in nonsmooth analysis, based mainly 7

on variational methods and topological arguments. The present work includes recent 8

achievements, mostly obtained by the authors during the last 15 years (four main parts, 9

divided into 13 chapters), putting them into the context of the existing literature. 10

Part I contains fundamental mathematical results concerning convex and locally 11

Lipschitz functions. Together with the appendices, this background material gives the book 12

a self-contained character. 13

Part II is devoted to variational techniques in nonsmooth analysis and their appli- 14

cations, providing various existence and multiplicity results for differential inclusions, 15

hemivariational inequalities both on bounded and unbounded domains. The set of results 16

for unbounded domains is the first systematic material in the literature, which requires deep 17

arguments from variational methods and group-theoretical arguments in order to regain 18

certain compactness properties. 19

Part III deals with variational and hemivariational inequalities treated via topological 20

methods. By using fixed point theorems and KKM-type approaches, various existence and 21

localization results are established including Nash-type equilibria on curved spaces and 22

inequality problems governed by set-valued maps of monotone type. 23

Part IV contains several applications to nonsmooth mechanics. Using the theoretical 24

results from the previous parts we are able to provide weak solvability for various 25

mathematical models which describe the contact between a body and a foundation. 26

We consider the antiplane shear deformation of elastic cylinders in contact with an 27

insulated foundation, the frictional contact between a piezoelectric body and an electrically 28

conductive foundation, and models with nonmonotone boundary conditions for which we 29

derive a variational formulation in terms of bipotentials. 30

vii



viii Preface

At the end of each chapter we listed those references that are quoted in that part. A 31

master bibliography also appears at the very end of the monograph. 32

We really hope the monograph will be useful, providing further ideas for the reader. 33
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12Convex and Lower Semicontinuous Functionals 3

1.1 Basic Properties 4

Unless otherwise stated, throughout this chapter, X denotes a real Banach space. For aAQ1 5

functional ϕ : X→ (−∞,+∞], we denote by D(ϕ) the effective domain of ϕ, that is,

AQ2

6

D(ϕ) := {u ∈ X : ϕ(u) < +∞} .

The epigraph of ϕ is the set 7

epi(ϕ) := {(u, λ) ∈ X × R : ϕ(u) ≤ λ} .

Definition 1.1 A functional ϕ : X → (−∞,+∞] is said to be lower semicontinuous 8

(l.s.c.) if for every λ ∈ R the set 9

[ϕ ≤ λ] := {u ∈ X : ϕ(u) ≤ λ}

is closed. 10

We recall next some well-known elementary facts about l.s.c. functionals. 11

(i) The functional ϕ is l.s.c. if and only if epi(ϕ) is closed in X ×R; 12

(ii) ϕ is l.s.c. if and only if for every sequence {un} in X such that un → u we have 13

lim inf
n→∞ ϕ(un) ≥ ϕ(u);

(iii) If ϕ1 and ϕ2 are l.s.c., then ϕ1 + ϕ2 is l.s.c.; 14

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
N. Costea et al., Variational and Monotonicity Methods in Nonsmooth Analysis,
Frontiers in Mathematics, https://doi.org/10.1007/978-3-030-81671-1_1
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4 1 Convex and Lower Semicontinuous Functionals

(iv) If (ϕi)i∈I is a family of l.s.c. functionals then their superior envelope is also l.s.c., 15

that is, the functional ϕ defined by 16

ϕ(u) := sup
i∈I

ϕi(u)

is l.s.c.; 17

(v) If X is compact and ϕ is l.s.c., then infu∈X ϕ(u) is achieved. 18

Definition 1.2 A function ϕ : X→ (−∞,+∞] is said to be convex if 19

ϕ(λu+ (1− λ)v) ≤ λϕ(u)+ (1− λ)ϕ(v), ∀u, v ∈ X, ∀λ ∈ [0, 1].

We have the following elementary properties of convex functionals: 20

(i) The functional ϕ is convex if and only if epi(ϕ) is a convex set in X × R; 21

(ii) If ϕ is a convex functional, then for every λ ∈ R the set [ϕ ≤ λ] is convex. The 22

converse is not true in general; 23

(iii) If ϕ1 and ϕ2 are convex, then ϕ1 + ϕ2 is convex; 24

(iv) If (ϕi)i∈I is a family of convex functionals then their superior envelope is also 25

convex, that is, the function ϕ defined by 26

ϕ(u) := sup
i∈I

ϕi(u).

is convex. 27

The following theorem provides useful information regarding the continuity of convex 28

functionals. 29

Theorem 1.1 Let ϕ : X→ (−∞,+∞] be a convex functional such that ϕ ≡ +∞. Then 30

the following statement are equivalent: 31

(i) ϕ is bounded above in a neighborhood of u0; 32

(ii) ϕ is continuous at u0; 33

(iii) int(epi(ϕ)) = ∅; 34

(iv) int(D(ϕ)) = ∅ and ϕ|int(D(ϕ)) is continuous. 35

Proof (i) ⇒ (ii) Taking a translation if necessary, we may assume that u0 = 0 and 36

ϕ(0) = 0. Let U be a neighborhood of 0 such that ϕ(u) ≤ M for all u ∈ U . Fix
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ε ∈ (0,M] and let V := (ε/M)U ∩ (−ε/M)U be a symmetric neighborhood of 0. Let 37

u ∈ V be fixed. Then (M/ε)u ∈ U and 38

ϕ(u) ≤ ε

M
ϕ

(
M

ε

)
+

(
1− ε

M

)
ϕ (0) ≤ ε

M
M = ε. (1.1)

On the other hand, (−M/ε)u ∈ U and 39

0 = ϕ(0) ≤ 1

1+ (ε/M)
ϕ(u)+ ε/M

1+ (ε/M)
ϕ
(
− ε

M
u
)

≤ 1

1+ (ε/M)
ϕ(u)+ ε/M

1+ (ε/M)
M,

thus showing that 40

ϕ(u) ≥ −ε. (1.2)

From (1.1) and (1.2) we deduce that 41

|ϕ(u)| ≤ ε, ∀u ∈ V,

therefore ϕ is continuous at u = 0. 42

(ii)⇒ (i) Follows directly from the continuity of ϕ at u0. 43

(i) ⇒ (iii) Let U be a neighborhood of u0 such that ϕ(u) ≤ M for all u ∈ U . Then 44

U ⊂ int(D(ϕ)) and 45

{(u, λ) ∈ X × R : u ∈ U,M < λ} ⊂ epi(ϕ),

which shows that int(epi(ϕ)) = ∅. 46

(iii) ⇒ (i) Fix (u, λ) ∈ int(epi(ϕ)). Then there exist a neighborhood U of u and ε > 0 47

such that 48

U × [λ− ε, λ+ ε] ⊂ epi(ϕ).

Then U × {M} ⊂ epi(ϕ) for M ∈ [λ− ε, λ+ ε], therefore 49

ϕ(u) ≤ M, ∀u ∈ U.

(i) ⇒ (iv) Again, without loss of generality, we may assume u0 = 0. Let U be a 50

neighborhood of u0 such that ϕ(u) ≤ M , for all u ∈ U . Then U ⊂ D(ϕ), therefore 51

int(D(ϕ)) = ∅. 52
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For the second statement, fix u ∈ int(D(ϕ)). Due to the convexity of D(ϕ) there exists 53

λ > 1 such that v0 := λu ∈ D(ϕ). Set 54

V := u+ λ− 1

λ
U.

Then V is a neighborhood of u and any w ∈ V satisfies w := u + λ−1
λ

v for some 55

v ∈ U . Thus 56

ϕ(w) = ϕ

(
1

λ
v0 + λ− 1

λ
v

)
≤ 1

λ
ϕ(v0)+ λ− 1

λ
ϕ(v)

≤ 1

λ
ϕ(v0)+ λ− 1

λ
M =:M0.

This shows that ϕ is bounded above on a neighborhood of u and, since (i) ⇔ (ii), it 57

follows that ϕ is continuous at u. 58

(iv)⇒ (i) Pick any u ∈ int(D(ϕ)). Then ϕ is continuous at u, therefore it is also bounded 59

above on a neighborhood of u. 60��

The following theorem identifies the kind of continuity of a convex functional on the 61

interior of the effective domain. 62

Theorem 1.2 (Lipschitz Property of Convex Functionals) Let ϕ : X → (−∞,+∞] 63

be a proper convex l.s.c. functional. Then ϕ is locally Lipschitz on int(D(ϕ)). 64

Proof The proof will be carried out in 3 steps as follows. 65

Step 1. If ϕ is locally bounded above at u0 ∈ int(D(ϕ)), then ϕ is locally bounded at u0. 66

Assume ϕ(u) ≤ M in B(u0, r) ⊂ int(D(ϕ)). Then for each u ∈ B(u0, r) the 67

element v := 2u0 − u ∈ B(u0, r) and 68

ϕ(u0) ≤ ϕ(u)+ ϕ(v)

2
≤ ϕ(u)+M

2
,

thus proving that ϕ(u) ≥ 2ϕ(u0)−M , i.e., ϕ is also locally bounded below at u0. 69

Step 2. If ϕ is locally bounded at u0 ∈ int(D(ϕ)), then ϕ is locally Lipschitz at u0. 70

Assume |ϕ(u)| ≤ M for all u ∈ B(u0, 2r), fix u, v ∈ B(u0, r), u = v and 71

define 72

d := ‖v − u‖ and w := v + r

d
(v − u).



1.1 Basic Properties 7

Then w ∈ B(u0, 2r) and, since v = d
d+r w + r

d+r u, we have 73

ϕ(v) ≤ d

d + r
ϕ(w)+ r

r + d
ϕ(u).

Thus 74

ϕ(v)− ϕ(u) ≤ d

d + r
(ϕ(w)− ϕ(u)) ≤ 2Md

r
= 2M

r
‖v − u‖.

Step 3. ϕis locally Lipschitz on int(D(ϕ)). 75

In view of the previous two steps, we only need to show that ϕ is locally 76

bounded above. For each n ≥ 1 define 77

En := [ϕ ≤ n].

Then En is closed for each n ≥ 1 due to the lower semicontinuity of ϕ and 78

int(D(ϕ)) ⊂
∞⋃
n=1

En.

It follows, by the Baire Category Theorem, that int(En0) = ∅ for some n0 ≥ 1. 79

Suppose B(u0, r) ⊂ int(En0). Then ϕ in bounded above by n0 on B(u0, r). Since 80

int(D(ϕ)) is open, if u = v ∈ int(D(ϕ)), then there exists μ > 1 such that 81

w := u+ μ(v − u) ∈ int(D(ϕ)). Then the set 82

U :=
{

1

μ
w + μ− 1

μ
b : b ∈ B(u0, r)

}

is a neighborhood of v ∈ int(D(ϕ)). Thus, for any z ∈ U one has 83

ϕ(z) ≤ 1

μ
ϕ(w)+ μ− 1

μ
n0,

so ϕ is locally bounded above. 84��

Proposition 1.1 Assume that ϕ : X → (−∞,+∞] is convex and l.s.c. in the strong 85

topology. Then ϕ is weakly l.s.c., i.e., it is lower semicontinuous in the weak topology τw 86

of X. 87
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Proof For every λ ∈ R the set 88

[ϕ ≤ λ] := {u ∈ X : ϕ(x) ≤ λ}

is convex and (strongly) closed. Then, by Theorem A.5 it is weakly closed and thus ϕ is
weakly l.s.c. ��

1.2 Conjugate Convex Functions and Subdifferentials 89

Definition 1.3 Let ϕ : X→ (−∞,+∞] be a proper functional. We define the conjugate 90

function ϕ∗ : X∗ → (−∞,+∞] to be 91

ϕ∗(ζ ) := sup
u∈X

{〈ζ, u〉 − ϕ(u)} .

Note that ϕ∗ is convex and l.s.c. on X∗. In order to check this we point out that for each 92

u ∈ X, the functional ζ �→ 〈ζ, u〉 − ϕ(u) is convex and continuous, therefore l.s.c. on X∗. 93

In conclusion ϕ∗(ζ ) is convex and l.s.c., being the superior envelope of these functionals. 94

Remark 1.1 We have the inequality 95

〈ζ, u〉 ≤ ϕ(u)+ ϕ∗(ζ ), ∀ u ∈ X, ∀ζ ∈ X∗, (1.3)

which is called Young’s inequality. 96

Theorem 1.3 Assume that ϕ : X → (−∞,+∞] is convex l.s.c and proper. Then ϕ∗ is 97

proper, and in particular, ϕ is bounded below by an affine continuous function. 98

Proof Fix u0 ∈ D(ϕ) and λ0 < ϕ(u0). Applying the Strong Separation Theorem in the 99

space X × R with A := epi(ϕ) and B := {(u0, λ0)} we obtain the existence of a closed 100

hyperplane H : [� = α] that is strictly separating A and B. Since X � u �→ �(u, 0) is a 101

linear and continuous functional on X, it follows that there exists ζ ∈ X∗ such that 102

�(u, 0) := 〈ζ, u〉,

and 103

�(u, λ) = 〈ζ, u〉 + λ�(0, 1), ∀(u, λ) ∈ X × R.
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There exists ε > 0 such that 104

�(u0, λ0)+ ε ≤ α ≤ �(u, λ)− ε, ∀(u, λ) ∈ epi(ϕ),

which leads to 105

〈ζ, u0〉 + λ0�(0, 1) < α < 〈ζ, u〉 + ϕ(u)�(0, 1), ∀u ∈ D(ϕ).

It follows that �(0, 1) > 0 (just set u = u0). Moreover, 106

〈
− 1

�(0, 1)
ζ, u

〉
− ϕ(u) < − α

�(0, 1)
, ∀u ∈ D(ϕ).

Setting ξ := −ζ/�(0, 1) and β := α/�(0, 1) we conclude that ϕ∗(ξ) < +∞ and ϕ(u) ≥AQ3 〈ξ, u〉 + β. ��

If we iterate the operation ∗, we obtain a function ϕ∗∗ defined on X∗∗. Instead, we 107

choose to restrict ϕ∗∗ to X, that is we define 108

ϕ∗∗(u) := sup
ζ∈X∗

{〈ζ, u〉 − ϕ∗(ζ )} (u ∈ X).

Definition 1.4 For a given functional ϕ : X→ R the limit (if it exists) 109

lim
t↘0

ϕ(u+ tv)− ϕ(u)

t
, (1.4)

is called the directional derivative of ϕ at u in the direction v and it is denoted by ϕ′(u; v). 110

The function ϕ is called Gateaux differentiable at u ∈ X if there exists ζ ∈ X∗ such that 111

ϕ′(u; v) = 〈ζ, v〉, ∀v ∈ X. (1.5)

In this case ζ is called the Gateaux derivative (or gradient) of ϕ at u and it is denoted by 112

∇ϕ(u). 113

We point out the fact that, if the convergence in (1.4) is uniform w.r.t. v on bounded subsets, 114

then ϕ is said Fréchet differentiable at u and ζ in (1.5) is denoted by ϕ′(u) (the Fréchet 115

derivative). Needless to say that if ϕ is Fréchet differentiable at u, then it is also Gateaux 116

differentiable at u and the two derivatives coincide, whereas the converse is not true in 117

general. 118
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Definition 1.5 Let ϕ : X → (−∞,+∞] be a proper convex l.s.c. functional. Then the 119

subdifferential of ϕ at u ∈ D(ϕ) is the (possibly empty) set 120

∂ϕ(u) := {
ζ ∈ X∗ : 〈ζ, v − u〉 ≤ ϕ(v)− ϕ(u),∀v ∈ X

}
,

and ∂ϕ(u) := ∅ if u ∈ D(ϕ). 121

In general, ∂ϕ is a set-valued map from X into X∗. An element of ∂ϕ(u), if any, is called 122

subgradient of ϕ at u. As usual, the domain of ∂ϕ, denoted D(∂ϕ), is the set of all u ∈ X 123

for which ∂ϕ(u) = ∅. 124

Let us provide the following simple (but important) examples. 125

Example 1.1 Consider ϕ(u) := ‖u‖. It is easy to check 126

ϕ∗(ζ ) =
{

0, if ‖ζ‖∗ ≤ 1,

+∞, otherwise.

It follows that 127

ϕ∗∗(u) = sup
‖ζ‖∗≤1
ζ∈X∗

〈ζ, u〉,

therefore ϕ∗∗ = ϕ. Moreover, 128

∂ϕ(u) =
{
BX∗ , if u = 0,
J (u)
‖u‖ , otherwise,

where BX∗ is the closed unit ball of X∗ and J is the normalized duality mapping i.e., 129

J (u) :=
{
ζ ∈ X∗ : ‖ζ‖ = ‖u‖ and 〈ζ, u〉 = ‖u‖2

}
.

For more details regarding the duality mapping check out Chap. 5. 130

Example 1.2 Given a nonempty set K ⊂ X, we set 131

IK(u) :=
{

0, if u ∈ K,

+∞, otherwise.

The function IK is called indicator function of K . Note that IK is proper if and only if 132

K = ∅, IK is convex if and only if K is a convex set and IK is l.s.c. if and only if K is 133

closed. 134
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The conjugate function 135

I∗K(ζ ) := sup
u∈K
〈ζ, u〉,

is called the supporting function of K . 136

It is readily seen that D(∂IK) = K , ∂IK(u) = 0 for each u ∈ int(K) and 137

∂IK(u) = NK(u) = {
ζ ∈ X∗ : 〈ζ, v − u〉 ≤ 0, ∀v ∈ K

}
.

Recall that for any boundary point u ∈ K the set NK(u) is the normal cone of K at u. 138

Example 1.3 Let ϕ : X → (−∞,∞] be convex and Gateaux differentiable at u. Then 139

∂ϕ(u) = {∇ϕ(u)}. 140

Indeed, due to the convexity of ϕ we have 141

ϕ(u+ t (v − u)) ≤ tϕ(v) + (1− t)ϕ(u), ∀v ∈ X,∀t ∈ [0, 1].

Thus 142

ϕ(u+ t (v − u))− ϕ(u)

t
≤ ϕ(v)− ϕ(u),

and letting t ↘ 0 we get that ∇ϕ(u) ∈ ∂ϕ(u). 143

For the converse inclusion, let ζ ∈ ∂ϕ(u) be fixed. Then 144

〈ζ,w − u〉 ≤ ϕ(w)− ϕ(u), ∀w ∈ X,

Taking w := u+ tv we get 145

〈ζ, v〉 ≤ ϕ(u+ tv) − ϕ(u)

t
, ∀v ∈ X,∀t > 0.

Letting t ↘ 0 we obtain 146

〈ζ, v〉 ≤ 〈∇ϕ(u), v〉, ∀v ∈ X.

Replacing v with −v in the above relation we get that ζ = ∇ϕ(u). 147

Proposition 1.2 Let ϕ : X → (−∞,+∞] be a proper convex l.s.c. functional. Then 148

u ∈ D(ϕ) is a global minimizer of ϕ if and only if 0 ∈ ∂ϕ(u). 149
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Proof The point u ∈ D(ϕ) is a global minimizer of ϕ if and only if 150

0 ≤ ϕ(v)− ϕ(u), ∀v ∈ X.

But, 151

〈0, v − u〉 = 0, ∀v ∈ X,

thus showing that 0 ∈ ∂ϕ(u). ��

We point out the fact that there is a close relation between ∂ϕ and ∂ϕ∗ as it can be seen 152

from the following result. 153

Theorem 1.4 Let X be a reflexive space and ϕ : X → (−∞,+∞] be a proper convex 154

functional. Then the following assertions are equivalent: 155

(i) ζ ∈ ∂ϕ(u); 156

(ii) ϕ(u)+ ϕ∗(ζ ) = 〈ζ, u〉; 157

(iii) u ∈ ∂ϕ∗(ζ ). 158

In particular, ∂ϕ∗ = (∂ϕ)−1 and ϕ∗∗ = ϕ. 159

Proof According to Young’s inequality we have 160

ϕ∗(ζ )+ ϕ(u) ≥ 〈ζ, u〉, ∀u ∈ X,∀ζ ∈ X∗,

and equality takes place if and only if 0 ∈ ∂φ(u), with φ(u) = ϕ(u) − 〈ζ, u〉. Hence 161

(i) and (ii) are equivalent. On the other hand, if (ii) holds, then ζ is a global minimizer 162

of ξ �→ ϕ∗(ξ) − 〈ξ, u〉, therefore u ∈ ∂ϕ∗. Hence (ii) ⇒ (iii). Since (i) and (ii) are 163

equivalent for ϕ∗ we may write (iii) as 164

ϕ∗(ζ )+ ϕ∗∗(u) = 〈ζ, u〉.

Thus, in order to complete the proof it suffices to prove that ϕ∗∗ = ϕ. We show this in two 165

steps as follows: 166

Step 1. If ϕ ≥ 0, then ϕ∗∗ = ϕ. 167

One can easily check that ϕ∗∗(u) ≤ ϕ(u) for all u ∈ X. Assume by 168

contradiction there exists u0 ∈ X such that ϕ∗∗(u0) < ϕ(u0). We apply the Strong 169

Separation Theorem in X × R with A := epi(ϕ) and B := (u0, ϕ
∗∗(u0)). As in
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the proof of Theorem 1.3 there exist a closed hyperplane H : [� = α] strictly 170

separating A and B and ζ ∈ X∗ such that 171

〈ζ, u〉+λ�(0, 1) > α > 〈ζ, u0〉+ϕ∗∗(u0)�(0, 1), ∀(u, λ) ∈ epi(ϕ). (1.6)

It follows that �(0, 1) ≥ 0 (fix u ∈ D(ϕ) and let λ → +∞). We cannot deduce 172

that �(0, 1) > 0 as we may have ϕ(u0) = +∞. For a fixed ε > 0, since ϕ ≥ 0 173

we get using (1.6) 174

〈ζ, u〉 + (�(0, 1)+ ε)ϕ(u) ≥ α, ∀u ∈ D(ϕ).

Thus 175

ϕ∗ (ξ) ≤ β,

for ξ := − ζ
�(0,1)+ε and β := − α

�(0,1)+ε . The definition of ϕ∗∗(u0) then implies 176

that 177

ϕ∗∗(u0) ≥ 〈ξ, u0〉 − ϕ∗(ξ) ≥ 〈ξ, u0〉 − β,

and this shows that 178

〈ζ, u0〉 + (�(0, 1)+ ε)ϕ∗∗(u0) ≥ α,

which obviously contradicts the second inequality of (1.6). 179

Step 2. ϕ∗∗ = ϕ. 180

According to Theorem 1.3, D(ϕ∗) = ∅, therefore we can fix ζ0 ∈ D(ϕ∗) and 181

define 182

φ(u) := ϕ(u)− 〈ζ0, u〉 + ϕ∗(ζ0).

Then φ is convex, proper, l.s.c. and satisfies φ ≥ 0 and, due to Step 1, φ∗∗ = φ. 183

On the other hand 184

φ∗(ζ ) = ϕ∗(ζ + ζ0)− ϕ∗(ζ0),

and 185

φ∗∗(u) = ϕ∗∗(u)− 〈ζ0, u〉 + ϕ∗(ζ0).

Using the fact that φ∗∗ = φ it follows at once that ϕ∗∗ = ϕ. 186��
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Proposition 1.3 If ϕ : X → (−∞,+∞] is proper, convex and l.s.c., then D(∂ϕ) is a 187

dense subset of D(ϕ). 188

Proposition 1.4 If ϕ : X → (−∞,+∞] is proper, convex and l.s.c., then 189

intD(ϕ) ⊂ D(∂ϕ). 190

Theorem 1.5 Let ϕ : X → (−∞,+∞] is proper, convex and l.s.c. functional. Then the 191

following conditions are equivalent: 192

(i)
ϕ(u)
‖u‖ → +∞ as ‖u‖ → +∞. 193

(ii) R(∂ϕ) = X∗ and (∂ϕ)−1 = ∂ϕ∗ maps bounded sets into bounded sets; 194

Proof (i) ⇒ (ii) If (i) holds, then for each ζ ∈ X∗ the functional φ : X → (−∞,+∞] 195

defined by 196

φ(u) := ϕ(u)− 〈ζ, u〉

is convex, l.s.c. and coercive, therefore it attains its infimum on X (see Corollary 1.1 197

in the next section). Thus 0 ∈ ∂φ(u) = ∂(ϕ(u) − 〈ζ, u〉) or, equivalently, ζ ∈ ∂ϕ(u). 198

Moreover, if {ζ } remains in a bounded subset of X∗, then so does {(∂ϕ)−1(ζ )}. 199

(ii)⇒ (i) By Young’s inequality we have 200

ϕ(u) ≥ 〈ζ, u〉 − ϕ∗(ζ ), ∀u ∈ X,∀ζ ∈ X∗. (1.7)

Fix u ∈ X and let ζ0 ∈ X be such that ‖ζ0‖ = ‖u‖ and 〈ζ0, u〉 = ‖u‖2. Then taking 201

ζ1 := λ
‖u‖ζ0 in (1.7) we get 202

ϕ(u) ≥ λ‖u‖ − ϕ∗
(

λ

‖u‖ζ0

)
, ∀u ∈ X,∀λ > 0,

which combined with the fact that ϕ∗ and ∂ϕ∗ map bounded sets into bounded sets 203

yields the desired conclusion. 204��

Definition 1.6 A bipotential is a functional B : X × X∗ → (−∞,+∞] satisfying the 205

following conditions: 206

(i) for any u ∈ X, if D(B(u, ·)) = ∅, then B(u, ·) is proper convex l.s.c.; for any ζ ∈ X, 207

if D(B(·, ζ )) = ∅, then B(·, ζ ) is proper convex l.s.c.; 208

(ii) B(u, ζ ) ≥ 〈ζ, u〉 for all u ∈ X and all ζ ∈ X∗; 209

(iii) ζ ∈ ∂B(·, ζ )(u)⇔ u ∈ ∂B(u, ·)(ζ )⇔ B(u, ζ ) = 〈ζ, u〉. 210
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1.3 The Direct Method in the Calculus of Variations 211

Theorem 1.6 Let M be a topological Hausdorff space, and suppose that 212

φ : M → (−∞,+∞] satisfies the Borel-Heine compactness condition, that is, for 213

any α ∈ R the set 214

[φ ≤ α] := {u ∈ M : φ(u) ≤ α} , (1.8)

is compact. 215

Then φ is uniformly bounded from below on M and attains its infimum. The conclusion 216

remains valid if, instead of (1.8), we assume that any sub-level-set [φ ≤ α] is sequentially 217

compact. 218

Proof Suppose (1.8) holds. We may assume that φ ≡ +∞. Let 219

α0 := inf
M

φ ≥ −∞,

consider a sequence {αn} such that αn ↘ α0, as n → ∞ and let Kn := [φ ≤ αn]. By 220

assumption, each Kn is compact and nonempty. Moreover, Kn+1 ⊂ Kn for all n ∈ N
∗. By 221

the compactness of Kn there exists a point u ∈⋂
n∈N Kn, satisfying 222

φ(u) ≤ αn, ∀n ≥ n0.

Taking the limit as n→∞ we obtain that 223

φ(u) ≤ α0 = inf
M

φ,

and the claim follows. 224

If instead of (1.8) each [φ ≤ α] is sequentially compact, we choose a minimizing
sequence {un} in M such that φ(un) → α0. Then for any α > α0 the sequence {un} will
eventually lie entirely within [φ ≤ α]. The sequential compactness of [φ ≤ α] ensures that
{un} will accumulate at a point u ∈⋂

α>α0
[φ ≤ α] which is the desired minimizer. ��

Remark 1.2 If φ : M → R satisfies (1.8), then for any α ∈ R the set 225

{u ∈ M : φ(u) > α} = M \ [φ ≤ α]

is open, that is, φ is lower semicontinuous. Respectively, if each [φ ≤ α] is sequentially 226

compact, then φ will be sequentially lower semicontinuous. 227

Conversely, if φ is sequentially lower semicontinuous and for some ᾱ ∈ R, the set 228

[φ ≤ ᾱ] is (sequentially) compact, then [φ ≤ α] will be (sequentially) compact for all 229

α ≤ ᾱ and again the conclusion of Theorem 1.6 will be valid. 230
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Theorem 1.7 Suppose that X is a reflexive Banach space with norm ‖ · ‖, and let M ⊂ X 231

be a weakly closed subset of X. Suppose φ : M → (−∞,+∞] is coercive on M with 232

respect to X, that is, 233

φ(u)→+∞ as ‖u‖ → ∞, (u ∈ M),

and sequentially weakly lower semicontinuous on M with respect to X, that is, for any 234

u ∈ M , any sequence {un} in M such that un ⇀ u we have 235

φ(u) ≤ lim inf
n→∞ φ(un).

Then φ is bounded from below on M and attains its infimum in M . 236

Proof Let α0 := infM φ and assume {un} is a minimizing sequence in M , that is, 237

φ(un)→ α0, as n→∞. By coerciveness, {un} is bounded in X and, since X is reflexive, 238

the Eberlein-Šmulian theorem ensures the existence of u ∈ X such that un ⇀ u. But M is 239

weakly closed, therefore u ∈ M , and the weak lower semicontinuity of φ shows that 240

φ(u) ≤ lim inf
n→∞ φ(un) = α0,

i.e., u is a global minimizer of φ. ��

A direct consequence of Proposition A.8 and Theorem 1.7 is the following. 241

Corollary 1.1 Let X be a reflexive Banach space and let K ⊂ X be a nonempty, closed 242

and convex subset of X. Let φ : K → (−∞,+∞] be a proper convex l.s.c. function such 243

that 244

lim
u∈K‖u‖→+∞

φ(u) = +∞. (1.9)

Then φ achieves its minimum on K , i.e., there exists some u0 ∈ K such that 245

φ(u0) = inf
K

φ.

Proof Fix any u ∈ K such that φ(u) < +∞ and consider the set 246

K̃ := {v ∈ K : φ(v) ≤ φ(u)} .

247
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Then K̃ is closed, convex and bounded and thus it is weakly compact. On the other hand, 248

φ is also l.s.c. in the weak topology τw. It follows that φ achieves its minimum on K̃, i.e., 249

there exists u0 ∈ K̃ such that 250

φ(u0) ≤ φ(v), ∀v ∈ K̃.

If v ∈ K \ K̃ , we have φ(u0) ≤ φ(u) < φ(v). Thus φ(u0) ≤ φ(v), ∀v ∈ K. ��

1.4 Ekeland’s Variational Principle 251

Theorem 1.8 (Ekeland’s Variational Principle [3]) Let (X, d) be a complete metric 252

space and let φ : X → (−∞,+∞] be a proper, lower semicontinuous and bounded 253

from below functional. Then for every ε > 0, λ > 0, and u ∈ X such that 254

φ(u) ≤ inf
X

φ + ε,

there exists an element v ∈ X such that 255

(i) φ(v) ≤ φ(u); 256

(ii) d(v, u) ≤ 1
λ

; 257

(iii) φ(w) ≥ φ(v)− ελd(w, v), ∀w ∈ X. 258

Proof It suffices to prove our assertion for λ = 1. The general case is obtained by 259

replacing d by an equivalent metric λd . We now construct inductively a sequence {un} 260

as follows: u0 = u, and assuming that un has been defined, we set 261

Sn := {w ∈ X : φ(w)+ εd(w, un) ≤ φ(un)} ,

and consider two possible cases: 262

(a) infSn φ = φ(un). Then define un+1 := un; 263

(b) infSn φ < φ(un). Then choose un+1 ∈ Sn such that 264

φ(un+1) < inf
Sn

φ + 1

2

(
φ(un)− inf

Sn
φ

)
= 1

2

(
φ(un)+ inf

Sn
φ

)
< φ(un). (1.10)

We prove next that {un} is a Cauchy sequence. In fact, if (a) ever occurs, then {un} is 265

stationary for sufficiently large n and the claim follows. Otherwise, 266

εd(un, un+1) ≤ φ(un)− φ(un+1). (1.11)
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Adding (1.11) from n to m− 1 > n we get 267

εd(un, um) ≤ φ(un)− φ(um). (1.12)

Note that {φ(un)} is a decreasing and bounded from below sequence of real numbers, 268

hence it is convergent, which combined with (1.12) shows that {un} is indeed Cauchy. 269

Since X is complete, there exists v ∈ X such that v := limn→∞ un. In order to complete 270

the proof we show that v satisfies (i)− (iii). Setting n = 0 in (1.12) we have 271

εd(u, um)+ φ(um) ≤ φ(u), (1.13)

and letting m→∞ we get 272

εd(u, v)+ φ(v) ≤ φ(u). (1.14)

In particular, this shows that (i) holds. On the other hand, 273

φ(u)− φ(v) ≤ φ(u)− inf
X

φ < ε,

which together with (1.14) shows that (ii) holds. 274

Now, let us prove (iii). Fixing n in (1.12) and letting m→∞ yields v ∈ Sn, therefore 275

v ∈
⋂
n≥0

Sn.

But, for any w ∈⋂
n≥0 Sn we have 276

εd(w, un+1) ≤ φ(un+1)− φ(w) ≤ φ(un+1)− inf
Sn

φ. (1.15)

It follows from (1.10) that 277

φ(un+1)− inf
Sn

φ ≤ φ(un)− φ(un+1),

therefore 278

lim
n→∞

(
φ(un+1)− inf

Sn
φ

)
= 0.

Taking the limit as n→∞ in (1.13) we get εd(w, v) = 0, hence 279

⋂
n≥0

Sn = {v}. (1.16)
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One can easily check that the family {Sn} is nested, i.e., Sn+1 ⊂ Sn, thus for any w = v it 280

follows from (1.16) that w ∈ Sn, for sufficiently large n. Thus, 281

φ(w)+ εd(w, un) > φ(un).

Letting n→∞ we arrive at (iii). ��

Corollary 1.2 Let (X, d) be a complete metric space with metric d and let 282

φ : X → (−∞,+∞] be a proper, lower semicontinuous and bounded from below 283

functional. Then for every ε > 0 and every u ∈ X such that 284

φ(u) ≤ inf
X

φ + ε,

there exists an element uε ∈ X such that 285

(i) φ(uε) ≤ φ(u); 286

(ii) d(uε, u) ≤ √ε; 287

(iii) φ(w) ≥ φ(uε)−√εd(w, uε), ∀w ∈ X. 288
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22Locally Lipschitz Functionals 3

2.1 The Generalized Derivative and the Clarke Subdifferential 4

Unless otherwise stated, throughout this section X denotes a real Banach space.AQ1
AQ2

5

Definition 2.1 A function f : X → R is called locally Lipschitz if every point u ∈ X 6

possesses a neighborhood Nu ⊂ X such that 7

|f (u1)− f (u2)| ≤ K‖u1 − u2‖, ∀u1, u2 ∈ Nu,

for a constant K > 0 depending on Nu. 8

Definition 2.2 The generalized directional derivative of the locally Lipschitz function 9

f : X→ R at the point u ∈ X in the direction v ∈ X is defined by 10

f 0(u; v) := lim sup
w→u
t↘0

f (w + tv) − f (w)

t
.

A natural question arises: 11

(Q1): What is the relationship between the generalized directional derivative f 0(u; v) 12

and the derivative notions from classical analysis? 13

The next two results make connections of this kind. Suppose first that the classical 14

(one-sided) directional derivative of a function f : X→ R exists, i.e., 15

f ′(u; v) := lim
t↘0

f (u+ tv) − f (u)

t
.
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Proposition 2.1 If f : X→ R is a continuously differentiable function, then 16

f 0(u; v) = f ′(u; v), ∀u, v ∈ X. (2.1)

Proof Fix u, v,w ∈ X. For t > 0 sufficiently small, the function g(t) := f (w + tv) is 17

continuously differentiable with derivative g′(t) = f ′(w + tv; v). By the classical mean 18

value theorem, there exists s ∈ (0, t) such that 19

f (w + tv) − f (w)

t
= g(t)− g(0)

t
= g′(s) = f ′(w + sv; v).

Now, if w → u in X and t → 0 in R, due to the continuity of the differential of f , the
desired relation yields. ��

Proposition 2.2 If f : X → R is convex and l.s.c., then f is locally Lipschitz and the 20

following equality holds 21

f 0(u; v) = f ′(u; v), ∀u, v ∈ X.

Proof According to Theorem 1.2 any convex l.s.c. functional is locally Lipschitz on the 22

interior of its domain and since X = int(X) it follows that f is locally Lipschitz on X. 23

The convexity of f : X → R guarantees the existence of the one-sided directional 24

derivative f ′(u; v). Fix u, v ∈ X and an arbitrary small number δ > 0 such that the 25

Lipschitz condition 26

|f (w)− f (u)| ≤ K‖w − u‖, ∀w ∈ B(u, δ).

Due to Definition 2.2 and to the convexity of f, one has 27

f 0(u; v) = lim
ε↘0

sup
‖w−u‖<εδ

sup
0<t<ε

f (w + tv) − f (w)

t

= lim
ε↘0

sup
‖w−u‖<εδ

f (w + εv)− f (w)

ε
.

Since f is locally Lipschitz, then 28

∣∣∣∣f (w + εv) − f (w)

ε
− f (u+ εv)− f (u)

ε

∣∣∣∣ ≤ 2δK,
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for ‖w − u‖ < εδ and ε ∈ (0, 1). One has 29

f 0(u; v) ≤ lim
ε↘0

f (u+ εv)− f (u)

ε
+ 2δK = f ′(u; v)+ 2δK.

If δ tends to 0 we have f 0(u; v) = f ′(u; v). ��

Useful properties of the generalized directional derivative are given below. 30

Proposition 2.3 Let f : X→ R be a locally Lipschitz function. Then 31

(i) For every u ∈ X the function f 0(u; ·) : X → R is positively homogeneous and 32

subadditive (therefore convex) and satisfies 33

|f 0(u; v)| ≤ K‖v‖, ∀v ∈ X. (2.2)

Moreover, it is Lipschitz continuous on X with the Lipschitz constant K , where 34

K > 0 is a Lipschitz constant of f near u. 35

(ii) f 0(·; ·) : X ×X→ R is upper semicontinuous. 36

(iii) f 0(u; −v) = (−f )0(u; v), ∀u, v ∈ X. 37

Proof (i) Let λ > 0. The positive homogeneity of f ◦(u; ·) follows from 38

f 0(u; λv) = lim sup
w→u
t↘0

f (w + tλv) − f (w)

t
= lim sup

w→u
t↘0

λ(f (w + tλv) − f (w))

tλ

= λf 0(u; v).

Relation (2.2) follows easily from Definition 2.2. To verify the subadditivity of 39

f 0(u; ·) let v1, v2 ∈ X be fixed. One has 40

f 0(u; v1 + v2) = lim sup
w→u
t↘0

f (w + t (v1 + v2))− f (w)

t

≤ lim sup
w→u
t↘0

f (w + t (v1 + v2))− f (w + tv2)

t
+ lim sup

w→u
t↘0

f (w + tv2)− f (w)

t

≤ f 0(u; v1)+ f 0(u; v2).
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For arbitrary v1, v2 ∈ X, using the Lipschitz constant K on a neighborhood of u, we 41

obtain 42

f (w + tv1)− f (w) = f (w + tv1)− f (w + tv2)+ f (w + tv2)− f (w)

≤ K‖v1 − v2‖t + f (w + tv2)− f (w),

if w is close to u and t > 0 is sufficiently small. Then 43

f 0(u; v1) ≤ K‖v1 − v2‖ + f 0(u; v2).

Interchanging v1 and v2, assertion (i) is now completely verified. 44

(ii) To prove the upper semicontinuity of f 0(·, ·), let {un} and {vn} be sequences in X 45

such that un → u ∈ X and vn → v ∈ X, as n→∞. Let us fix sequences {wn} ⊂ X 46

and {tn} ⊂ R
∗+, with ‖wn − un‖ + tn < 1

n
and 47

f 0(un; vn) ≤ f (wn + tnvn)− f (wn)

tn
+ 1

n
.

Then 48

f 0(un; vn)− 1

n
≤ f (wn + tnv) − f (wn)+ f (wn + tnvn)− f (wn + tnv)

tn

≤ f (wn + tnv) − f (wn)

tn
+K‖vn − v‖,

where K > 0 is the Lipschitz constant of f around u. Letting n→∞, one has 49

lim sup
n→∞

f 0(un; vn) ≤ lim sup
n→∞

f (wn + tnv)− f (wn)

tn
≤ f 0(u; v).

(iii) Fix u, v ∈ X. Then 50

f 0(u;−v) = lim sup
w→u
t↘0

f (w − tv)− f (w)

t
= lim sup

w→u
t↘0

−f (w − tv + tv) + f (w − tv)

t

= (−f )0(u; v). ��

Definition 2.3 Let f : X→ R be a locally Lipschitz function. The Clarke subdifferential 51

∂Cf (u) of f at a point u ∈ X is the subset of the dual space X∗ defined as follows 52

∂Cf (u) :=
{
ζ ∈ X∗ : 〈ζ, v〉 ≤ f 0(u; v), ∀v ∈ X

}
.
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In the following result we prove the most important properties of the Clarke subdiffer- 53

ential. 54

Proposition 2.4 Let f : X → R a locally Lipschitz function. Then the following 55

assertions are true: 56

(i) For every u ∈ X, ∂Cf (u) is a nonempty, convex and weak∗-compact subset of X∗. 57

Moreover, 58

‖ζ‖∗ ≤ K, ∀ζ ∈ ∂Cf (u),

with K > 0 the Lipschitz constant of f near u. 59

(ii) For every u ∈ X, f 0(u; ·) is the support function of ∂Cf (u), i.e., 60

f 0(u; v) = max {〈ζ, v〉 : ζ ∈ ∂Cf (u), ∀v ∈ X} .

(iii) The set-valued map ∂Cf : X � X∗ is closed from s −X into w∗ −X∗; 61

In particular, if X is finite dimensional, then ∂Cf is an u.s.c. set valued map; 62

(iv) The set-valued map ∂Cf : X � X∗ is u.s.c. from s −X into w∗ −X∗. 63

Proof (i) Proposition 2.3 and the Hahn-Banach Theorem ensure that there exists 64

ζ ∈ X∗ satisfying 65

〈ζ, v〉 ≤ f 0(u; v), ∀v ∈ X.

Hence ∂Cf (u) = ∅. The convexity of ∂Cf (u) follows easily from Definition 2.3. 66

Let ζ ∈ ∂Cf (u) and v ∈ X be fixed. Using Definition 2.3, relation (2.2) and 67

Proposition 2.3 we obtain 68

−K‖v‖ ≤ −(−f )0(u; v) ≤ 〈ζ, v〉 ≤ f 0(u; v) ≤ K‖v‖.

Therefore |〈ζ, v〉| ≤ K‖v‖, and one has 69

‖ζ‖∗ ≤ K, ∀ζ ∈ ∂Cf (u). (2.3)

Since ∂Cf (u) is weak∗ closed, the boundedness in (2.3) and the Banach-Alaoglu 70

Theorem guarantee that ∂Cf (u) is weak∗compact in X∗. 71

(ii) Suppose by contradiction that there exists v ∈ X with 72

f 0(u; v) > max{〈ζ, v〉 : ζ ∈ ∂Cf (u)}. (2.4)
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Again, the Hahn-Banach theorem ensures the existence of ξ ∈ X∗ such that 73

〈ξ, v〉 = f 0(u; v) and 〈ξ,w〉 ≤ f 0(u;w), ∀w ∈ X.

Therefore ξ ∈ ∂Cf (u), which contradicts (2.4). 74

(iii) Fix some v ∈ X and assume that the sequences {un} ⊂ X and {ζn} ⊂ X∗ are such 75

that un → u in X and ζn ∈ ∂Cf (un), with ζn ⇁ ζ in X∗. Taking into account 76

Proposition 2.3 (ii) and passing to the limit in the inequality 〈ζn, v〉 ≤ f 0(un; v) we 77

obtain 78

〈ζ, v〉 ≤ lim sup
n→∞

f 0(un; v) ≤ f 0(u; v),

which shows that ζ ∈ ∂Cf (u). 79

(iv) We need to prove that for all u, v ∈ X and ε > 0 there exists δ > 0 such that 80

whenever ξ ∈ ∂Cf (v) and ‖v − u‖ < δ, one can find ζ ∈ ∂Cf (u) satisfying 81

|〈ζ − ξ, v〉| < ε.

Arguing by contradiction, assume this is not the case, i.e., there exist u, v ∈ X, 82

ε0 > 0 and sequences {un} ⊂ X and {ζn} ⊂ X∗, with ζn ∈ ∂Cf (un) such that 83

‖un − u‖ ≤ 1

n
and |〈ζn − ξ, v〉| ≥ ε0, ∀ξ ∈ ∂Cf (u). (2.5)

From (i) we deduce ‖ζn‖∗ ≤ K , for sufficiently large n. Thus, up to a subsequence, 84

ζn ⇁ ζ for some ζ ∈ X∗. Then the assertion (iii) implies ζ ∈ ∂Cf (u), which 85

clearly contradicts (2.5). 86��

Proposition 2.5 Let f, g : X → R be a locally Lipschitz functions. The following 87

assertions hold: 88

(i) For every λ ∈ R one has 89

∂C(λf )(u) = λ∂Cf (u), ∀u ∈ X;

(ii) For all u ∈ X 90

∂C(f + g)(u) ⊂ ∂Cf (u)+ ∂Cg(u).

Proof (i) Clearly the relation holds λ ≥ 0. Thus it suffices to justify it for λ = −1, 91

which follows actually from Proposition 2.3-(iii). 92
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(ii) Since the support functions of the left- and right-hand side (evaluated in a fixed point 93

v ∈ X) are (f + g)0(u; v) and f 0(u; v)+ g0(u; v), respectively, it suffices to prove 94

that 95

(f + g)0(u; v) ≤ f 0(u; v)+ g0(u; v).

This is in fact a straightforward consequence of Definition 2.2. 96��

Proposition 2.6 Let f : X→ R be a locally Lipschitz function. Then 97

(i) If f is Gateaux differentiable at u ∈ X, then its Gateaux derivative ∇f (u) belongs 98

to ∂Cf (u). 99

(ii) If, in addition, X is convex and f : X→ R is a convex function, then the generalized 100

gradient ∂Cf (u) coincides with the subdifferential of f at u in the sense of convex 101

analysis, for every u ∈ X. Moreover, f 0(u; v) coincides with the usual directional 102

derivative f ′(u; v) for every v ∈ X. 103

Proof (i) The Gateaux derivative f ′(u) satisfies 104

〈∇f (u), v〉 := f ′(u; v) = lim
t↘0

f (u+ tv) − f (u)

t
≤ f 0(u; v), ∀v ∈ X.

Therefore, by Definition 2.3 this means that ∇f (u) ∈ ∂Cf (u). 105

(ii) This is in fact a consequence of Proposition 2.4-(ii), Proposition 2.2 and of the 106

convexity of f . 107��

Remark 2.1 If f : X → R is continuously differentiable at u ∈ X, then ∂Cf (u) = 108

{f ′(u)}. More generally, f is strictly differentiable at u ∈ X if and only if f is locally 109

Lipschitz near u and ∂Cf (u) reduces to a singleton which is necessarily the strict derivative 110

of f at u. 111

Theorem 2.1 (Lebourg’s Mean Value Theorem [16]) Let X be an open subset of a 112

Banach space X and u, v be two points of X such that the line segment [u, v] = 113

{(1 − t)u + tv : 0 ≤ t ≤ 1} ⊂ X. If f : X → R is a locally Lipschitz function, 114

then there exist w ∈ (u, v) and ζ ∈ ∂Cf (w) such that 115

f (v)− f (u) = 〈ζ, v − u〉.

Proof The function g : [0, 1] → R given by g(t) := f (u+ t (v− u)) is locally Lipschitz. 116

First, we shall prove that 117

∂Cg(t) ⊂ 〈∂Cf (u+ t (v − u)) , v − u〉 .
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Since the above closed convex sets are actually intervals in R, it suffices to prove that 118

max{∂Cg(t)s} ≤ max{s〈∂Cf ((u+ t (v − u), v − u〉},

for s = ±1. To this end, we point out that 119

max{∂Cg(t)s} = g0(t; s) = lim sup
τ→t
λ↘0

g(τ + λs)− g(τ)

λ

= lim sup
τ→t
λ↘0

f (u+ (τ + λs)(v − u))− f (u+ τ (v − u))

λ

≤ lim sup
w→u+t(v−u)

λ↘0

f (w + λs(v − u))− f (w)

λ
= f 0(u+ t (v − u); s(v − u))

= max{〈∂Cf (u+ t (v − u)v, s(v − u)〉}.

Now, if we introduce the function h : [0, 1] → R given by h(t) := g(t)+ t (f (u)− f (v)) 120

then h(0) = h(1) = f (u). But this implies that h has a local minimum or maximum at 121

some t0 ∈ (0, 1). By Propositions 2.4-(ii) and 3.2 we have 122

0 ∈ ∂Ch(t0) ⊂ ∂Cg(t0)+ f (u)− f (v).

Therefore, for w := u+ t0(v − u), the following inclusion holds 123

f (v)− f (u) ∈ ∂Cg(t0) ⊂ 〈∂Cf (w), v − u〉.
��

Definition 2.4 A locally Lipschitz function f : X → R is said to be regular at u ∈ X, if 124

the one-sided directional derivative f ′(u; v) exists for all v ∈ X and f 0(u; v) = f ′(u; v). 125

The function f is regular on X, if f is regular in every point u ∈ X. 126

Theorem 2.2 127

(i) Let X,Y be two real Banach space and F : X → Y a continuously differentiable 128

mapping and let g : Y → R be a locally Lipschitz function. Then one has 129

∂C(g ◦ F)(u) ⊂ ∂Cg(F (u)) ◦ F ′(u), ∀u ∈ X. (2.6)

Equality holds in (2.6) if, for instance, g is regular at F(u). 130

(ii) Let f : X→ R and h : R→ R be two locally Lipschitz functions. Then 131

∂C(h ◦ f )(u) ⊂ cow
∗
(∂Ch(f (u)) · ∂Cf (u)), ∀u ∈ X, (2.7)
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where the notation cow
∗

stands for the weak∗-closed convex hull. Furthermore, if h 132

continuously differentiable at f (u) or if h is regular at f (u) and f is continuously 133

differentiable at u, in (2.7) the equality holds and the symbol co becomes superfluous. 134

Proof 135

(i) By Proposition 2.4-(ii) it suffices to show that 136

(g ◦ F)0(u; v) ≤ max
{〈ζ, F ′(u)v〉 : ζ ∈ ∂Cg(F (u))

}
, ∀v ∈ X. (2.8)

Due to Lebourg’s mean value theorem (see Theorem 2.1), one has 137

(g ◦ F)(w + tv)− (g ◦ F)(w) = 〈ξ, F (w + tv) − F(w)〉,

for some ξ ∈ ∂Cg(y) and y ∈ (F (w), F (w + tv)). Then, the classical mean value 138

theorem guarantees that F(w+ tv)−F(w) = tF ′(x)v, for a point x ∈ (w, w+ tv). 139

Thus we obtain 140

(g ◦ F)0(u; v) = lim sup
w→u
t↘0

(g ◦ F)(w + tv) − (g ◦ F)(w)

t
= lim sup

w→u
t↘0

〈ξ, F ′(u)v〉

≤ max{〈ζ, F ′(u)v〉 : ζ ∈ ∂Cg(F (u))}.

Suppose now that g is regular at F(u). By Proposition 2.4-(ii) and the regularity 141

assumption for every v ∈ X we get 142

max
ζ∈∂Cg(F(u))

〈
ζ, F ′(u)v

〉 = g0(F (u);F ′(u)v) = g′(F (u);F ′(u)v)

= lim
t↘0

g(F (u) + tF ′(u)v) − g(F (u))

t
= lim

t↘0

(g ◦ F)(u+ tv) − (g ◦ F)(u)

t

≤ (g ◦ F)0(u; v),

which yields the equality in (2.6). 143

(ii) Fix v ∈ X. Applying twice Theorem 2.1, for every w close to u ∈ X and sufficiently 144

small t > 0 one gets the existence of ξ ∈ ∂Ch(s) ⊂ R, s ∈ (f (w), f (w + tw)) and 145

ζ ∈ ∂Cf (x) with x ∈ (w,w + tv) ⊂ X such that 146

(h ◦ f )(w + tv)− (h ◦ f )(w) = ξ(f (w + tv) − f (w)) = ξ〈ζ, tv〉. (2.9)

Then, according to Proposition 2.4-(iii), 147

(h ◦ f )0(u; v) ≤ max {ξ〈ζ, v〉 : ζ ∈ ∂Cf (u), ξ ∈ ∂Ch(f (u))} .
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Then the inclusion (2.7) holds true. The proof of the assertion regarding the equality 148

in (2.7) follows in a similar manner as in the statement (i). In the mentioned cases the 149

symbol co is not necessary in (2.7) due to Remark 2.1. 150��

Proposition 2.7 Let φ : [0, 1] → X be a function of class C1 and let f : X → R be 151

a locally Lipschitz function. Then the function h : [0, 1] → R given by h = f ◦ φ is 152

differentiable a.e. t ∈ [0, 1] and 153

h′(t) ≤ max
{〈ζ, φ′(t)〉 : ζ ∈ ∂Cf (φ(t))

}
.

Proof The function h is clearly locally Lipschitz, thus differentiable for a.e. t ∈ [0, 1]. 154

Suppose that h is differentiable at t = t0. Then 155

h′(t0) = lim
λ→0

f (φ(t0 + λ))− f (φ(t0))

λ
= lim

λ→0

f (φ(t0)+ φ′(t0)λ+ o(λ))− f (φ(t0))

λ

= lim
λ→0

f (φ(t0)+ φ′(t0)λ)− f (φ(t0))

λ

≤ lim sup
s→0
λ↘0

f (φ(t0)+ s + φ′(t0)λ)− f (φ(t0)+ s)

λ

= f 0(φ(t0);φ′(t0)) = max{〈ζ, φ′(t0)〉 : ζ ∈ ∂Cf (φ(t0))}.
��

Theorem 2.3 Suppose that X, Y are two Banach spaces, X is reflexive and X ↪→ Y , i.e. 156

X ⊂ Y and the embedding mapping is continuous, and assume that X is dense in Y . Let 157

f : Y → R be a locally Lipschitz continuous function and let f̂ = f |X. Then for every 158

u ∈ X, one has ∂Cf̂ (u) ⊂ ∂Cf (u). 159

In order to prove this result, we need the following lemma. 160

Lemma 2.1 Suppose that in Theorem 2.3 f is convex. Then for every u ∈ X we have 161

∂Cf̂ (u) = ∂Cf (u). 162

Proof In this case, the generalized gradient ∂Cf (u) is the same as the subdifferential in 163

the convex analysis. By definition, it is easy to see that ∂f (u) ⊂ ∂f̂ (u). But we know that 164

∂f̂ (u) ∩ Y ∗ ⊂ ∂f (u). In fact, if ζ ∈ ∂f̂ (u) ∩ Y ∗, then 165

〈ζ, v − u〉 + f̂ (u) ≤ f̂ (v), (2.10)
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for each v ∈ X. The fact that X is dense in Y , ζ ∈ Y ∗ and f is continuous in Y guarantee 166

the extension of the inequality (2.10) to all v ∈ Y , i.e. 167

〈ζ, v − u〉 + f (u) ≤ f (v), ∀v ∈ Y.

This means ζ ∈ ∂f (u). Since X is reflexive, Y ∗ is dense in X∗, so that ∂f (u) is dense in 168

∂f̂ (u) in the weak∗-topology of X∗. For every ζ ∈ ∂f̂ (u) there exists ζn ∈ ∂f (u) such 169

that 〈ζn, v〉 → 〈ζ, v〉 for every v ∈ X. But, 170

|〈ζn, v〉| ≤ ‖ζn‖Y ∗‖v‖Y ≤ K‖v‖Y ,

provided by Proposition 2.3, then 171

|〈ζ, v〉| ≤ K‖v‖Y .

This implies that ζ may be continuously extended onto Y . Thus ζ ∈ ∂f̂ (u)∩Y ∗ ⊂ ∂f (u).
��

Proof of Theorem 2.3 It is clear that the function v �→ f 0(u; v) is convex and continuous
on Y and f 0(u, ·)|X ≥ f̂ 0(u, ·). Since the generalized gradients coincide with the convex
subdifferentials, the conclusion of this theorem follows directly from Lemma 2.1. ��

We close this section with some properties of partial Clarke subdifferentials. 172

Proposition 2.8 Let h : X1 ×X2 → R be a locally Lipschitz function which is regular at 173

(u, v) ∈ X1 ×X2. Then the following hold: 174

(i) ∂Ch(u, v) ⊆ ∂1
Ch(u, v) × ∂2

Ch(u, v), where ∂1
Ch(u, v) denotes the (partial) general- 175

ized gradient of h(·, v) at the point u, and ∂2
Ch(u, v) that of h(u, ·) at v. 176

(ii) h0(u, v;w, z) ≤ h0
1(u, v;w) + h0

2(u, v; z) f or all w, z ∈ X, where h0
1(u, v;w) 177

(resp. h0
2(u, v; z)) is the (partial) generalized directional derivative of h(·, v) 178

(resp. h(u, ·)) at the point u ∈ R (resp. v ∈ R) in the direction w ∈ R (resp. z ∈ R). 179

Proof 180

(i) Fix ζ := (ζ1, ζ2) ∈ ∂Ch(u, v). It suffices prove that ζ1 belongs to ∂1
Ch(u, v), which 181

is equivalent to show that for every w ∈ X one has 〈ζ1, w〉 ≤ h0
1(u, v;w). The latter 182

coincides with 183

h′1(u, v;w) = h′(u, v;w, 0) = h0(u, v;w, 0),

which clearly majorizes 〈ζ1, w〉. 184
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(ii) Let us fix w, z ∈ X. Proposition 2.4-(ii) ensures that there exists ζ ∈ ∂Ch(u, v) such 185

that 186

h0(u, v;w, z) = 〈ζ, (w, z)〉.

By (i) we have ζ = (ζ1, ζ2), where ζi ∈ ∂iCh(u, v) (i ∈ {1, 2}), and using the 187

definition of the generalized gradient, we obtain 188

h0(u, v;w, z) = 〈ζ1, w〉 + 〈ζ2, z〉 ≤ h0
1(u, v;w)+ h0

2(u, v; z).
��

Remark 2.2 It is worth to note that in general we have no equality in Proposition 2.8 189

(b). Indeed, let us consider for instance h : R
2 → R, defined by h(u, v) := 190

max{|u|5/2, |v|5/2}. It is clear that h is regular on R
2, but for every α, β > 0, 191

h0(α, α; β, β) = h0
1(α, α; β) = h0

2(α, α; β) = 5α3/2β/2. 192

2.2 Nonsmooth Calculus on Manifolds 193

In this section we present some basic notions and results from the subdifferential calculus 194

on Riemannian manifolds, developed by Azagra et al. [2] and Ledyaev and Zhu [17]. 195

Moreover, following Kristály [15], two subdifferential notions are introduced based on the 196

cut locus, and we establish an analytical characterization of the limiting/Fréchet normal 197

cone on Riemannian manifolds (see Corollary 2.1) which plays a crucial role in the study 198

of Nash-Stampacchia equilibrium points, see Sect. 9.1. Before doing this, we first recall 199

those elements from Riemannian geometry which will be used in the sequel; we mainly 200

follow do Carmo [11]. 201

Let (M, g) be a connected m-dimensional Riemannian manifold, m ≥ 2 and let TM = 202

∪p∈M(p, TpM) and T ∗M = ∪p∈M(p, T ∗pM) be the tangent and cotangent bundles to 203

M. For every p ∈ M , the Riemannian metric induces a natural Riesz-type isomorphism 204

between the tangent space TpM and its dual T ∗pM; in particular, if ξ ∈ T ∗pM then there 205

exists a unique Wξ ∈ TpM such that 206

〈ξ, V 〉g,p = gp(Wξ , V ) for all V ∈ TpM. (2.11)

Instead of gp(Wξ , V ) and 〈ξ, V 〉g,p we shall write simply g(Wξ , V ) and 〈ξ, V 〉g when 207

no confusion arises. Due to (2.11), the elements ξ and Wξ are identified. With the above 208

notations, the norms on TpM and T ∗pM are defined by 209

‖ξ‖g = ‖Wξ‖g =
√
g(Wξ ,Wξ ).
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The generalized Cauchy-Schwartz inequality is also valid, i.e., for every V ∈ TpM and 210

ξ ∈ T ∗pM , 211

|〈ξ, V 〉g | ≤ ‖ξ‖g‖V ‖g. (2.12)

Let ξk ∈ T ∗pk
M , k ∈ N, and ξ ∈ T ∗pM . The sequence {ξk} converges to ξ , denoted by 212

limk ξk = ξ , when pk → p and 〈ξk,W(pk)〉g → 〈ξ,W(p)〉g as k → ∞, for every C∞ 213

vector field W on M . 214

Let h : M → R be a C1 functional at p ∈ M; the differential of h at p, denoted by 215

dh(p), belongs to T ∗pM and is defined by 216

〈dh(p), V 〉g = g(gradh(p), V ) for all V ∈ TpM.

If (x1, . . . , xm) is the local coordinate system on a coordinate neighborhood (Up,ψ) of 217

p ∈ M , and the local components of dh are denoted hi = ∂h
∂xi

, then the local components 218

of gradh are hi = gij hj . Here, gij are the local components of g−1. 219

Let γ : [0, r] → M be a C1 path, r > 0. The length of γ is defined by 220

Lg(γ ) =
∫ r

0
‖γ̇ (t)‖gdt.

For any two points p, q ∈ M , let 221

dg(p, q) = inf{Lg(γ ) : γ is a C1 path joining p and q in M}.

The function dg : M ×M → R is a metric which generates the same topology on M as 222

the underlying manifold topology. For every p ∈ M and r > 0, we define the open ball of 223

center p ∈ M and radius r > 0 by 224

Bg(p, r) = {q ∈ M : dg(p, q) < r}.

Let us denote by ∇ the unique natural covariant derivative on (M, g), also called the 225

Levi-Civita connection. A vector field W along a C1 path γ is called parallel when∇γ̇ W = 226

0. A C∞ parameterized path γ is a geodesic in (M, g) if its tangent γ̇ is parallel along 227

itself, i.e., ∇γ̇ γ̇ = 0. The geodesic segment γ : [a, b] → M is called minimizing if 228

Lg(γ ) = dg(γ (a), γ (b)). 229

Standard ODE theory implies that for every V ∈ TpM , p ∈ M , there exists an open 230

interval IV � 0 and a unique geodesic γV : IV → M with γV (0) = p and γ̇V (0) = V. 231

Due to the ‘homogeneity’ property of the geodesics (see do Carmo [11, p. 64]), we may 232

define the exponential map expp : TpM → M as expp(V ) = γV (1). Moreover, 233

d expp(0) = idTpM. (2.13)
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Note that there exists an open (starlike) neighborhoodU of the zero vectors in TM and 234

an open neighborhood V of the diagonal M × M such that the exponential map V �→ 235

expπ(V )(V ) is smooth and the map π × exp : U → V is a diffeomorphism, where π 236

is the canonical projection of TM onto M. Moreover, for every p ∈ M there exists a 237

number rp > 0 and a neighborhood Ũp such that for every q ∈ Ũp, the map expq is a 238

C∞ diffeomorphism on B(0, rp) ⊂ TqM and Ũp ⊂ expq(B(0, rp)); the set Ũp is called 239

a totally normal neighborhood of p ∈ M . In particular, it follows that every two points 240

q1, q2 ∈ Ũp can be joined by a minimizing geodesic of length less than rp . Moreover, for 241

every q1, q2 ∈ Ũp we have 242

‖ exp−1
q1

(q2)‖g = dg(q1, q2). (2.14)

The tangent cut locus of p ∈ M in TpM is the set of all vectors v ∈ TpM such that 243

γ (t) = expp(tv) is a minimizing geodesic for t ∈ [0, 1] but fails to be minimizing for 244

t ∈ [0, 1+ ε) for each ε > 0. The cut locus of p ∈ M , denoted by Cp , is the image of the 245

tangent cut locus of p via expp. Note that any totally normal neighborhood of p ∈ M is 246

contained into M \ Cp. 247

Let (M, g) be an m-dimensional Riemannian manifold and let f : M → R∪ {+∞} be 248

a lower semicontinuous function with dom(f ) = ∅. The Fréchet-subdifferential of f at 249

p ∈ dom(f ) is the set 250

∂F f (p) = {dh(p) : h ∈ C1(M) and f − h attains a local minimum at p}.

The following properties are adaptations of earlier Euclidean results to Riemannian 251

manifolds. 252

Proposition 2.9 ([2, Theorem 4.3]) Let (M, g) be an m-dimensional Riemannian mani- 253

fold and let f : M → R ∪ {+∞} be a lower semicontinuous function, p ∈dom(f ) = ∅ 254

and ξ ∈ T ∗pM. The following statements are equivalent: 255

(i) ξ ∈ ∂F f (p); 256

(ii) For every chart ψ : Up ⊂M → R
m with p ∈ Up, if ζ = ξ ◦ dψ−1(ψ(p)), we have 257

that 258

lim inf
v→0

(f ◦ ψ−1)(ψ(p) + v)− f (p)− 〈ζ, v〉g
‖v‖ ≥ 0;

(iii) There exists a chart ψ : Up ⊂ M → R
m with p ∈ Up, if ζ = ξ ◦ dψ−1(ψ(p)), then 259

lim inf
v→0

(f ◦ ψ−1)(ψ(p)+ v)− f (p)− 〈ζ, v〉g
‖v‖ ≥ 0.
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In addition, if f is locally bounded from below, i.e., for every q ∈ M there exists a 260

neighborhood Uq of q such that f is bounded from below on Uq , the above conditions 261

are also equivalent to 262

(iv) There exists a function h ∈ C1(M) such that f − h attains a global minimum at p 263

and ξ = dh(p). 264

The limiting subdifferential and singular subdifferential of f at p ∈ M are the sets 265

∂Lf (p) = {lim
k

ξk : ξk ∈ ∂F f (pk), (pk, f (pk))→ (p, f (p))}

and 266

∂∞f (p) = {lim
k

tkξk : ξk ∈ ∂F f (pk), (pk, f (pk))→ (p, f (p)), tk → 0+}.

Proposition 2.10 ([17]) Let (M, g) be a finite-dimensional Riemannian manifold and let 267

f : M → R ∪ {+∞} be a lower semicontinuous function. Then, we have 268

(i) ∂F f (p) ⊂ ∂Lf (p), p ∈ dom(f ); 269

(ii) 0 ∈ ∂∞f (p), p ∈ M; 270

(iii) If p ∈dom(f ) is a local minimum of f , then 0 ∈ ∂F f (p) ⊂ ∂Lf (p). 271

Proposition 2.11 ([17, Theorem 4.8 (Mean Value Inequality)]) Let f : M → R be 272

a continuous function bounded from below, let V be a C∞ vector field on M and let 273

c : [0, 1] → M be a curve such that ċ(t) = V (c(t)), t ∈ [0, 1]. Then for any r < 274

f (c(1)) − f (c(0)), any ε > 0 and any open neighborhood U of c([0, 1]), there exists 275

m ∈ U , ξ ∈ ∂F f (m) such that r < 〈ξ, V (m)〉g . 276

Proposition 2.12 ([17, Theorem 4.13 (Sum Rule)]) Let (M, g) be an m-dimensional 277

Riemannian manifold and let f1, . . . , fH : M → R ∪ {+∞} be lower semicontinuous 278

functions. Then, for every p ∈ M we have either ∂L(
∑H

l=1 fl)(p) ⊂
∑H

l=1 ∂Lfl(p), or 279

there exist ξ∞l ∈ ∂∞fl(p), l = 1, . . . , H, not all zero such that
∑H

l=1 ξ
∞
l = 0. 280

The cut-locus subdifferential of f at p ∈ dom(f ) is defined as 281

∂clf (p) = {ξ ∈ T ∗pM : f (q)− f (p) ≥ 〈ξ, exp−1
p (q)〉g for all q ∈ M \ Cp},

where Cp is the cut locus of the point p ∈ M . Note that M \ Cp is the maximal open 282

set in M such that every element from it can be joined to p by exactly one minimizing 283

geodesic, see Klingenberg [13, Theorem 2.1.14]. Therefore, the cut-locus subdifferential 284
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is well-defined, i.e., exp−1
p (q) makes sense and is unique for every q ∈ M \ Cp. We first 285

prove 286

Theorem 2.4 ([15]) Let (M, g) be a Riemannian manifold and f : M → R ∪ {+∞} be 287

a proper, lower semicontinuous function. Then, for every p ∈ dom(f ) we have 288

∂clf (p) ⊂ ∂Ff (p) ⊂ ∂Lf (p).

Moreover, if f is convex, the above inclusions become equalities. 289

Proof The last inclusion is standard, see Proposition 2.10-(i). Now, let ξ ∈ ∂clf (p), i.e., 290

f (q) − f (p) ≥ 〈ξ, exp−1
p (q)〉g for all q ∈ M \ Cp. In particular, the latter inequality 291

is valid for every q ∈ Bg(p, r) for r > 0 small enough, since Bg(p, r) ⊂ M \ Cp 292

(for instance, when Bg(p, r) ⊂ M is a totally normal ball around p). Now, by choosing 293

ψ = exp−1
p : Bg(p, r)→ TpM in Proposition 2.9-(ii), one has that f (expp v)− f (p) ≥ 294

〈ξ, v〉g for all v ∈ TpM, ‖v‖ < r, which implies ξ ∈ ∂F f (p). 295

Now, we assume in addition that f is convex, and let ξ ∈ ∂Lf (p). We are going 296

to prove that ξ ∈ ∂clf (p). Since ξ ∈ ∂Lf (p), we have that ξ = limk ξk where ξk ∈ 297

∂F f (pk), (pk, f (pk)) → (p, f (p)). By Proposition 2.9-(ii), for ψk = exp−1
pk
: Ũpk → 298

TpkM where Ũpk ⊂M is a totally normal ball centered at p, one has that 299

lim inf
v→0

f (exppk
v)− f (pk)− 〈ξk, v〉g

‖v‖ ≥ 0. (2.15)

Now, fix q ∈ M \ Cp. The latter fact is equivalent to p ∈ M \ Cq , see Klingenberg [13, 300

Lemma 2.1.11]. Since M \Cq is open and pk → p, we may assume that pk ∈ M \Cq , i.e., 301

q and every pointpk is joined by a unique minimizing geodesic. Therefore,Vk = exp−1
pk

(q) 302

is well-defined. Now, let γk(t) = exppk
(tVk) be the geodesic which joins pk and q . Then 303

(2.15) implies that 304

lim inf
t→0+

f (γk(t))− f (pk)− 〈ξk, tVk〉g
‖tVk‖ ≥ 0. (2.16)

Since f is convex, one has that f (γk(t)) ≤ tf (γk(1))+ (1− t)f (γk(0)), t ∈ [0, 1], thus, 305

the latter relations imply that 306

f (q)− f (pk)− 〈ξk, exp−1
pk

(q)〉g
dg(pk, q)

≥ 0.

Since f (pk)→ f (p) and ξ = limk ξk , it yields precisely that 307

f (q)− f (p)− 〈ξ, exp−1
p (q)〉g ≥ 0,

i.e., ξ ∈ ∂clf (p), which concludes the proof. ��
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Remark 2.3 If (M, g) is a Hadamard manifold (i.e., simply connected, complete Rieman- 308

nian manifold with nonpositive sectional curvature), then Cp = ∅ for every p ∈ M; in 309

this case, the cut-locus subdifferential agrees formally with the convex subdifferential in 310

the Euclidean setting. 311

Let K ⊂M be a closed set. Following Ledyaev and Zhu [17], the Fréchet-normal cone 312

and limiting normal cone of K at p ∈ K are the sets 313

NF (p;K) = ∂F δK(p) and NL(p;K) = ∂LδK(p),

where δK is the indicator function of the set K, i.e., δK(q) = 0 if q ∈ K and δK(q) = +∞ 314

if q /∈ K . 315

The following result—which is one of our key tools to study Nash-Stampacchia 316

equilibrium points on Riemannian manifolds—it is know for Hadamard manifolds only, 317

see Li, López and Martín-Márquez [18] and it is a simple consequence of the above 318

theorem. To state this result, we recall that a set K ⊂ M is geodesic convex if every 319

two points p, q ∈ K can be joined by a unique geodesic segment whose image belongs 320

entirely to K. 321

Corollary 2.1 Let (M, g) be a Riemannian manifold, K ⊂ M be a closed, geodesic 322

convex set, and p ∈ K . Then, we have 323

NF (p;K) = NL(p;K) = ∂clδK(p) = {ξ ∈ T ∗pM : 〈ξ, exp−1
p (q)〉g ≤ 0 f or all q ∈ K}.

Proof Applying Theorem 2.4 to the indicator function f = δK , we have that NF (p;K) = 324

NL(p;K) = ∂clδK(p). It remains to compute the latter set explicitly. Since K ⊂ M \ Cp 325

(note that the geodesic convexity of K assumes itself that every two points of K can be 326

joined by a unique geodesic, thus K ∩Cp = ∅) and δK(p) = 0, δK(q) = +∞ for q /∈ K , 327

one has that 328

ξ ∈ ∂clδK(p) ⇔ δK(q)− δK(p) ≥ 〈ξ, exp−1
p (q)〉g for all q ∈ M \ Cp

⇔ 0 ≥ 〈ξ, exp−1
p (q)〉g for all q ∈ K,

which ends the proof. ��

Let U ⊂ M be an open subset of the Riemannian manifold (M, g). We say that a 329

function f : U → R is locally Lipschitz at p ∈ U if there exist an open neighborhood 330

Up ⊂ U of p and a number Cp > 0 such that for every q1, q2 ∈ Up, 331

|f (q1)− f (q2)| ≤ Cpdg(q1, q2).
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The function f : U → R is locally Lipschitz on (U, g) if it is locally Lipschitz at every 332

p ∈ U. 333

Fix p ∈ U , v ∈ TpM , and let Ũp ⊂ U be a totally normal neighborhood of p. If 334

q ∈ Ũp, following [2, Section 5], for small values of |t|, we may introduce 335

σq,v(t) = expq(tw), w = d(exp−1
q ◦ expp)exp−1

p (q)
v.

If the function f : U → R is locally Lipschitz on (U, g), then 336

f 0(p; v) = lim sup
q→p, t→0+

f (σq,v(t))− f (q)

t

is called the Clarke generalized derivative of f at p ∈ U in direction v ∈ TpM , and 337

∂Cf (p) = co(∂Lf (p))

is the Clarke subdifferential of f at p ∈ U, where ‘co’ stands for the convex hull. When 338

f : U → R is a C1 functional at p ∈ U then 339

∂Cf (p) = ∂Lf (p) = ∂Ff (p) = {df (p)}, (2.17)

see [2, Proposition 4.6]. Moreover, when (M, g) is the standard Euclidean space, the 340

Clarke subdifferential and the Clarke generalized gradient agree, see Sect. 2.1. 341

One can easily prove that the function f 0(·; ·) is upper-semicontinuous on TU = 342

∪p∈UTpM and f 0(p; ·) is positive homogeneous and subadditive on TpM , thus convex. 343

In addition, if U ⊂ M is geodesic convex and f : U → R is convex, then 344

f 0(p; v) = lim
t→0+

f (expp(tv)) − f (p)

t
, (2.18)

see Claim 5.4 and the first relation on p. 341 of [2], similarly to Proposition 2.2 on normed 345

spaces. 346

Proposition 2.13 ([17, Corollary 5.3]) Let (M, g) be a Riemannian manifold and let f : 347

M → R ∪ {+∞} be a lower semicontinuous function. Then the following statements are 348

equivalent: 349

(i) f is locally Lipschitz at p ∈ M; 350

(ii) ∂Cf is bounded in a neighborhood of p ∈ M; 351

(iii) ∂∞f (p) = {0}. 352
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Proposition 2.14 Let f, g : M → R ∪ {+∞} be two proper, lower semicontinuous 353

functions. Then, for every p ∈ dom(f ) ∩ dom(g) with ∂clf (p) = ∅ = ∂clg(p) we have 354

∂clf (p)+∂clg(p) ⊂ ∂cl(f+g)(p). Moreover, if both functions are convex and f is locally 355

bounded, the inclusion is equality. 356

Let f : U → R be a locally Lipschitz function and p ∈ U . We consider the Clarke 357

0-subdifferential of f at p as 358

∂0f (p) = {ξ ∈ T ∗pM : f 0(p; exp−1
p (q)) ≥ 〈ξ, exp−1

p (q)〉g for all q ∈ U \ Cp}
= {ξ ∈ T ∗pM : f 0(p; v) ≥ 〈ξ, v〉g for all v ∈ TpM}.

Theorem 2.5 ([15]) Let (M, g) be a Riemannian manifold, U ⊂ M be open, f : U → R 359

be a locally Lipschitz function, and p ∈ U . Then, 360

∂0f (p) = ∂cl(f
0(p; exp−1

p (·)))(p) = ∂L(f
0(p; exp−1

p (·)))(p) = ∂Cf (p).

Proof The proof will be carried out in several steps as follows. 361

Step 1. ∂0f (p) = ∂cl(f
0(p; exp−1

p (·)))(p). 362

It follows from the definitions. 363

Step 2. ∂0f (p) = ∂L(f
0(p; exp−1

p (·)))(p). 364

The inclusion “ ⊂ ” follows from Step 1 and Theorem 2.4. For the converse, 365

we notice that f 0(p; exp−1
p (·)) is locally Lipschitz in a neighborhood of p; indeed, 366

f 0(p; ·) is convex on TpM and expp is a local diffeomorphism on a neighborhood 367

of the origin of TpM . Now, let ξ ∈ ∂L(f
0(p; exp−1

p (·)))(p). Then, ξ = limk ξk 368

where ξk ∈ ∂F (f
0(p; exp−1

p (·)))(pk), pk → p. By Proposition 2.9-(ii), for ψ = 369

exp−1
p : Ũp → TpM where Ũp ⊂ M is a totally normal ball centered at p, one 370

has that 371

lim inf
v→0

f 0(p; exp−1
p (pk)+ v)− f 0(p; exp−1

p (pk)) − 〈ξk((d expp)(exp−1
p (pk))), v〉g

‖v‖ ≥ 0.

(2.19)

In particular, if q ∈ M \Cp is fixed arbitrarily and v = t exp−1
p (q) for t > 0 small, 372

the convexity of f 0(p; ·) and relation (2.19) yield that 373

f 0(p; exp−1
p (q)) ≥ 〈ξk((d expp)(exp−1

p (pk))), exp−1
p (q)〉g.

Since ξ = limk ξk , pk → p and d(expp)(0) = idTpM (see (2.13)), we obtain that 374

f 0(p; exp−1
p (q)) ≥ 〈ξ, exp−1

p (q)〉g,

i.e., ξ ∈ ∂0f (p). This concludes Step 2. 375
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Step 3. ∂0f (p) = ∂Cf (p). 376

First, we prove the inclusion ∂0f (p) ⊂ ∂Cf (p). Here, we follow Borwein 377

and Zhu [3, Theorem 5.2.16], see also Clarke, Ledyaev, Stern and Wolenski [7, 378

Theorem 6.1]. Let v ∈ TpM be fixed arbitrarily. The definition of f 0(p; v) shows 379

that one can choose tk → 0+ and qk → p such that 380

f 0(p; v) = lim
k→∞

f (σqk,v(tk))− f (qk)

tk
.

Fix ε > 0. For large k ∈ N, let ck : [0, 1] → M be the unique geodesic joining 381

the points qk and σqk,v(tk), i.e, ck(t) = expqk (t exp−1
qk

(σqk,v(tk))) and let Uk = 382

∪t∈[0,1]Bg(ck(t), εtk) its (εtk)−neighborhood. Consider also a C∞ vector field V 383

on Uk such that ċk(t) = V (ck(t)), t ∈ [0, 1]. Now, applying Proposition 2.11 384

with rk = f (ck(1))− f (ck(0))− εtk , one can find mk = mk(tk, qk, v) ∈ Uk and 385

ξk ∈ ∂F f (mk) such that rk < 〈ξk, V (mk)〉g . The latter inequality is equivalent to 386

f (σqk,v(tk))− f (qk)

tk
< ε + 〈ξk, V (mk)/tk〉g .

Since f is locally Lipschitz, ∂F f is bounded in a neighborhood of p, see 387

Proposition 2.13, thus the sequence {ξk} is bounded on TM . We can choose 388

a convergent subsequence (still denoting by {ξk}), and let ξL = limk ξk. From 389

construction, ξL ∈ ∂Lf (p) ⊂ ∂Cf (p). Since mk → p, according to (2.13), we 390

have that limk→∞ V (mk)/tk = v. Thus, letting k → ∞ in the latter inequality, 391

the arbitrariness of ε > 0 yields that 392

f 0(p; v) ≤ 〈ξL, v〉g.

Now, taking into account that f 0(p; v) = max{〈ξ, v〉g : ξ ∈ ∂0f (p)}, we obtain 393

that 394

max{〈ξ, v〉g : ξ ∈ ∂0f (p)} = f 0(p; v) ≤ 〈ξL, v〉g ≤ sup{〈ξ, v〉g : ξ ∈ ∂Cf (p)}.

Hörmander’s result (see [7]) shows that this inequality in terms of support 395

functions of convex sets is equivalent to the inclusion ∂0f (p) ⊂ ∂Cf (p). 396

For the converse, it is enough to prove that ∂Lf (p) ⊂ ∂0f (p) since the latter 397

set is convex. Let ξ ∈ ∂Lf (p). Then, we have ξ = limk ξk where ξk ∈ ∂F f (pk) 398

and pk → p. A similar argument as in the proof of Theorem 2.4 (see relation 399

(2.16)) gives that for every q ∈ M \ Cp and k ∈ N, we have 400

lim inf
t→0+

f (exppk
(t exp−1

pk
(q)))− f (pk)− 〈ξk, t exp−1

pk
(q)〉g

‖t exp−1
pk

q‖ ≥ 0.
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Since ‖ exp−1
pk

q‖ = dg(pk, q) ≥ c0 > 0, by the definition of the Clarke 401

generalized derivative f 0 and the above inequality, one has that 402

f 0(pk; exp−1
pk

(q)) ≥ 〈ξk, exp−1
pk

(q)〉g .

The upper semicontinuity of f 0(·; ·) and the fact that ξ = limk ξk imply that 403

f 0(p; exp−1
p (q)) ≥ lim sup

k

f 0(pk; exp−1
pk

(q)) ≥ lim sup
k

〈ξk, exp−1
pk

(q)〉g = 〈ξ, exp−1
p (q)〉g,

i.e., ξ ∈ ∂0f (p), which concludes the proof of Step 3. 404��

2.3 Subdifferentiability of Integral Functionals 405

This section is concerned with the study of the Clarke subdifferential of integral func- 406

tionals. First we consider the case of functionals defined on function spaces (Lebesque or 407

Orlicz) on a bounded domain, see Clarke [6] and Costea et al. [9]. In the case of Lebesgue 408

spaces on unbounded domains we present a result due to Kristály [14]. 409

For this let T a positive complete measure space with μ(T ) < ∞. We denote by 410

Lp(T ,Rm) the space of p-integrable functions, where p ≥ 1, m ≥ 1. 411

Let j : T ×R
m → R be a function such that j (·, y) : T → R is measurable for every 412

y ∈ R and satisfies either 413

|j (x, y1)− j (x, y2)| ≤ k(x)|y1 − y2|, ∀y1, y2 ∈ R
m and a.e. x ∈ T , (2.20)

for a function k ∈ Lq(T ) with 1
p
+ 1

q
= 1, or j (x, ·) : Rm → R is locally Lipschitz for 414

a.e. x ∈ T and there is a constant c > 0 such that 415

|ζ | ≤ c(1+ |y|p−1), for a.e. x ∈ T ,∀y ∈ R
m,∀ζ ∈ ∂2

Cj (x, y). (2.21)

The notation |·| used in (2.20), (2.21) stands for the Euclidian norm in R
N , while ∂2

Cj (x, y) 416

in (2.21) denotes the generalized gradient of j with respect to the second variable. 417

We are now in position to handle the functional J : Lp(T ,Rm)→ R defined by 418

J (u) :=
∫
T

j (x, u(x)) dμ, ∀u ∈ Lp(T ,Rm), (2.22)

The following two cases will be of particular interest in applications: 419

(i) T := � and μ := dx for some bounded domain � ⊂ R
N ; 420

(ii) T := ∂� and μ := dσ . 421
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Theorem 2.6 ([1]) Under either (2.20) or (2.21) the function J : Lp(T ,Rm) → R 422

defined in (2.22) is Lipschitz continuous on bounded subsets of Lp(T , R
m) and satisfies 423

∂CJ (u) ⊂
∫
T

∂2
Cj (x, u(x)) dμ, ∀u ∈ Lp(T ,Rm), (2.23)

in the sense that for every ζ ∈ ∂CJ (u) there exists ξ ∈ Lq(T ,Rm), such that 424

〈ζ, v〉 =
∫
T

ξ(x)v(x) dμ, ∀v ∈ Lp(T ,Rm),

and 425

ξ(x) ∈ ∂2
Cj (x, u(x)), for a.e. x ∈ T .

Moreover, if j (x, ·) is regular at u(x) for a.e. x ∈ T , then J is regular at u and (2.23) 426

holds with equality. 427

Proof The first step of the proof is to check that J is Lipschitz continuous. Suppose that 428

(2.20) is verified. Then using the Hölder inequality it is straightforward to establish that J 429

is Lipschitz continuous on Lp(T ,Rm). 430

Assume now that (2.21) holds. For a fixed number r > 0 and arbitrary elements u, v ∈ 431

Lp(T ,Rm) with ‖u‖Lp < r, ‖v‖Lp < r we have 432

|J (u)− J (v)| ≤
∫
T

|j (x, u(x))− j (x, v(x))| dμ

≤ c1

∫
T

(1+ |u(x)|p−1 + |v(x)|p−1)|u(x)− v(x)| dμ

≤ c1

(∫
T

(
1+ |u(x)|p−1 + |v(x)|p−1

) p
p−1

dμ

) p−1
p

‖u− v‖Lp

≤ c2

(∫
T

(1+ |u(x)|p + |v(x)|p) dμ

)p−1
p ‖u− v‖Lp

≤ c3‖u− v‖Lp ,

with the constants c1, c2, c3 > 0 where c3 depends on r . The inequalities above have 433

been derived by using the Lebourg’s mean value theorem, i.e. Theorem 2.1, assumption 434

(2.21) and Hölder inequality. The Lipschitz property on bounded sets for J is thus verified. 435

The map x �→ j0
2 (x, u(x); v(x)) is measurable on T . Since j (x, ·) is continuous, we 436

may express j0
2 (x, u(x); v(x)) as the upper limit of 437

j (x, y + λv(x))− j (x, y)

λ
,
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where λ↘ 0 taking rational value and y → u(x) taking values in a countable dense subset 438

of R
m. Thus j0

2 (x, u(x); v(x)) is measurable as the “countable limsup” of measurable 439

functions of x. 440

The next task is to prove (2.23). To this end we are firstly concerned with the proof of 441

the inequality 442

J 0(u; v) ≤
∫
T

j0
2 (x, u(x); v(x)) dμ, ∀u, v ∈ Lp(T , R

m). (2.24)

Assuming (2.20), it is permitted to apply Fatou’s lemma that leads directly to (2.24). 443

Suppose now that the assumption (2.21) is satisfied. Thus using again Theorem 2.1 we 444

obtain 445

j (x, u(x)+ λv(x))− j (x, u(x))

λ
= 〈ξx , v(x)〉,

for some ξx ∈ ∂Cj (x, u∗(x)) and u∗ ∈ [u(x), u(x) + λv(x)]. We can now also use 446

Fatou’s lemma to obtain (2.24). 447

The final step, that we only sketch is to pass from (2.24) to (2.23). 448

Here the essential thing is to observe that, in view of (2.24), any ζ ∈ ∂CJ (u) belongs 449

to the subdifferential at 0 ∈ Lp(T ,Rm) (in the sense of convex analysis) of the convex 450

function on Lp(T ,Rm) mapping v ∈ Lp(T ,Rm) to 451

∫
T

j0
2 (x, u(x); v(x)) dμ ∈ R. (2.25)

The properties and the subdifferentiation in Ioffe and Levin [12] applied to (2.25) yield 452

(2.23). Finally, we are dealing with the regularity assertion in the statement. Under either 453

of hypotheses (2.20) or (2.21) we may apply Fatou’s lemma to get, if the regularity of 454

j (x, ·) at u(x) is imposed, 455

lim inf
λ↘0

J (u+ λv)− J (u)

λ
≥

∫
T

j
′
2(x, u(x); v(x)) dμ =

∫
T

j0
2 (x, u(x); v(x)) dμ.

Combining with (2.24) it is readily seen that J
′
(u; v) exists and J

′
(u; v) = J 0(u; v), 456

whenever v ∈ Lp(T , R
m), which means the regularity of J at u. Moreover we induced 457

the equality: 458

J 0(u; v) =
∫
T

j ′2(x, u(x); v(x)) dμ, v ∈ Lp(T , R
m).
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If we combine the right-hand side (2.23), the regularity assumption for j (x, ·) with the 459

above formula we get 460

〈ζ, v〉 =
∫
T

〈ξ(x), v(x)〉 dμ ≤ J 0(u; v), ∀v ∈ Lp(T , R
m),

therefore ζ ∈ ∂CJ (u). This completes the proof. ��

The next result appears in the paper of Costea et al. [9] and it is a generalization of the 461

above result of Aubin-Clarke in the sense that Orlicz spaces are taken instead of Lebesgue 462

space. 463

For this let ϕ : R→ R be an admissible function which satisfies 464

1 < ϕ− ≤ ϕ+ <∞, (2.26)

let � the N-function generated by ϕ and assume h : � × R → R is a function which is 465

measurable with respect to the first variable and satisfies one of the following conditions: 466

(h1) there exists α ∈ L�∗(�) s.t. for a.e. x ∈ � and all t1, t2 ∈ R 467

|h(x, t1)− h(x, t2)| ≤ α(x)|t1 − t2|;

(h2) there exist c > 0 and β ∈ L�∗(�) s.t. for a.e. x ∈ � and all t ∈ R a 468

|ξ | ≤ β(x)+ cϕ(|t|), ∀ξ ∈ ∂2h(x, t).

Define next H : L�(�)→ R via the instruction 469

H(u) :=
∫
�

h(x, u(x)) dx. (2.27)

Theorem 2.7 ([9]) Assume either (h1) or (h2) holds. Then, the functional H defined in 470

(2.27) is Lipschitz continuous on bounded domains of L�(�) and 471

∂CH(u) ⊆
∫
�

∂2
Ch(x, u(x)) dx, ∀u ∈ L�(�), (2.28)

in the sense that for every ξ ∈ ∂CH(u) there exists ζ ∈ L�∗(�) such that ζ(x) ∈ 472

∂2
Ch(x, u(x)) for a.e. x ∈ � and 473

〈ξ, v〉 =
∫
�

ζ(x)v(x) dx, ∀v ∈ L�(�).
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Moreover, if h(x, ·) is regular at u(x) for a.e. x ∈ �, then H is regular at u and (2.28) 474

holds with equality. 475

Proof LetM be a bounded domain of L�(�) and let u1, u2 ∈M. If (h1) holds, then the 476

Hölder-type inequality for Orlicz spaces shows that 477

|H(u1)−H(u2)| ≤ 2|α|�∗ |u1 − u2|�,

hence H is Lipschitz continuous onM. 478

If (h2) is assumed, then Lebourg’s Mean Value Theorem ensures that there exist w ∈ 479

L�(�) and ζ̃ ∈ L�∗(�) such that w(x) lies on the open segment of endpoints u1(x) and 480

u2(x), ζ̃ (x) ∈ ∂Ch(x,w(x)) for a.e. x ∈ � and 481

h(x, u1(x))− h(x, u2(x)) = ζ̃ (x) (u1(x)− u2(x)) , for a.e. x ∈ �.

According to Clément et al. [8, Lemma A.5], 482

w ∈ L�(�)→ ϕ(|w|) ∈ L�∗(�),

which combined with the Hölder-type inequality for Orlicz spaces leads to 483

|H(u1)−H(u2)| ≤
∫
�

|h(x, u1(x))− h(x, u2(x))| dx =
∫
�

|ζ̃ (x)||u1(x)− u2(x)| dx

≤
∫
�

(β(x)+ cϕ(|w(x)|)) |u1(x)− u2(x)| dx
≤ 2 (|β|�∗ + c |ϕ(|w|)|�∗) |u1 − u2|�.

In order to prove that H is Lipschitz continuous on M we only need to show that 484

|ϕ(|w|)|�∗ is bounded above by a constant independent of u1 and u2. Clearly we may 485

assume |ϕ(|w|)|�∗ > 1. The fact that (see Clément et al. [8, Corollary C.7]) 486

1

ϕ+
+ 1

(ϕ−1)−
= 1,

ensures that 487

1 < |ϕ(|w|)|�∗ ≤ |ϕ(|w|)|
ϕ+

ϕ+−1
�∗ = |ϕ(|w|)|(ϕ−1)−

�∗ ≤
∫
�

�∗(ϕ(|w|))dx.

488
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Using Young’s inequality, we have 489

�∗(ϕ(t)) ≤ �(t)+�∗(ϕ(t)) = tϕ(t) ≤
∫ 2t

t

ϕ(s) ds ≤ �(2t),

and from the 
2-condition we get 490

∫
�

�∗(ϕ(|w|)) dx ≤ c1 + c2

∫
�

�(|w|) dx.

Fix M > 1 such that |v|� ≤ M , for all v ∈ M. Obviously |w|� ≤ M and the above 491

estimates show that 492

|ϕ(w)|�∗ ≤ c1 + c2M
ϕ+ .

The definition of the generalized directional derivative shows that the map x �→ 493

h0(x, u(x); v(x)) is measurable on �. Moreover, each of the conditions (h1), (h2) implies 494

the integrability of h0(x, u(x); v(x)). Let us check now that 495

H 0(u; v) ≤
∫
�

h0(x, u(x); v(x)) dx,∀u, v ∈ L�(�). (2.29)

If (h1) is assumed, then (2.29) follows directly from Fatou’s lemma. On the other hand, if 496

we assume (h2) to hold, then by Lebourg’s mean value theorem we can write 497

h(x, u(x)+ tv(x)) − h(x, u(x))

t
= ζ(x)v(x),

for some ζ ∈ L�∗(�) satisfying ζ(x) ∈ ∂2h(x, ũ(x)) for a.e x ∈ �, with ũ(x) lying in 498

the open segment of endpoints u(x) and u(x)+ tv(x), respectively. Again, Fatou’s lemma 499

implies (2.29). 500

In order to prove (2.28) let us fix ξ ∈ ∂2H(u). Then (see, e.g., Carl et al. [4, Remark 501

2.170]) ξ ∈ ∂H 0(u; ·)(0), where ∂ stands for the subdifferential in the sense of convex 502

analysis. The latter and relation (2.29) show that ξ also belongs to the subdifferential at 0 503

of the convex map 504

L�(�) � v �→
∫
�

h0(x, u(x); v(x)) dx,

and (2.28) follows from the subdifferentiation under the integral for convex integrands 505

(see, e.g., Denkowski et al. [10]). 506
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For the final part of the theorem, let us assume that h(x, ·) is regular at u(x) for a.e. 507

x ∈ �. Then, we can apply Fatou’s lemma to get 508

H 0(u; v) = lim sup
w→u

t↘0

H(w + tv) −H(w)

t
≥ lim inf

t↘0

H(u+ tv)−H(u)

t

≥
∫
�

lim inf
t↘0

h(x, u(x)+ tv(x)) − h(x, u(x))

t
dx

=
∫
�

h′(x, u(x); v(x)) dx =
∫
�

h0(x, u(x); v(x)) dx ≥ H 0(u; v),

which shows that the directional derivative H ′(u; v) exists and 509

H ′(u; v) = H 0(u; v) =
∫
�

h0(x, u(x); v(x))dx, ∀v ∈ L�(�).

��

In the last part of this section we prove an inequality for integral functionals defined on 510

unbounded domain. 511

Let f : RN × R → R be a measurable function which satisfies the following growth 512

conditions: 513

There exist c > 0 and r ∈ (p, p∗) such that 514

(f1) |f (x, s)| ≤ c(|s|p−1 + |s|r−1), for a.e. x ∈ R
N , ∀s ∈ R; 515

(f ′1) the embedding X ↪→ Lr(RN) is compact. 516

Let F : RN ×R→ R be the function defined by 517

F(x, t) :=
∫ t

0
f (x, s)ds, for a.e. x ∈ R

N, ∀s ∈ R. (2.30)

For a.e. x ∈ R
N and for every t, s ∈ R, we have: 518

|F(x, t)− F(x, s)| ≤ c1|t − s|
(
|t|p−1 + |s|p−1 + |t|r−1 + |s|r−1

)
, (2.31)

where c1 is a constant which depends only on c, p and r. Therefore, the function F(x, ·) 519

is locally Lipschitz and we can define the generalized directional derivative, i.e., 520

F 0
2 (x, t; s) = lim sup

τ→t,λ↘0

F(x, τ + λs)− F(x, τ )

λ
, (2.32)

for every t, s ∈ R and a.e. x ∈ R
N . 521
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Remark 2.4 The following two propositions remain true under the growth condition (f1), 522

but we observe that it is enough to consider only the case when the function f has the 523

growth |f (x, s)| ≤ c|s|p−1 for a.e. x ∈ R
N,∀s ∈ R. For the sake of simplicity we denote 524

by h(s) = c|s|p−1 and in the sequel we basically use only the fact that the function h is 525

convex, h(0) = 0, and monotone increasing on (0,∞). 526

Proposition 2.15 The function � : X → R, defined by �(u) := ∫
RN F (x, u(x))dx is 527

locally Lipschitz on bounded sets of X. 528

Proof For every u, v ∈ X, with ‖u‖, ‖v‖ < r , we have 529

|�(u)−�(v)| ≤
∫
RN

|F(x, u(x))− F(x, v(x))|dx

≤ c1

∫
RN

|u(x)− v(x)|[h(|u(x)|)+ h(|v(x)|)]dx

≤ c2

(∫
RN

|u(x)− v(x)|pdx

) 1
p

[(∫
RN

(h(|u(x)|)p′dx
) 1

p′

+
(∫

RN

(h(|v(x)|)p′dx
) 1

p′
dx

]

≤ c2‖u− v‖p[‖h(|u|)‖p′ + ‖h(|v|)‖p′)
≤ C(u, v)‖u − v‖,

where 1
p
+ 1

p′ = 1 and we used the Hölder inequality, the subadditivity of the norm ‖ · ‖p′
and the fact that the inclusion X ↪→ Lp(RN) is continuous. C(u, v) is a constant which
depends only on u and v. ��

Proposition 2.16 If the condition (f1) holds, then for every u, v ∈ X, we have 530

�0(u; v) ≤
∫
RN

F 0
2 (x, u(x); v(x)) dx. (2.33)

Proof Due to Remark 2.4, it suffices to prove the proposition for a such function f which 531

satisfies only the growth condition |f (x, s)| ≤ c|s|p−1. Let us fix the elements u, v ∈ X. 532

The function F(x, ·) is locally Lipschitz and therefore continuous. Thus F 0
2 (x, u(x); v(x)) 533

can be expressed as the upper limit of 534

F(x, y + tv(x))− F(x, y)

t
,
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where t ↘ 0 takes rational values and y → u(x) takes values in a countable subset 535

of R. Therefore, the map x �→ F 0
2 (x, u(x); v(x)) is measurable as the “countable 536

limsup” of measurable functions in x. From condition (f1) we get that the function 537

x �→ F 0
2 (x, u(x); v(x)) is from L1(RN). 538

Using the fact that the Banach space X is separable, there exists a sequence wn ∈ X 539

with ‖wn − u‖ → 0 and a real number sequence tn → 0+, such that 540

�0(u; v) = lim
n→∞

�(wn + tnv)−�(wn)

tn
. (2.34)

Since the inclusion X ↪→ Lp(RN) is continuous, we get ‖wn−u‖p → 0. In particular, 541

there exists a subsequence of {wn}, denoted in the same way, such that wn(x)→ u(x) a.e. 542

x ∈ R
N . Now, let ϕn : RN → R ∪ {+∞} be the function defined by 543

ϕn(x) = −F(x,wn(x)+ tnv(x))− F(x,wn(x))

tn

544+c1|v(x)|[h(|wn(x)+ tnv(x)|)+ h(|wn(x)|)].

We see that the functions ϕn are measurable and non-negative. If we apply Fatou’s 545

lemma, we get 546

∫
RN

lim inf
n→∞ ϕn(x) dx ≤ lim inf

n→∞

∫
RN

ϕn(x) dx.

This inequality is equivalent with 547

∫
RN

lim sup
n→∞

[−ϕn(x)] dx ≥ lim sup
n→∞

∫
RN

[−ϕn(x)] dx. (2.35)

For the sake of simplicity we introduce the following notations: 548

(i) ϕ1
n(x) := F(x,wn(x)+tnv(x))−F(x,wn(x))

tn
; 549

(ii) ϕ2
n(x) = c1|v(x)|[h(|wn(x)+ tnv(x)|)+ h(|wn(x)|)]. 550

With these notations, we have ϕn(x) = −ϕ1
n(x) + ϕ2

n(x). Now we prove the existence of 551

the limit b = limn→∞
∫
RN ϕ2

n(x) dx. Since ‖wn − u‖p → 0, in particular, there exists a 552

positive function g ∈ Lp(RN), such that |wn(x)| ≤ g(x) a.e. x ∈ R
N . Considering that 553

the function h is monotone increasing on positive numbers, we get 554

|ϕ2
n(x)| ≤ c1|v(x)|[h(g(x)+ |v(x)|)+ h(g(x))], a.e. x ∈ R

N .
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Moreover, ϕ2
n(x) → 2c1|v(x)|h(|u(x)|) for a.e. x ∈ R

N . Thus, using the Lebesque 555

dominated convergence theorem, we have 556

b = lim
n→∞

∫
RN

ϕ2
n(x) dx =

∫
RN

2c1|v(x)|h(|u(x)|) dx. (2.36)

If we denote by I1 = lim supn→∞
∫
RN [−ϕn(x)] dx, then using (2.34) and (2.36), we have 557

I1 = lim sup
n→∞

∫
RN

[−ϕn(x)] dx = �0(u; v)− b. (2.37)

In the next we estimate the expression I2 =
∫
RN lim supn→∞[−ϕn(x)] dx. We have the 558

following inequality: 559

∫
RN

lim sup
n→∞

ϕ1
n(x) dx −

∫
RN

lim
n→∞ ϕ2

n(x) dx ≥ I2. (2.38)

Using the fact that wn(x)→ u(x) a.e. x ∈ R
N and tn → 0+, we get 560

∫
RN

lim
n→∞ ϕ2

n(x) dx = 2c1

∫
RN

|v(x)|h(|u(x)|) dx.

On the other hand, we have 561

∫
RN

lim sup
n→∞

ϕ1
n(x) dx ≤

∫
RN

lim sup
y→u(x), t→0+

F(x, y + tv(x))− F(x, y)

t
dx

562

=
∫
RN

F 0
2 (x, u(x); v(x)) dx.

Using the relations (2.35), (2.37), (2.38) and the above estimations we obtain the desired
result. ��
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9. N. Costea, G. Moroşanu, C. Varga, Weak solvability for Dirichlet partial differential inclusions 579

in Orlicz-Sobolev spaces. Adv. Diff. Equ. 23, 523–554 (2018) 580

10. Z. Denkowski, S. Migorski, N.S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory 581

(Kluwer Academic Publishers, Berlin, 2003) 582

11. M.P. do Carmo, Riemannian Geometry. Mathematics: Theory & Applications (Birkhäuser 583

Boston Inc., Boston, 1992). Translated from the second Portuguese edition by Francis Flaherty 584

12. A.D. Ioffe, V.L. Levin, Subdifferentials of Convex Functions. Trans. Moscow Math. Soc. 26, 585

1–72 (1972) 586

13. W.P.A. Klingenberg, Riemannian Geometry, vol. 1. De Gruyter Studies in Mathematics, 2nd edn. 587

(Walter de Gruyter & Co., Berlin, 1995) 588

14. A. Kristály, Infinitely many radial and non-radial solutions for a class of hemivariational 589

inequalities. Rocky Mount. J. Math. 35, 1173–1190 (2005) 590

15. A. Kristály, Nash-type equilibria on Riemannian manifolds: a variational approach. J. Math. 591

Pures Appl. (9) 101, 660–688 (2014) 592

16. G. Lebourg, Valeur moyenne pour gradient généralisé. C. R. Math. Acad. Sci. Paris 281, 795– 593

797 (1975) 594

17. Y.S. Ledyaev, Q.J. Zhu, Nonsmooth analysis on smooth manifolds. Trans. Amer. Math. Soc. 359, 595

3687–3732 (2007) 596

18. C. Li, G. López, V. Martín-Márquez, Monotone vector fields and the proximal point algorithm 597

on Hadamard manifolds. J. Lond. Math. Soc. (2) 79, 663–683 (2009) 598

19. D. Motreanu, P.D. Panagiotopoulos, Minimax Theorems and Qualitative Properties of the 599

Solutions of Hemivariational Inequalities and Applications, vol. 29. Nonconvex Optimization 600

and its Applications (Kluwer Academic Publishers, Boston, 1999) 601

20. Z. Naniewicz, P.D. Panagiotopoulos, Mathematical Theory of Hemivariational Inequalities and 602

Applications (Marcel Dekker, New York, 1995) 603



AUTHOR QUERIES

AQ1. References “[5, 19, 20] ” are only cited in the abstract and not in the text. Please
introduce the citations in the text.

AQ2. The citation of Refs. “[4–6, 15, 17, 19, 20]” are not allowed in the abstract section
hence the same has been modified as per style. Please check, and correct if
necessary.



1

32Critical Points, Compactness Conditions and 3

Symmetric Criticality 4

3.1 Locally Lipschitz Functionals 5

In 1981, Chang [1] used the properties of the Clarke subdifferential to develop a critical 6

point theory for locally Lipschitz functionals that are not necessarily differentiable. The 7

main details and notions are given below. 8

Proposition 3.1 ([1]) Let f : X → R be a locally Lipschitz function. Then the function 9

λf : X → R defined by λf (u) := infζ∈∂Cf (u) ‖ζ‖∗, is well defined and it is lower 10

semicontinuous. 11

Proof Since ∂Cf (u) is a nonempty, convex and weak∗ compact subset of X∗ and the 12

function ζ �→ ‖ζ‖∗ is weakly lower semicontinuous and bounded below, it follows that 13

for every u0 ∈ X there exists ζ0 ∈ ∂Cf (u0) such that 14

‖ζ0‖∗ = inf
ζ∈∂Cf (u0)

‖ζ‖∗.

Now, we prove that the function u �→ λf (u) is lower semicontinuous. Fix u0 ∈ X, 15

arbitrary. Arguing by contradiction, there exist sequences {un} ⊂ X and {ζn} ⊂ X∗ such 16

that 17

un → u0, lim inf
n→∞ λf (un) < λf (u0), ζn ∈ ∂Cf (un) and ‖ζn‖∗ = λf (un).

18
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54 3 Critical Points, Compactness Conditions and Symmetric Criticality

Using the fact that the set valued map u �→ ∂Cf (u) is weak∗-upper semicontinuous we 19

choose a subsequence {ζnk } such that ζnk ⇁ ζ0 ∈ ∂Cf (u0). But 20

lim inf
k→∞ ‖ζnk‖∗ ≥ ‖ζ0‖∗ ≥ λf (u0),

which is a contradiction. ��

Definition 3.1 ([1]) Let f : X→ R be a locally Lipschitz function. We say that u ∈ X is 21

a critical point of f , if λf (u) = 0, or equivalently 0 ∈ ∂Cf (u). 22

Proposition 3.2 If u ∈ X is a local minimum or maximum of the locally Lipschitz function 23

f : X→ R, then u is a critical point of f. 24

Proof Using Proposition 2.5-(i) for λ = −1 we see that it suffices to consider the case 25

when the point u ∈ X is a local minimum. Then, for sufficiently small t > 0, f (u+ tv) ≥ 26

f (u). Thus 27

f 0(u; v) ≥ lim sup
t↘0

f (u+ tv) − f (u)

t
≥ 0,

which ensures that 0 ∈ ∂Cf (u). ��

A sequence {un} ⊂ X is called Palais-Smale sequence for f if λf (un)→ 0 as n→∞. 28

So a Palais-Smale sequence is a sequence of “almost critical points” and it is readily seen 29

that any accumulation point of such a sequence is a critical point f . It is well-known that 30

Palais-Smale sequences do not necessarily lead to critical points, therefore the following 31

compactness condition is usually imposed. 32

Definition 3.2 Let f : X → R be a locally Lipschitz functional. We say f satisfies 33

the Palais-Smale condition if any Palais-Smale sequence {un} ⊂ X such that {f (un)} is 34

bounded possesses a (strongly) convergent subsequence. 35

Sometimes it is useful to work with weaker compactness conditions, such as the Cerami 36

condition, given below. 37

Definition 3.3 Let f : X → R be a locally Lipschitz functional. We say f satisfies the 38

Cerami condition at level c ∈ R (in short, (C)c-condition) if any sequence {un} ⊂ R 39

satisfying 40

(i) f (un)→ c as n→∞; 41

(ii) (1+ ‖un‖)λf (un)→ 0 as n→∞, 42
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possesses a (strongly) convergent subsequence. If this holds for every level c ∈ R, then we 43

simply say that f satisfies the Cerami condition (in short, (C)-condition). 44

Remark 3.1 If f ∈ C1(X,R), then it is readily seen that f is locally Lipschitz and 45

λf (u) = ‖f ′(u)‖∗. Then u is a critical point of f if and only if f ′(u) = 0, i.e., the critical 46

point in the sense of Chang reduces to the usual notion of critical point. Also, the (PS)c 47

and (C)c compactness conditions reduce to their counterparts from smooth analysis. 48

3.2 Szulkin Functionals 49

Let X be a real Banach space and I a functional on X satisfying the structure hypothesis 50

(see Szulkin [10]): 51

(H) I := ϕ + ψ , where ϕ ∈ C1(X,R) and ψ : X → (−∞,+∞] is proper, l.s.c. and 52

convex. 53

Definition 3.4 ([10]) A point u ∈ X is said to be critical point of I if u ∈ D(ψ) and if it 54

satisfies the inequality 55

〈ϕ′(u), v − u〉 + ψ(v) − ψ(u) ≥ 0, ∀v ∈ X. (3.1)

Note that X can be replaced by D(ψ) in (3.1). Now, we recall some basic facts on the 56

functionals which verify the structure hypothesis (H). Here and hereafter such functionals 57

will be called Szulkin functionals. 58

Remark 3.2 The inequality (3.1) can be formulated equivalently as 59

−ϕ′(u) ∈ ∂ψ(u).

A number c ∈ R such that I−1(c) contains a critical point will be called a critical value. 60

We shall use the following notations: 61

K = {u ∈ X : u is critical point of I };
62

Ic = {u ∈ X : I (u) ≤ c}, Kc = {u ∈ K : I (u) = c}.

Proposition 3.3 If I satisfies (H), each local minimum is a critical point of I . 63
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Proof Let u be a local minimum of I . Using convexity of ψ it follows that for small t > 0, 64

0 ≤ I ((1 − t)u+ tv) − I (u) = ϕ(u+ t (v − u))− ϕ(u)+ ψ((1 − t)u+ tv) − ψ(u)

65

≤ ϕ(u+ t (v − u))− ϕ(u)+ t (ψ(v) − ψ(u)).

Dividing by t and letting t → 0 we obtain (3.1). ��

Definition 3.5 ([10]) We say that I satisfies the Palais-Smale compactness condition at 66

level c, denoted (PS)c , if any sequence {un} ⊂ X satisfying 67

(i) I (un)→ c ∈ R; 68

(ii) there exists εn ⊂ R, εn ↘ 0 such that 69

〈ϕ′(un), v − un〉 + ψ(v) − ψ(un) ≥ −εn‖v − un‖, ∀v ∈ X; (3.2)

possesses a (strongly) convergent subsequence. 70

As before, a sequence satisfying (i) and (ii) will be called Palais-Smale sequence. If 71

(PS)c holds for every c ∈ R we say that I satisfies the Palais-Smale condition, denoted 72

by (PS). 73

It will be proved in the sequel that condition (PS)c can be also formulated as follows: 74

(PS)′c : Any sequence {un} ⊂ X satisfying: 75

(i) I (un)→ c ∈ R; 76

(ii) there exists ζn ∈ X∗, such that ζn → 0 in X∗ and 77

〈ϕ′(un), v − un〉 + ψ(v) − ψ(un) ≥ 〈ζn, v − un〉; (3.3)

possesses a convergent subsequence. 78

Lemma 3.1 Let X be a real Banach space and χ : X → (−∞,+∞] a l.s.c. convex 79

functional with χ(0) = 0. If 80

χ(u) ≥ −‖u‖, ∀u ∈ X,

then there exists ζ ∈ X∗ such that ‖ζ‖ ≤ 1 and 81

χ(u) ≥ 〈ζ, u〉, ∀u ∈ X.

Proposition 3.4 Conditions (PS)c and (PS)′c are equivalent. 82
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Proof It suffices to prove that (3.2) and (3.3) are equivalent; it is clear that (3.3) implies 83

(3.2), so suppose that (3.2) is satisfied. 84

Let u := v − un and 85

χ(u) := 1

εn

[〈ϕ′(un), u〉 + ψ(u + un)− ψ(un)
]
.

Then (3.2) is actually χ(u) ≥ −‖u‖ for all u ∈ X. According to Lemma 3.1 there is a 86

ζn ∈ X∗ with ‖ζn‖ ≤ 1 and χ(u) ≥ 〈ζn, u〉. Choosing ζn = εnζn one has 87

〈ϕ′(un), v − un〉 + ψ(v) − ψ(un)

εn
≥

〈
ζn

εn
, v − un

〉
.

Hence (3.3) is satisfied and ζn → 0 because εn → 0. ��

Proposition 3.5 Suppose that I satisfies (H) and (PS)c and let {un} Palais-Smale 88

sequence. If u is an accumulation point of {un}, then u ∈ Kc. In particular, Kc is a 89

compact set. 90

Proof We may assume that un → u. Passing to the limit in (3.2) and using the fact that
limn→∞ ψ(un) ≥ ψ(u), we obtain (3.1). Hence u ∈ K . Moreover, since the inequality
(3.1) cannot be strict for v = u, limn→∞ ψ(un) = ψ(u). Consequently, I (un)→ I (u) =
c and u ∈ Kc. If {un} ⊂ Kc, then I (un) = c and (3.2) is satisfied with εn = 0. It follows
that a subsequence of {un} converges to some u ∈ X. By the first part of the proposition,
u ∈ Kc. Hence Kc is compact. ��

3.3 Motreanu-Panagiotopoulos Functionals 91

In this subsection we present some results from the critical point theory for Motreanu- 92

Panagiotopoulos functionals (see [7]), i.e., functionals satisfying the structure hypothesis: 93

(H ′) I := h + ψ, with h : X → R locally Lipschitz and ψ : X → (−∞,+∞] convex, 94

proper and l.s.c. 95

Definition 3.6 ([7]) An element u ∈ X is said to be a critical point of I := h+ ψ, if 96

h0(u; v − u)+ ψ(v) − ψ(u) ≥ 0,∀v ∈ X.

In this case, I (u) is a critical value of I. 97

We have the following result, see Gasinski and Papageorgiou [2, Remark 2.3.1]. 98
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Proposition 3.6 An element u ∈ X is a critical point of I := h + ψ, if and only if 99

0 ∈ ∂Ch(u)+ ∂ψ(u). 100

Definition 3.7 The functional I := h+ ψ is said to satisfy the Palais-Smale condition at 101

level c ∈ R (shortly, (PS)c), if every sequence {un} ⊂ X satisfying 102

(i) I (un)→ c as n→∞; 103

(ii) there exists {εn} ⊂ R such that εn ↘ 0 and 104

h0(un; v − un)+ ψ(v) − ψ(un) ≥ −εn‖v − un‖,∀v ∈ X,

possesses a convergent subsequence. 105

If (PS)c is verified for all c ∈ R, then I is said to satisfy the Palais-Smale condition 106

(shortly, (PS)). 107

Remark 3.3 The Motreanu-Panagiotopoulos critical point theory contains as particular 108

cases both critical the point theory in the sense of Chang as well as in the sense of Szulkin. 109

More precisely, we have the following: 110

(i) If ψ ≡ 0 in (H ′), then Definition 3.6 reduces to Definition 3.1 and Definition 3.7 111

reduces to Definition 3.2; 112

(ii) If h ∈ C1(X;R) in (H ′), then Definition 3.6 reduces to Definition 3.4 and 113

Definition 3.7 reduces to Definition 3.5. 114

3.4 Principle of Symmetric Criticality 115

Let G be a group and let π a representation of G over X, that is π(g) ∈ L(X) for each 116

g ∈ G (where L(X) denotes the set of the linear and bounded operator from X into X), 117

and 118

• π(e)u = u, ∀u ∈ X; 119

• π(g1g2)u = π(g1)(π(g2)u), ∀g1, g2 ∈ G∀u ∈ X, 120

where e is the identity element of G. 121

The representation π∗ of G over X∗ is naturally induced by π through the relation 122

〈π∗(g)ζ, u〉 :=
〈
ζ, π(g−1)u

〉
,∀g ∈ G, ζ ∈ X∗ and u ∈ X. (3.4)

For simplicity, we shall often write gu or gζ instead of π(g)u or π∗(g)ζ, respectively. 123

A function h : X → R (or h : X∗ → R) is called G-invariant if h(gu) = h(u) (h(gζ ) =
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h(ζ )) for every u ∈ X (ζ ∈ X∗) and g ∈ G. A subset M of X is called G-invariant (or M∗
124

of X∗) if 125

gM = {gu : u ∈ M} ⊆ M (or gM∗ ⊆ M∗). ∀g ∈ G.

The fixed point sets of the group action G on X and X∗ (other authors call them G- 126

symmetric points) are defined as 127

� = XG := {u ∈ X : gu = u, ∀g ∈ G},
128

�∗ = (X∗)G := {ζ ∈ X∗ : gζ = ζ, ∀g ∈ G}.

Hence, by (3.4), we can see that ζ ∈ X∗ is symmetric if and only if ζ is a G-invariant 129

functional. The sets � and �∗ are closed linear subspaces of X and X∗, respectively. So 130

� and �∗ are regarded as Banach spaces with their induced topologies. We introduce the 131

following notations: 132

• C1
G(X) = {ϕ ∈ C1(X,R) : ϕ is G-invariant}; 133

• LG(X) = {ϕ ∈ Liploc(X,R) : ϕ is G-invariant}. 134

The principle of symmetric criticality for C1−functionals reads like this: 135

(PSC) :If ϕ ∈ C1
G(X)and (ϕ|�)′(u) = 0, then ϕ′(u) = 0. 136

Theorem 3.1 (Palais [8]) The principle (PSC) is valid if and only if �∗ ∩ �⊥ = {0}, 137

where �⊥ := {ζ ∈ X∗ : 〈ζ, u〉 = 0, ∀u ∈ �}. 138

Proof “⇐” Suppose that �∗ ∩ �⊥ = {0} and let u0 ∈ � be a critical point of ϕ|� . We 139

must show ϕ′(u0) = 0. Because ϕ(u0) = ϕ|�(u0) and ϕ(u0 + v) = ϕ|�(u0 + v) for 140

all v ∈ �, we obtain 141

〈ϕ′(u0), v〉X∗,X = 〈(ϕ|�)′(u0), v〉�∗,�,

for every v ∈ �, where 〈·, ·〉�∗,� denotes the duality pairing between � and its dual 142

�∗. This implies ϕ′(u0) ∈ �⊥. On the other hand, from the G-invariance of ϕ follows 143

that 144

〈ϕ′(gu), v〉 = lim
t→0

ϕ(gu+ tv) − ϕ(gu)

t
= lim

t→0

ϕ(u+ tg−1v)− ϕ(u)

t

145

= 〈ϕ′(u), g−1v〉 = 〈gϕ′(u), v〉

146
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for all g ∈ G and u, v ∈ X. This means that ϕ′ is G-equivariant, i.e. 147

ϕ′(gu) = gϕ′(u), (3.5)

for every g ∈ G and u ∈ X. Since u0 ∈ �, we obtain gϕ′(u0) = ϕ′(u0) for all g ∈ G, 148

i.e. ϕ′(u0) ∈ �∗. 149

Thus we conclude ϕ′(u0) ∈ �∗ ∩�⊥ = {0}, that is, ϕ′(u0) = 0. 150

“⇒” Suppose that there exists a non-zero element ζ ∈ �∗ ∩ �⊥ and define ϕ∗(·) by 151

ϕ∗(u) := 〈ζ, u〉. It is clear that ϕ∗ ∈ C1
G(X) and (ϕ∗)′(·) = ζ = 0, so ϕ∗ has no critical 152

point in X. 153

On the other hand ζ ∈ �⊥ implies ζ |� = 0, therefore (ϕ∗|�)′(u) = 0 for every 154

u ∈ �. This contradicts the principle (PSC). Therefore the condition �∗ ∩�⊥ = {0} is 155

necessary for the principle (PSC). 156��

We assume next that the following condition holds: 157

(A1) G is a compact topological group and the representation π of G over X is 158

continuous, i.e., (g, u)→ gu is a continuous function G×X into X. 159

In this situation for each u ∈ X, there exists a unique element Au ∈ X such that 160

〈ζ,Au〉 =
∫
G

〈ζ, gu〉dg, ∀ζ ∈ X∗, (3.6)

where dg is the normalized Haar measure on G. The mapping A is called the averaging 161

operator on G. The averaging operator A has the following important properties: 162

• A : X→ � is a continuous linear projection; 163

• If K ⊂ X is a G-invariant closed convex, then A(K) ⊂ K . 164

Moreover, if we denote by �G(X
∗) the set of G-invariant weakly∗-closed convex 165

subsets of X∗, we have 166

Lemma 3.2 The adjoint operator A∗ is a mapping from X∗ to �∗. If K ∈ �G(X
∗), then 167

A∗(K) ⊂ K . 168

Proof We first prove that for all ζ ∈ X∗ implies A∗ζ ∈ �∗. By the right invariance of the 169

Haar measure, we get 170

Agu = Au, ∀g ∈ G,∀u ∈ X.

171
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Therefore for every g ∈ G and u ∈ X we have 172

〈gA∗ζ, u〉 = 〈ζ,Ag−1u〉 = 〈ζ,Au〉 = 〈A∗ζ, u〉,

that is A∗ζ ∈ �∗. 173

In the sequel we prove A∗(K) ⊂ K . Suppose that there exists an element ζ ∈ K such 174

that A∗ζ /∈ K . We apply the Hahn-Banach theorem in X∗ with the weak∗ topology τw∗ . 175

Then there exists u ∈ X, c ∈ R and ε > 0 such that for every w∗ ∈ K we have 176

〈A∗ζ, u〉 ≤ c − ε < c ≤ 〈ξ, u〉.

By putting ξ := g−1ζ ∈ K for all g ∈ G, we get 177

〈ζ,Au〉 ≤ c − ε < c ≤ 〈ζ, gu〉,

which contradicts (3.6). ��

We have the following result due to Palais [8]. 178

Theorem 3.2 If (A1) is satisfied, then (PSC) is valid. 179

Proof We verify the condition �∗ ∩ �⊥ = {0}. Let ζ ∈ �∗ ∩�⊥ fixed and suppose that
ζ = 0. Because ζ ∈ �∗, the hyperplane H = {u ∈ X : 〈ζ, u〉 = 1} becomes a nonempty
G-invariant closed convex subset of X. Thus, for any u ∈ H , we have Au ∈ H ∩ � and
because ζ ∈ �⊥ we have 〈ζ,Au〉 = 0. This contradicts the fact that Au ∈ H . ��

We present next a version of the principle of symmetric criticality for locally Lipschitz 180

functions due to Krawcewicz and Marzantowicz [5]. Let ϕ : X → R be a G-invariant 181

locally Lipschitz function. Using the Chain Rule we obtain that g∂Cϕ(u) = ∂Cϕ(gu), i.e. 182

the set ∂ϕ(u) is G-invariant. 183

We consider the following principle: 184

(PSCL) : If ϕ ∈ L1
G(X) and 0 ∈ ∂C(ϕ|�)(u) then 0 ∈ ∂Cϕ(u). 185

Theorem 3.3 If (A1) is satisfied then (PSCL) is valid. 186

Proof Without loss of generality we may suppose that u = 0 is a critical point of ϕ|� . 187

Let A : X → � be the averaging operator over G. Since, ϕ◦(0; ·) is a continuous convex 188

function, then 189

ϕ0(0;Av) ≤
∫
G

ϕ0(0; gv)dg =
∫
G

(ϕ ◦ g)0(0; v)dg =
∫
G

ϕ0(0; v)dg = ϕ0(0; v).
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Let us remark that for v ∈ � we have (ϕ|�)0 (0; v) ≤ ϕ0(0; v) and A∗X∗ = �∗ = (�)∗. 190

Thus 191

∂C(ϕ|�)(0) =
{
w ∈ �∗ : 〈w, v〉 ≤ (ϕ|�)0(0; v), ∀v ∈ �

}

⊆
{
w ∈ �∗ : 〈w, v〉 ≤ ϕ0(0; v), ∀v ∈ �

}

=
{
w ∈ A∗X∗ : 〈w, v〉 = 〈w,Av〉 ≤ ϕ0(0;Av) ≤ ϕ0(0; v), ∀v ∈ X

}

⊆ A∗(∂Cϕ(0)).

Therefore, if 0 ∈ ∂C(ϕ|�)(0) then 0 ∈ A∗(∂Cϕ(0)) and, since A∗(∂Cϕ(0)) ⊆ ∂Cϕ(0), this
implies that 0 ∈ ∂Cϕ(0) and the (PSCL) is satisfied. ��

Now, we suppose that G is a compact Lie group and let M be a Banach G-manifold 192

modelled on the Banach space E. Let us recall that, for each g ∈ G, there is a 193

diffeomorphism g : M → M defined by g(x) = g · x, x ∈ M . The G-action on T ∗(M) is 194

defined as follows: if (x,w) ∈ T ∗(M), i.e. w ∈ T ∗x (M), then g · (x,w) = (gx,w′), where 195

w′ = (Tg(x)g
−1)∗w. 196

Suppose that ϕ : M → R is a G-invariant locally Lipschitz functional. It follows that 197

g · ∂Cϕ(x) = (T ∗g−1)(∂Cϕ(x)) = (∂C(ϕ ◦ g)−1)(gx) = ∂Cϕ(gx), (3.7)

i.e., 198

g · ∂Cϕ(x) = ∂Cϕ(gx), (3.8)

for every g ∈ G, x ∈ M . 199

This means that the generalized gradient ∂Cϕ : M → T ∗M of a G-invariant functional 200

ϕ is G-invariant. We denote by MG the fixed point set (symmetric point set) of the action 201

G over M . Now, let x be a symmetric point of M . There is a natural linear representation of 202

G on TxM given by g→ Dg(x). The action G is called linearizable at x if there exists an 203

open U ∈ VM(x) G-invariant neighborhood of x and a diffeomorphism ϕ : U → ϕ(U), 204

where ϕ(U) ⊂ Tx(M) is open and G-equivariant such that the map ϕ ◦ g ◦ ϕ−1 : ϕ(U)→ 205

TxM is the restriction to ϕ(U) of the linear map Dg(x). We observe that if (U,ψ) is a 206

chart at x such that U is invariant and ψ(x) = 0, where ψ : U → E and E ∼= TxM , by 207

identifying E with TxM , we can define 208

ϕ(y) =
∫
G

(Dg(y) · ψ)(g−1y)dg, y ∈ U.

209
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The map ϕ linearizes the action of G about of x. Thus we have 210

Proposition 3.7 Any action of a compact Lie group G by diffeomorphisms on a Banach 211

manifold is linearizable at symmetric points. 212

Since EG is a closed linear subspace of E and ϕ(U ∩MG) = ϕ(U) ∩ EG we conclude 213

that MG is a submanifold of M . 214

Using Proposition 3.7 we see that the (PSCL) remains true for G-Banach manifold M , 215

when G is a compact Lie group. 216

Theorem 3.4 Let x ∈ MG and ϕ : M → R be a locally Lipschitz G-invariant function. 217

Then x is a critical point of ϕ if and only if x is a critical point of ϕG := ϕ|MG : MG → R. 218

In the next we give a direct application of Theorem 3.4 which is very useful in the study 219

of eigenvalue problems. For this we consider a Hilbert space (H, 〈·, ·〉), a locally Lipschitz 220

function f : H → R and h : H → R a C1-function such that a ∈ R is a regular value 221

of h, i.e. h′(x) = 0, if h(x) = a. Then S = h−1(0) is a C1-manifold of H whose tangent 222

space TuS at any u ∈ S is expressed by 223

TuS = h′(u)−1(0) = {x ∈ H : 〈h′(u), x〉 = 0}.

The generalized gradient ∂C(f |S)(u) of f |S at any u ∈ S is given by 224

∂C(f |S)(u) =
{
z− 〈z,#h(u)〉

‖ # h(u)‖2 h
′(u) : z ∈ ∂Cf (u)

}
,

where #h(u) means the gradient of h at u, that is the element #h(u) ∈ H satisfying 225

〈h′(u), v〉 = 〈#h(u), v〉, ∀v ∈ H.

Now, let G be a compact Lie group which acts linearly and isometrically on H . We 226

suppose that the functions f and h are G-invariant. We introduce the notations: 227

� := {u ∈ H : gu = u,∀g ∈ G} and SG := S ∩�.

As above, we get that SG is a submanifold of S and TuS
G = {w ∈ � : (dh)u(w) = 0} for 228

every u ∈ SG. As a direct consequence of Theorem 3.4 we have 229

Corollary 3.1 0 ∈ ∂C(f |SG)(u)⇔ 0 ∈ ∂C(f |S)(u). 230

We denote by �(X) the set of functions ϕ : X→ (−∞,+∞]which are convex, proper 231

and lower semicontinuous. Recall that �G(X
∗) is the set of G-invariant weakly∗-closed 232
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convex subset of X∗ and let �G(X) denote the set of all G-invariant functionals belonging 233

to �(X). 234

We first consider the following principle. 235

(PSCI) : Forevery ϕ ∈ �G(X) and all K ∈ �G(X
∗) it holds that: 236

∂(ϕ|�)(u) ∩K|� = ∅⇒ ∂ϕ(u) ∩K = ∅,

where K|� = {ζ |� : ζ ∈ K} with 〈ζ |�, u〉�,�∗ = 〈ζ, u〉X,X∗ and u ∈ �. 237

Remark 3.4 The principle (PSCI) is a generalization of the classical (PSC), of the 238

(PSCL), and includes in particular the principle for Szulkin type functionals. 239

To conclude this we observe that for every J ∈ C1 and u ∈ � we have 240

(J |�)′ (u) =
(
J ′(u)

) |�. (3.9)

Indeed, for every h ∈ X, J ′(u) satisfies: 241

J (u+ h) = J (u)+ 〈J ′(u), h〉 + o(h)

and
(
J ′(u)

) |� satisfies 242

J (u+ h) = ϕ(u)+ 〈(J ′(u))|�, h〉� + o(h)

for every h ∈ �. Noticing that u, u+ h ∈ � imply J (u+ h) = J |�(u + h) and J (u) = 243

J |�(u), we get that (J |�)′ (u) =
(
J ′(u)

) |� . 244

Now, let J ∈ C1
G(X) and put K = {−J ′(u)} with u ∈ �, then by virtue of (3.5), we 245

get K ∈ �G(X
∗). Therefore, in view of (3.9), we find that (PSCI) yields 246

(PSCI)′ : For all ϕ ∈ �G(X) and all J ∈ C1
G(X), it holds that 247

∂ (ϕ|�) (u)+ (J |�)′ (u) � 0 ⇒ ∂ϕ(u)+ J ′(u) � 0.

Remark 3.5 Principle (PSCI)′ corresponds exactly to the Szulkin type functions, see 248

Remark 3.2. Moreover, in particular, take ϕ ≡ 0, then ∂ (ϕ|�) (u) = ∂ϕ(u) = 0. Thus, 249

(PSCI)′ with ϕ ≡ 0 gives the classical principle of symmetric criticality (PSC). Finally, 250

let ϕ : X → R be a G-invariant locally Lipschitz function. For u ∈ �, let us choose 251

K = ∂ϕ(u) and ψ ≡ 0. Then (PSCI) reduces to (PSCL) since we obviously have 252

∂(ψ|�)(u) ⊆ ∂ψ(u)|�. By a mild modification of the above arguments, the principle 253

of symmetric criticality has been extended to Motreanu-Panagiotopoulos functionals by 254

Kristály et al. [6] and to continuous functions by Squassina [9]. 255
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Proposition 3.8 For all ϕ ∈ �G(X), the subdifferential ∂ϕ of ϕ is G-equivariant, i.e. for 256

every g ∈ G and u ∈ X we have ∂ϕ(gu) = g∂ϕ(u). 257

Proof First, we prove that ∂ϕ(gu) ⊂ g∂ϕ(u). Let ζ ∈ ∂ϕ(gu). Then we have 258

ϕ(v)− ϕ(u) = ϕ(gv)− ϕ(gu) ≥ 〈ζ, gv − gu〉 = 〈g−1ζ, v − u〉,

for all v ∈ X. This implies g−1ζ ∈ ∂ϕ(u) and hence ζ ∈ g∂ϕ(u). 259

Moreover, the above relation with g replaced by g−1 gives 260

g∂ϕ(u) = g∂ϕ(g−1gu) ⊂ gg−1∂ϕ(gu) = ∂ϕ(gu),

which completes the proof. ��

If we take K := −J ′(u) + ∂ψ(u) with J ∈ C1
G(X),ψ ∈ �G(X) and u ∈ �, then (3.5) 261

and Proposition 3.8 assure that K ∈ �G(X
∗). Then (PSCI) can be reformulated in the 262

following way: 263

(PSCI)′′ : For all ϕ,ψ ∈ �G(X) and all J ∈ C1
G(X), it holds that 264

∂ (ϕ|�) (u)+ (J |�)′ (u)− ∂ (ψ|�) (u) � 0 ⇒ ∂ϕ(u)+ J ′(u)− ∂ψ(u) � 0,

provide that ∂ (ψ|�) = (∂ψ(u)) |� . 265

We consider the following further hypotheses: 266

(B1) X is reflexive and the norms of X and X∗ are stricly convex; 267

(B2) The action of G over X is isometric, i.e., ‖gu‖ = ‖u‖, for all g ∈ G and u ∈ X. 268

One can prove the following results. 269

Theorem 3.5 Assume that (B1) and (B2) are satisfied. Then the principle (PSCI) is 270

valid. 271

Theorem 3.6 Assume that (A1) is satisfied and ∂ϕ+ ∂I� is maximal monotone. Then the 272

principle (PSCI) is valid. 273

The proofs of these results are fairly technical, so we will omit them. However, an 274

interested reader can consult Kobayashi [3], and Kobayashi and Otani [4]. 275
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42Deformation Results 3

4.1 Deformations Using a Cerami-Type Compactness Condition 4

In this section we present two deformation results for locally Lipschitz functions defined 5

on Banach spaces. These results extend those of Chang [2] and Kourogenis-Papageorgiou 6

[7]. 7

Let us consider f : X → R to be a locally Lipschitz function. Our approach is based 8

on using a general compactness condition which contains as particular cases both the 9

Palais-Smale and Cerami compactness conditions. More precisely, we consider a globally 10

Lipschitz functional ϕ : X → R such that ϕ(u) ≥ 1,∀u ∈ X (or, ϕ(u) ≥ α, for some 11

α > 0). 12

Definition 4.1 We say that the function f satisfies the (ϕ − C)-condition at level c (in 13

short, (ϕ −C)c) if every sequence {un} ⊂ X such that f (un)→ c and ϕ(un)λf (un)→ 0 14

has a (strongly) convergent subsequence. 15

As pointed out before, the (ϕ − C)c-condition contains the (PS)c and (C)c compactness 16

conditions, respectively. Indeed if ϕ ≡ 1 we get the (PS)c-condition and if ϕ(u) := 17

1+ ‖u‖ we have the (C)c-condition. 18

Throughout in this chapter we use the following notations for the locally Lipschitz 19

function f : X→ R and a number c ∈ R: 20

f c := {u ∈ X : f (u) ≤ c}, fc := {u ∈ X : f (u) ≥ c},
21

Kc := {u ∈ X : λf (u) = 0, f (u) = c}, (Kc)δ := {u ∈ X : d(u,Kc) < δ},
22

(Kc)
c
δ := X \ (Kc)δ.
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We need the following result in order to obtain the existence of a suitable locally Lipschitz 23

vector field. 24

Lemma 4.1 Let X be a Banach space and let f : X → R be a locally Lipschitz function 25

satisfying the (ϕ − C)c-condition with ϕ : X → R a globally Lipschitz function such 26

that ϕ(u) ≥ 1, ∀u ∈ X. Then for each δ > 0 there exist constants γ, ε > 0 and a 27

locally Lipschitz vector field � : f−1([c − ε, c + ε]) ∩ (Kc)
c
δ → X such that for each 28

u ∈ f−1([c− ε, c + ε]) ∩ (Kc)
c
δ one has 29

‖�(u)‖ ≤ ϕ(u) (4.1)

and 30

〈ζ,�(u)〉 ≥ γ

2
, ∀ζ ∈ ∂Cf (x). (4.2)

Proof From the (ϕ − C)c-condition we get γ, ε > 0 such that 31

ϕ(u)λf (u) ≥ γ, (4.3)

for each u ∈ (Kc)
c
δ and c − ε ≤ f (u) ≤ c + ε. Assuming by contradiction this not the 32

case, we could find a sequence {un} ⊂ (Kc)
c
δ such that f (un)→ c and ϕ(un)λf (un)→ 0. 33

Using the (ϕ −C)c-condition we obtain a convergent subsequence of {un} (denoted again 34

by {un}), say un → u0 ∈ (Kc)
c
δ. Since f is continuous and λf is lower semicontinuous 35

we obtain that f (u0) = c and ϕ(u0)λf (u0) = 0. This implies u0 ∈ Kc, which is a 36

contradiction. Thus (4.3) holds. 37

Let u0 ∈ f−1([c − ε, c + ε]) ∩ (Kc)
c
δ and ζ0 ∈ ∂Cf (u0) be such that λf (u0) = ‖ζ0‖. 38

Then we have B‖ζ0‖ ∩ ∂Cf (u0) = ∅, where Br := {ξ ∈ X∗ : ‖ξ‖ < r}, r > 0. Using the 39

separation theorem in X∗ endowed with the weak∗-topology we obtain that there exists 40

some h0 ∈ X such that ‖h0‖ = 1 and 〈ξ, h0〉 ≤ 〈ζ0, h0〉 ≤ 〈ζ, h0〉 for each ξ ∈ B‖ζ0‖ and 41

ζ ∈ ∂Cf (x0). From Corollary A.2 and (4.3) we get 42

sup
ξ∈B‖ζ0‖

〈ξ, h0〉 = ‖ζ0‖ > γ

2ϕ(u0)
.

Therefore 〈ζ, h0〉 ≥ ‖ζ0‖ >
γ

2ϕ(x0)
, for every ζ ∈ ∂Cf (u0). As the set-valued map u �→ 43

∂Cf (u) is weakly∗-upper semicontinuous, for each u ∈ f−1([c− ε, c+ ε])∩ (Kc)
c
δ there 44

exists r0 > 0 and h0 ∈ X such that for every v ∈ B(u0, r0) and every ζ ∈ ∂Cf (v) we have 45

〈ζ, h0〉 > γ
2ϕ(v) . The set of all such balls {B(u0, r0)} covers f−1([c − ε, c + ε]) ∩ (Kc)

c
δ . 46

By paracompactness there is a locally finite covering {Vi}i∈I subordinated to it. If we 47

consider the functions ρi : X→ R defined by ρi(u) := dist(u,X \ Vi) for all u ∈ X, then 48

the functions ρi are Lipschitz continuous and ρi |X\Vi= 0. 49
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For every u ∈⋃
i∈I Vi , let βi(u) := ρi (u)∑

j∈I ρj (u)
and �(u) := ϕ(u)

∑
i∈I βi(x)hi , where 50

hi plays the same role for ui as h0 for u0. It follows that the function � : f−1([c− ε, c + 51

ε]) ∩ (Kc)
c
δ → X is locally Lipschitz and for every u ∈ f−1([c− ε, c + ε]) we have 52

‖�(u)‖ ≤ ϕ(u)
∑
i∈I

βi(x)‖hi‖ = ϕ(u)

and 53

〈ζ,�(u)〉 = ϕ(u)
∑
i∈I

βi(u)〈ζ, hi〉 > γ

2
, ∀ζ ∈ ∂Cf (x).

Thus properties (4.1) and (4.2) are satisfied. ��

The next result can be proved in the same way as the above; thus we will omit it. 54

Lemma 4.2 Let X be a Banach space and let f : X → R be a locally Lipschitz function 55

and S ⊂ X a subset. Suppose that the numbers c ∈ R, ε, δ > 0 are such that 56

λf (u) ≥ 4ε

δ
, ∀u ∈ f−1([c − 2ε, c+ 2ε]) ∩ S2δ. (4.4)

Then there exists a locally Lipschitz vector field � : f−1([c − 2ε, c + 2ε]) ∩ S2δ → X 57

such that: 58

(a) ‖�(u)‖ ≤ 1; 59

(b) for every ζ ∈ ∂Cf (x) we have 〈ζ,�(u)〉 > 2ε
δ

. 60

The next result is a quantitative deformation lemma for locally Lipschitz functionals 61

and it appears in the paper of Varga and Varga [15]. 62

Theorem 4.1 Let X be a Banach space and let f : X→ R be a locally Lipschitz function 63

and S a subset of X. Let c ∈ R and ε, δ > 0 be numbers such that (4.4) holds. Then there 64

exists a continuous function η : [0, 1] ×X→ X with the properties: 65

(i) η(0, u) = u, for every u ∈ X; 66

(ii) η(t, ·) : X→ X is homeomorphism for every t ∈ [0, 1]; 67

(iii) η(t, u) = u, for every u /∈ f−1([c− 2ε, c+ 2ε]) ∩ S2δ and t ∈ [0, 1]; 68

(iv) ‖η(t, u)− u‖ ≤ δ, for all u ∈ X and t ∈ [0, 1]; 69

(v) f (u)− f (η(t, u)) ≥ 2εt , for t ∈ [0, 1] with η(t, u) ∈ f−1([c − 2ε, c + 2ε]) ∩ S2δ; 70

(vi) η(1, f c+ε ∩ S) ⊂ f c−ε . 71
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Proof We introduce the sets 72

A := S2δ ∩ f−1([c− 2ε, c + 2ε]) and B := Sδ ∩ f−1([c− ε, c + ε]),

and define ψ : X→ R by 73

ψ(u) := dist(u,X \A)

dist(u,X \ A)+ dist(u, B)
.

The function ψ is locally Lipschitz. Using Lemma 4.2 we get a locally Lipschitz vector 74

field � : A→ X such that conditions (a) and (b) hold. 75

Let V : X→ X be the vector field given by 76

V (u) :=
{
−ψ(u)�(u), if u ∈ A

0, otherwise.
(4.5)

The vector field V is locally Lipschitz and ‖V (u)‖ ≤ 1, for every u ∈ X, hence the 77

corresponding ODE 78

{
σ̇ (t, u) = V (σ(t, u));
σ(0, u) = u,

(4.6)

has a unique global solution σ(·, u) for every u ∈ X. Let η : [0, 1] × X → X be the 79

function given by η(t, u) := σ(δt, u). For each t ∈ [0, 1] the function η(t, ·) : X → X is 80

a homeomorphism and η(0, u) = u for every u ∈ X. Thus (i) and (ii) hold. 81

From (4.6) it results that η(t, u) = u for every u /∈ f−1([c − 2ε, c + 2ε]) ∩ S2δ and 82

t ∈ [0, 1]. Therefore (iii) is true. In order to prove (iv), note that 83

d

dt
η(t, u) = d

dt
σ (δt, u) = δσ̇ (δt, u) = δV (σ(δt, u)),

so 84

∫ t

0

d

ds
η(s, u)ds = δ

∫ t

0
V (σ(δs, u))ds.

Thus 85

‖η(t, u)− η(0, u)‖ ≤ δ

∫ 1

0
‖V (σ(δs, u))ds‖ ≤ δ,

which proves (iv). 86
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For every u ∈ X we consider the function h : R → R given by h(t) := f (η(t, u)). 87

Using Proposition 2.7 we obtain 88

h′(s) ≤ max
ζ∈∂Cf (η(s,u))

〈
ζ,

d

ds
η(s, u)

〉
= max

ζ∈∂Cf (η(s,u))
〈ζ, δσ̇ (δs, u)〉

= δ max
ζ∈∂Cf (η(s,u))

〈ζ, V (σ(δs, u))〉 = −δ min
ζ∈∂Cf (η(s,u))

{〈ζ, ψ(σ(δs, u))�(σ(δs, u))〉

≤
{
−2ε, if η(s, u) ∈ A

0, if η(s, u) ∈ X \ A.

From this we obtain that if η(t, u) ∈ A, then 89

f (u)− f (η(t, u)) = h(0)− h(u) = −
∫ t

0
h′(s)ds ≥ 2εt,

with η(t, u) ∈ A and t ∈ [0, 1]. Therefore the function f is decreasing along the path 90

η(·, u). 91

Now let u /∈ A a fixed element. Then ψ(u) = 0, hence V (u) = 0. Using the Cauchy 92

problem (4.6) we obtain η(t, u) = u for every t ∈ [0, 1]. Thus (v) is proved. 93

In order to prove (vi) fix u ∈ f c+ε ∩ S. We shall prove that f (η(1, u)) ≤ c − ε.
Therefore we can suppose that u ∈ (f c+ε \f c−ε)∩S, i.e. f (u) ≤ c+ε, f (u) ≥ c−ε and
u ∈ S. If we assume by contradiction that f (η(1, u)) > c−ε, then f (u)−f (η(1, u)) < 2ε.
On the other hand, if t ∈ [0, 1] and η(t, u) ∈ A then f (u) − f (η(t, u)) ≥ 2εt and the
contradiction completes the proof. ��

In the sequel we prove a very general deformation result which unifies several results 94

of this kind; it appears in the paper of Kristály et al. [8]. 95

Theorem 4.2 Let f : X → R be a locally Lipschitz function on the Banach space X 96

satisfying the (ϕ−C)c-condition, with c ∈ R and a globally Lipschitz function ϕ : X→ R 97

with Lipschitz constant L > 0 and ϕ(u) ≥ 1, ∀u ∈ X. Then for every ε0 > 0 and every 98

neighborhood U of Kc (if Kc = ∅, then we choose U = ∅) there exist a number 0 < ε < 99

ε0 and a continuous function η : X × [0, 1] → X, such that for every (u, t) ∈ X × [0, 1] 100

we have: 101

(a) ‖η(u, t)− u‖ ≤ ϕ(u)teLt ; 102

(b) η(u, t) = u, for every u /∈ f−1([c − ε0, c + ε0]) and t ∈ [0, 1]; 103

(c) f (η(u, t)) ≤ f (u); 104

(d) η(u, t) = u⇒ f (η(u, t)) < f (u). 105

(e) η(f c+ε, 1) ⊂ f c−ε ∪ U ; 106

(f ) η(f c+ε \ U, 1) ⊂ f c−ε . 107
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Proof Fix ε0 > 0 and a neighborhood U of Kc. From the compactness of Kc we can find 108

δ > 0 such that (Kc)3δ ⊆ U . Moreover, the proof of Lemma 4.1 guarantees the existence 109

of γ > 0 and 0 < ε < ε0 such that ϕ(u)λf (u) ≥ γ for all u ∈ f−1 ([c− ε, c + ε]) ∩ 110

(Kc)
c
δ. We consider the following two closed sets: 111

A := {u ∈ X : |f (u)− c| ≥ ε} ∪ (Kc)δ (4.7)

112

B :=
{
u ∈ X : |f (u)− c| ≤ ε

2

}
∩ (Kc)

c
2δ. (4.8)

Because A ∩ B = ∅ there exists a locally Lipschitz function ψ : X → [0, 1] such that 113

ψ = 0 on a closed neighborhood of A, say Ã, disjoint of B, ψ|B = 1 and 0 ≤ ψ ≤ 1. For 114

instance, we can take ψ(u) := d(u,Ã)

d(u,Ã)+d(u,B)
, ∀u ∈ X. 115

Let V : X→ X be defined by 116

V (u) :=
{
−ψ(x) ·�(u), u ∈ f−1([c − ε, c + ε]) ∩ (Kc)

c
δ;

0, otherwise,
(4.9)

where �(u) is constructed in Lemma 4.1. The vector field V is locally Lipschitz and by 117

the same lemma, for u ∈ f−1([c − ε, c + ε]) ∩ (Kc)
c
δ we have 118

‖V (u)‖ = ψ(u)‖�(u)‖ ≤ ϕ(u) (4.10)

and 119

〈ζ, V (u)〉 = −ψ(u)〈ζ,�(u)〉 ≤ −ψ(u)
γ

2
, ∀ζ ∈ ∂Cf (u). (4.11)

Since V is locally Lipschitz and ‖V (u)‖ ≤ ϕ(0)+ L‖u‖, the following Cauchy problem: 120

{
η̇(u, t) = V (η(u, t)) a.e. on [0, 1]
η(u, 0) = u

(4.12)

has a unique solution η(u, ·) on R, for each u ∈ X. By (4.10) we have 121

‖η(u, t) − u‖ ≤
∫ t

0
‖V (η(u, s))‖ds ≤

∫ t

0
ϕ(η(x, s))ds =

∫ t

0
[ϕ(η(u, s))− ϕ(u)]ds

+
∫ t

0
ϕ(u)ds ≤ L

∫ t

0
‖η(u, s)− u‖ds + ϕ(u)t.

Using Gronwall’s inequality we get ‖η(u, t)− u‖ ≤ ϕ(u)teLt , therefore the assertion (a) 122

is proved. 123



4.1 Deformations Using a Cerami-Type Compactness Condition 75

If u /∈ f−1([c− ε, c+ ε]), then u ∈ A, so ψ(u) = 0. By (4.9) it follows that V (u) = 0 124

and from (4.12) we obtain that η(u, t) = u, for each t ∈ [0, 1]. This yields (b). 125

Next, for a fixed u ∈ X, let us consider the function hu : [0, 1] → R given by hu(t) := 126

f (η(u, t)). Using the chain rule we have 127

d

dt
hu(t) ≤ max

ζ∈∂Cf (η(x,t))

〈
ζ,

d

dt
η(x, t)

〉
= max

ζ∈∂Cf (η(x,t))
〈ζ, V (η(x, t))〉

a.e. on [0, 1]. Therefore, taking into account (4.11), we infer 128

d

dt
hu(t) ≤ −ψ(η(u, t))

γ

2
≤ 0 if η(u, t) ∈ f−1([c− ε, c + ε]) ∩ (Kc)

c
δ, (4.13)

and clearly, by (4.9) 129

d

dt
hu(t) ≤ 0, if η(u, t) /∈ f−1([c − ε, c + ε]) ∩ (Kc)

c
δ.

Hence property (c) holds true. 130

In order to prove property (d), suppose that η(u, t) = u. First, we show that 131

η(u, s) ∈ f−1([c− ε̄, c + ε̄]) ∩ (Kc)
c
δ, ∀s ∈ [0, t]. (4.14)

On the contrary, there would exist s0 ∈ [0, t] such that η(u, s0) ∈ A. This implies that 132

V (η(u, s0)) = 0. Using the uniqueness of solution to the Cauchy problem formed by the 133

equation in (4.12) and the initial condition with the initial value η(u, s0), we see that 134

η(u, τ + s0) = η(u, s0), ∀τ ∈ R.

Letting τ := t − s0 and τ := −s0 one obtains η(u, t) = u, which contradicts our 135

assumption. Thus the claim in (4.14) is true. 136

Using (4.13) and (4.14) it follows that 137

f (u)− f (η(u, t)) = −
∫ t

0

d

ds
hu(s)ds ≥ γ

2

∫ t

0
ψ(η(u, s))ds. (4.15)

We show that there is s ∈ [0, t] such that 138

ψ(η(u, s)) = 0, (4.16)

for otherwise, if ψ(η(u, s)) = 0, ∀s ∈ [0, t], then V (η(u, s)) = 0, ∀s ∈ [0, t]. By (4.12), 139

we get that η(u, ·) is constant on [0, t], which contradicts η(u, t) = u. It results that (4.16) 140
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is valid. Since ψ ≥ 0, from (4.15) and (4.16) we infer that f (η(u, t)) < f (u), which 141

proves assertion (d). 142

Let us prove next assertion (e). Let ρ > 0 be such that (Kc)3δ ⊂ B(0; ρ). We choose 143

0 < ε ≤ min

{
ε̄

2
,
γ

4
,
δγ

8
e−L(ϕ(0)+ Lρ)−1

}
, (4.17)

and proceed by contradiction. Let u ∈ f c+ε be such that f (η(u, 1)) > c−ε and η(u, 1) /∈ 144

U . Since, by (c), f (η(u, t)) ≤ f (u) ≤ c + ε and f (η(u, t)) ≥ f (η(u, 1)) for each 145

t ∈ [0, 1], we get 146

c − ε < f (η(u, t)) ≤ c + ε, ∀t ∈ [0, 1]. (4.18)

We claim that 147

η({u} × [0, 1]) ∩ (Kc)2δ = ∅. (4.19)

Suppose that (4.19) does not hold, i.e, 148

η({u} × [0, 1]) ∩ (Kc)2δ = ∅. (4.20)

First, we show that 149

η(u, t) ∈ B, ∀t ∈ [0, 1]. (4.21)

The fact that η(u, t) ∈ f−1
([
c − ε̄

2 , c + ε̄
2

])
follows from (4.17) and (4.18). By (4.20) one 150

has that η(u, t) ∈ (Kc)
c
2δ . Consequently, from (4.8) we conclude that (4.21) is established. 151

On the basis of (4.21) and (4.13) we may write 152

f (u)− f (η(u, 1)) = hu(0)− hu(1) = −
∫ 1

0

d

dt
hu(t)dt ≥

∫ 1

0

γ

2
ψ(η(u, t))dt .

Then, combining (4.21) and the definition of ψ it is clear that 153

f (u)− f (η(u, 1)) ≥ γ

2
. (4.22)

On the other hand, from (4.18) we obtain that 154

f (u)− f (η(u, 1)) < 2ε. (4.23)

From (4.22) and (4.23) we get γ
2 < 2ε, which contradicts (4.17). This justifies (4.19). 155
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The next step in the proof is to show that there exist 0 ≤ t1 < t2 ≤ 1 such that 156

dist(η(u, t1),Kc) = 2δ, dist(η(u, t2),Kc) = 3δ (4.24)

and 157

2δ < dist(η(u, t),Kc) < 3δ, ∀t1 < t < t2. (4.25)

Denote by g(t) := dist(η(u, t),Kc), ∀t ∈ [0, 1]. In view of (4.19) we have that {t ∈ 158

[0, 1] : g(t) ≤ 2δ} = ∅. Thus it is permitted to consider 159

t1 := sup{t ∈ [0, 1] : g(t) ≤ 2δ}.

Since it is known that (Kc)3δ ⊂ U and η(u, 1) /∈ U , we derive that η(u, 1) /∈ (Kc)3δ. This 160

means that g(1) ≥ 3δ. Since g(t1) ≤ 2δ it is necessary to have t1 < 1. The definition of t1 161

implies g(t) > 2δ for all t ∈ (t1, 1] (which is the first inequality in (4.25)). Letting t ↓ t1 162

we deduce that g(t1) ≥ 2δ. We obtain that g(t1) = 2δ, so the first part in (4.24) is proved. 163

Taking into account that g(1) ≥ 3δ, we see that {t ∈ [t1, 1] : g(t) ≥ 3δ} is nonempty. 164

Then we can define 165

t2 := inf{t ∈ [t1, 1] : g(t) ≥ 3δ}.

Since g(t2) ≥ 3δ and g(t1) = 2δ it is clear that t1 < t2. By the definition of t2 we have that 166

g(t) < 3δ for all t1 ≤ t < t2, so (4.25) holds. In addition, letting t ↑ t2, we get g(t2) = 3δ, 167

so (4.24) holds, too. 168

Let us show that 169

t2 − t1 <
4ε

γ
. (4.26)

From (4.25) it follows that η(u, t) /∈ (Kc)2δ, ∀t ∈ [t1, t2], while (4.18) and (4.17) imply 170

η(u, t) ∈ f−1
([
c − ε̄

2 , c + ε̄
2

])
, ∀t ∈ [t1, t2]. The definition of the set B in (4.8) yields 171

η(u, t) ∈ B, ∀t ∈ [t1, t2].

Using the definition of ψ , (4.13) and (4.18) we see that 172

γ

2
(t2 − t1) = γ

2

∫ t2

t1

ψ(η(u, t))dt ≤ −
∫ t2

t1

d

dt
hu(t)dt = hu(t1)− hx(t2)

= f (η(u, t1))− f (η(u, t2)) < 2ε.

Thus (4.26) is proved. 173
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We need the following inequality 174

‖η(u, t2)− η(u, t1)‖ ≥ δ. (4.27)

To check (4.27) consider a point v ∈ Kc so that 175

dist(η(u, t1),Kc) = ‖η(u, t1)− v‖ = 2δ.

Here the compactness of Kc and the first part in (4.24) have been used. Then, on the basis 176

of the second part in (4.24) we can write 177

‖η(u, t2)− η(u, t1)‖ ≥ ‖η(u, t2)− v‖ − ‖η(u, t1)− v‖ ≥ 3δ − 2δ = δ.

Therefore (4.27) holds. 178

Using (4.12), (4.10) and the Lipschtz property of ϕ we can write 179

‖η(u, t2)− η(u, t1)‖ ≤
∫ t2

t1

‖V (η(u, s))‖ds ≤
∫ t2

t1

ϕ(η(u, s))ds

=
∫ t2

t1

[ϕ(η(u, s))− ϕ(η(u, t1))]ds + ϕ(η(u, t1))(t2 − t1)

≤
∫ t2

t1

L‖η(u, s)− η(u, t1)‖ds + ϕ(η(u, t1))(t2 − t1). (4.28)

By (4.28) and Gronwall’s inequality we get 180

‖η(u, t2)− η(u, t1)‖ ≤ ϕ(η(u, t1))(t2 − t1)e
L(t2−t1). (4.29)

From (4.27), (4.29), (4.26) and the Lipschitz property of ϕ we deduce that 181

δ ≤ ‖η(u, t2)− η(u, t1)‖ < 4ε

γ
eLϕ(η(u, t1))

≤ 4ε

γ
eL(ϕ(0)+ L‖η(u, t1)‖). (4.30)

In view of (4.24) and the choice of ρ to satisfy (Kc)3δ ⊂ B(0; ρ) we have η(u, t1) ∈ 182

(Kc)3δ ⊂ B(0; ρ). This property and (4.17) yield from (4.30) that 183

δ ≤ 4ε

γ
eL(ϕ(0)+ Lρ) ≤ δ

2
,

which is a contradiction and the proof of (e) is now complete. 184
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In order to show (f ), since (Kc)3δ ⊂ U it is enough to prove that 185

η(f c+ε \ (Kc)3δ, 1) ⊂ f c−ε. (4.31)

Let us denote 186

C := (f c+ε \ f c−ε) ∩ (Kc)
c
3δ.

To check (4.31), we note that it is sufficient to verify that 187

η(u, 1) ∈ f c−ε, ∀u ∈ C, (4.32)

because for u ∈ f c−ε we have f (η(u, 1)) ≤ f (u) ≤ c − ε, due to the nondecreasing 188

monotonicity of f (η(u, ·)). 189

To show (4.32), denote by 190

D := (f c+ε \ f c−ε) ∩ (Kc)
c
5
2 δ
.

First, we verify that 191

∀u ∈ C, ∃ tu ∈
(

0,
4ε

γ

]
such that η(u, tu) /∈ D. (4.33)

To this end, we prove the following inclusion 192

{t > 0 : η(u, τ ) ∈ D, ∀τ ∈ [0, t]} ⊂
(

0,
4ε

γ

)
, ∀u ∈ C. (4.34)

Indeed, if η(u, τ ) is in D ⊂ B, ∀τ ∈ [0, t], we have ψ(η(u, τ )) = 1, ∀τ ∈ [0, t]. 193

Therefore, by (4.13), we have d
dτ hu(τ ) ≤ − γ

2 , ∀τ ∈ [0, t]. From this and (4.18) we obtain 194

2ε > hu(0)− hu(t) = −
∫ t

0

d

dτ
hu(τ )dτ ≥ γ

2
t,

so t < 4ε
γ
. Thus (4.34) is satisfied. 195

We are now in the position to prove (4.33). We proceed by contradiction. Assuming 196

that there exist u ∈ C such that η(u, t) ∈ D, ∀t ∈
(

0, 4ε
γ

]
, by (4.34), we arrive at the 197

contradiction 198

4ε

γ
∈ {t > 0 : η(u, τ ) ∈ D, ∀τ ∈ [0, t]} ⊂

(
0,

4ε

γ

)
,

which proves (4.33). 199
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Let us show that for every u ∈ C, it is true that 200

η({u} × [0, 1]) ∩ (Kc) 5δ
2
= ∅⇒ ∃ t0 ∈ (0, t3] such that η(u, t0) ∈ f c−ε, (4.35)

with 201

t3 := inf

{
t ∈ [0, 1] : dist(η(u, t),Kc) ≤ 5δ

2

}
,

where the set
{
t ∈ [0, 1] : dist(η(u, t),Kc) ≤ 5δ

2

}
is nonempty in view of (4.25). If (4.35) 202

were not true it would exist u ∈ C with η({u} × [0, 1]) ∩ (Kc) 5δ
2
= ∅ and f (η(u, t)) > 203

c − ε, ∀t ∈ [0, t3]. Hence η(u, t) ∈ D, ∀t ∈ [0, t3]. This follows from the definition of t3 204

and since u ∈ C. The inclusion in (4.34) implies that 205

t3 <
4ε

γ
. (4.36)

Introduce 206

t4 := sup{t ∈ [0, t3] : dist(η(u, t),Kc) ≥ 3δ}.

Since u ∈ C, then u ∈ (Kc)
c
3δ , thus the set {t ∈ [0, t3] : dist(η(u, t),Kc) ≥ 3δ} is 207

nonempty. By the definitions of t3 and t4 it follows that 208

η(u, t) ∈ (
f c+ε \ f c−ε) ∩ (

(Kc)3δ \ (Kc) 5δ
2

)
, ∀t ∈ [t4, t3].

Note that 209

‖η(u, t3)− η(u, t4)‖ ≥ δ

2
. (4.37)

Indeed, by the definition of t4 we have 210

‖η(u, t3)− η(u, t4)‖ ≥ ‖η(u, t4)− v‖ − ‖η(u, t3)− v‖
≥ 3δ − ‖η(u, t3)− v‖, ∀v ∈ Kc.

This leads to 211

‖η(u, t3)− η(u, t4)‖ ≥ 3δ − dist(η(u, t3),Kc) = 3δ − 5δ

2
= δ

2
,

so (4.37) is verified. 212
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Using (4.12), (4.10) and the Lipschitz property of ϕ we can write 213

‖η(u, t3)− η(u, t4)‖ ≤
∫ t3

t4

‖V (η(u, s))‖ds ≤
∫ t3

t4

ϕ(η(u, s))ds

=
∫ t3

t4

[ϕ(η(u, s))− ϕ(η(u, t4))]ds + ϕ(η(u, t4))(t3 − t4)

≤
∫ t3

t4

L‖η(u, s) − η(u, t4)‖ds + ϕ(η(u, t4))(t3 − t4).

By Gronwall’s inequality we get 214

‖η(u, t3)− η(u, t4)‖ ≤ ϕ(η(u, t4))(t3 − t4)e
L(t3−t4). (4.38)

Using (4.37), (4.38), the Lipschitz property of ϕ, the inclusion (Kc)3δ ⊂ B(0; ρ) and 215

(4.36), we have that 216

δ

2
≤ ‖η(u, t3)− η(u, t4)‖ ≤ eL(t3−t4)ϕ(η(u, t4))(t3 − t4)

≤ eL(ϕ(0)+ L‖η(u, t4)‖)t3 < eL(ϕ(0)+ Lρ)
4ε

γ
.

This contradicts the choice of ε in (4.17), therefore (4.35) is true. 217

In order to complete the proof of (f ), let u ∈ C. From (4.33), there exists tu ∈ (0, 4ε
γ
] 218

such that η(u, tu) /∈ D. This means that 219

η(u, tu) ∈ (X \ f c+ε) ∪ f c−ε ∪ (Kc) 5δ
2
.

On the other hand, η(u, tu) ∈ f c+ε since, as u ∈ C, f (η(u, tu)) ≤ f (u) ≤ c + ε. 220

Consequently, we deduce that η(u, tu) ∈ f c−ε ∪ (Kc) 5δ
2
. Two cases arise: 221

(1) η(u, tu) ∈ f c−ε ; 222

(2) η(u, tu) ∈ (Kc) 5δ
2

. 223

In case (1) we have directly that 224

f (η(u, 1)) ≤ f (η(u, tu)) ≤ c − ε,

which ensures the desired conclusion. 225

Should (2) occur, we make use of property (4.35). Therefore, we find t0 ∈ (0, t3] such
that η(u, t0) ∈ f c−ε . Thus we may write f (η(u, 1)) ≤ f (η(u, t0)) ≤ c − ε. ��
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Remark 4.1 If we choose ϕ ≡ 1 or ϕ(u) := 1 + ‖u‖ then we obtain the deformation 226

lemmas of Chang [2] and Kourogenis-Papageorgiou [7], respectively. 227

4.2 Deformations with Compactness Condition 228

of Ghoussoub-Preiss Type 229

The following variant of Palais-Smale condition is an extension to the locally Lipschitz 230

case of the one introduced by Ghoussoub and Preiss [6] for C1−functionals. Let f : X→ 231

R be a locally Lipschitz functional, c ∈ R a real number and B ⊆ X. 232

Definition 4.2 We say that the locally Lipschitz function f satisfies the Palais-Smale 233

condition around B at level c (shortly, (PS)B,c), if every sequence {un} ⊂ X with 234

f (un) → c, dist(un, B) → 0 and λf (un) → 0 as n → ∞, contains a (strongly) 235

convergent subsequence in X. 236

In particular, we write (PS)c instead of (PS)X,c and simply (PS) if (PS)c holds for 237

every c ∈ R. 238

For a fixed B ⊆ X and a fixed number δ > 0, we denote the closed δ-neighborhood of 239

B by Nδ(B), that is, 240

Nδ(B) := {u ∈ X : dist(u, B) ≤ δ}.

Definition 4.3 A generalized normalized pseudo-gradient vector field of the locally 241

Lipschitz f : X → R with respect to a subset B ⊂ X and a number c ∈ R is a locally 242

Lipschitz mapping � : Nδ(B) ∩ f−1[c − δ, c + δ] → X with some δ > 0, such that 243

‖�(u)‖ ≤ 1 and 244

〈ζ,�(u)〉 > 1

2
inf

u∈dom(�)
λf (u) > 0

for all ζ ∈ ∂Cf (u) and u ∈ dom(�) := Nδ(B) ∩ f−1[c − δ, c + δ]. 245

The existence of a generalized normalized pseudo-gradient vector field in the sense of 246

Definition 4.3 is given by the result below. 247

Lemma 4.3 Let f : X → R be a locally Lipschitz function, c ∈ R and a closed subset 248

B of X, such that (PS)B,c is satisfied together with B ∩ Kc(f ) = ∅ and B ⊂ f c. 249

Then there exists δ > 0 and a generalized normalized pseudo-gradient vector field � : 250

Nδ(B) ∩ f−1[c − δ, c + δ] → X of f with respect to B and c. 251
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Proof Let us show that there exists a number δ > 0 such that 252

λf (u) ≥ σ > 0, ∀u ∈ Nδ(B) ∩ f−1[c− δ, c + δ], (4.39)

with 253

σ := inf
{
λf (u) : u ∈ Nδ(B) ∩ f−1[c − δ, c + δ]

}
.

Indeed, arguing by contradiction we assume that there exists a sequence {un} ⊂ X with 254

λf (un)→ 0, dist(un, B) → 0 and f (un) → c. By (PS)B,c we derive the existence of a 255

convergent subsequence of {un}, denoted again by {un}, such that un → u in X as n→∞. 256

The lower semicontinuity of the function λf , yields λf (u) ≤ lim infn→∞ λf (un) = 0. We 257

deduce that u ∈ Kc(f ) which contradicts the condition B ∩ Kc(I) = ∅. The claim in 258

(4.39) is verified. 259

Along the line of the proof of Lemma 4.1 and the property (4.39), we construct a locally 260

Lipschitz map 261

� : Nδ(B) ∩ f c−δ ∩ fc+δ → X

such that 262

‖�(u)‖ ≤ 1 (4.40)

and 263

〈ζ,�(u)〉 > 1

2
σ, ∀ζ ∈ ∂Cf (u), u ∈ Nδ(B) ∩ f c−δ ∩ fc+δ. (4.41)

Now, it remains to make use of the usual partition of unity argument. ��

The following deformation result has been proved by Motreanu and Varga [10]. 264

Theorem 4.3 Let f : X→ R be a locally Lipschitz functional, c ∈ R and a closed subset 265

B of X provided one has (PS)B,c, B ∩Kc(f ) = ∅ and B ⊂ f c. Let � be a generalized 266

normalized pseudo-gradient vector field of f with respect to B and c. Then for every ε > 0 267

there exist an ε ∈ (0, ε) and a number δ < c such that for each closed subset A of X with 268

A ∩ B = ∅ and A ⊂ fc−εA , where 269

εA := min(ε, εd(A,B)), (4.42)

270
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there exists a continuous mapping ηA : R×X→ X with the following properties 271

(i) ηA(·, u) is the solution of the vector field VA := −ϕA� with the initial condition u ∈ 272

X for some locally Lipschitz function ϕA : X → [0, 1] whose support is contained 273

in the set (X \A); 274

(ii) ηA(t, u) = u, for all t ∈ R and u ∈ A ∪ f c−ε ∪ fc+ε; 275

(iii) for every δ ≤ d ≤ c one has ηA(1, B ∩ f d) ⊂ f d−ε. 276

Proof Note that the existence of a normalized generalized pseudo-gradient vector field 277

� : N3δ1(B) ∩ f−1[c − 3ε1, c + 3ε1] → X of f with respect to B and c is assured by 278

Lemma 4.3, for some constants δ1 > 0 and ε1 > 0. Consequently, a constant, σ1 > 0 can 279

be found such that 280

〈ζ,�(u)〉 > 1

2
σ1, ∀ζ ∈ ∂Cf (u), u ∈ N3δ1(B) ∩ fc−3ε1 ∩ f c+3ε1 . (4.43)

We claim that the result of Theorem 4.3 holds for every ε > 0 with 281

ε < min

{
ε, ε1,

1

2
σ1,

1

2
σ1δ1

}
. (4.44)

In order to check the claim in (4.44) let us fix two locally Lipschitz functions ϕ, ψ : X→ 282

[0, 1] satisfying 283

ϕ = 1 on Nδ1(B) ∩ f c+ε1 ∩ fc−ε1; ϕ = 0 on X \ (N2δ1(B) ∩ f c+2ε1 ∩ fc−2ε1); 284

285

ψ = 0 on f c−ε ∪ fc+ε; ψ = 1 on f c+ε0 ∩ fc−ε0 , 286

for some ε0 with 287

ε < ε0 < min {ε, ε1} . (4.45)

Then we are able to construct the locally Lipschitz vector field V : X→ X by setting 288

V (u) :=
{
−δ1ϕ(u)ψ(u)�(u), ∀u ∈ N3δ1(B) ∩ fc−3ε1 ∩ f c+3ε1,

0, otherwise.
(4.46)

Using (4.46) we see that the vector field V is locally Lipschitz and bounded, namely 289

‖V (u)‖ ≤ δ1, ∀u ∈ X. (4.47)

290
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From (4.43), (4.46) and (4.47) we derive 291

− 〈ζ, V (u)〉 ≥ 1

2
δ1σ1, ∀u ∈ Nδ1(B) ∩ fc−ε0 ∩ f c+ε0 , ∀ζ ∈ ∂Cf (u). (4.48)

In view of (4.47) we may consider the global flow γ : R×X→ X of V defined by (4.46), 292

i.e. 293

dγ

dt
(t, u) = V (γ (t, u)), ∀(t, u) ∈ R×X, 294

295
γ (0, u) = u, ∀u ∈ X. 296

In the next we set 297

B1 := γ ([0, 1])× B). (4.49)

We notice that B1 in (4.49) is a closed subset of X. To see this let vn := γ (tn, un) ∈ B1 be 298

a sequence with tn ∈ [0, 1], un ∈ B and vn → v in X. Passing to a subsequence we can 299

suppose that tn → t ∈ [0, 1] in R. Putting wn := γ (t, un) we get 300

‖wn − vn‖ = ‖γ (t, un)− γ (tn, un)‖ =
∥∥∥∥
∫ t

tn

d

dt
γ (τ, un)dτ

∥∥∥∥ ≤ δ1|tn − t|, 301

where (4.47) has been used. Since wn → v in X, it turns out that un → γ (−t, u) ∈ B. 302

Finally, we obtain u = γ (t, γ (−t, u)) ∈ B1 which establishes that B1 is indeed closed. 303

The next step is to justify that f (γ (t, u)) is a decreasing function of t ∈ R, for each 304

u ∈ X. Toward this, by applying Lebourg’s mean value theorem and the chain rule for 305

generalized gradients we infer for arbitrary real numbers t > t0 the following inclusions 306

f (t, u)− f (t0, u) ∈ ∂1
C(f (γ (t, u)))

∣∣∣
t=τ ⊂ ∂Cf (γ (τ, u))

dγ

dt
(τ, u)(t − t0)

= ∂Cf (γ (τ, u))V (γ (τ, u))(t − t0)

with some τ ∈ (t0, t). By (4.43) and (4.46) we derive that f (t, u) ≤ f (t0, u). Now we 307

prove the relation 308

A ∩ B1 = ∅. (4.50)

To check (4.50), we admit by contradiction that there exist u0 ∈ B and t0 ∈ [0, 1] provided 309

γ (t0, u0) ∈ A. Since A and B are disjoint we have necessarily that t0 > 0. 310
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From the relations A ⊂ fc−εA and B ⊂ f c we deduce 311

c − εA ≤ f (γ (t0, u0)) ≤ f (γ (t, u0)) ≤ f (u0) ≤ c, ∀t ∈ [0, t0]. (4.51)

It turns out that 312

γ (t, u0) ∈ Nδ1(B) ∩ f c ∩ fc−εA , ∀t ∈ [0, t0]. 313

On the other hand from (4.47) we infer the estimate 314

d(A,B) ≤ ‖γ (t0, u0)− u0‖ = ‖
∫ t0

0
V (γ (s, u0))ds‖ ≤ δ1t0. 315

If we denote h(t) := f (γ (t, u0)), then h is a locally Lipschitz function, and (4.46), (4.48) 316

allow to write 317

h′(s) ≤ max
ζ∈∂Cf (γ (s,u))

〈ζ, dγ

ds
(s, u)〉 = max

ζ∈∂Cf (γ (s,u))
〈ζ, V (γ (s, u))〉 ≤ −1

2
δ1σ1,

for a.e. s ∈ [0, t0]. Therefore, by virtue of (4.44), we have the following estimate 318

f (γ (t0, u0))− f (u0) = h(t0)− h(0) =
∫ t0

0
h′(s)ds ≤ −1

2
δ1σ1t0 < −δ1εt0

≤ −εd(A,B) ≤ −εA. (4.52)

The contradiction between (4.51) and (4.52) shows that the property (4.50) is actually true. 319

Taking into account (4.50) there exists a locally Lipschitz function ψA : X→ R verifying 320

ψA = 0 on a neighborhood of A and ψA = 1 on B1. Then we define the homotopy 321

ηA : R × X → X as being the global flow of the vector field VA = ψAV . The assertion 322

(i) is clear from the construction of ηA because one can take ϕA = −δ1ψAϕψ . Assertion 323

(ii) follows easily because VA = 0 on A ∪ f c−ε ∪ fc+ε . We show that (iii) is valid for 324

δ = c + ε − ε0 with ε described in (4.44) and ε0 in (4.45). To this end we argue by 325

contradiction. Suppose that for some d ∈ [δ, c] there exists u ∈ B ∩ f d such that 326

f (ηA(1, u)) > d − ε. (4.53)

Using the fact that ψA = 1 on B1 we deduce 327

ηA(t, u) = γ (t, u) ∈ Nδ1(B) ∩ f d ∩ fd−ε, ∀t ∈ [0, 1]. 328

329
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Then a reasoning similar to the one in (4.52) can be carried out to write 330

f (ηA(1, u))− f (u) ≤ −1

2
δ1σ1 < −ε.

This contradicts the relation (4.53) because f (u) ≤ d . ��

Remark 4.2 Theorem 4.3 unifies different deformation results as for instance those in 331

Chang [2], Du [5], Motreanu [9], Pucci and Serrin [12]. 332

Corollary 4.1 (Chang [2]) Let f : X→ R be a locally Lipschitz function which satisfies 333

the (PS) condition. If c is not a critical value of f , i.e. Kc(f ) = ∅, then given any ε > 0 334

there exist an ε ∈ (0, ε) and a homeomorphism η : X→ X such that 335

(i) η(u) = u for all u ∈ f c−ε ∪ fc−ε; 336

(ii) η(f c+ε) ⊂ f c−ε . 337

Proof Let us fix a positive number a < ε such that the interval [c − a, c + a] be without
critical values of f. We apply Theorem 4.3 for Ba := f c+a ∩ fc−a and c + a in place
of B and c, respectively, for each a ∈ (0, a]. Theorem 4.3 provides εa > 0, δa < c + a

and, with A := fc+ε , the homotopy ηa ∈ C(R×X,X) satisfying the requirements (i)-(iii)
for ε, δ, ηA replaced by εa, δa, ηa, respectively. Note that this claim holds because fc+ε ⊂
fc−εa,A , where εa,A := min{εa, εad(A,Ba)}. Then 1◦ follows from (ii) of Theorem 4.3.
The relations (4.43) and (4.44) show that εa,A is bounded away from zero, say εa,A ≥ ε >

0 for a ∈ (0, a]. Set d := c + min{a,ε}
2 . We observe that if a > 0 is small enough, d can be

used in (iii) of Theorem 4.3 relative to ηa , that is δa ≤ d ≤ c + a, because ε0 in (4.45)
can be chosen independently of a ∈ (0, a]. Then 2◦ is checked with η(x) := ηa(1, u) for
all u ∈ X and ε = min{a,ε}

2 by means of property (iii) in Theorem 4.3 for Ba and c + a

in place B and c, respectively, with a > 0 sufficiently small. This occurs in view of the
relations c + ε = d and d − εa ≤ cε , so one can conclude. ��

The following result extends Lemma 1.1 in Du [5] to the case of locally Lipschitz 338

functions (see again Motreanu and Varga [11]). 339

Corollary 4.2 Let f : X → R be a locally Lipschitz function, let A and B be two closed 340

disjoint subset of X and let c ∈ R such that B ∩ Kc(f ) = ∅, B ⊂ f c,A ⊂ fc and f 341

satisfies the (PS)B,c condition. Then there exist a number ε > 0 and a homeomorphism η 342

of X such that 343

(i) f (η(u)) ≤ f (u), ∀u ∈ X; 344

(ii) η(u) = u, ∀u ∈ A; 345

(iii) η(B) ⊂ f c−ε . 346
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Proof Apply Theorem 4.3 for the set B and the number c. One obtains an ε > 0
and η := ηA(1, ·) ∈ C(X,X) corresponding to A ⊂ fc ⊂ fc−εA . It is obvious that
the conclusion of Corollary 4.2 follows from Theorem 4.3, where (iii) is deduced for
c = d . ��

4.3 Deformations Without a Compactness Condition 347

In this section we establish a deformation result for locally Lipschitz functionals defined 348

on BR , which will be used the following to derive minimax theorems in nonsmooth critical 349

point theory. In this section, unless otherwise stated, we always assume that 350

(H0) X is a smooth reflexive Banach space. 351

If there is no danger of confusion we shall simply write BR and SR instead of BX(0, R) 352

and ∂BX(0, R). Sometimes we shall denote (−∞, 0] ([0,∞), (−∞, 0), (0,∞)) by R− 353

(R+, R∗−, R∗+), while R−ξ := {αξ : α ∈ R−}. The closed convex hull of a set A ⊂ X is 354

denoted by A
co

. 355

Let φ : [0,∞) → [0,∞) be a given normalization function and denote by Jφ the 356

corresponding duality mapping. 357

Note that the reflexivity of X implies that the weak- and weak∗-topology on X coincide. 358

Theorem C.1 and Corollaries C.1 and C.3 imply that Jφ is single-valued and the norm is 359

Gâteaux differentiable on X \ {0} and X∗ is strictly convex. We also point out the fact that 360

assumption (H0) is not very restrictive as for any reflexive Banach space X with norm ‖ ·‖ 361

there exists an equivalent norm ‖·‖0 on X such that (X, ‖·‖0) and (X∗, ‖·‖0∗) are strictly 362

convex (see e.g. Asplund [1]). 363

The following propositions will turn out useful in the subsequent sections. 364

Proposition 4.1 Let f : X → R be a locally Lipschitz functional. If u ∈ X, {un} ⊂ X 365

and {ζn} ⊂ X∗ are such that un → u and ζn ∈ ∂Cf (un), for all n ∈ N, then there exist 366

ζ ∈ ∂Cf (u) and a subsequence {ζnk } of {ζn} such that ζnk ⇀ ζ in X∗. 367

Proof The upper semicontinuity of ∂Cf together with Proposition 2.4 ensures that there 368

exists n0 ∈ N such that 369

∂Cf (un) ⊂ BX∗(0, 2Lu), ∀n ≥ n0,

with Lu > 0 the Lipschitz constant near u. Therefore {ζn} is a bounded sequence in X∗.
Since X is reflexive, then X∗ is also reflexive, hence the Eberlein-Šmulian theorem ensures
that {ζn} possesses subsequence {ζnk } such that ζnk ⇀ ζ , for some ζ ∈ X∗. It follows at
once that ζ ∈ ∂Cf (u) since ∂Cf is weakly closed. ��
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Proposition 4.2 Let γ : [0,∞)→ X \ {0} be a C1-curve and �(t) := ∫ t

0 φ(s)ds. Then 370

d

dt
�(‖γ (t)‖) = 〈

Jφγ (t), γ
′(t)

〉
.

Proof Clearly, for all t, s > 0 the following relations hold 371

〈
Jφγ (t), γ (t)

〉 = φ(‖γ (t)‖)‖γ (t)‖,

and 372

〈
Jφγ (t), γ (s)

〉 ≤ φ(‖γ (t)‖)‖γ (s)‖,

hence by substraction we get 373

〈
Jφγ (t), γ (s) − γ (t)

〉 ≤ φ(‖γ (t)‖) [‖γ (s)‖ − ‖γ (t)‖] .

If s > t , then 374

〈
Jφγ (t),

γ (s)− γ (t)

s − t

〉
≤ φ(‖γ (t)‖)‖γ (s)‖ − ‖γ (t)‖

s − t
,

and letting s ↓ t we get 375

〈
Jφγ (t), γ

′(t)
〉 ≤ φ(‖γ (t)‖) d

dt
‖γ (t)‖.

For s < t we get the converse inequality, hence 376

〈
Jφγ (t), γ

′(t)
〉 = φ(‖γ (t)‖) d

dt
‖γ (t)‖ = d

dt
�(‖γ (t)‖).

��

The following lemma ensures the existence of a locally Lipschitz vector field which 377

plays the role of a pseudo-gradient field in the smooth case and will be used in the sequel. 378

Lemma 4.4 Let f : X → R be a locally Lipschitz functional and let F0 ⊂ F ⊂ X be 379

such that 380

(A) there exists γ > 0 such that λf (u) ≥ γ , for all u ∈ F ; 381

(B) there exists θ ∈ (0, 1) such that 382

0 ∈ C(u, θ), for all u ∈ F0,

where C(u, θ) := [∂Cf ]θ (u) ∪ Jφu
co

and [∂Cf ]θ (u) := ∂Cf (u)+θλf (u)BX∗(0, 1). 383
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Then there exists a locally Lipschitz vector field � : F → X such that 384

(P1) ‖�(u)‖ ≤ 1, for all u ∈ F ; 385

(P2) 〈ζ,�(u)〉 > θγ/2, for all u ∈ F and all ζ ∈ ∂Cf (u); 386

(P3) 〈Jφu,�(u)〉 > 0, for all u ∈ F0. 387

Proof Let u ∈ F0 be fixed. The Krein-Šmulian theorem (see, e.g., Conway [3, V.13.4]) 388

implies that the convex set C(u, θ) is weakly compact. Using the weak lower semicon- 389

tinuity of the norm and assumption (B) we deduce that there exists r0 > 0 such that 390

r0 := infξ∈C(u,θ) ‖ξ‖. Since BX∗(0, r0)∩C(u, θ) = ∅, the Hahn-Banach weak separation 391

theorem implies that there exists wu ∈ ∂BX(0, 1) and α ∈ R such that 392

〈η,wu〉 ≤ α ≤ 〈ξ,wu〉, ∀η ∈ BX∗(0, r0), ∀ξ ∈ C(u, θ).

Taking supremum with respect to η, we get 393

0 < r0 ≤ 〈ξ,wu〉, ∀ξ ∈ C(u, θ). (4.54)

In particular, 394

〈Jφu,wu〉 > 0. (4.55)

We claim that 395

〈ζ,wu〉 > θγ/2, ∀ζ ∈ ∂Cf (u). (4.56)

Recall that 〈ζ,wu〉 = d(ζ, ker wu) (see, e.g., Costara and Popa [4, p. 87]), where by kerwu 396

we have denoted the following subset of X∗ 397

kerwu :=
{
ξ ∈ X∗ : 〈ξ,wu〉 = 0

}
.

Therefore, it suffices to prove that d(∂Cf (u), kerwu) > θγ /2. Let η ∈ kerwu be fixed. 398

Obviously η ∈ [∂Cf ]θ (u), otherwise η would belong to C(u, θ) and (4.54) would be 399

violated. By the definition of [∂Cf ]θ (u), we have d(η, ∂Cf (u)) ≥ θλf (u). Since η was 400

arbitrarily chosen it follows that 401

d(∂Cf (u), kerwu) ≥ θλf (u) > θγ /2.

We prove next that there exists ru > 0 such that 402

〈ζ,wu〉 > θγ/2, ∀v ∈ BX(u, ru) ∩ F, ∀ζ ∈ ∂Cf (v), (4.57)
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and 403

〈Jφv,wu〉 > 0, ∀v ∈ BX(u, ru). (4.58)

Arguing by contradiction, assume that (4.57) does not hold, i.e. for each r > 0 there exist 404

v ∈ BX(u, r) ∩ F and ζ ∈ ∂Cf (v) such that 405

〈ζ,wu〉 ≤ θγ /2.

Taking r = 1/n we obtain the existence of two sequences {vn} ⊂ X and {ζn} ⊂ X∗ such 406

that 407

vn → u, ζn ∈ ∂Cf (vn) and 〈ζn,wu〉 ≤ θγ /2.

According to Proposition 4.1 there exists ζ0 ∈ ∂Cf (u) such that, up to a subsequence, 408

ζn ⇀ ζ0, in X∗.

Letting n → ∞ we get 〈ζ0, wu〉 ≤ θγ /2 which contradicts (4.56). Relation (4.58) 409

may be proved in a similar manner by using Proposition C.7 which asserts that Jφ is 410

demicontinuous on reflexive Banach spaces. 411

If u ∈ F \ F0, we can employ a similar argument as above with ∂Cf (u) instead of 412

C(u, θ) to get the existence of an element wu ∈ ∂BX(0, 1) such that (4.56) holds. 413

Thus, the family {BX(u, ru)}u∈F is an open covering of F and it is paracompact, 414

hence it possesses a locally finite refinement say {Uα}α∈I . Standard arguments ensure 415

the existence of a locally Lipschitz partition of unity, denoted {ρα}α∈I , subordinated to the 416

covering {Uα}α∈I . The required locally Lipschitz vector field � : F → X can now be 417

defined by 418

�(u) :=
∑
α∈I

ρα(u)wu. 419

Simple computations show � satisfies the required conditions. ��

The following proposition provides an equivalent form of condition (B) in the previous 420

lemma, which will be useful the following sections. 421

Proposition 4.3 Let u ∈ X \ {0} and θ ∈ (0, 1) be fixed. Then the following statements 422

are equivalent: 423

(i) 0 ∈ C(u, θ); 424

(ii) R−Jφu ∩ [∂Cf ]θ (u) = ∅. 425
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Proof (i) ⇒ (ii) Arguing by contradiction, assume there exist α ∈ R− and ξ ∈ 426

[∂Cf ]θ (u) such that ξ = αJφu. Then, for t := 1
1−α ∈ (0, 1] we get 427

0 = 1

1− α
(−αJφu+ ξ) = (1− t)Jφu+ tξ,

which shows that 0 ∈ C(u, θ), contradicting (i). 428

429

(ii) ⇒ (i) Assume by contradiction that 0 ∈ C(u, θ). Then there exist tn ∈ [0, 1] and 430

ξn ∈ [∂Cf ]θ (u) such that 431

ρn := (1− tn)Jφu+ tnξn → 0, as n→∞.

Since {tn} is a bounded sequence in R, it follows that it possesses a subsequence {tnk } 432

such that 433

tnk → t ∈ [0, 1].

Obviously the set [∂Cf ]θ (u) is bounded, hence if t = 0, then tnk ξnk → 0. Thus ρnk → 434

Jφu and the uniqueness of the limit leads to Jφu = 0 which is a contradiction, as u = 0. 435

If t ∈ (0, 1], then 436

ξnk =
1

tnk
ρnk +

tnk − 1

tnk
Jφu→ t − 1

t
Jφu ∈ R−Jφu.

Since [∂Cf ]θ (u) is also closed, it follows that t−1
t
Jφu ∈ [∂Cf ]θ (u), but this 437

contradicts (ii). 438��

We are now in position to prove the main result of this section which is given by the 439

following deformation theorem. The set Z ⊂ BR in the statement may be regarded as a 440

“restriction” set that allows us to control the deformation. The reader may think ofZ = BR 441

as the “unrestricted” case. Here and hereafter in this section, if f : BR → R is a functional 442

and Z is a subset of BR , we adopt the following notations 443

f a := {
u ∈ BR : f (u) ≤ a

}
,

and 444

Zb :=
{
u ∈ BR : d(u,Z) ≤ b

}
.
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Theorem 4.4 Let f : BR → R be a locally Lipschitz and Z ⊂ BR . Assume that there 445

exist c, ρ ∈ R, δ > 0 and θ ∈ (0, 1) such that the following conditions hold: 446

(H1) λf (u) ≥ 4δ
ρθ2 , on

{
u ∈ BR : |f (u)− c| ≤ 3δ

} ∩ Z3ρ; 447

(H2) 0 ∈ C(u, θ), on {u ∈ SR : |f (u)− c| ≤ 3δ} ∩ Z3ρ . 448

Then there exists a continuous deformation σ : [0, 1] × BR → BR such that: 449

(i) σ (0, ·) = id; 450

(ii) σ (t, ·) : BR → BR is a homeomorphism for all t ∈ [0, 1]; 451

(iii) σ (t, u) = id , for all u ∈ BR \
{
u ∈ BR : d(u,Z) ≤ 2ρ, |f (u)− c| ≤ 2δ

}
; 452

(iv) The function f (σ(·, u)) is nonincreasing for all u ∈ BR . Moreover, f (σ(t, u)) < 453

f (u), whenever σ(t, u) = u; 454

(v) ‖σ(t1, u)− σ(t2, u)‖ ≤ ρθ |t1 − t2| for all t1, t2 ∈ [0, 1]; 455

(vi) σ
(
1, f c+δ ∩ Z

) ⊆ f c−δ ∩ Zρ . 456

Proof Let us define the following subsets of BR as follows 457

F :=
{
u ∈ BR : λf (u) ≥ 4δ

ρθ2

}
, F0 := {u ∈ SR : d(u,Z) ≤ 3ρ, |f (u)− c| ≤ 3δ} ,

458

F1 :=
{
u ∈ BR : d(u,Z) ≤ 2ρ, |f (u)− c| ≤ 2δ

}
,

459

F2 :=
{
u ∈ BR : d(u,Z) ≤ ρ, |f (u)− c| ≤ δ

}
,

and consider the locally Lipschitz function χ : BR → R defined as 460

χ(u) := d(u,BR \ F1)

d(u, BR \ F1)+ d(u, F2)
. 461

Obviously χ ≡ 0 on BR \ F1, whereas χ ≡ 1 on F2 and 0 < χ < 1 in-between. 462

Applying Lemma 4.4 with F and F0 defined as above, we get the existence of a locally 463

Lipschitz vector field � : F → X having the properties (P1)–(P3). Using the cutoff 464

function we define V : BR → X to be given by 465

V (u) :=
⎧⎨
⎩
−χ(u)�(u), if u ∈ F,

0, otherwise.
466

467
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Then V can be extended to a locally Lipschitz and globally bounded map defined on the 468

whole X by setting 469

V (u) = V

(
R

‖u‖u
)
, whenever ‖u‖ > R.

By an extended version of the Picard–Lindelöf existence theorem for Banach spaces (see, 470

e.g., [13, Lemma 2.11.1]) the initial value problem 471

⎧⎪⎨
⎪⎩

d

dt
η(t, u) = V (η(t, u)),

η(0, u) = u.

472

possesses a unique maximal solution η : R×X→ X. We define the required deformation 473

via time dilation, 474

σ(t, ·) := η(ρθt, ·), ∀t ∈ R. 475

The initial value ensures that σ(0, ·) = id , thus establishing (i). It follows from 476

the aforementioned result that σ(t, ·) : X → X is a homeomorphism (with inverse 477

σ(t, ·)−1 = σ(−t, ·)). For convenience, we denote by σu : X → X, the orbit defined 478

by σu(t) := σ(t, u), for all (t, u) ∈ R×X. 479

We claim that, for each u ∈ BR , the orbit {σu(t)}t≥0 lies entirely in BR . In order to 480

check this, assume that T0 ≥ 0 is such that 481

u1 := σu(T0) ∈ SR,

and 482

‖σu(t)‖ ≤ R, ∀t ∈ [0, T0).

By Proposition 4.2 we have 483

d

dt
� (‖σu(t)‖) = ρθ

〈
Jφσu(t), V (σu(t))

〉
, (4.59)

and 484

〈Jφσu(t), V (σu(t))〉 =
{
−χ(σu(t))〈Jφσu(t),�(σu(t))〉, if σu(t) ∈ F,

0, otherwise ,
(4.60)

whenever σu(t) = 0. 485
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If u1 ∈ F0, then 〈Jφu1,�(u1)〉 > 0, hence there exists a neighborhood U of u1 such 486

that 487

〈Jφv,�(v)〉 > 0, ∀v ∈ U ∩ F. (4.61)

The continuity of σu(·) and relations (4.59)–(4.61) ensure that 488

d

dt
�(‖σu(t)‖) ≤ 0,

holds in a neighborhood [T0, T0 + s) of T0. 489

If u1 ∈ F0, then V vanishes in a neighborhood of u1 and by a similar reasoning we 490

obtain 491

d

dt
�(‖σu(t)‖) = 0, ∀t ∈ [T0, T0 + s).

Thus �(‖σu(·)‖) is nonincreasing in [T0, T0 + s), while �(·) is strictly increasing on R+, 492

hence ‖σu(t)‖ ≤ R for all t ∈ [T0, T0 + s). The argument can be repeated whenever 493

{σu(t)}t≥0 reaches SR . 494

Henceforth we restrict σ to [0, 1] ×BR, without changing the notation. It is clear from 495

above that σ(t, ·) is a homeomorphism for all t ∈ [0, 1] and χ ≡ 0 on BR \ F1, therefore 496

(ii) and (iii) hold. 497

In order to prove (iv), fix u ∈ BR and define h : [0, 1] → R by h(t) := f (σu(t)). 498

Then, by Proposition 2.7 h is differentiable almost everywhere and for a.e. s ∈ [0, 1] we 499

have 500

h′(s) ≤ max
ζ∈∂Cf (σu(s))

〈
ζ, σ ′u(s)

〉 = max
ζ∈∂Cf (σu(s))

ρθ 〈ζ, V (σu(s))〉 .

Since � satisfies property (P2) and χ vanishes on BR \ F1, we get h′(s) ≤ 0 if σu(s) ∈ 501

BR \ F1 and 502

h′(s) ≤ −ρθχ(σu(s))〈ζ,�(σu(s))〉 ≤ −ρθχ(σu(s))θ
2

4δ

ρθ2 = −2δχ(σu(s)),

otherwise. This shows that f (σu(·)) is nonincreasing. 503

If σu(t) = u, then t > 0 and σu(t) ∈ BR \ F1. Therefore there exists ε > 0 such that 504

σu(s) ∈ BR \ F1 for all s ∈ (t − ε, t + ε). Thus χ(σu(s)) > 0 for all s ∈ (t − ε, t) and 505

f (σu(t))− f (u) = f (σu(t))− f (σu(0)) =
∫ t

0
h′(s)ds < 0.



96 4 Deformation Results

For a fixed u ∈ BR and 0 ≤ t1 < t2 ≤ 1 we have 506

‖σu(t2)− σu(t1)‖ =
∥∥∥∥
∫ t2

t1

σ ′u(s)ds
∥∥∥∥ ≤ ρθ

∫ t2

t1

‖V (σu(s))‖ds ≤ ρθ(t2 − t1),

which shows that (v) holds. Moreover, if u ∈ Z, then ‖σu(t) − u‖ ≤ ρθt < ρ, hence 507

σu(t) ∈ Zρ , for all t ∈ [0, 1]. 508

Finally, in order to complete the proof it suffices to show that for any u ∈ Z ⊂ BR such 509

that f (u) ≤ c + δ we have f (σu(1)) ≤ c − δ. We distinguish two cases: 510

(a) f (u) ≤ c − δ. Then 511

f (σu(1)) ≤ f (σu(0)) = f (u) ≤ c − δ.

(b) c− δ < f (u) ≤ c+ δ. Then u ∈ F2. Let tmax ∈ [0, 1] be the maximal time for which 512

the σu(·) does not exit F2, i.e., 513

σu(t) ∈ F2 for t ∈ [0, tmax].

If tmax = 1, then χ(σu(s)) = 1 for all s ∈ [0, 1] and 514

f (σu(1))− f (u) =
∫ 1

0
h′(s)ds ≤

∫ 1

0
−2δχ(σu(s))ds = −2δ,

which leads to 515

f (σu(1)) ≤ f (u)− 2δ ≤ c + δ − 2δ = c − δ.

If tmax < 1, then there exists t0 ∈ (tmax, 1] such that σu(t0) ∈ F2. Since σu(t0) ∈ Zρ , 516

it follows that either f (σu(t0)) < c− δ, or f (σu(t0)) > c+ δ. The latter cannot occur 517

due to (i) and (iv). 518��

4.4 A Deformation Lemma for Szulkin Functionals 519

In this section we present a deformation result for Szulkin type functionals, see [14]. 520

As in the Sect. 3.2, let X be a real Banach space and I a function on X satisfying the 521

following structure hypothesis: 522

(H) f := ϕ + ψ , where ϕ ∈ C1(X,R) and ψ : X → (−∞,+∞] is convex, proper and 523

l.s.c. 524
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Lemma 4.5 Suppose that f satisfies (H) and (PS)c and let N be a neighbourhood of Kc. 525

Then for each ε > 0 there exists an ε ∈ (0, ε) such that if u0 /∈ N and c − ε ≤ f (u0) ≤ 526

c + ε, then 527

〈ϕ′(u0), v0 − u0〉 + ψ(v0)− ψ(u0) ≤ −3ε‖v0 − u0‖ (4.62)

for some v0 ∈ X. 528

Proof If the conclusion is false, there exists a sequence {un} ⊂ X\N such that f (un)→ c 529

and 530

〈ϕ′(un), v − un〉 + ψ(v) − ψ(un) ≥ −1

n
‖v − un‖, ∀ v ∈ X.

Thus, by (PS)c and Proposition 3.5, a subsequence of {un} converges to u ∈ Kc. This
contradicts the fact that un /∈ N for every n ∈ N and N is a neighborhood of Kc. ��

Lemma 4.6 Suppose that f satisfies (H) and (PS). Let N be a neighborhood of Kc. Let 531

ε > 0 be such that the assertion of Lemma 4.5 is satisfied. Then for every u0 ∈ f c+ε \ N , 532

there exists v0 ∈ X and an open neighborhood U0 of v0 such that 533

〈ϕ′(u), v0 − u〉 + ψ(v0)− ψ(u) ≤ ‖v0 − u‖ (4.63)

for all u ∈ U0, 534

〈ϕ′(u), v0 − u〉 + ψ(v0)− ψ(u) ≤ −3ε‖v0 − u‖ (4.64)

for all u ∈ U0 ∩ fc−ε . Moreover, if u0 ∈ K we can take v0 := u0 and if u0 /∈ K, v0, U0 535

and a number δ0 > 0 can be chosen so that v0 /∈ U0 and 536

〈ϕ′(u), v0 − u〉 + ψ(v0)− ψ(u) ≤ −δ0‖v0 − u‖, ∀u ∈ U0. (4.65)

Proof We distinguish two cases: (i) u0 ∈ K and (ii) u0 /∈ K . 537

(i) From the definition of the critical point of the function f = ϕ + ψ follows that 538

〈ϕ′(u0), u− u0〉 + ψ(u)− ψ(u0) ≥ 0

for all u ∈ X. We now choose a small neighbourhood U0 of u0 such that 539

〈ϕ′(u), u0 − u〉 + ψ(u0)− ψ(u) ≤ 〈ϕ′(u)− ϕ′(u0), u0 − u〉 + ψ(u) − ψ(u0)

540

≤ ‖ϕ′(u)− ϕ′(u0)‖ · ‖u0 − u‖ ≤ ‖u0 − u‖
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for all u ∈ U0. This show that (4.63) is satisfied with v0 := u0. We now observe that 541

if c − ε ≤ f (u) ≤ c + ε and u ∈ K , then by Lemma 4.5, u ∈ N . Since u0 /∈ N , 542

we must have f (u0) < c − ε. If f (u) < c − ε in some neighborhood of u0, we may 543

choose U0 contained in this neighborhood. Therefore the condition (4.64) is empty. 544

If every neighborhood of u0 contains a point u at which f (u) ≥ c − ε we easily 545

check, using the continuity of ϕ, that ψ(u) − ψ(u0) ≥ d > 0 for some constant d 546

and u sufficiently close to u0 and satisfying f (u) ≥ c − ε. This means that if U0 is 547

sufficiently small neighborhood of u0, then 548

〈ϕ′(u), u0 − u〉 + ψ(u0)− ψ(u) ≤ ‖ϕ′(u)‖ · ‖u0 − u‖ − d ≤ −3ε‖u0 − u‖

for all u ∈ U0 such that f (u) ≥ c − ε. 549

(ii) First we suppose that f (u0) < c− ε. Since u0 is not a critical point of f , there exists 550

v0 ∈ X such that 551

〈ϕ′(u0), v0 − u0〉 + ψ(v0)− ψ(u0) < 0. (4.66)

Letting w0 = tv0 + (1− t)u0, 0 < t < 1, we get by the convexity of ψ that 552

〈ϕ′(u0),w0 − u0〉 + ψ(w0)− ψ(u0) ≤
553

≤ t
(〈ϕ′(u0), v0 − u0〉 + ψ(v0)− ψ(u0)

)
< 0.

Hence we may assume that v0 is close to u0. As in the Case (i) we show that there 554

exists d > 0 such that ψ(u) − ψ(u0) ≥ d > 0 for all u sufficiently close to u0 and 555

such that f (u) ≥ c − ε. It then follows from (4.66) that if U0 and ‖v0 − u0‖ are 556

sufficiently small then 557

(ψ(v0)− ψ(u0))+ (ψ(u0)− ψ(u)) ≤ d

2
− d = −d

2

and 558

〈ϕ′(u), v0 − u〉 + ψ(v0)− ψ(u) ≤ ‖ϕ′(u)‖ · ‖v0 − u‖ − d

2
≤ −3ε‖v0 − u‖

for all u ∈ U0 with f (u) ≥ c − ε. This means that (4.64) holds. Since v0 = u0, we 559

may assume that v0 /∈ U0 and moreover U0 can be chosen smaller, if necessary, to 560

ensure that the inequality (4.66) remains true in U0, that is 561

〈ϕ′(u), v0 − u〉 + ψ(v0)− ψ(u) ≤ −δ0‖v0 − u‖
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for all u ∈ U0, thus (4.65) is satisfied. It now remains to consider the case f (u0) ≥ 562

c − ε. We can apply Lemma 4.5 in order to obtain the existence of v0 such that 563

the inequality from this lemma is satisfied. By the continuity of ϕ′ and the lower 564

semicontinuity of ψ we can extend this inequality to a suitably small neighborhood 565

of U0 of u0, with v0 /∈ U0, that is 566

〈ϕ′(u), v0 − u〉 + ψ(v0)− ψ(u) ≤ −3ε‖v0 − u‖

for all u ∈ U0. This shows that (4.65) holds. 567��

A family of mappings α(·, s) ≡ αs : W → X, 0 ≤ s ≤ s0, s0 > 0, is said to be a 568

deformation if α ∈ C(W × [0, s0],X) and α0 = id (id identity on W ). 569

Lemma 4.7 (Szulkin Deformation Lemma) Suppose that f satisfies (H) and the (PS) 570

condition and let N be a neighborhood of Kc. Then for each ε > 0 there exists ε ∈ (0, ε) 571

such that for each compact subset A of X \N satisfying 572

c ≤ sup
u∈A

f (u) ≤ c + ε,

we can find a closed set W , with A ⊂ int(W) and a deformation αs : W → X, 0 ≤ s ≤ s0, 573

having the following properties 574

‖u− αs(u)‖ ≤ s, ∀u ∈ W, (4.67)
575

f (αs(u))− f (u) ≤ 2s, ∀u ∈ W, (4.68)
576

f (αs(u))− f (u) ≤ −2εs, ∀u ∈ W, f (u) ≥ c − ε (4.69)

and 577

sup
u∈A

f (αs(u))− sup
u∈A

f (u) ≤ −2εs. (4.70)

Moreover, if W0 is a closed set such that W0 ∩K = ∅, then W and αs can be chosen so 578

that 579

f (αs(u))− f (u) ≤ 0, ∀u ∈ W ∩W0. (4.71)

Proof By Lemma 4.6 there exists ε ∈ (0, ε) such that for each u0 ∈ A there correspond a 580

neighborhood of U0 satisfying conditions stated in that lemma. If u0 ∈ K we may always 581

assume that U0 ∩ W0 = ∅. The sets U0 corresponding to u0 ∈ A form a covering of a 582

compact A. Let {Ui}i∈J be a finite subcovering. Let {ui} and {vi} be points corresponding
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to Ui from Lemma 4.6. By taking a suitable refinement, if necessary, we may always 583

assume that if a i0 ∈ J and ui0 ∈ K , then dist(ui0 , Ui) > 0 for each i = i0. Let ρi be a 584

continuous function such that ρi(u) > 0 for u ∈ Ui and ρi(u) = 0 for u /∈ Ui . We set 585

σi(u) := ρi(u)∑
j∈J ρj (u)

u ∈ V = ∪j∈JUj and define a deformation mapping αs as follows: if ui0 ∈ A ∩K , then 586

αs(u) :=
{
u+ s

ui0−u‖ui0−u‖ , for 0 ≤ s < ‖ui0 − u‖, u ∈ Ui0 \ ∪i =i0Ui

ui0 , for s ≥ ‖ui0 − u‖, u ∈ Ui0 \ ∪i =i0Ui

and in all other cases 587

αs(u) := u+ s
∑
i∈J

σi(u)
vi − u

‖vi − u‖ .

It is easy to check that αs is well defined and continuous for sufficiently small s. It is clear 588

that α0 = id . To check the remaining properties of αs we write 589

f (αs(u)) = f (u+ sw) = ϕ(u)+ s〈ϕ′(u),w〉 + r(s)+ ψ(u + sw), (4.72)

where 590

αs(u) = u+ sw and |r(s)| ≤ s sup
0≤t≤s

‖ϕ′(u+ tw) − ϕ′(w)‖.

We choose δ > 0 such that 591

0 < 3δ < min{1, ε, δi},

where δi > 0 corresponds to Ui from the relation (4.65). Since A is compact, there exists 592

a closed set W , with A ⊂ int(W) and s > 0 such that |r(s)| ≤ δs for all 0 < s ≤ s, u ∈ W 593

and w ∈ X with ‖w‖ ≤ 1. If u /∈ Ui0 \ ∪i =i0Ui , then 594

αs(u) = u+ sw =
(

1− s
∑
i∈J

σi(u)‖vi − u‖−1

)
u+ s

∑
i∈J

σi(u)‖vi − u‖−1vi.

For s sufficiently small we have 595

0 ≤ s
∑
i∈J

σi(u)‖vi − u‖−1 ≤ 1
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and using the convexity of ψ we deduce from (4.72) that 596

f (αs(u)) ≤ ϕ(u)+ s
∑
i∈J

σi(u)

‖vi − u‖〈ϕ
′(u), vi − u〉 + δs+

597

+
(

1− s
∑
i∈J

σi(u)

‖vi − u‖

)
ψ(u)+ s

∑
i∈J

σi(u)

‖vi − u‖ψ(vi ) =

598

= f (u)+ s
∑
i∈J

σi(u)

‖vi − u‖
(〈ϕ′(u), vi − u〉 + ψ(vi)− ψ(u)

) + δs.

According to (4.63) each term in the last summation is less than or equal to σi(u), hence 599

f (αs(u)) ≤ f (u)+ s + δs (4.73)

and (4.68) holds. In a similar manner we show, using (4.64) and (4.65), that 600

f (αs(u)) ≤ f (u)− 3εs + δs (4.74)

for all u ∈ W with f (u) ≥ c − ε and 601

f (αs(u)) ≤ f (u)− 3δs + δs (4.75)

for all u ∈ W ∩W0. Suppose that u ∈ Ui0 \ ∪i =i0Ui . We have 602

αs(u) = u+ sw =
(

1− s‖ui0 − u‖−1
)
u+ s‖ui0 − u‖−1ui0

for s < ‖ui0 − u‖ = s. In this case we repeat the previous part of the proof to show (4.68) 603

and (4.69). On the other hand, if s ≥ s, then 604

f (αs(u)) = f (αs(u)) ≤ f (u)+ s + δs ≤ f (u)+ 2s

and f (αs(u)) = f (ui0) < c − ε. This means that (4.68) and (4.69) hold for small s. The 605

inequality (4.71) follows from (4.75) if u /∈ Ui0 \ ∪i =i0Ui . If u ∈ Ui0 \ ∪i =i0Ui , then 606

u ∈ Ui0 and ui0 ∈ K . Hence Ui0 ∩ W0 = ∅ and u /∈ W ∩ W0. Finally, to show (4.70) 607

let us first assume that supu∈A f (αs(u)) ≤ c − ε
2 . Then taking s ≤ 1

4 we get (4.70) since 608

supu∈A f (u) ≥ c. On the other hand if supu∈A f (αs(u)) > c − ε
2 , we set 609

B := {u ∈ A : f (u) > c − ε}.
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It follows from (4.68) that 610

sup
u∈A

f (αs(u)) = sup
u∈B

f (αs(u))

for s small, say s ≤ ε
4 . This combined with (4.69) implies that 611

sup
u∈A

f (αs(u))− sup
u∈A

f (u) = sup
u∈B

f (αs(u))− sup
u∈B

f (u) (4.76)

612≤ sup
u∈B

(f (αs(u))− f (u)) ≤ −2εs.

��

Corollary 4.3 Suppose that ϕ and ψ are even and that A is symmetric. Then αs is odd. 613

Proof We may assume that W is symmetric. We define 614

βs(u) := 1

2
(αs(u)− αs(−u)),

then βs is odd and satisfies (4.67). Writing αs(u) = u+hs(u), we have by Taylor’s formula 615

f (βs(u)) = ϕ(u)+ 1

2
〈ϕ′(u), hs(u)−hs (−u)〉+r1(s)+ψ

(
(u+ hs(u))+ (u− hs(−u))

2

)
.

From this we deduce that 616

f (βs(u)) ≤1

2

[
ϕ(u)+ 〈ϕ′(u), hs(u)〉 + ψ(u+ hs(u))

]

+ 1

2

[
ϕ(−u)+ 〈ϕ′(−u), hs(−u)〉 + ψ(−u+ hs(−u))

]+ δs.

Applying Taylor’s formula again we get 617

f (βs(u)) ≤ 1

2
f (αs(u))+ 1

2
f (αs(−u))+ 2δs.

This combined with (4.73) gives 618

f (βs(u)) ≤ f (u)+ s + 3δs ≤ f (u)+ 2s

for s small and (4.68) holds. Similarly, using (4.74) and (4.75) we show that βs satisfies
(4.69) and (4.71). Finally, βs satisfies (4.70) since (4.76) continues to hold for u satisfying
(4.68) and (4.69). ��
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52Minimax and Multiplicity Results 3

5.1 Minimax Results with Weakened Compactness Condition 4

Throughout this section we use the following notion of “linking sets”. For more details 5

and examples check out Appendix E. 6

Definition 5.1 Let X be a Banach space and A,C ⊆ X two subsets. We say that C links 7

A, if A ∩ C = ∅, and C is not contractible in X \A. 8

Remark 5.1 It is well known that if X is a finite dimensional and U is an open bounded 9

neighborhood of an element u ∈ X, then the boundary ∂U (the boundary of U ) is not 10

contractible in X \ {u}. 11

Theorem 5.1 If A,C ⊆ X are nonempty, A is closed, C links A, �C is the set of all 12

contractions of C, and f : X → R is a locally Lipschitz which satisfies the (ϕ − C)c- 13

condition with 14

c := inf
h∈�C

sup
[0,1]×C

f ◦ h <∞ and sup
u∈C

f (u) ≤ inf
u∈Af (u),

then c ≥ inf
u∈Af (u) and c is a critical value of f . Moreover, if c = inf

u∈Af (u), then there 15

exists u ∈ A such that u ∈ Kc. 16

Proof Since by hypothesis C links A, for every h ∈ �C we have h([0, 1] × C) = ∅. So 17

we infer that c ≥ inf
u∈Af (u). 18
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First we assume that inf
u∈Af (u) < c. Suppose that Kc = ∅. Let U = ∅ and let ε > 0 19

and η : [0, 1] × X → X be as in Theorem 4.2. Also from the definition of c, we can find 20

h ∈ �C such that 21

f (h(t, u)) ≤ c + ε, ∀(t, u) ∈ [0, 1] × C. (5.1)

Let H : [0, 1] × C → X defined by 22

H(t, x) :=
{
η(2t, u), if 0 ≤ t ≤ 1

2 ,

η(1, h(2t − 1, u)), if 1
2 ≤ t ≤ 1.

It is easy to check that H ∈ �C and from (d) and (c) of Theorem 4.2 we obtain that for 23

every u ∈ C we have 24

f (H(t, u)) = f (η(2t, u)) ≤ f (u) ≤ sup
u∈C

f (u) < c, if t ∈ [0, 1/2]

25
f (H(t, u)) = f (η(1, h(2t − 1, u))) ≤ c − ε < c, if t ∈ [1/2, 1]

and from (5.1) we get 26

h(t, u) ∈ f c+ε for every t ∈ [0, 1].

So we have contradicted the definition of c. This proves that Kc = ∅, when c > inf
u∈Af (u). 27

Next assume that c = inf
u∈Af (u). We need to show that Kc ∩ A = ∅. Suppose the 28

contrary and let U be a neighborhood of Kc with U ∩ A = ∅. Let ε > 0 and η : [0, 1] × 29

X → X be as in Theorem 4.2. As before let h ∈ �C such that f (h(t, u)) ≤ c + ε for all 30

(t, u) ∈ [0, 1] × C. Then we define H : [0, 1] × C → X by 31

H(t, u) :=
{
η(2t, u), if 0 ≤ t ≤ 1

2
η(1, h(2t − 1, u)), if 1

2 ≤ t ≤ 1.

Again, we have H ∈ �C . From Theorem 4.2 follows that for all 0 ≤ t ≤ 1
2 and all u ∈ C, 32

we have 33

η(2t, u) = u or f (η(2t, u)) < f (u) ≤ inf
u∈Af (u) = c

which implies 34

η(2t, u) ∈ A, ∀(t, u) ∈ [0, 1/2]× C.
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For all t ∈ [1/2, 1] and all u ∈ C, we have from (d) of Theorem 4.2 35

η(1, h(2t − 1, u)) ⊆ f c−ε ∪ U,

while (f c−ε ∪ U) ∩ A = ∅. So H is a contraction of C in X \ A and this contradiction
completes the proof. ��

Theorem 5.2 (Mountain Pass Theorem) Let X be a Banach space, f : X → R be a 36

locally Lipschitz function and ϕ : X→ R a globally Lipschitz function such that ϕ(u) ≥ 1, 37

∀u ∈ X. Suppose that there exist u1 ∈ X and r > 0 such that ‖u1‖ > r and 38

(i) max{f (0), f (u1)} ≤ inf{f (u) : ‖u‖ = r}; 39

(ii) the function f satisfies the (ϕ − C)c-condition (c ∈ R), 40

where 41

c := inf
γ∈� max

t∈[0,1]f (γ (t)),

with � := {γ ∈ C([0, 1],X) : γ (0) = 0, γ (1) = u1}. Then the minimax value c in (ii) 42

is a critical value of f . Moreover, if c = inf{f (u) : ‖u‖ = r}, there exist a critical point 43

u2 of f with f (u2) = c and ‖u2‖ = r . 44

Proof We will apply Theorem 5.1 with A := {u ∈ X : ‖u‖ = r} and C := {0, u1}. 45

Clearly C links A and c <∞. Let γ ∈ � and define 46

h(t, u) :=
{
γ (t), if u = 0

u1, if u = u1

Then h ∈ �C . Therefore 47

inf
h∈�C

sup
[0,1]×C

f (h(t, u)) ≤ f (h(t, u)) ≤ c. (5.2)

On the other hand, if h ∈ �C , then 48

γ (t) :=
{
h(2t, 0), if t ∈ [0, 1/2]

h(2− 2t, x1), if t ∈ [1/2, 1]

belongs to � and so 49

inf
h∈�C

sup
[0,1]×C

f (h(t, u)) ≥ c. (5.3)



108 5 Minimax and Multiplicity Results

By (5.2) and (5.3) we have 50

c = inf
h∈�C

sup
[0,1]×C

f (h(t, u))

and so we can apply Theorem 5.1 and finish the proof. ��

Theorem 5.3 (Saddle Point Theorem) Let X be a Banach space and f : X → R be a 51

locally Lipschitz function. Suppose that X := Y ⊕ V , with dimY < ∞, and there exists 52

r > 0 such that: 53

(i) max{f (u) : u ∈ Y, ‖u‖ = r} ≤ inf{f (u) : u ∈ V }; 54

(ii) the function f satisfies the (ϕ − C)c-condition where 55

c := inf
γ∈� max

u∈E f (γ (u))

with � := {γ ∈ C(E,X) : γ |∂E = id}, E := {u ∈ Y : ‖u‖ ≤ r} and ∂E = {u ∈ Y : 56

‖u‖ = r}. 57

Then c ≥ inf
V

f and c is a critical value of f . Moreover, if c = inf
V

f , then V ∩Kc = ∅. 58

Proof We will apply Theorem 5.1 with A := V and C := ∂E. Clearly from the 59

compactness of E, we have that c <∞. Let P : X → Y be the projection. We show that 60

C links A. Suppose not and let h be a contraction of C in X \V . Let H(t, u) := Ph(t, u), 61

which is a contraction of C in Y \ {0}. This contradicts the Remark 5.1. 62

Next let γ ∈ � and define h(t, u) := γ ((1− t)u). Clearly h ∈ �C . So, we have 63

inf
h∈�C

sup
[0,1]×C

f (h(t, u)) ≤ f (h(t, u)) ≤ c. (5.4)

Also if h ∈ �C and h(1, u) = z1 for all u ∈ C, then we define 64

ξ(t, u) =
{
h(t, u), if (t, u) ∈ [0, 1] × C

z1, if (t, x) ∈ {1} × E

which is continuous from ([0, 1] × C) ∪ ({1} ×E) into X. 65

Let Q : E → ([0, 1]×C)∪({1}×E) be a homeomorphism such that Q(C) = {0}×C. 66

Then we see that ξ ◦Q ∈ �, so 67

c ≤ inf
h∈�C

sup
[0,1]×C

f (h(t, u)). (5.5)

68
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By (5.4) and (5.5) it follows that 69

c = inf
h∈�C

sup
[0,1]×C

f (h(t, u))

and so we can apply Theorem 5.1 and complete the proof. ��

Theorem 5.4 (Linking Theorem) Let X be a Banach space and f : X→ R be a locally 70

Lipschitz function. Let X := Y ⊕ V be with dimY < ∞ and 0 < r < R, e ∈ V with 71

‖e‖ = 1. We consider the set 72

Q := {u = v + te : v ∈ Y, t ≥ 0, ‖u‖ ≤ R}

and ∂Q its boundary in Y ⊕ Re. We suppose that 73

(i) max{f (u) : u ∈ ∂Q} ≤ inf{f (u) : u ∈ ∂B(0, r) ∩ V }; 74

(ii) the function f satisfies the (ϕ − C)c-condition, where c := inf
γ∈� max

u∈Q f (γ (u)) with 75

� = {γ ∈ C(Q,X) : γ |∂Q = id}. 76

Then c ≥ inf{f (u) : u ∈ ∂B(0, r) ∩ V } and c is a critical value of f . Moreover, if 77

c = inf{f (u) : u ∈ ∂B(0, r) ∩ V }, then Kc ∩ (∂B(0, r) ∩ V ) = ∅. 78

Proof Because Q is compact, it is clear that c <∞. Let P1 : X→ Y and P2 : X→ V be 79

the projection operators on Y and V , respectively and let A := ∂B(0, r)∩V and C := ∂Q. 80

If h(t, u) is a contraction of C in X \ A, then H(t, u) := P1h(t, u) + ‖P2h(t, u)‖e is a 81

contraction of C in (V ⊕ Re) \ {re} which contradicts Remark 5.1. 82

As in Theorem 5.1, we can verify that c = inf
h∈�C

sup
[0,1]×C

f ◦ h. Therefore we apply

Theorem 5.1 and conclude the proof. ��

5.2 A General Minimax Principle: The “Zero Altitude” Case 83

In this section we present a general minimax principle for locally Lipschitz functionals 84

that appears in the paper of Motreanu and Varga [11]. 85

Theorem 5.5 Let f : X → R be a locally Lipschitz functional and B ⊆ X a closed set 86

such that c := infB f > −∞ and f satisfies (PS)B,c . Let M be a nonempty family of 87

subsets M of X such that 88

c := inf
M∈M

sup
u∈M

f (u). (5.6)
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Assume that for a generalized normalized pseudo-gradient vector field � of f with respect 89

to B and c the following hypothesis holds 90

(H) for each set M ∈M and each number ε > 0 with f |M < c+ε there exists a closed 91

subset A of X with f |A ≤ c + εA (see (4.42)), and A ∩ B = ∅ such that for each locally 92

Lipschitz function ϕA : X→ [0, 1] with supp ϕA ⊂ (X \A)∩ supp � the global flow ξA 93

of ϕA� satisfies ξA(1,M) ∩ B = ∅. 94

Then the following assertions are true 95

(i) c = infB f is attained; 96

(ii) Kc(f ) \A = ∅ for each set A entering (H); 97

(iii) Kc(f ) ∩ B = ∅. 98

Proof The assertions (i) and (ii) are direct consequences of the property (iii). The proof 99

of (iii) is achieved arguing by contradiction. Accordingly, we supposeK−c(−f )∩B = ∅. 100

By hypothesis we know that B ⊂ (−f )−c, so Theorem 4.3 can be applied for−f and −c 101

(in place of f and c, respectively). Thus Theorem 4.3 yields an ε > 0 with the properties 102

there stated. Then from the minimax description of c, by means of M, we obtain the 103

existence of a set M ∈M satisfying f |M < c + ε. Corresponding to M , assumption (H) 104

allows to find a closed set A ⊂ X \ B which satisfies A ⊂ (−f )−c−εA and the linking 105

property formulated in (H). Theorem 4.3 gives rise to the deformation ηA ∈ C(R×X,X) 106

which verifies ηA(1, B ∩ (−f )−c) ⊂ (−f )−c−ε . This reads as 107

ηA(1, B) ⊂ f c+ε. (5.7)

By Theorem 4.3 and assumption (H) it is seen that 108

ξA(t, u) = ηA(−t, u), (5.8)

for all (t, u) ∈ R×X. As shown in (H) one has the intersection property 109

ξ(1,M) ∩ B = ∅. 110

Combining with (5.8) it turns out 111

ηA(1, B) ∩M = ∅.

Taking into account (5.6) we obtain the existence of some point u0 ∈ M with f (u0) ≥
c + ε. This contradicts the choice of the set M . ��



5.2 A General Minimax Principle: The “Zero Altitude” Case 111

Corollary 5.1 Let f : X → R be a locally Lipschitz functional satisfying (PS) and let a 112

familyM of subsets M of X be such that c defined by (5.6) is a real number. Assume that 113

the hypothesis below holds 114

(H ′) for each M ∈M there exists a closed set A in X with f |A < c such that for every 115

homeomorphism h of X with h|A = idA one has h(M) ∩ f c = ∅. 116

Then c in (5.6) is a critical value of f and Kc(f ) ∩ A = ∅ for every A in (H ′). 117

Proof We consider the global flow ξA (see (5.7)) and we apply Theorem 5.5 with B := f c.
It is clear that (H ′) implies (H) because A ⊂ M \ B and ξA(1, ·) is a homeomorphism of
X with ξA(1, ·) = id on A. Then Theorem 5.5 concludes the proof. ��

Remark 5.2 The minimax principle in Corollary 5.1 includes and extends to the locally 118

Lipschitz functionals many classic minimax results, e.g. those in Ambrosetti and Rabi- 119

nowitz [1], Chang [2], Du [5], Ghoussoub and Preiss [6], Motreanu [9], Motreanu and 120

Varga [10]). 121

Theorem 5.5 is useful in locating the critical points. We illustrate this aspect by 122

deriving from Theorem 5.5 an extension for locally Lipschitz functionals of a result due to 123

Ghoussoub & Preiss [6]. 124

Corollary 5.2 Let f : X → R be a locally Lipschitz functional and for the points u, v ∈ 125

X let the number 126

c := inf
g∈� max

0≤t≤1
f (g(t)),

where � is the set of paths g ∈ C([0, 1],X) joining u and v. Suppose F is a closed subset 127

of X such that F ∩f c separates u and v, i.e. u, v belong to disjoint connected components 128

of X \ F ∩ f c, and condition (PS)F,c is verified. Then there exists a critical point of f in 129

F with critical value c. 130

Proof Set M := {g([0, 1]) : g ∈ �}, B := F ∩ f c and A := {u, v}. Applying
Theorem 5.5 we see that ξA(1,M) ∈ M whenever M ∈ M. Thus hypothesis (H) is
verified. Theorem 5.5 implies the conclusion of corollary. ��

Theorem 5.5 is suitable for applications to multiple linking problems. 131

Definition 5.2 Let Q,Q0 be closed subsets of X, with Q0 = ∅, Q0 ⊂ Q, and let S be a 132

subset of X such that Q0 ∩ S = ∅. We say that the pair (Q,Q0) links with S if for each 133

mapping g ∈ C(Q,X) with g|Q0 = id|Q0 one has g(Q) ∩ S = ∅. 134
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A common situation of linking is presented in the following result given in Motreanu 135

and Varga [11] (it unifies the minimax principles in Chang [2] and Du [5]). 136

Corollary 5.3 Given the subsets Q, Q0, S of the real Banach space X we assume that 137

(Q,Q0) links with S in X in the sense above. Let f : X → R be a locally Lipschitz 138

functional such that supQ f <∞ and, for some number α ∈ R+, 139

Q0 ⊂ fα, S ⊂ f α. 140

Then assuming that for the minimax value 141

c := inf
g∈� sup

u∈Q
f (g(u)), 142

where 143

� := {
g ∈ C(Q,X) : g|Q0 = id|Q0

}
, 144

(PS)S,c is satisfied, the following properties hold 145

(i) c ≥ α; 146

(ii) Kc(f ) \Q0 = ∅; 147

(iii) Kc(f ) ∩ S = ∅ if c = α. 148

Proof Since the case α < c follows immediately we discuss only the situation where
α = c. The conclusion is readily obtained from Theorem 5.5 by choosingM := {g(Q) :
g ∈ �} and B := S. ��

A direct consequence of this corollary is the following. 149

Corollary 5.4 (Zero Altitude Mountain Pass Theorem) Let f : X → R be a locally 150

Lipschitz function on a Banach space satisfying (PS)c for every c ∈ R and the conditions: 151

(i) f (u) ≥ α ≥ f (0) for all ||u|| = ρ where α and ρ > 0 are constants; 152

(ii) there is e ∈ X with ||e|| > ρ and f (e) ≤ α. 153

Then the number 154

c := inf
g∈� max

u∈[0,e]f (g(u)),

155
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where [0, e] is the closed line segment in X joining 0 and e and 156

� := {g ∈ C([0, e],X) : g(0) = 0, g(e) = e} ,

is a critical value of f with c ≥ α. 157

Proof It is sufficient to take in Corollary 5.3 the following choices Q := [0, e], Q0 :=
{0, e} and S := {u ∈ X : ||u|| = ρ }. ��

Corollary 5.5 (Zero Altitute Linking Theorem) Let X be a real Banach space, f : 158

X → R be a locally Lipschitz function which satisfies the (PS)c condition for every 159

c ∈ R. We suppose that that the following conditions are fulfilled: 160

(i) X := X1 ⊕X2 with dimX1 <∞; 161

(ii) for some constant α ∈ R and a closed neighbourhood N of 0 in X whose boundary 162

is ∂N we have f |∂N ≤ α ≤ f |X2 . 163

Then the number 164

c := inf
g∈� max

u∈N f (g(u)),

where 165

� = {g ∈ C(N,X) : g|∂N = id|∂N },

is a critical value of f with c ≥ α. 166

Proof We choose Q := N,Q0 := ∂N and S := X2 in Corollary 5.3. ��

5.3 Z2−Symmetric Mountain Pass Theorem 167

In this section we present a Z2-version of the Mountain Pass theorem for locally Lipschitz 168

functions, which satisfy the generalized (ϕ − C)c condition. This result is an extension 169

of Theorem 9.12 of Rabinowitz [12]. Since we proved a deformation results for locally 170

Lipschitz functions which satisfy the (ϕ − C)c condition, the proof is similar as in the 171

above mentioned result of Rabinowitz. For the sake of completeness we give this proof. 172

First of all, we recall some basic facts on the simplest index theory, see Rabinowitz 173

[12]. Let E be a real Banach space and E denote the family of sets A ⊂ E \ {0} such that 174

A is closed in E and symmetric, i.e. A = −A. 175
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Definition 5.3 We say that the positive integer n is the genus of A ∈ E, if there exists 176

an odd map ϕ ∈ C(A,Rn \ {0}) and n is the smallest integer with this property. The 177

genus of the set A is denoted by γ (A) = n. When there does not exist a finite such n, set 178

γ (A) =∞. Finally set γ (∅) = 0. 179

Example 5.1 Suppose B ⊂ E is closed and B ∩ (−B) = ∅. Let A = B ∪ (−B). Then 180

γ (A) = 1 since the function ϕ(u) = 1 for u ∈ B and ϕ(u) = −1 for u ∈ −B is odd and 181

lies in C(A,R \ {0}). 182

Remark 5.3 If A ∈ E and γ (A) > 1, then A contains infinitely many distinct points. 183

Indeed, if A were finite we could write A = B ∪ (−B) with B as in Example 5.1. But then 184

γ (A) = 1. 185

Example 5.2 If n ≥ 1 and A is homeomorphic to Sn by an odd map, then γ (A) > 1. 186

Otherwise there is a mapping ϕ ∈ C(A,R \ {0}) with ϕ odd. Choose any u ∈ A such 187

that ϕ(u) > 0. Then ϕ(−u) < 0 and by Intermediate Value Theorem, ϕ must vanish 188

somewhere on any path in A joining u and −u, a contradiction. 189

For A ∈ E and δ > 0 we denote by Nδ(A) the uniform δ-neighborhood of A, i.e. 190

Nδ(A) := {u ∈ E : dist(u,A) ≤ δ}. The genus has the following properties. 191

Proposition 5.1 Let A,B ∈ E. Then 192

1◦. Normalization: If u = 0, γ ({u} ∪ {−u}) = 1; 193

2◦. Mapping property: If there exists an odd map f ∈ C(A,B), then γ (A) ≤ γ (B); 194

3◦. Monotonicity property: If A ⊂ B, γ (A) ≤ γ (B); 195

4◦. Subadditivity: γ (A ∪ B) ≤ γ (A)+ γ (B); 196

5◦. Continuity property: If A is compact then γ (A) <∞, and there is a δ > 0 such that 197

Nδ(A) ∈ E then γ (Nδ(A)) = γ (A). 198

Proof 199

1◦. follows from the Example 5.1. 200

2◦. Here and hereafter, we assume that γ (A), γ (B) <∞; the remaining cases are trivial. 201

We suppose γ (B) = n. Then there exists a function ϕ belonging to C(B,Rn \ {0}). 202

Consequently ϕ ◦ f is odd and ϕ ◦ f ∈ C(A,Rn \ {0}). Therefore γ (A) ≤ n = γ (B). 203

3◦. Choosing f := id in 2◦ we get the assertion. 204

4◦. Suppose that γ (A) = m and γ (B) = n. Then there exist mapping ϕ ∈ C(A,Rm \ 205

{0}) and ψ ∈ C(B,Rn \ {0}), both odd. By the Tietze Extension Theorem, there 206

are mappings ϕ̂ ∈ C(E,Rm) and ψ̂ ∈ C(E,Rn) such that ϕ̂|A = ϕ and ψ̂|B = ψ . 207

Replacing ϕ̂, ψ̂ by their odd parts, we can assume ϕ̂, ψ̂ are odd. Set f = (ϕ̂, ψ̂). Then 208

f ∈ C(A∪B,Rm+n \ {0}) and is odd. Therefore γ (A∪B) ≤ m+n = γ (A)+ γ (B). 209
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5◦. For each u ∈ A, set r(u) ≡ 1/2‖u‖ = r(−u) and Tu := Br(u)(u) ∪ Br(u)(−u). Then 210

γ (T u) = 1 by Example 5.1. Certainly A ⊂ ⋃
u∈A Tu and by the compactness of A, 211

A ⊂ ⋃k
i=1 Tui for some finite set of points u1, . . . , uk . Therefore γ (A) < ∞ via 4◦. 212

If γ (A) = n, there is a mapping ϕ ∈ C(A,Rn \ {0}) with ϕ odd. Extend ϕ to an odd 213

function ϕ̂ as in 4◦. Since A is compact, there is a δ > 0 such that ϕ̂ = 0 on Nδ(A). 214

Therefore γ (Nδ(A)) ≤ n = γ (A). But by 3◦, γ (A) ≤ γ (Nδ(A)) so we have equality. 215

��

Remark 5.4 For later arguments it is useful to observe that if γ (B) < ∞, γ (A \ B) ≥ 216

γ (A) − γ (B). Indeed A ⊂ A \ B ∪ B so the inequality follows from 3◦ − 4◦ of 217

Proposition 5.1. 218

Next we will calculate the genus of an important class of sets. 219

Proposition 5.2 If A ⊂ E, � is a bounded neighborhood of 0 in R
k , and there exists a 220

mapping h ∈ C(A, ∂�) with h an odd homeomorphism, then γ (A) = k. 221

Proof Plainly γ (A) ≤ k. If γ (A) = j < k, there is a ϕ ∈ C(A,Rj \{0}) with ϕ odd. Then
ϕ ◦ h−1 is odd and belongs to C(∂�,Rj \ {0}). But this is contrary to the Borsuk-Ulam
Theorem since k > j . Therefore γ (A) = k. ��

Proposition 5.3 Let X be a subspace of E of codimension k and A ∈ E with γ (A) > k. 222

Then A ∩X = ∅. 223

Proof Writing E = V ⊕ X with V a dimensional complement of X, let P denote the
projector of E onto V . If A∩X = ∅, P ∈ C(A,V \{0}). Moreover P is odd. Hence by 2◦
of Proposition 5.1, γ (A) ≤ γ (PA). The radial projection of PA into ∂B1 ∩ V is another
continuous odd map. Hence γ (A) ≤ γ (∂B1 ∩ V ) = k via Proposition 5.2, contrary to
hypothesis. ��

The main result of this section is the following, which represents an extension to non- 224

smooth case of the multiplicity result Theorem 9.12 of Rabinowitz [12]. 225

Theorem 5.6 Let E be an infinite dimensional Banach space and let f : E → R be an 226

even locally Lipschitz function which satisfies the (ϕ−C)c condition for every c ∈ R, and 227

f (0) = 0. If E := V ⊕X, where V is finite dimensional, and f satisfies 228

(f ′1) there are constants ρ, α > 0 such that f |∂Bρ∩X ≥ α; 229

(f ′2) for each finite dimensional subspace Ẽ ⊂ E, there is an R = R(Ẽ) such that f ≤ 0 230

on Ẽ \ BR(Ẽ), 231

then f possesses an unbounded sequence of critical values. 232
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Proof The proof is given by in more steps. First we define sequence of families of sets 233

�m and we associate the corresponding sequence {cm} of critical values of f , which are 234

obtained by taking the minimax of f over each �m. A separate argument then shows {cm} 235

is unbounded. 236

Suppose V is k dimensional and V := span{e1, . . . , ek}. For m ≥ k, inductively choose 237

em+1 ∈ span{e1, . . . , em} ≡ Em. Set Rm ≡ R(Em) and Dm ≡ BRm ∩ Em. Let 238

Gm ≡
{
h ∈ C(Dm,E) : h is odd and h = id on ∂BRm ∩ Em

}
. (5.9)

Note that id ∈ Gm for all m ∈ N so Gm = ∅. Set 239

�j ≡
{
h(Dm \ Y ) : h ∈ Gm, m ≥ j, Y ∈ E, and γ (Y ) ≤ m− j

}
. (5.10)

Proposition 5.4 The sets �j possess the following properties: 240

1◦ �j = ∅ for all j ∈ N; 241

2◦ (Monotonicity) �j+1 ⊂ �j ; 242

3◦ (Invariance) If ϕ ∈ C(E,E) is odd, and ϕ = id on ∂BRm ∩ Em for all m ≥ j , then 243

ϕ : �j → �j ; 244

4◦ (Excision) If B ∈ �j , Z ∈ E, and γ (Z) ≤ s < j , then B \ Z ∈ �j−s . 245��

Proof 246

1◦ Since id ∈ Gm for all m ∈ N, it follows that �j = ∅ for all j ∈ N. 247

2◦ If B = h(Dm \ Y ) ∈ �j+1, then m ≥ j + 1 ≥ j , h ∈ Gm, Y ∈ E, and γ (Y ) ≤ 248

m− (j + 1) ≤ m− j . Therefore B ∈ �j . 249

3◦ Suppose B = h(Dm \ Y) ∈ �j and ϕ is as above. Then ϕ ◦ h is odd, belongs to 250

C(Dm,E), and ϕ ◦h = id in ∂BRm ∩Em. Therefore ϕ ◦h ∈ Gm and ϕ ◦h(Dm \ Y ) = 251

ϕ(B) ∈ �j . 252

4◦ Again let B = h(Dm \ Y ) ∈ �j and Z ∈ E with γ (Z) ≤ s < j . We claim 253

B \ Z = h(Dm \ (Y ∪ h−1(Z))). (5.11)

Assuming (5.11), note that since h is odd and continuous and Z ∈ E, h−1(Z) ∈ E. 254

Therefore Y ∪ h−1(Z) ∈ E and by 4◦ and 2◦ of Proposition 5.1, 255

γ (Y ∪ h−1(Z)) ≤ γ (Y )+ γ (h−1(Z)) ≤ γ (Y )+ γ (Z)

256

≤ m− j + s = m− (j − s).

Hence B \ Z ∈ �j−s . 257
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In order to prove (5.11), suppose b ∈ h(Dm \(Y ∪h−1(Z))). Then b ∈ h(Dm \Y )\Z ⊂ 258

B \ Z ⊂ B \ Z. Therefore 259

h(Dm \ (Y ∪ h−1(Z))) ⊂ B \ Z. (5.12)

On the other hand if b ∈ B \ Z, then b = h(w) where 260

w ∈ Dm \ Y \ h−1(Z) ⊂ Dm \ (Y ∪ h−1(Z)).

Thus 261

B \ Z ⊂ h(Dm \ (Y ∪ h−1(Z))). (5.13)

Comparing (5.12)–(5.13) yields (5.11) since h is continuous. ��

Now a sequence of minimax values of f can be defined. Set 262

cj = inf
B∈�j

max
u∈B f (u), j ∈ N. (5.14)

It will soon be seen that if j > k = dimV , cj is a critical value of f . The following 263

intersection theorem is needed to provide a key estimate. 264

Proposition 5.5 If j > k and B ∈ �j , then 265

B ∩ ∂Bρ ∩X = ∅. (5.15)

Proof Set B = h(Dm \ Y ) where m ≥ j and γ (Y ) ≤ m− j . Let Ô = {u ∈ Dm| h(u) ∈ 266

Bρ}. Since h is odd, 0 ∈ Ô. Let O denote the component of Ô containing 0. Since Dm is 267

bounded,O is a symmetric (with respect to 0) bounded neighborhood of 0 in Em. Therefore 268

by Proposition 5.2, γ (∂O) = m. 269

We claim 270

h(∂O) ⊂ ∂Bρ. (5.16)

Assuming (5.16) for the moment, set W ≡ {u ∈ Dm : h(u) ∈ ∂Bρ}. Therefore (5.16) 271

implies W ⊃ ∂O. Hence by 3◦ of Proposition 5.1, γ (W) = m and by Remark 5.4, 272

γ (W \ Y ) ≥ m − (m − j) = j > k. Thus by 2◦ of Proposition 5.1, γ (h(W \ Y )) > k. 273

Since codimX = k, h(W \ Y ) ∩X = ∅ by Proposition 5.3. But h(W \ Y ) ⊂ (B ∩ ∂Bρ). 274

Consequently (5.15) holds. 275
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It remains to prove (5.16). Note first that by the choice of Rm, 276

f ≤ 0 on Em \ BRm. (5.17)

Since m > k, ∂Bρ ∩X ∩ Em = ∅. Hence by (f ′1), 277

f |∂Bρ∩X∩Em ≥ α > 0. (5.18)

Comparing (5.17) and (5.18) shows Rm > ρ. Now to verify (5.16), suppose u ∈ ∂O and 278

h(u) ∈ Bρ . If x ∈ Dm there is a neighborhood N of X such that h(N) ⊂ Bρ . But then 279

u ∈ ∂O. Thus u ∈ ∂Dm (with ∂ relative to Em). But on ∂Dm, h = id . Consequently if 280

u ∈ ∂Dm and h(u) ∈ Bρ , ‖h(u)‖ = ‖u‖ = Rm < ρ contrary to what we just proved. 281

Thus (5.16) must hold. 282

Remark 5.5 A closer inspection of the above proof shows that 283

γ (B ∩ ∂Bρ ∩X) ≥ j − k.

Corollary 5.6 If j > k, cj ≥ α > 0. 284��

Proof If j > k and B ∈ �j , by (5.15) and (f ′1), max
u∈B f (u) ≥ α. Therefore by (5.14),

cj ≥ α. ��

The next proposition both shows cj is a critical value of f for j > k and makes an 285

appropriate multiplicity statement about degenerate critical values. 286

Proposition 5.6 If j > k, and cj = · · · = cj+p ≡ c, then γ (Kc) ≥ p + 1. ��

Proof Since f (0) = 0 while c ≥ α > 0 via Corollary 5.6, 0 ∈ Kc. Therefore Kc ∈ E 287

and by the compactness condition, Kc is compact. If γ (Kc) ≤ p, by 5◦ of Proposition 5.1, 288

there is a δ > 0 such that γ (Nδ(Kc)) ≤ p. Invoking (f ) of Theorem 4.2 with U = O = 289

Nδ(Kc) and ε0 = α/2, there is an ε ∈ (0, ε0) and η ∈ C([0, 1]×E,E) such that η(1, ·) is 290

odd and 291

η(1, f c+ε \ O) ⊂ f c−ε. (5.19)

Choose B ∈ �j+p such that 292

max
u∈B f (u) ≤ c + ε. (5.20)
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By 4◦ of Proposition 5.4, B \ O ∈ �j . The definition of Rm shows f (u) ≤ 0 for 293

u ∈ ∂Brm ∩ Em for any m ∈ N. Hence (b) of Theorem 4.2 and our choice of ε0 imply 294

η(1, ·) = id on ∂BRm ∩ Em for each m ∈ N. Consequently η(1, B \ O) ∈ �j by 3◦ of 295

Proposition 5.4. The definition of cj and (5.19)–(5.20) then imply 296

max
u∈η(1,B\O)

f (u) ≤ c − ε,

a contradiction. ��

Proposition 5.7 cj →∞ as j →∞. ��

Proof By 2◦ of Proposition 5.4 and (5.14), cj+1 ≥ cj . Suppose the sequence (cj ) is 297

bounded. Then cj → c <∞ as j →∞. If cj = c for all large j , Proposition 5.6 implies 298

γ (Kc) = ∞. But condition (ϕ − C)c implies Kc is compact so γ (Kc) < ∞ via 5◦ of 299

Proposition 5.1. Thus c > cj for all j ∈ N. Set 300

K ≡ {u ∈ E : ck+1 ≤ f (u) ≤ c and f ′(u) = 0}.

By condition (ϕ−C) we haveK is compact and 5◦ of Proposition 5.1 implies γ (K) < 301

∞ and there is a δ > 0 such that γ (Nδ(K)) = γ (K) ≡ q . Let s = max(q, k + 1). The 302

deformation Theorem 4.2 with c = c, ε0 = c − cs , and U = O = Nδ(K) yields an ε and 303

η as usual such that 304

η(1, f c+ε \ O) ⊂ f c−ε. (5.21)

Choose j ∈ N such that cj > c − ε and B ∈ �j+s such that 305

max
B

f ≤ c + ε. (5.22)

Arguing as in the proof of Proposition 5.4 shows B \ O is in �j as is η(1, B \ O) provided 306

that η(1, ·) = id on ∂BRm ∩ Em for all m ≥ j . But f ≤ 0 on ∂BRm ∩ Em for all m ∈ N 307

while c− ε0 = cs ≥ ck+1 ≥ α > 0 via Corollary 5.6. Consequently η(1, B \ O) ∈ �j and 308

by (5.21)–(5.22) and the choice of cj , 309

cj ≤ max
η(1,B\O)

f ≤ c − ε < cj ,

a contradiction. The proof is complete. The above proposition completes the proof of
Theorem 5.6. ��
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5.4 Bounded Saddle Point Methods for Locally Lipschitz 310

Functionals 311

Using the Schecther type deformation result from the Sect. 4.3 we prove results regarding 312

the existence Palais-Smale sequences in a ball for a given locally Lipschitz function f . 313

More precisely, we show that if there exists θ ∈ (0, 1) such that 0 ∈ C(u, θ) holds in a 314

certain region of SR , then f possesses a Palais-Smale sequence. This boundary condition 315

actually replaces the compactness condition (be it (PS)c, (C)c, or (ϕ − C)c) required in 316

the previous sections. If the boundary condition is dropped, then an alternative is obtained: 317

either f possesses a Palais-Smale sequence in the ball, or a sequence leading to a negative 318

eigenvalue exists on the sphere. Finally, if we impose a mild compactness condition, 319

namely the Schechter-Palais-Smale compactness condition, then existence and multiplicity 320

results regarding the critical points of f are established. 321

We start with the case when f is bounded below on BR . 322

Theorem 5.7 Let f : BR → R be a locally Lipschitz function such that 323

mR := inf
BR

f > −∞. (5.23)

Suppose that there exist θ ∈ (0, 1) and ε > 0 such that 324

0 ∈ C(u, θ), on {u ∈ SR : |f (u)−mR| ≤ ε} .

Then there exists a sequence {un} ⊂ BR such that 325

f (un)→ mR and λf (un)→ 0. 326

Proof Arguing by contradiction, assume that such a sequence does not exist. Then there 327

exist γ, δ > 0 such that 328

λf (u) ≥ γ, on
{
u ∈ BR : |f (u)−mR| ≤ 3δ

}
.

Shrinking δ if necessary, we may assume that 3δ ≤ ε. Applying Theorem 4.4 with 329

Z := BR and c := mR and ρ := 4δ
γ θ2 we get the existence of a continuous deformation 330

σ : [0, 1] × BR → BR which satisfies 331

σ
(
1, f mR+δ) ⊆ fmR−δ. (5.24)

Due to (5.23), the set in the left-hand side is nonempty, while the set in the right-hand side
is empty, thus (5.24) yields a contradiction. ��
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In the next we shall work with Schechter’s definition of linking for the ball BR (see 332

Definition E.5). The following linking-type theorem says that if A and B are linked, i.e. 333

cannot be pulled apart without intersecting and the energy over A is dominated by the 334

energy over B, then there is a bounded sequence whose energy is converging to a minimax 335

level—given that a certain boundary condition holds on SR . 336

For later convenience we introduce the following notation for the above mentioned 337

condition on A, B and f , 338

(LC)A,B,f :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

BR ⊃ A links B ⊂ BR w.r.t �;
supA f := a0 ≤ b0 := infB f ;
cR := inf

�∈� sup
t∈[0,1]
u∈A

f (�(t, u)) < +∞.

The following is a direct generalization of Schechter’s result [14, Theorem 5.2.1]. 339

Theorem 5.8 Let f : BR → R be a locally Lipschitz functional such that (LC)A,B,f 340

holds for some A,B ⊂ BR . Suppose that there exist θ ∈ (0, 1) and ε > 0 such that 341

0 ∈ C(u, θ), on {u ∈ SR : |f (u)− cR| ≤ ε} . (5.25)

Then there exists a sequence {un} ⊂ BR such that 342

f (un)→ cR and λf (un)→ 0. 343

Furthermore, if cR = b0, then d(un, B)→ 0 also holds. 344

Proof Clearly, b0 ≤ cR. We distinguish two cases. 345

Case 1. b0 < cR . 346

Assume by contradiction that a sequence satisfying the required properties 347

does not exist. Then one can find γ, δ > 0 such that 348

λf (u) ≥ γ, on
{
u ∈ BR : |f (u)− cR| ≤ 3δ

}
.

Without loss of generality we may assume that δ < min {ε/3, cR − b0}. For 349

Z := BR and c := cR and ρ := 4δ
γ θ2 , Theorem 4.4 ensures that there exists a 350

continuous deformation σ : [0, 1]×BR → BR such that (i)–(vi) hold. We reach 351

contradiction by constructing a deformation � ∈ � for which the “sup” in the 352

definition of cR is actually lower than cR . By the definition of cR , there exists 353

� ∈ � such that 354

sup
t∈[0,1], u∈A

f (�(t, u)) ≤ cR + δ.



122 5 Minimax and Multiplicity Results

In other words 355

�(t,A) ⊆ f cR+δ, for all t ∈ [0, 1]. (5.26)

Now let � : [0, 1] × BR → BR to be defined by 356

�(t, u) :=
{
σ (4t/3, u) , if t ∈ [0, 3/4],
σ (1, �(4t − 3, u)), if t ∈ (3/4, 1]. (5.27)

We claim that � ∈ �. Obviously (�1) and (�2) follow directly from the 357

deformation theorem. In order to check (�3), let u� ∈ BR be the element for 358

which � satisfies (�3), then u� = σ(1, u�) is suitable for �. 359

Furthermore, we claim that 360

�(t,A) ⊆ f cR−δ, for all t ∈ [0, 1].

Indeed, if t ∈ [0, 3/4], then 361

f
(
�(t, u)

) = f (σ(4t/3, u)) ≤ f (u) ≤ a0 ≤ b0 < cR − δ,

for all u ∈ A. On the other hand, if t ∈ (3/4, 1] then 362

f
(
�(t, u)

) = f (σ(1, �(4t − 3, u))) ≤ c − δ, 363

for all u ∈ A. 364

In conclusion we constructed � ∈ � such that 365

f
(
�(t, u)

) ≤ cR − δ, for all u ∈ A and all t ∈ [0, 1],

which contradicts the definition of cR . 366

Case 2. b0 = cR . 367

We point out the fact that it suffices to prove that for any γ, δ > 0 there exists 368

u ∈ BR such that 369

|f (u)− cR| ≤ 3δ, d(u,B) ≤ 16δ

γ θ2 and λf (u) < γ, (5.28)

as we can set δ := 1/n2 and γ := 1/n to get the desired sequence. 370
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Assume by contradiction that (5.28) does not hold, i.e. there exist γ, δ > 0 371

such that 372

λf (u) ≥ γ, on

{
u ∈ BR : |f (u)− cR| ≤ 3δ, d(u,B) ≤ 16δ

γ θ2

}

and let σ : [0, 1] × BR → BR be the deformation given by Theorem 4.4 with 373

c := cR , ρ := 4δ
γ θ2 and Z := {u ∈ BR : d(u,B) ≤ ρ}. 374

We claim that 375

σ
(
1, f cR+δ) ∩ B = ∅, (5.29)

and 376

σ(t, A) ∩ B = ∅, for all t ∈ (0, 1]. (5.30)

If there exists u ∈ f cR+δ such that σ(1, u) ∈ B, then 377

‖σ(1, u)− u‖ = ‖σ(1, u)− σ(0, u)‖ ≤ ρθ < ρ,

hence u ∈ Z. Property (vi) implies that 378

f (σ(1, u)) ≤ cR − δ = b0 − δ,

which violates the definition of b0. 379

In order to show that (5.30) holds, assume by contradiction that there exists 380

(t, u) ∈ (0, 1] × A such that σ(t, u) ∈ B. If σ(t, u) = u, then u ∈ A ∩ B, which 381

contradicts the fact that A links B. If σ(t, u) = u, then 382

f (σ(t, u)) < f (u) ≤ a0 ≤ b0,

and this contradicts the definition of b0. 383

Define � : [0, 1]×BR → BR formally as in (5.27). Clearly, � ∈ �, but (5.26), 384

(5.29) and (5.30) imply that �(t,A) ∩ B = ∅ for all t ∈ (0, 1] which contradicts 385

the fact that A links B. 386��

In the sequel we suppose that the boundary condition is dropped. Of course, one cannot 387

expect to get the existence of a bounded Palais-Smale sequence in this case. However, we 388

are able to prove that the following alternative holds: 389
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either f possesses a Palais-Smale sequence in BR, 390

or, 391

there exist {un} ⊂ SR and ζn ∈ ∂Cf (un) such that 392

ζn − 〈ζn, un〉
Rφ(R)

Jφun → 0, as n→∞.

Before stating the result, for each u ∈ BR we define projection πu : X∗ → keru as 393

follows 394

πu(ξ) :=
{
ξ − 〈ξ,u〉

‖u‖φ(‖u‖) Jφu, if u = 0,

ξ, if u = 0.
395

Obviously, 396

‖πu(ξ)‖ =
∥∥∥∥ξ − 〈ξ, u〉

‖u‖φ(‖u‖)Jφu
∥∥∥∥ ≤ ‖ξ‖ + |〈ξ, u〉|‖u‖ ≤ 2‖ξ‖, for all ξ ∈ X∗.

For u = 0 and α ∈ R and ξ ∈ X∗ we have the following estimates 397

‖ξ − αJφu‖ =
∥∥∥∥πu(ξ)+

( 〈ξ, u〉
‖u‖φ(‖u‖) − α

)
Jφu

∥∥∥∥
≤ ‖πu(ξ)‖ +

∣∣∣∣ 〈ξ, u〉
‖u‖φ(‖u‖) − α

∣∣∣∣φ(‖u‖),

and 398

‖πu(ξ)‖ = ‖πu(ξ − αJφu)‖ ≤ 2‖ξ − αJφu‖.

Taking the infimum as α ∈ R we get 399

d(ξ,RJφu) ≤ ‖πu(ξ)‖ ≤ 2d(ξ,RJφu), for all ξ ∈ X∗. (5.31)

Moreover, restricting the infimum to R− or R∗+ we also have 400

〈ξ, u〉 ≤ 0 ⇒ d(ξ,R−Jφu) ≤ ‖πu(ξ)‖ ≤ 2d(ξ,R−Jφu), (5.32)

and 401

〈ξ, u〉 > 0 ⇒ d(ξ,R∗+Jφu) ≤ ‖πu(ξ)‖ ≤ 2d(ξ,R∗+Jφu). (5.33)

402



5.4 Bounded Saddle Point Methods for Locally Lipschitz Functionals 125

We will also make use of the following decomposition of ∂Cf (u) 403

∂Cf
−(u) := {ζ ∈ ∂Cf (u) : 〈ζ, u〉 ≤ 0} , ∂Cf

+(u) := {ζ ∈ ∂Cf (u) : 〈ζ, u〉 > 0} .

Theorem 5.9 ([4]) Let f : BR → R be a locally Lipschitz functional and let A,B ⊂ BR 404

be such that (LC)A,B,f holds. Assume in addition that there exists �R > 0 such that 405

|〈ζ, u〉| ≤ �R, for all u ∈ SR and all ζ ∈ ∂Cf (u). (5.34)

Then the following alternative holds: 406

(A1) there exists {un} ⊂ BR such that f (un) → cR and λf (un) → 0. Furthermore, if 407

cR = b0, then d(un, B ∪ SR)→ 0; 408

(A2) there exist {un} ⊂ SR and {ζn} ⊂ X∗ with ζn ∈ ∂Cf (un) such that 409

f (un)→ cR, ‖πun(ζn)‖ → 0 and 〈ζn, un〉 ≤ 0. 410

Proof Assume option (A2) does not hold. Then there exist γ, δ > 0 such that 411

‖πu(ζ )‖ ≥ γ, (5.35)

whenever u ∈ SR and ζ ∈ ∂Cf (u) satisfy 412

|f (u)− cR| ≤ δ and 〈ζ, u〉 ≤ 0. (5.36)

Obviously if there exist θ ∈ (0, 1) and ε > 0 such that 413

0 ∈ C(u, θ), on {u ∈ SR : |f (u)− cR| ≤ ε} ,

then (A1) is obtained via Theorem 5.8. 414

If this is not the case, then for each n ∈ N there exists un ∈ SR such that 415

|f (un)− cR| ≤ 1

n
and 0 ∈ C

(
un,

1

n

)
.

Proposition 4.3 implies that R−Jφun∩[∂Cf ]θn(un) = ∅, that is, there exist ζn ∈ ∂Cf (un), 416

ηn ∈ BX∗(0, 1) and ξn ∈ R−Jφun such that 417

ζn + 1

n
λf (un)ηn = ξn,

418
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hence 419

d(ζn,R−Jφun) ≤ ‖ζn − ξn‖ ≤ 1

n
λf (un) ≤ 1

n
‖ζn‖ ≤ 1

n
‖πun(ζn)‖ +

1

n

|〈ζn, un〉|
R

≤ 2

n
d(ζn,RJφun)+ �R

nR
≤ 2

n
d(ζn,R−Jφun)+ �R

nR
,

which leads to 420

d(ζn,R−Jφun)→ 0, as n→∞. (5.37)

Conditions (5.32), (5.35) and (5.36) ensure that there exists n0 ∈ N such that 421

〈ζn, un〉 > 0, for all n ≥ n0. (5.38)

From (5.37) and (5.38) we deduce that 422

d(∂Cf
+(un),R−Jφun)→ 0, as n→∞. (5.39)

On the other hand, taking the infimum as ζ ∈ ∂Cf
+(un) in (5.33) and keeping in mind 423

(5.31) we get 424

d(∂Cf
+(un),R∗+Jφun) ≤ inf

ζ∈∂Cf+(un)
‖πun(ζ )‖ ≤ 2 inf

ζ∈∂Cf+(un)
d(ζ,RJφun)

≤ 2d(ζn,RJφun) ≤ 2d(ζn,R−Jφun),

hence 425

d(∂Cf
+(un),R∗+Jφun)→ 0, as n→∞. (5.40)

Relations (5.39) and (5.40) ensure that for sufficiently large n ∈ N there exist αn ∈ R−, 426

βn ∈ R
∗+ and ζ ′n, ζ ′′n ∈ ∂Cf

+(un) such that 427

max{‖ζ ′n − αnJφun‖, ‖ζ ′′n − βnJφun‖} → 0, as n→∞.

Define tn := βn
βn−αn ∈ (0, 1] and ζ̄n := tnζ

′
n + (1 − tn)ζ

′′
n . Since ∂Cf

+(un) is convex it 428

follows that ζ̄n ∈ ∂Cf
+(un). Then 429

‖ζ̄n‖ = ‖tnζ ′n + (1− tn)ζ
′′
n ‖ = ‖tn(ζ ′n − αnJφun)+ (1− tn)(ζ

′′
n − βnJφun)‖

≤ tn‖ζ ′n − αnJφun‖ + (1− tn)‖ζ ′′n − βnJφun‖
≤ max{‖ζ ′n − αnJφun‖, ‖ζ ′′n − βnJφun‖}.



5.4 Bounded Saddle Point Methods for Locally Lipschitz Functionals 127

We have proved thus that there exists {un} ⊆ SR and such that |f (un)− cR| ≤ 1
n

and 430

λf (un) ≤ ‖ζ̄n‖ → 0, as n→∞,

that is, (A1) holds. 431��

Corollary 5.7 Assume the hypotheses of Theorem 5.9 are fulfilled. Then there exists 432

{un} ⊂ BR , {ζn} ⊂ X∗ with ζn ∈ ∂Cf (un) and ν ∈ R− such that 433

f (un)→ cR, ‖πun(ζn)‖ → 0 and 〈ζn, un〉 → ν. 434

Furthermore, if cR = b0, then d(un, B ∪ SR)→ 0. 435

Proof Suppose that (A1) of the alternative theorem holds, i.e. f (un)→ cR and λf (un)→ 436

0 and let ζn ∈ ∂Cf (un) be such that ‖ζn‖ = λf (un). Then 437

‖πun(ζn)‖ ≤ 2‖ζn‖ → 0, as n→∞,

and 438

|〈ζn, un〉| ≤ ‖ζn‖‖un‖ ≤ R‖ζn‖ → 0, as n→∞,

hence we can choose ν := 0 in this case. 439

On the other hand, if (A2) holds, then condition (5.34) implies that the sequence νn := 440

〈ζn, un〉 ≤ 0 is bounded in R hence possesses a convergent subsequence. 441

Finally, if cR = b0, then (A1) implies d(un, B ∪ SR) → 0, while (A2) ensures that
d(un, SR) = 0, hence the proof is complete. ��

Remark 5.6 If f : BR → R is a C1-functional, then the conclusion of the previous 442

corollary reads as follows: there exists {un} ⊂ BR such that 443

f (un)→ cR,

∥∥∥∥f ′(un)− 〈f ′(un), un〉
‖un‖φ(‖un‖)Jφun

∥∥∥∥→ 0, 〈f ′(un), un〉 → ν ≤ 0,

If, in addition, X is a Hilbert space, then this reduces to Schechter’s conclusion (see e.g. 444

[14, Corollary 5.3.2.]). 445

If f is bounded below, then following similar steps as in the proofs of Theorems 5.7, 5.9 446

and Corollary 5.7 one can prove the following result. 447
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Theorem 5.10 Let f : BR → R be a locally Lipschitz satisfying (5.23) and (5.34). Then 448

there exist {un} ⊂ BR , {ζn} ⊂ X∗ with ζn ∈ ∂Cf (un) and ν ∈ R− such that 449

f (un)→ mR, ‖πun(ζn)‖ → 0 and 〈ζn, un〉 → ν. 450

Definition 5.4 We say that a locally Lipschitz functional f : X → R satisfies the 451

Schechter-Palais-Smale condition at level c in BR , (SPS)c for short, if any sequence 452

{un} ⊂ BR satisfying: 453

(SPS1) f (un)→ c, as n→∞; 454

(SPS2) there exist ζn ∈ ∂Cf (un) and ν ≤ 0 s.t. ‖πun(ζn)‖ → 0 and 〈ζn, un〉 → ν, 455

possesses a (strongly) convergent subsequence. 456

Theorem 5.11 Let f : BR → R be a locally Lipschitz functional such that the (LC)A,B,f 457

holds for some A,B ⊂ BR . Assume in addition that (5.34) and (SPS)cR hold. Then the 458

following alternative holds: 459

(A′1) there exists u ∈ BR such that f (u) = cR and 0 ∈ ∂Cf (u). Furthermore, if cR = b0, 460

then u ∈ B̄ ∪ SR; 461

(A′2) there exist u ∈ SR and λ < 0 such that f (u) = cR and λJφu ∈ ∂Cf (u). 462

Proof If case (A1) of Theorem 5.9 holds, then there exists {un} ⊂ BR such that 463

f (un)→ cR, and λf (un)→ 0.

Let ζn ∈ ∂Cf (un) be such that ‖ζn‖ = λf (un). Then 464

‖πun(ζn)‖ ≤ 2‖ζn‖ → 0, as n→∞,

and 465

|〈ζn, un〉| ≤ R‖ζn‖ → ν = 0, as n→∞.

The (SPS)cR condition there exists a subsequence {unk } of {un} and u ∈ BR such that 466

unk → u in X. Moreover, ζnk ∈ ∂Cf (unk ) and ζnk → 0, thus Proposition 2.3 ensures that 467

0 ∈ ∂Cf (u). If cR = b0, then d(unk , B ∪ SR)→ 0, hence u ∈ B̄ ∪ SR . 468

On the other hand, if case (A2) of Theorem 5.9 holds, then there exist {un} ∈ SR , 469

ζn ∈ ∂Cf (un) and ν ≤ 0 such that 470

f (un)→ cR, ‖πun(ζn)‖ → 0 and 〈ζn, un〉 → ν.



5.4 Bounded Saddle Point Methods for Locally Lipschitz Functionals 129

The (SPS)cR condition and Proposition 4.1 show that there exist u ∈ SR , ζ ∈ ∂Cf (u) and 471

two subsequences {unk }, {ζnk } of {un} and {ζn}, respectively, such that 472

unk → u and ζnk ⇀ ζ.

But Jφ is demicontinuous, hence 473

πunk
(ζnk ) = ζnk −

〈ζnk , unk 〉
Rφ(R)

Jφunk ⇀ ζ − ν

Rφ(R)
Jφu,

which together with πunk
(ζnk )→ 0 gives 474

ζ = ν

Rφ(R)
Jφu ∈ ∂Cf (u).

If ν = 0, then (A′1) holds, while ν < 0 implies that (A′2) holds for λ := ν
Rφ(R)

. ��

The next result follows directly from Theorem 5.10 and the (SPS)-condition. 475

Theorem 5.12 Assume the hypotheses of Theorem 5.10 are fulfilled and assume (SPS)mR 476

also holds. Then there exist u ∈ BR and λ ≤ 0 such that 477

f (u) = mR and λJφu ∈ ∂Cf (u).

Furthermore, λ = 0 ⇒ u ∈ SR . 478

Assuming the hypotheses of Theorems 5.11 and 5.12 are simultaneously satisfied, one 479

can obtain multiplicity results of the following type. 480

Theorem 5.13 Let f : BR → R be a locally Lipschitz functional such that (5.23) and 481

(5.34) hold. Suppose there exist two subsets A,B of BR such that (LC)A,B,f holds and 482

condition (SPS)c is satisfied for c ∈ {cR,mR}. Then there exist u1, u2 ∈ BR and λ1, λ2 ≤ 483

0 such that u1 = u2 and 484

λkJφuk ∈ ∂Cf (uk), k = 1, 2. (5.41)

Furthermore, if λk < 0, then uk ∈ SR . Also, if there exist v0, v1 ∈ A∩BR distinct such that 485

f (v1) ≤ f (v0) and v0 ∈ B, then u1 and u2 can be chosen in such a way that v0 ∈ {u1, u2}. 486
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Proof It follows from Theorems 5.11 and 5.12 that there exist u1, u2 ∈ BR and λ1, λ2 ≤ 0 487

such that 488

f (u1) = mR ≤ cR = f (u2), and λkJφuk ∈ ∂Cf (uk), k = 1, 2.

The fact that λk < 0 ⇒ uk ∈ SR , follows directly from Theorems 5.11 and 5.12, 489

respectively. In order to complete the proof we consider the following cases: 490

(i) mR ≤ b0 < cR. 491

Then 492

f (u1) = mR ≤ f (v1) ≤ f (v0) ≤ a0 ≤ b0 < cR = f (u2),

hence u1 = u2 and v0 = u2. If u1 = v0, then f (v1) = mR , that is v1 is a global 493

minimum point of f on BR . As any extremum point of a locally Lipschitz functional 494

is in fact a critical point, we conclude that 0 ∈ ∂Cf (v1), which shows that v1, u2 495

satisfy the conclusion of the theorem. 496

(ii) mR < b0 = cR. 497

Then 498

f (u1) = mR < b0 = cR = f (u2),

hence u1 = u2. Moreover,u2 ∈ B∪SR which shows that v0 = u2. Again, if u1 = v0, 499

then we can replace u1 with v1. 500

(iii) mR = b0 = cR. 501

Then each point of A is a solution of (5.41). Note that A must have at least two 502

points in order to link B. It is readily seen that we only need to discuss the case 503

A = {v0, v1} ⊂ BR and v1 ∈ B . Let ρ ∈ (0, ‖v1 − v0‖) be such that Sρ(v0) ⊂ BR . 504

Then A links Sρ(v0) (see Example E.1 and Remark E.1 in Appendix E) and 505

mR ≤ inf
Sρ(v0)

f ≤ inf
�∈� sup

t∈[0,1], u∈A
f (�(t, u)) = mR.

Theorem 5.11 ensures that (5.41) possesses a solution u∗ ∈ Sρ(v0) ∪ SR , hence 506

u∗ = v0. 507��

5.5 Minimax Results for Szulkin Functionals 508

In this section we suppose that X is a real Banach space and f a function on X satisfying 509

the hypothesis: 510

(H) f := ϕ + ψ , where ϕ ∈ C1(X,R) and ψ : X → (−∞,+∞] is convex and proper 511

and l.s.c. 512
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In this section we prove the Mountain Pass Theorem for functionals satisfying (H). 513

Theorem 5.14 (Mountain Pass Theorem, Szulkin [15]) Suppose that f : X → 514

(−∞,∞] satisfies (H) and the (PS) condition. Moreover, assume that 515

(i) f (0) = 0 and there exist constants ρ > 0 and α > 0 such that 516

f (u) ≥ α for u ∈ S(0, ρ);

(ii) f (e) ≤ 0 for some e ∈ B(0, ρ). 517

Then 518

α ≤ c := inf
g∈� sup

t∈[0,1]
f (g(t)),

and c is a critical value of f , where 519

� := {g ∈ C([0, 1],X) : g(0) = 0, g(1) = e}.

Proof Since g([0, 1]) ∩ S(0, ρ) = ∅ for all g ∈ �, then c ≥ α. Suppose that c is not 520

a critical value. We now apply Lemma 4.7 with N := ∅ and ε := c and ε < ε be a 521

positive constant from that lemma. It follows from the definition of c that f c− ε
4 is not path 522

connected and let us denote by W0 and We components containing 0 and e, respectively. 523

We now replace � by a collection of paths �1 with “loose ends” defined by 524

�1 :=
{
g ∈ C([0, 1],X); g(0) ∈ W0 ∩ f c− ε

2 , g(1) ∈ We ∩ f c− ε
2

}

and set 525

c1 := inf
g∈�1

sup
t∈[0,1]

f (g(t)).

We now show that c1 = c. Since � ⊂ �1, c1 ≤ c. If c1 < c, then there exists g ∈ �1 526

such that sup
t∈[0,1]

f (g(t)) < c. Since g(0) can be joined to 0 and g(1) to e by paths lying 527

in f c− ε
4 , we see that there exists a path g ∈ � such that sup

t∈[0,1]
f (g(t)) < c, which is 528

impossible. Since ϕ is continuous and ψ is convex it is routine to show that �1 is a closed 529

subspace of � and consequently �1 is a complete metric space. Since �1 is a complete 530

metric space it is easy to show that a functional ! : �1 → (−∞,∞] defined by 531

!(g) := sup
t

f (g(t))
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is lower semicontinuous. We now apply Ekeland’s variational principle with ε > 0 and 532

λ := 1 to obtain a path γ ∈ �1 such that !(γ ) ≤ c + ε and 533

!(g)−!(γ ) ≥ −εd(γ, g) (5.42)

for all g ∈ �1. Let A := γ ([0, 1]) and let αs be deformation mapping from Lemma 4.7 534

corresponding to A and satisfying (4.67)–(4.71). Setting g := αs ◦γ we check that g ∈ �1 535

for s sufficiently small. Indeed, if f (γ (0)) ∈ (
c − ε, c − ε

2

]
, then by (4.68) f (g(0)) ≤ 536

f (γ (0)) ≤ c− ε
2 and if f (γ (0)) ≤ c−ε, then by (4.70) f (g(0)) ≤ f (γ (0))+2s < c− ε

2 . 537

In both cases g ∈ W0 ∩ f c− ε
2 . Similarly, we show that g(1) ∈ We ∩ f c− ε

2 . Therefore, 538

g ∈ �1. According to (4.67) d(γ, g) ≤ s, it then follows from (4.70) and (5.42) that 539

−εs ≤ −εd(γ, g) ≤ !(g)−!(γ ) ≤ −2εs

and we arrived at a contradiction. ��

Corollary 5.8 Suppose that f satisfies (H) and the condition (PS). If 0 is a local minimum 540

of f and if f (e) ≤ f (0) for some e = 0, then f has a critical point u distinct from 0 and 541

e. In particular, if f has two local minima, then it has at least three critical points. 542

Proof Without loss of generality we may always assume that f (0) = 0. If there exist 543

constants α > 0 and ρ > 0 such that e ∈ B(0, ρ) and f (u) ≥ α for all u ∈ S(0, ρ), then 544

the existence of a critical point distinct from 0 and e is a consequence of Theorem 5.14. If 545

such constants do not exist we choose r < ‖e‖ so that f (u) ≥ 0 for u ∈ B(0, r). We now 546

apply Ekeland’s variational principle with ε := 1
m2 and λ := m and f restricted to B(0, r). 547

Let 0 < ρ < r . Since inf
u∈S(0,ρ) f (u) = 0, there exists wm ∈ S(0, ρ) and um ∈ B(0, ρ) such 548

that 549

0 ≤ f (um) ≤ f (wm) ≤ 1

m2 , ‖um −wm‖ ≤ 1

m

and 550

f (z)− f (um) ≥ − 1

m
‖z −wm‖

for all z ∈ B(0, r). For m sufficiently large um ∈ B(0, r). Let v ∈ X and let z = (1 − 551

t)um+tv. If t > 0 is sufficiently small then z ∈ B(0, r). We deduce from the last inequality 552

and the convexity of ψ that 553

− t

m
‖v − um‖ ≤ f ((1− t)um + tv) − f (um)

554≤ ϕ(um + t (v − um))− ϕ(um)+ t (ψ(v) − ψ(um)).
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Dividing by t and letting t → 0 we get 555

〈ϕ′(um), v − um〉 + ψ(v) − ψ(um) ≥ − 1

m
‖v − um‖

for all v ∈ X. According to the (PS) condition we may assume that um → u, with u ∈
S(0, ρ) and that u is a critical point which is distinct from 0 and e. Finally, if f has two
local minima u0 and u1, we may always assume that u0 = 0 and f (u1) ≤ f (u0) = 0. By
the previous part of the proof there exists a critical point u distinct from u0 and u1 and this
completes the proof. ��

Remark 5.7 It is easy to observe that the “Saddle Point”, “Linking” and “Z2-symmetric 556

version of Mountain Pass” theorems remain true for functionals which satisfy the structure 557

condition (H). 558

5.6 Ricceri-Type Multiplicity Results for Locally Lipschitz Functions 559

In this section we establish some multiplicity results for locally Lipschitz functionals 560

depending on a real parameter. 561

For every τ ≥ 0, we introduce the following class of functions: 562

Gτ :=
{
g ∈ C1(R,R) : g is bounded and g(t) = t,∀t ∈ [−τ, τ ]

}

The first result represents the main result from the paper of [7] and reads like this. 563

Theorem 5.15 Let (X, ‖ · ‖) be a real reflexive Banach space and X̃i (i = 1, 2) be two 564

Banach spaces such that the embeddings X ↪→ X̃i are compact. Let � be a real interval, 565

h : [0,∞) → [0,∞) be a non-decreasing convex function, and let �i : X̃i → R (i = 566

1, 2) be two locally Lipschitz functions such that Eλ,μ := h(‖ · ‖) + λ�1 + μg ◦ �2 567

restricted to X satisfies the (PS)c-condition for every c ∈ R, λ ∈ �, μ ∈ [0, |λ| + 1] and 568

g ∈ Gτ , τ ≥ 0. Assume that h(‖ · ‖) + λ�1 is coercive on X for all λ ∈ � and that there 569

exists ρ ∈ R such that 570

sup
λ∈�

inf
x∈X[h(‖x‖)+ λ(�1(x)+ ρ)] < inf

x∈X sup
λ∈�
[h(‖x‖)+ λ(�1(x)+ ρ)]. (5.43)

Then, there exist a non-empty open set A ⊂ � and r > 0 with the property that for 571

every λ ∈ A there exists μ0 ∈]0, |λ| + 1] such that, for each μ ∈ [0, μ0] the functional 572

Eλ,μ := h(‖ · ‖)+λ�1 +μ�2 has at least three critical points in X whose norms are less 573

than r . 574
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Proof Since h is a non-decreasing convex function, X � x �→ h(‖u‖) is also convex; 575

thus, h(‖ · ‖) is sequentially weakly lower semicontinuous on X. From the fact that the 576

embeddings X ↪→ X̃i (i = 1, 2) are compact and �i : X̃i → R (i = 1, 2) are locally 577

Lipschitz functions, it follows that the function Eλ,μ as well as ϕ : X × � → R (in the 578

first variable) given by 579

ϕ(u, λ) := h(‖u‖)+ λ(�1(u)+ ρ)

are sequentially weakly lower semicontinuous on X. 580

The function ϕ satisfies the hypotheses of Theorem D.10. Fix σ > sup� infX ϕ and 581

consider a nonempty open set �0 with the property expressed in Theorem D.10. Let A := 582

[a, b] ⊂ �0. 583

Fix λ ∈ [a, b]; then, for every τ ≥ 0 and gτ ∈ Gτ , there exists μτ > 0 such that, for 584

any μ ∈]0, μτ [, the functional Eτ
λ,μ = h(‖ · ‖)+ λ�1 +μgτ ◦�2 restricted to X has two 585

local minima, say uτ1, u
τ
2, lying in the set {u ∈ X : ϕ(u, λ) < σ }. 586

Note that 587

∪λ∈[a,b] {u ∈ X : ϕ(u, λ) < σ } ⊂ {u ∈ X : h(‖u‖) + a�1(u) < σ − aρ}
∪{u ∈ X : h(‖u‖)+ b�1(u) < σ − bρ}.

Because the function h(‖ · ‖)+ λ�1 is coercive on X, the set on the right-side is bounded. 588

Consequently, there is some η > 0, such that 589

∪λ∈[a,b] {u ∈ X : ϕ(u, λ) < σ } ⊂ Bη, (5.44)

where Bη := {u ∈ X : ‖u‖ < η}. Therefore,uτ1, u
τ
2 ∈ Bη. Now, set c∗ := supt∈[0,η] h(t)+ 590

max{|a|, |b|} supBη
|�1| and fix r > η large enough such that for any λ ∈ [a, b] to have 591

{u ∈ X : h(‖u‖)+ λ�1(u) ≤ c∗ + 2} ⊂ Br. (5.45)

Let r∗ := supBr
|�2| and correspondingly, fix a function g = gr∗ ∈ Gr∗ . Let us define 592

μ0 := min
{
|λ| + 1, 1

1+sup |g|
}
. Since the functional Eλ,μ := Er∗

λ,μ = h(‖ · ‖) + λ�1 + 593

μgr∗ ◦ �2 restricted to X satisfies the (PS)c condition for every c ∈ R, μ ∈ [0, μ0], and 594

u1 = ur
∗

1 , u2 = ur
∗

2 are local minima of Eλ,μ, we may apply Corollary 5.4, obtaining that 595

cλ,μ = inf
γ∈� max

s∈[0,1]Eλ,μ(γ (s)) ≥ max{Eλ,μ(u1), Eλ,μ(u2)} (5.46)

is a critical value for Eλ,μ, where � is the family of continuous paths γ : [0, 1] → X 596

joining u1 and u2. Therefore, there exists u3 ∈ X such that 597

cλ,μ = Eλ,μ(u3) and 0 ∈ ∂CEλ,μ(u3).
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If we consider the path γ ∈ � given by γ (s) := u1 + s(u2 − u1) ⊂ Bηwe have 598

h(‖u3‖)+ λ�1(u3) = Eλ,μ(u3)− μg(�2(u3)) = cλ,μ − μg(�2(u3))

≤ sup
s∈[0,1]

(h(‖γ (s)‖)+ λ�1(γ (s))+ μg(�2(γ (s))))− μg(�2(u3))

≤ sup
t∈[0,η]

h(t)+max{|a|, |b|} sup
Bη

|�1| + 2μ0 sup |g|

≤ c∗ + 2.

From (5.45) it follows that u3 ∈ Br . Therefore, ui, i = 1, 2, 3 are critical points for Eλ,μ,
all belonging to the ball Br . It remains to prove that these elements are critical points not
only for Eλ,μ but also for Eλ,μ = h(‖ · ‖)+ λ�1 + μ�2. Let u = ui , i ∈ {1, 2, 3}. Since
u ∈ Br , we have that |�2(u)| ≤ r∗. Note that g(t) = t on [−r∗, r∗]; thus, g(�2(u)) =
�2(u). Consequently, on the open set Br the functionals Eλ,μ and Eλ,μ coincide, which
completes the proof. ��

We present next the main theoretical result from the paper of Costea & Varga [3]. For 599

this first we describe the framework. 600

Let X be a real reflexive Banach space and Y,Z two Banach spaces such that there exist 601

T : X→ Y and S : X→ Z linear and compact. Let L : X→ R be a sequentially weakly 602

lower semicontinuous C1 functional such that L′ : X → X∗ has the (S)+ property, i.e. 603

if un ⇀ u in X and lim sup
n→∞

〈L′(un), un − u〉 ≤ 0, then un → u. Assume in addition that 604

J1 : Y → R, J2 : Z → R are two locally Lipschitz functionals. 605

We are interested in studying the existence of critical points for functionalsEλ : X→ R 606

of the following type 607

Eλ(u) := L(u)− (J1 ◦ T )(u)− λ(J2 ◦ S)(u), (5.47)

where λ > 0 is a real parameter. 608

We point out the fact that it makes sense to talk about critical points for the functional 609

defined in (5.47) as Eλ is locally Lipschitz. We also point out the fact that the functional 610

Eλ is sequentially weakly lower semicontinuous since we assumed L to be sequentially 611

weakly lower semicontinuous and T , S to be compact operators. 612

We assume the following conditions are fulfilled: 613

(H1) there exists u0 ∈ X such that u0 is a strict local minimum for L and L(u0) = 614

(J1 ◦ T )(u0) = (J2 ◦ S)(u0) = 0; 615

(H2) for each λ > 0 the functional Eλ is coercive and we can determine u0
λ ∈ X such that 616

Eλ(u0
λ) < 0; 617



136 5 Minimax and Multiplicity Results

(H3) there exists R0 > 0 such that 618

(J1 ◦ T )(u) ≤ L(u) and (J2 ◦ S)(u) ≤ 0, ∀u ∈ B̄(u0;R0) \ {u0};

(H4) there exists ρ ∈ R such that 619

sup
λ>0

inf
u∈X{λ [L(u)− (J1 ◦ T )(u)+ ρ]− (J2 ◦ S)(u)} <

620
inf
u∈X sup

λ>0
{λ [L(u)− (J1 ◦ T )(u)+ ρ]− (J2 ◦ S)(u)}.

Theorem 5.16 Assume that conditions (H1)–(H3) are fulfilled. Then for each λ > 0 the 621

functional Eλ defined in (5.47) has at least three critical points. If in addition (H4) holds, 622

then there exists λ∗ > 0 such that Eλ∗ has at least four critical points. 623

Proof The proof will be carried out in four steps an relies essentially on the zero altitude 624

mountain pass theorem (see Corollary 5.4) combined with a technique of finding global 625

minima for parametrized functions developed by Ricceri (see Theorem D.11). Let us first 626

fix λ > 0 and assume that (H1)–(H3) are fulfilled. 627

Step 1. u0is a critical point for Eλ. 628

Since u0 ∈ X is a strict local minimum for L there exists R1 > 0 such that 629

L(u) > 0, ∀u ∈ B̄(u0;R1) \ {u0}. (5.48)

From (H3) we deduce that 630

(J1 ◦ T )(u)+ λ(J2 ◦ S)(u)
L(u)

≤ 1, ∀u ∈ B̄(u0;R0) \ {u0}. (5.49)

Taking R2 = min{R0, R1} from (5.48) and (5.49) we have 631

Eλ(u) = L(u)−(J1 ◦T )(u)−λ(J2 ◦S)(u) ≥ 0,∀u ∈ B̄(u0;R2)\{u0} (5.50)

We have proved thus that u0 ∈ X is a local minimum for Eλ, therefore it is a 632

critical point for this functional. 633

Step 2. The functional Eλ admits a global minimum point u1 ∈ X \ {u0}. 634

Indeed, such a point exists since the functional Eλ is sequentially weakly lower 635

semicontinuous and coercive, therefore it admits a global minimizer denoted u1. 636

Moreover, from (H2) we deduce that Eλ(u1) < 0, hence u1 = u0. 637

Step 3. There exists u2 ∈ X \ {u0, u1} such that u2 is a critical point for Eλ. 638
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We shall prove first that the functional Eλ satisfies the (PS)-condition. Let c ∈ R 639

be fixed and {un} ⊂ X be a sequence such that 640

• Eλ(un)→ c; 641

• there exists {εn} ⊂ R, εn ↓ 0 s.t. E0
λ(un; v − un)+ εn‖v − un‖X ≥ 0, ∀v ∈ X. 642

Obviously {un} is bounded due to the fact that Eλ is coercive. Then there exists 643

u ∈ X such that, up to a subsequence, un ⇀ u in X. Taking into account that T , S 644

are compact operators we infer that T un → T u in Y and Sun → Su in Z. For 645

v = u we have 646

0 ≤ εn‖u− un‖X + E0
λ(un; u− un) = εn‖u− un‖X + (L− J1 ◦ T − λJ2 ◦ S)0(un; u− un)

≤ εn‖u− un‖X + L0(un; u− un)+ J 0
1 (T un; T un − T u)+ (λJ2)

0(Sun; Sun − Su).

But, L ∈ C1(X;R) and thus L0(un; u − un) = 〈L′(un), u − un〉. On the other 647

hand εn ↓ 0 and {un} is bounded hence lim sup
n→∞

εn‖u − un‖X = 0. Taking into 648

account Proposition 2.3 we deduce that 649

lim sup
n→∞

J 0
1 (T un; T un − T u) ≤ J 0

1 (T u; 0) = 0

and 650

lim sup
n→∞

(λJ2)
0(Sun; Sun − Su) ≤ (λJ2)

0(Su; 0) = 0.

Gathering the above information we have 651

lim sup
n→∞

〈L′(un), un − u〉 ≤ lim sup
n→∞

εn‖u− un‖X + lim sup
n→∞

J 0
1 (T un; T un − T u)

+ lim sup
n→∞

(λJ2)
0(Sun; Sun − Su) ≤ 0.

But, L′ : X → X∗ has the (S)+ property, and this allows us to conclude that 652

{un} has a convergent subsequence, therefore Eλ satisfies the (PS)-condition. 653

According to Step 2 there exists u1 ∈ X such that Eλ(u1) < 0. On the other 654

hand, Eλ(u0) = 0 and we can choose 0 < r < min{R2, ‖u1 − u0‖X} such that 655

Eλ(u) ≥ max{Eλ(u0),Eλ(u1)} = 0, ∀u ∈ ∂B̄(u0; r).

Applying Corollary 5.4 we obtain that there exists a critical point u2 ∈ X\{u0, u1} 656

for Eλ and Eλ(u1) ≥ 0. This completes the proof of the first part of the theorem, 657

i.e. the functional Eλ has at least three distinct critical points. 658
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Step 4. If in addition (H4) holds, then there exists λ∗ > 0 such that Eλ∗ has two global 659

minima. 660

Let us consider the functional f : X × (0,∞)→ R defined by 661

f (u,μ) := μ [L(u)− (J1 ◦ T )(u)+ ρ]− (J2 ◦ S)(u) = μE1/μ(u)+ μρ,

where ρ ∈ R is the number from (H4). 662

We observe that for each u ∈ X the functional μ �→ f (u,μ) is affine, therefore 663

it is quasi-concave. We also note that for each μ > 0 the mapping u �→ f (u,μ) 664

is sequentially weakly lower semicontinuous. Therefore for each μ > 0, the sub- 665

level sets of u �→ f (u,μ) are sequentially weakly closed. 666

Let us consider now the set Sμ(c) := {u ∈ X : f (u,μ) ≤ c} for some 667

c ∈ R and a sequence {un} ⊂ Sμ(c). Obviously {un} is bounded due to the fact 668

that the functional u �→ f (u,μ) is coercive, which is clear since f (u,μ) = 669

μE1/μ(u)+ μρ, E1/μ is coercive and μ > 0. According to the Eberlein-Smulyan 670

Theorem {un} admits a subsequence, still denoted {un}, which converges weakly 671

to some u ∈ X. Keeping in mind that un ∈ Sμ(c) for n > 0 we deduce that 672

E1/μ(un) ≤ c − μρ

μ
, for all n > 0.

Combining the above relation with the fact that E1/μ is sequentially weakly lower 673

semicontinuous we get 674

E1/μ(u) ≤ lim inf
n→∞ E1/μ(un) ≤ c − μρ

μ
,

which shows that f (u,μ) ≤ c, therefore the set Sμ(c) is a sequentially weakly 675

compact subset of X. We have proved thus that, for each μ > 0, the sub-level sets 676

of u �→ f (u,μ) are sequentially weakly compact. Taking into account Remark 1 677

in [13] which states that we can replace “closed and compact” by “sequentially 678

closed and sequentially compact” in Theorem D.11 and using condition (H4) we 679

can apply this theorem for the weak topology of X and conclude that there exists 680

μ∗ > 0 for which f (u,μ∗) = μ∗E1/μ∗(u) + μ∗ρ has two global minima. It is 681

easy to check that any global minimum point of f (u,μ∗) is also a global minimum 682

point for E1/μ∗ , and thus we get the existence of a point u3 ∈ X \ {u1} such that 683

E1/μ∗(u1) = E1/μ∗(u3) ≤ E1/μ∗(u0
1/μ∗) < 0 = E1/μ∗(u0) ≤ E1/μ∗(u2),

showing that u3 ∈ X \ {u0, u1, u2}. Taking λ∗ = 1/μ∗ the proof is now complete. 684

��
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We conclude this section by a nonsmooth form of a Ricceri-type alternative result, 685

extended to locally Lipschitz functions by Marano & Motreanu [8]. 686

Theorem 5.17 ([8]) Let (X, ‖ · ‖) be a reflexive real Banach space, and X̃ another real 687

Banach spaces such that X is compactly embedded into X̃. Let � : X̃ → R and " : 688

X → R be two locally Lipschitz functions, such that " is weakly sequentially lower 689

semicontinuous and coercive. For every ρ > infX ", put 690

ϕ(ρ) = inf
u∈"−1(]−∞,ρ[)

�(u)− inf
v∈("−1(]−∞,ρ[))w �(v)

ρ −"(u)
, (5.51)

where ("−1(] −∞, ρ[))w is the closure of "−1(] − ∞, ρ[) in the weak topology. 691

Furthermore, set 692

γ := lim inf
ρ→+∞ ϕ(ρ), δ := lim inf

ρ→(infX ")+
ϕ(ρ). (5.52)

Then, the following conclusions hold. 693

(A) If γ < +∞ then, for every λ > γ, either 694

(A1) �+ λ" possesses a global minimum, or 695

(A2) there is a sequence {un} of critical points of � + λ" such that 696

limn→+∞"(un) = +∞. 697

(B) If δ < +∞ then, for every λ > δ, either 698

(B1) �+ λ" possesses a local minimum, which is also a global minimum of " , or 699

(B2) there is a sequence {un} of pairwise distinct critical points of � + λ", with 700

limn→+∞"(un) = infX ", weakly converging to a global minimum of ". 701

Proof One can observe that for every ρ > infX " and λ > ϕ(ρ) the function �+ λ" has 702

a local minimum belonging to "−1(] −∞, ρ[). 703

(A) Let us fix λ > γ and choose a sequence {ρn} ⊂ I =] infX ",+∞[ such that 704

lim
n→∞ ρn = +∞, ϕ(ρn) < λ, n ∈ N. (5.53)

For every n ∈ N there exists a point un with the property that 705

�(un)+ λ"(un) = min
v∈"−1(]−∞,ρn[)

(�(v) + λ"(v)). (5.54)

706
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On one hand, if limn→∞"(un) = +∞ then (A2) holds, since un is a critical point of 707

�+ λ" . On the other hand, if lim infn→∞"(un) < +∞, let us fix 708

ρ > max

{
inf
X

", lim inf
n→∞ "(un)

}
.

Since ρ ∈ I , one can assume (up to a subsequence) that {un} weakly converges to u ∈ X. 709

Let v ∈ X be a fixed element. By the weak sequential lower semicontinuity of � + λ" 710

and relations (5.53) and (5.54), we obtain that 711

�(u)+ λ"(u) ≤ �(v) + λ"(v).

Since v ∈ X is arbitrary, then u ∈ X is a global minimum of � + λ" , which proves the 712

assertion (A1). 713

In order to prove (B), let us fix λ > δ and choose a sequence {ρn} ⊂ I such that 714

lim
n→∞ ρn = inf

X
", ϕ(ρn) < λ, n ∈ N. (5.55)

A similar argument as above shows the existence of a sequence {un} of critical points of 715

� + λ" verifying relation (5.54). If ρ ≥ maxn∈N ρn then it turns out that un ∈ "−1(] − 716

∞, ρ[) and {un} weakly converges to u ∈ X (up to a subsequence). It follows that u ∈ X 717

is a global minimum of "; indeed, by the weak sequential lower semicontinuity of " one 718

has 719

"(u) ≤ lim inf
n→∞ "(un) ≤ lim inf

n→∞ ρn = inf
X

".

In particular, by taking a subsequence if necessary, it follows that 720

lim
n→∞"(un) = "(u) = inf

X
".

The latter relation easily concludes the alternative in (B). ��
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1

62Existence and Multiplicity Results for Differential 3

Inclusions on Bounded Domains 4

6.1 Boundary Value Problems with Discontinuous Nonlinearities 5

Let � be a bounded open domain in R
N whose boundary ∂� is of class C1 and consider 6

the following elliptic boundary problem 7

{
−
u = g(x, u), in �,

u = 0, on ∂�,
(DP )

with g : � × R → R a prescribed function. If t �→ g(x, t) is continuous, then a weak 8

solution u ∈ H 1
0 (�) of problem (DP) is defined to satisfy the following variational 9

equality 10

∫
�

∇u · ∇vdx =
∫
�

g(x, u)vdx, ∀v ∈ H 1
0 (�).

The energy functional corresponding to our problem E : H 1
0 (�)→ R is defined by 11

E(u) :=
∫
�

|∇u|2dx −
∫
�

f (x, u(x))dx, (6.1)

with f (x, t) := ∫ t

0 g(x, s)ds. Standard arguments show that E ∈ C1(H 1
0 (�,R)) and any 12

critical point of E, i.e, E′(u) = 0 is also a weak solution for (DP). 13

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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However, if t �→ g(x, t) is not continuous, but only locally bounded, then it is well 14

known that (DP) need not have a solution. In order to overcome this difficulty, Chang 15

[5] had the idea to “fill in the gaps” at the discontinuity points of g(x, ·), thus obtaining a 16

multivalued equation that approximates the initial problem 17

{
−
u ∈ [g−(x, u(x)), g+(x, u(x))] , in �,

u = 0, on ∂�,
(ME)

with 18

g−(x, t) := lim
ε→0

ess inf|s−t |<ε
g(x, s) and g+(x, t) := lim

ε→0
ess sup

|s−t |<ε

g(x, s).

Using the subdifferential calculus developed by Clarke [6], Chang showed that t �→ 19

f (x, t) := ∫ t

0 g(x, s)ds is locally Lipschitz and 20

∂2
Cf (x, t) = [g−(x, u(x)), g+(x, u(x))] ,

and thus (ME) can be equivalently written as a differential inclusion 21

{
−
u ∈ ∂2

Cf (x, u(x)), in �,

u = 0, on ∂�,
(DI )

As before, we define u ∈ H 1
0 (�) to be a weak solution of (DI) if there exists ζ ∈ L2(�) 22

such that ζ(x) ∈ ∂2
Cf (x, u(x)) and 23

∫
�

∇u · ∇vdx =
∫
�

ζ(x)v(x)dx, ∀v ∈ H 1
0 (�).

Now, by the definition of the Clarke subdifferential, one can define a weak solution of 24

(DI) to satisfy not a variational equality, but a hemivariational inequality of the type 25

∫
�

∇u · ∇vdx ≤
∫
�

f 0(x, u(x); v(x))dx, ∀v ∈ H 1
0 (�).

One can also easily prove that the energy functional E defined by (6.1), corresponding to 26

(DI), is no longer differentiable, but only locally Lipschitz and any critical point of E is a 27

weak solution of (DI) in the sense that it satisfies the above hemivariational inequality. 28

Remark 6.1 As this argument can be repeated whenever necessary, in the sequel we shall 29

work with boundary value problems with discontinuous nonlinearities expressed as a 30

differential inclusions of the type (DI). 31
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We prove next an existence result for (DI) provided the following conditions hold. 32

(H0) f : �× R→ R is a Carathéodory function such that: 33

(i) f (·, t) is measurable for all t ∈ R; 34

(ii) f (x, ·) is locally Lipschitz for all x ∈ �; 35

(iii) f (x, 0) = 0 for every x ∈ �. 36

(H1) |ζ | ≤ a1 + a2|t|s , ∀(x, t) ∈ � × R,∀ζ ∈ ∂2
Cf (x, t) with constants a1, a2 ≥ 0, 37

0 ≤ s < N+2
N−2 if N ≥ 3; 38

(H2) sup||v||
H1

0
=ρ

∫
� f (x, v)dx ≤ 1

2ρ
2, for some ρ > 0; 39

(H3) tζ−μ−1f (x, ζ ) ≥ −b1|t|σ−b2, ∀(x, t) ∈ �×R and ζ ∈ ∂2
Cf (x, t) with constants 40

μ > 2, 1 ≤ σ < 2 and b1, b2 ≥ 0; 41

(H4) lim supn→∞ 1
nσ

∫
� f (x, nv0)dx = +∞, for some v0 ∈ H 1

0 (�). 42

Theorem 6.1 ([32]) Assume that conditions (H0)−(H4) are verified. Then problem (DI) 43

possesses a nontrivial weak solution u ∈ H 1
0 (�). 44

Proof In view of (H1) the energy functional E : H 1
0 (�) → R defined by (6.1) is well 45

defined and locally Lipschitz. Theorem 2.6 ensures that ∂CE(u) at any u ∈ H 1
0 (�) satisfies 46

the relation 47

∂CE(u) ⊂ I ′(u)− ∂CF(u), in H−1(�),

where 48

I (u) :=
∫
�

|∇u|2dx,

and 49

F(u) :=
∫
�

f (x, u(x))dx.

Consequently, it suffices to show that the functional E admits a nontrivial critical point 50

u ∈ H 1
0 (�), i.e., 0 ∈ ∂CE(u). To this end we shall apply Corollary 5.4. Notice that 51

E(0) = 0. We check that E satisfies the condition (PS)c for every c ∈ R. Let {un} be 52

a sequence in H 1
0 (�) such that E(un) → c as n → ∞ and there exists ζn ∈ L

s+1
s (�) 53

provided 54

∇un − ζn → 0 in H−1(�) as n→∞ (6.2)
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and 55

ζn(x) ∈ ∂2
Cf (x, un(x)) a.e. x ∈ �. (6.3)

Then, for any n sufficiently large we can write 56

c+ 1+ 1

μ
||un||H 1

0
≥

(
1

2
− 1

μ

)
||un||2H 1

0
+ 1

μ

∫
�

(
ζnun − 1

μ
f (x, un)

)
dx

≥
(

1

2
− 1

μ

)
||un||2H 1

0
− b1||un||σLσ − b2meas(�)

≥
(

1

2
− 1

μ

)
||un||2H 1

0
− b||un||σH 1

0
− b2meas(�)

with a new constant b > 0. Above we used assumption (H3). Since μ > 2 and σ < 2 57

we conclude that {un} is bounded in H 1
0 (�). Taking into account that the embedding 58

H 1
0 (�) ↪→ Ls+1(�) is compact, relation (6.3) ensures that, up to a subsequence, 59

{ζn} converges in H−1(�). Thus from (6.2) we derive that {un} contains a convergent 60

subsequence in H 1
0 (�), i.e., condition (PS)c is verified. Now we justify condition (i) of 61

Corollary 5.4 with α := 0. Indeed, by (H2) it is seen that 62

E(v) ≥ 1

2
‖v‖2

H 1
0
− sup
‖v‖

H1
0
=ρ

∫
�

f (x, v)dx ≥ 0

for all v ∈ H 1
0 (�) with ‖v‖H 1

0
= ρ. The final step is to check condition (ii) of 63

Corollary 5.4. Due to (H3) we have 64

∂tC(|ty|−μf (x, ty)) = μ|y|−μt−1−t (m−1ty∂f (x, ty))− f (x, ty)

≥ −μ|y|−μt−1−μ(b1t
σ |y|σ + b2)

for every y ∈ R \ {0} and t > 0. 65

By Lebourg’s mean value theorem and assumption (H3) we infer that 66

f (x, (n+ 1)y)

(n+ 1)μ|y|μ − f (x, ny)

nμ|y|μ ≥ min
n≤t≤n+1

∂tC(|ty|−μf (x, ty))

≥ −μ|y|−μ(b1n
σ−μ−1|y|σ + b2n

−μ−1)
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for all y ∈ R \ {0} and positive integers n ≥ 1. Taking the sum of the inequalities above 67

where n is replaced by 1, · · · , n− 1 we get 68

f (x, ny) ≥ nμ

⎡
⎣f (x, y)− μb1|y|σ

∑
i≥1

(
1

i

)μ+1−σ
+ b2

∑
i≥1

(
1

i

)μ+1
⎤
⎦

for all y ∈ R and n ≥ 1. Therefore, with the new constants c1, c2 ≥ 0 one has 69

f (x, ny) ≥ nμ(f (x, y)− c1|y|μ − c2), ∀y ∈ R,∀n ≥ 1.

One obtains 70

E(nv) ≤ 1

2
n2||v||2

H 1
0
− nμ

(∫
�

f (x, v)dx − c1||v||σLσ − c2meas(�)

)
(6.4)

for all v ∈ H 1
0 (�) and all n ≥ 1. 71

By (H4) we can find n0 ≥ 1 such that 72

1

nσ0

[∫
�

f (x, n0v0(x)x)dx + c2meas(�)

]
≥ c1||v||σLσ ,

therefore 73

c0 :=
[∫

�

f (x, n0v0(x))dx − c1||v||σLσ n
σ
0 + c2 meas(�)

]
> 0. (6.5)

Combining (6.4), (6.5) we get 74

E(nn0v0) ≤ 1

2
n2n2

0||v0||2H 1
0
− c0n

μn
μ
0 , ∀n ≥ 1. (6.6)

If we pass to the limit in (6.6) as n→∞ it is clear that 75

lim
n→∞ I (nn0v0) = −∞

because μ > 2 and c0 > 0 as shown in (6.5). Corollary 5.4 with α := E(0) = 0 completes
the proof of theorem. ��



148 6 Existence and Multiplicity Results for Differential Inclusions on Bounded. . .

6.2 Parametric Problems with Locally Lipschitz Energy Functional 76

Let � be a non-empty, bounded, open subset of the real Euclidian space R
N, N ≥ 3, 77

having a smooth boundary ∂� and let W 1,2(�) be the closure of C∞(�) with the respect 78

to the norm 79

‖u‖ :=
(∫

�

|∇u(x)|2 +
∫
�

u2(x)

)1/2

.

Denote by 2# := 2N

N − 2
and 2

# := 2(N − 1)

N − 2
the critical Sobolev exponent for the 80

embedding W 1,2(�) ↪→ Lp(�) and for the trace mapping W 1,2(�) ↪→ Lq(∂�), 81

respectively. If p ∈ [
1, 2#

]
then the embedding W 1,2(�) ↪→ Lp(�) is continuous while 82

if p ∈ [
1, 2#), it is compact. In the same way for q ∈

[
1, 2

#
]
, W 1,2(�) ↪→ Lq(∂�) is 83

continuous, and for q ∈
[
1, 2

#
)

it is compact. Therefore, there exist constants cp, cq > 0 84

such that 85

‖u‖Lp(�) ≤ cp‖u‖, and ‖u‖Lq(∂�) ≤ cq‖u‖, ∀u ∈ W 1,2(�).

Now, we consider a locally Lipschitz function F : R→ R which satisfies the following 86

conditions: 87

(F1) F (0) = 0 and there exists C1 > 0 and p ∈ [
1, 2#) such that 88

|ξ | ≤ C1(1+ |t|p−1), ∀ξ ∈ ∂CF(t), ∀t ∈ R; (6.7)

(F2) lim
t→0

max{|ξ | : ξ ∈ ∂CF(t)}
t

= 0; 89

(F3) lim sup
|t |→+∞

F(t)

t2 ≤ 0; 90

(F4) There exists t̃ ∈ R such that F(t̃) > 0. 91

Example 6.1 Letp ∈ (1, 2] andF : R→R be defined by F(t) := min{|t|p+1, arctan(t+)}, 92

where t+ := max{t, 0}. The function F enjoys properties (F1)− (F4). 93

Let also G : R → R be another locally Lipschitz function satisfying the following 94

condition: 95

(G0) There exists C2 > 0 and q ∈
[
1, 2

#
)

such that 96

|ξ | ≤ C2(1+ |t|q−1), ∀ξ ∈ ∂CG(t), ∀t ∈ R. (6.8)
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For λ,μ > 0, we consider the following differential inclusion problem, with inhomoge- 97

neous Neumann condition: 98

⎧⎨
⎩
−
u+ u ∈ λ∂CF(u(x)), in �;
∂u

∂n
∈ μ∂CG(u(x)), on ∂�.

(Pλ,μ)

Definition 6.1 We say that u ∈ W 1,2(�) is a solution of the problem (Pλ,μ), if there exist 99

ξF (x) ∈ ∂CF(u(x)) and ξG(x) ∈ ∂CG(u(x)) for a.e. x ∈ � such that for all v ∈ W 1,2(�) 100

we have 101

∫
�

(−)u+ u)vdx = λ

∫
�

ξF vdx and

∫
∂�

∂u

∂n
vdσ = μ

∫
∂�

ξGvdσ.

The main result of this section reads as follows. 102

Theorem 6.2 ([23, Theorem 3.1]) Let F,G : R→ R be two locally Lipschitz functions 103

satisfying the conditions (F1)−(F4) and (G0). Then there exists a non-degenerate compact 104

interval [a, b] ⊂ (0,+∞) and a number r > 0, such that for every λ ∈ [a, b] there exists 105

μ0 ∈ (0, λ + 1] such that for each μ ∈ [0, μ0], the problem (Pλ,μ) has at least three 106

distinct solutions with W 1,2-norms less than r . 107

In the sequel, we are going to prove Theorem 6.2, assuming from now on that its 108

assumptions are verified. 109

Since F,G are locally Lipschitz, it follows through (6.7) and (6.8) in a standard way 110

that �1 : Lp(�)→ R (p ∈ [1, 2#]) and �2 : Lq(∂�)→ R (q ∈ [1, 2
#]) defined by 111

�1(u) := −
∫
�

F(u(x))dx (u ∈ Lp(�)),

and 112

�2(u) := −
∫
∂�

G(u(x))dσ (u ∈ Lq(∂�))

are well-defined, locally Lipschitz functionals and due to Theorem 2.6, we have 113

∂C�1(u) ⊆ −
∫
�

∂CF(u(x))dx (u ∈ Lp(�)),

and 114

∂C�2(u) ⊆ −
∫
∂�

∂CG(u(x))dσ (u ∈ Lq(∂�)).
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We introduce the energy functional Eλ,μ : W 1,2(�) → R associated to the problem 115

(Pλ,μ), given by 116

Eλ,μ(u) := 1

2
‖u‖2 + λ�1(u)+ μ�2(u), u ∈ W 1,2(�).

Using the latter inclusions and the Green formula, the critical points of the functional 117

Eλ,μ are solutions of the problem (Pλ,μ) in the sense of Definition 6.1. Before proving 118

Theorem 6.2, we need the following auxiliary result. 119

Proposition 6.1 lim
t→0+

inf{�1(u) : u ∈ W 1,2(�), ‖u‖2 < 2t}
t

= 0. 120

Proof Fix p̃ ∈ (max{2, p}, 2#). Applying Lebourg’s mean value theorem and using (F1) 121

and (F2), for any ε > 0, there exists K(ε) > 0 such that 122

|F(t)| ≤ εt2 +K(ε)|t|p̃, ∀t ∈ R. (6.9)

Taking into account (6.9) and the continuous embedding W 1,2(�) ↪→ Lp̃(�) we have 123

�1(u) ≥ −εc2
2‖u‖2 −K(ε)c

p̃

p̃
‖u‖p̃ , u ∈ W 1,2(�). (6.10)

For t > 0 define the set St :=
{
u ∈ W 1,2(�) : ‖u‖2 < 2t

}
. Using (6.10) we have 124

0 ≥ infu∈St �1(u)

t
≥ −2c2

2ε − 2p̃/2K(ε)c
p̃

p̃
t
p̃
2−1.

Since ε > 0 is arbitrary and since t → 0+, we get the desired limit. ��

Proof of Theorem 6.2 Let us define the function for every t > 0 by 125

β(t) := inf

{
�1(u) : u ∈ W 1,2(�),

‖u‖2

2
< t

}
.

We have that β(t) ≤ 0, for t > 0, and Proposition 6.1 yields that 126

lim
t→0+

β(t)

t
= 0. (6.11)
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We consider the constant function u0 ∈ W 1,2(�) by u0(x) := t̃ for every x ∈ �, t̃ being 127

from (F4). Note that t̃ = 0 (since F(0) = 0), so �1(u0) < 0. Therefore it is possible to 128

choose a number η > 0 such that 129

0 < η < −�1(u0)

[‖u0‖2

2

]−1

.

By (6.11) we get the existence of a number t0 ∈
(

0, ‖u0‖2

2

)
such that −β(t0) < ηt0. Thus 130

β(t0) >

[‖u0‖2

2

]−1

�1(u0)t0. (6.12)

Due to the choice of t0 and using (6.12), we conclude that there exists ρ0 > 0 such that 131

− β(t0) < ρ0 < −�1(u0)

[‖u0‖2

2

]−1

t0 < −�1(u0). (6.13)

Define now the function ϕ : W 1,2(�)× I→ R by 132

ϕ(u, λ) := ‖u‖
2

2
+ λ�1(u)+ λρ0,

where I := [0,+∞). We prove that the function ϕ satisfies the inequality 133

sup
λ∈I

inf
u∈W 1,2(�)

ϕ(u, λ) < inf
u∈W 1,2(�)

sup
λ∈I

ϕ(u, λ). (6.14)

The function 134

I � λ �→ inf
u∈W 1,2(�)

[‖u‖2

2
+ λ(ρ0 +�1(u))

]

is obviously upper semicontinuous on I. It follows from (6.13) that 135

lim
λ→+∞ inf

u∈W 1,2(�)
ϕ(u, λ) ≤ lim

λ→+∞

[‖u0‖2

2
+ λ(ρ0 +�1(u0))

]
= −∞.

Thus we find an element λ ∈ I such that 136

sup
λ∈I

inf
u∈W 1,2(�)

ϕ(u, λ) = inf
u∈W 1,2(�)

[‖u‖2

2
+ λ(ρ0 +�1(u))

]
. (6.15)
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Since −β(t0) < ρ0, it follows from the definition of β that for all u ∈ W 1,2(�) with 137

‖u‖2

2 < t0 we have−�1(u) < ρ0. Hence 138

t0 ≤ inf

{‖u‖2

2
: u ∈ W 1,2(�), −�1(u) ≥ ρ0

}
. (6.16)

On the other hand, 139

inf
u∈W 1,2(�)

sup
λ∈I

ϕ(u, λ) = inf
u∈W 1,2(�)

[‖u‖2

2
+ sup

λ∈I
(λ(ρ0 +�1(u)))

]

= inf
u∈W 1,2(�)

{‖u‖2

2
: −�1(u) ≥ ρ0

}
.

Thus inequality (6.16) is equivalent to 140

t0 ≤ inf
u∈W 1,2(�)

sup
λ∈I

ϕ(u, λ). (6.17)

We consider two cases. First, when 0 ≤ λ <
t0
ρ0

, then we have that 141

inf
u∈W 1,2(�)

[‖u‖2

2
+ λ(ρ0 +�1(u))

]
≤ ϕ(0, λ) = λρ0 < t0.

Combining this inequality with (6.15) and (6.17) we obtain (6.14). 142

Now, if t0
ρ0
≤ λ, then from (6.12) and (6.13), it follows that 143

inf
u∈W 1,2(�)

[‖u‖2

2
+ λ(ρ0 +�1(u))

]
≤ ‖u0‖2

2
+ λ(ρ0 +�1(u0))

≤ ‖u0‖2

2
+ t0

ρ0
(ρ0 +�1(u0)) < t0.

It remains to apply again (6.15) and (6.17), which concludes the proof of (6.14). 144

Now, we are in the position to apply Theorem 5.15; we choose X := W 1,2(�), X̃1 := 145

Lp(�) with p ∈ [
1, 2∗), X̃2 := Lq(∂�) with q ∈

[
1, 2

∗)
, � := I = [0,+∞), h(t) := 146

t2/2, t ≥ 0. 147

Now, we fix g ∈ Gτ (τ ≥ 0), λ ∈ �, μ ∈ [0, λ+ 1], and c ∈ R. We shall prove that the 148

functional Eλ,μ : W 1,2(�)→ R given by 149

Eλ,μ(u) := 1

2
‖u‖2 + λ�1(u)+ μ(g ◦�2)(u), u ∈ W 1,2(�),
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satisfies the (PS)c . Note that due to Proposition 2.3, we have for every u, v ∈ W 1,2(�) 150

that 151

E◦λ,μ(u; v) ≤ 〈u, v〉W 1,2 + λ�◦1(u; v)+ μ(g ◦�2)
◦(u; v). (6.18)

First of all, let us observe that 1
2‖ · ‖2 + λ�1 is coercive on W 1,2(�), due to (F3); thus, 152

the functional Eλ,μ is also coercive on W 1,2(�). Consequently, it is enough to consider a 153

bounded sequence {un} ⊂ W 1,2(�) such that 154

E◦λ,μ(un; v − un) ≥ −εn‖v − un‖ for all v ∈ W 1,2(�), (6.19)

where {εn} is a positive sequence such that εn → 0. Because the sequence {un} is bounded, 155

there exists an element u ∈ W 1,2(�) such that un ⇀ u weakly in W 1,2(�), un → u 156

strongly in Lp(�), p ∈ [
1, 2∗) (since W 1,2(�) ↪→ Lp(�) is compact), and un → u 157

strongly in Lq(∂�), q ∈
[
1, 2

∗)
(since W 1,2(�) ↪→ Lq(∂�) is compact). Using (6.19) 158

with v := u and apply relation (6.18) for the pairs (un, u− un) and (u, un − u), we have 159

that 160

‖u− un‖2 ≤ εn‖u− un‖ − E◦λ,μ(u; un − u)+ λ[�◦1(un; u− un)+�◦1(u; un − u)]
+μ[(g ◦�2)

◦(un; u− un)+ (g ◦�2)
◦(u; un − u)].

Since {un} is bounded in W 1,2(�), we clearly have that limn→∞ εn‖u−un‖ = 0. Now, fix
ζ ∈ ∂CEλ,μ(u); in particular, we have 〈ζ, un − u〉W 1,2 ≤ E◦λ,μ(u; un − u). Since un ⇀ u

weakly in W 1,2(�), we have that lim infn→∞ E◦λ,μ(u; un−u) ≥ 0. Now, for the remaining
four terms in the above estimation we use the fact that �◦1(·; ·) and (g◦�2)

◦(·; ·) are upper
semicontinuous functions on Lp(�) and Lq(∂�), respectively. Since un → u strongly in
Lp(�), we have for instance lim supn→∞�◦1(un; u− un) ≤ �◦1(u; 0) = 0; the remaining
terms are similar. Combining the above outcomes, we obtain finally that lim supn→∞ ‖u−
un‖2 ≤ 0, i.e., un → u strongly in W 1,2(�). It remains to apply Theorem 5.15 in order to
obtain the conclusion. ��

6.3 Multiplicity Alternative for Parametric Differential Inclusions 161

Driven by the p−Laplacian 162

In this section we use the theoretical results obtained in the Sect. 5.4 to study differential 163

inclusions involving the p-Laplace operator. More exactly we prove that either the problem 164

(P ) :
{
−
pu ∈ ∂2

Cf (x, u(x)), in �,

u = 0, on ∂�,
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possesses at least two nontrivial weak solutions, or the corresponding eigenvalue problem 165

(Pλ) :
{
−
pu ∈ λ∂2

Cf (x, u(x)), in �,

u = 0, on ∂�,

has a rich family of eigenfunctions corresponding to eigenvalues located in the interval 166

(0, 1). 167

Here, 
pu := div(|∇u|p−2∇u), 1 < p < ∞, is the p-Laplacian, � ⊂ R
N (N ≥ 2) 168

is a bounded domain with C1,α boundary, f : �× R→ R is a locally Lipschitz function 169

with respect to the second variable and ∂2
Cf (x, t) denotes the Clarke subdifferential of the 170

map t �→ f (x, t). As usual, we consider the Sobolev space 171

W 1,p(�) :=
{
u ∈ Lp(�) : ∂u

∂xi
∈ Lp(�), i = 1, . . . , N

}

endowed with the norm ‖u‖1,p := ‖u‖p + ‖∇u‖p, with ‖ · ‖p being the usual norm on 172

Lp(�). Since we work with Dirichlet boundary condition, the natural space to seek weak 173

solution of problem (P ) is the Sobolev space 174

W
1,p
0 (�) = C∞0 (�)

‖·‖1,p =
{
u ∈ W 1,p(�) : u = 0 on ∂�

}
,

with the value of u on ∂� understood in the sense of traces. 175

Definition 6.2 A function u ∈ W
1,p
0 (�) is a weak solution of problem (P ) if, there exists 176

ξ ∈ W−1,p′(�) such that ξ(x) ∈ ∂2
Cf (x, u(x)) for a.e. x ∈ � and 177

∫
�

|∇u|p−2∇u · ∇vdx =
∫
�

ξ(x)v(x)dx, ∀v ∈ W
1,p
0 (�),

Definition 6.3 A real number λ is said to be an eigenvalue of (Pλ) if there exist uλ ∈ 178

W
1,p
0 (�) \ {0} and ξλ ∈ W−1,p′(�) such that ξλ(x) ∈ ∂2

Cf (x, uλ(x)) for a.e. x ∈ � and 179

∫
�

|∇u|p−2∇u · ∇vdx = λ

∫
�

ξλ(x)v(x)dx, ∀v ∈ W
1,p
0 (�).

The function uλ satisfying the above relation is called an eigenfunction corresponding to λ. 180

Following a well-known idea of Lions [26] (see Brezis [4] also), we may regard −
p 181

as an operator acting from W
1,p
0 (�) into its dual W−1,p′(�) by 182

〈−
pu, v〉 :=
∫
�

|∇u|p−2∇u · ∇vdx, ∀u, v ∈ W
1,p
0 (�).
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Henceforth we consider W
1,p
0 (�) to be endowed with the norm |u|1,p := ‖∇u‖p , 183

which is equivalent to ‖u‖1,p due to the Poincaré inequality. Then the duality mapping 184

corresponding to the normalization function φ(t) := tp−1, i.e., Jφ : W
1,p
0 (�) → 185

W−1,p′(�) satisfies 186

Jφ(u) = −
pu. (6.20)

It is also known that −
p is a potential operator in the sense that 187

�′(u) = −
pu,

with � : W 1,p
0 (�)→ R being the C1-functional defined as follows 188

�(u) := 1

p
|u|p1,p =

1

p

∫
�

|∇u|pdx. 189

Finally, we note that X := W
1,p
0 (�) is separable and uniformly convex (see, e.g., [1, 190

Theorem 3.6]), therefore the theory developed in the preceding chapters is applicable. Here 191

and hereafter, we denote by p∗ the critical Sobolev exponent, that is, 192

p∗ :=
{

Np
N−p , if p < N,

∞, otherwise.

Assumption 1 The function f : �× R→ R satisfies: 193

(f1) For all t ∈ R the map x �→ f (x, t) is measurable and f (x, 0) = 0; 194

(f2) For almost all x ∈ �, the map t �→ f (x, t) is locally Lipschitz; 195

(f3) There exists C > 0 and q ∈ (p, p∗) such that |ξ | ≤ C|t|q−1, for a.e. x ∈ �, all 196

t ∈ R and all ξ ∈ ∂2
Cf (x, t). 197

Assumption 2 There exists u0 ∈ W
1,p
0 (�) \ {0} such that |u0|p1,p ≤ p

∫
� f (x, u0(x))dx. 198

Theorem 6.3 ([9]) Suppose that Assumptions 1–2 hold. Then the following alternative 199

holds: 200

Either 201

(A1) Problem (P ) possesses at least two nontrivial weak solutions; 202

or 203

(A2) For each R ∈ (|u0|1,p,∞) problem (Pλ) possesses an eigenvalue λ ∈ (0, 1) with 204

the corresponding eigenfunction satisfying |uλ|1,p = R. 205
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Proof Assumption 1 ensures that we can apply the Aubin-Clarke theorem to conclude that 206

the function F : Lq(�)→ R defined by 207

F(w) :=
∫
�

f (x,w(x))dx,

is Lipschitz continuous on bounded domains and 208

∂CF(w) ⊆
∫
�

∂2
Cf (x,w(x))dx, ∀w ∈ Lq(�),

in the sense that for each ζ ∈ ∂CF(w), there exists ξ ∈ Lq ′(�) such that ξ(x) ∈ 209

∂2
Cf (x,w(x)) for a.e. x ∈ � and 210

〈ζ,w〉 =
∫
�

ξ(x)w(x)dx.

Define now the energy functional E : W 1,p
0 (�)→ R as follows 211

E(u) := 1

p
|u|p1,p − F(u).

It follows from the Rellich-Kondrachov theorem (see, e.g., [1, Theorem 6.3]) that the 212

inclusion W
1,p
0 (�) ↪→ Lq(�) is compact, hence E is well defined. Moreover, 213

∂CE(u) ⊂ −
pu− ∂CF(u).

In conclusion, if μ ≤ 0 and u ∈ W
1,p
0 (�) are such that 214

μJφu ∈ ∂CE(u),

then there exists ξ ∈ Lq ′(�) ⊂ W−1,p′(�) such that ξ(x) ∈ ∂2
Cf (x, u(x)) for almost all 215

x ∈ � and 216

μ

∫
�

|∇u|p−2∇u · ∇vdx =
∫
�

|∇u|p−2∇u · ∇vdx −
∫
�

ξ(x)v(x)dx.

Moreover, if μ = 0, then u is a weak solution of (P ), while μ < 0 implies that λ := 217

1
1−μ ∈ (0, 1) is an eigenvalue of (Pλ), provided that u = 0. 218

Fix R ∈ (|u0|1,p,∞). We prove next that E|BR
satisfies the hypotheses of Theo- 219

rem 5.13. 220
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STEP 1. The functional E maps bounded sets into bounded sets. 221

Fix u ∈ W
1,p
0 (�) and M > 0 such that |u|1,p ≤ M . According to Lebourg’s mean 222

value theorem there exist t ∈ (0, 1) and ξ̄ (x) ∈ ∂2
Cf (x, tu(x)) such that 223

f (x, u(x)) = f (x, u(x))− f (x, 0) = ξ̄ (x)u(x), for a.e. x ∈ �.

Therefore, 224

|F(u)| ≤
∫
�

|f (x, u(x))|dx ≤
∫
�

|ξ̄ (x)||u(x)|dx ≤
∫
�

C|t|q−1|u(x)|qdx ≤ C‖u‖qq .

Then 225

|E(u)| ≤ 1

p
Mp + CC

q
qM

q,

with Cq > 0 being given by the compact embedding W
1,p
0 (�) ↪→ Lq(�). 226

STEP 2. There exists ρ ∈ (
0, |u0|1,p

)
such that E(u) ≥ 0 for all u ∈ Sρ . 227

By Assumption 2 and STEP 1 we have 228

1

p
|u0|p1,p ≤ F(u0) ≤ CC

q
q |u0|q1,p.

Pick ρ := 1
2

(
1

pc0

) 1
q−p

, with c0 := CC
q
q . Then ρ <

(
1

pc0

) 1
q−p ≤ |u0|1,p and for all 229

u ∈ W
1,p
0 (�) satisfying |u|1,p = ρ we have 230

E(u) = 1

p
|u|p1,p − F(u) ≥ 1

p
|u|p1,p − c0|u|q1,p =

(
1

p

) q
q−p (

1

c0

) p
q−p (

1

2p
− 1

2q

)
≥ 0.

STEP 3. The functional E satisfies (SPS)c in BR for all c ∈ R. 231

Let c ∈ R, {un} ⊂ BR be s.t. E(un) → c and assume there exists {ζn} ⊂ W−1,p′(�) 232

satisfies 233

ζn ∈ ∂CE(un), ‖πun(ζn)‖ → 0, 〈ζn, un〉 → ν ≤ 0. (6.21)

Since {un} is bounded and W
1,p
0 (�) is reflexive, it follows from the Eberlein-Šmulian 234

theorem (see Theorem A.8) that there exist u ∈ W
1,p
0 (�) and a subsequence of {un}, 235

still denoted {un}, such that 236

un ⇀ u, in W
1,p
0 (�).
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We may assume that |un|1,p → r. If r = 0, then un → 0 in W
1,p
0 (�). Assume now 237

that r > 0. Then the compactness of the embedding W
1,p
0 (�) ↪→ Lq(�) implies 238

un → u, in Lq(�).

Since ∂CE(un) ⊂ −
pun − ∂CF(un), it follows that there exists ηn ∈ ∂CF(un) such 239

that 240

ζn = −
pun − ηn.

Since un → u in Lq(�), it follows from Proposition 4.1 that there exists η ∈ ∂CF(u) 241

such that 242

ηn ⇀ η, in Lq ′(�).

But Lq ′(�) is compactly embedded into W−1,p′(�) which means 243

ηn → η, in W−1,p′(�).

It follows that 244

− ζn −
pun → η, in W−1,p′(�). (6.22)

On the other hand, the second relation of (6.21) implies 245

ζn + 〈ζn, un〉|un|p1,p

pun → 0 in W−1,p′ . (6.23)

Adding (6.22) and (6.23) we get 246

(
1− 〈ζn, un〉|un|p1,p

)
(−
pun)→ η, in W−1,p′(�).

Consequently, 247

lim
n→∞

(
1− 〈ζn, un〉|un|p1,p

)
〈−
pun, un − u〉 = 0.

But, limn→∞(1 − 〈ζn, un〉/|un|p1,p) = 1 − ν/rp ≥ 1, which combined with the above 248

relation gives 249

lim
n→∞〈−
pun, un − u〉 = 0.
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It follows that un → u in W
1,p
0 (�) due to the fact that−
p satisfies the (S+) condition 250

(see Proposition C.6). 251

STEP 4. There exists �R > 0 s.t. |〈ζ, u〉| ≤ �R , for all u ∈ SR and all ζ ∈ ∂CE(u). 252

Fix u ∈ SR and ζ ∈ ∂CE(u). Then there exists ξ ∈ W−1,p′(�) satisfying ξ(x) ∈ 253

∂2
Cf (x, u(x)) such that 254

|〈ζ, u〉| =
∣∣∣∣〈−
pu, u〉 −

∫
�

ξ(x)u(x)dx

∣∣∣∣ ≤ |〈−
pu, u〉| +
∫
�

|ξ(x)||u(x)|dx

≤ Rp + C‖u‖qq ≤ Rp + CC
q
q R

q := �R.

Applying Theorem 5.13 with A := {0, u0}, B := Sρ (with ρ > 0 given by STEP 2),
v0 := 0, v1 := u0 we get the desired conclusion. ��

6.4 Differential Inclusions Involving the p(·)−Laplacian 255

and Steklov-Type Boundary Conditions 256

In this section we are concerned with the study of a differential inclusion of the type 257

{
−div(|∇u|p(x)−2∇u)+ |u|p(x)−2u ∈ ∂2

Cφ(x, u) in �,
∂u

∂np(x)
∈ λ∂2

Cψ(x, u) on ∂�,
(Pλ)

where � ⊂ R
N (N ≥ 3) is a bounded domain with smooth boundary, λ > 0 is a real 258

parameter, p : �→ R is a continuous function such that infx∈� p(x) > N , φ : �×R→ 259

R and ψ : ∂� × R → R are locally Lipschitz functionals with respect to the second 260

variable and ∂u
∂np(x)

:= |∇u|p(x)−2∇u · n, n being the unit outward normal on ∂�. 261

In the case when p(x) ≡ p, φ(x, t) ≡ 0 and ψ(x, t) := 1
q
|t|q the problem (Pλ) 262

becomes 263

{

pu = |u|p−2u in �,

|∇u|p−2 ∂u
∂n
= λ|u|q−2u on ∂�,

(P)

and it was studied by Fernández-Bonder and Rossi [19] in the case 1 < q < p∗ = p(N−1)
N−p 264

by using variational arguments combined with the Sobolev trace inequality. In [19] it is 265

also proved that if p = q then problem (P) admits a sequence of eigenvalues {λn}, such 266

that λn → ∞ as n → ∞. Furthermore, Martinez and Rossi [28] proved that the first 267

eigenvalue λ1 of problem (P) (that is, λ1 ≤ λ for any other eigenvalue) when p = q is 268

isolated and simple. In the linear case, that is p = q = 2, problem (P) is known in the 269

literature as the Steklov problem (see, e.g., Babuška and Osborn [3]). 270
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Let us present next some basic notions and results from the theory of Lebesgue-Sobolev 271

spaces with variable exponent. For more details one can consult the book by Musielak [33] 272

and the papers by Edmunds et al. [12–14], O. Kováčik and J. Rákosník [21], Fan et al. 273

[16, 18], M. Mihăilescu and V. Rădulescu [29]. 274

Set 275

C+(�) := {
ϕ ∈ C(�) : ϕ(x) > 1,∀x ∈ �

}
,

and for ϕ ∈ C+(�) we denote 276

ϕ− := inf
x∈�

ϕ(x) and ϕ+ := sup
x∈�

ϕ(x).

For a function p ∈ C+(�) we define the variable exponent Lebesgue space 277

Lp(·)(�) :=
{
u : u is a real valued-function and

∫
�

|u(x)|p(x)dx <∞
}

which can be endowed with the so-called Luxemburg norm given by the formula 278

|u|Lp(·)(�) := inf

{
ζ > 0 :

∫
�

∣∣∣∣u(x)ζ

∣∣∣∣
p(x)

dx ≤ 1

}
.

We recall that
(
Lp(·)(�), | · |Lp(·)(�)

)
is a separable and reflexive Banach space. If 0 < 279

meas(�) < ∞ and p, q are variable exponents such that p(x) ≤ q(x) in �, then the 280

embedding Lq(·)(�) ↪→ Lp(·)(�) is continuous. We also remember that the following 281

Hölder type inequality holds 282

∫
�

|u(x)v(x)|dx ≤
(

1

p−
+ 1

p′−

)
|u|Lp(·)(�)|v|Lp′(·)(�)

,

for all u ∈ Lp(·)(�) and all v ∈ Lp′(·)(�), where by p′(x) we have denoted the conjugated 283

exponent of p(x), that is, p′(x) := p(x)
p(x)−1. 284

We recall that
(
W 1,p(·)(�), ‖ · ‖) is a separable and reflexive Banach space. If we set 285

I (u) :=
∫
�

(
|∇u(x)|p(x) + |u(x)|p(x)

)
dx

then for u ∈ W 1,p(·)(�) the following relations hold true 286

‖u‖ > 1 *⇒ ‖u‖p− ≤ I (u) ≤ ‖u‖p+, (6.24)

287

‖u‖ < 1 *⇒ ‖u‖p+ ≤ I (u) ≤ ‖u‖p− . (6.25)
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Remark 6.2 If N < p− ≤ p(x) for any x ∈ �, then Fan and Zhao [17, Theorem 2.2] 288

proved that the space W 1,p(·)(�) is continuously embedded in W 1,p−(�), and, since N < 289

p− it follows that W 1,p(·)(�) is compactly embedded in C(�). Therefore, there exists a 290

positive constant c∞ > 0 such that 291

‖u‖∞ ≤ c∞‖u‖, ∀u ∈ W 1,p(·)(�), (6.26)

where by ‖ · ‖∞ we have denoted the usual norm on C(�), that is, ‖u‖∞ = supx∈� |u(x)|. 292

Definition 6.4 We say that u ∈ W 1,p(·)(�) is a weak solution of problem (Pλ) if there 293

exist ξ, ζ ∈ (
W 1,p(·)(�)

)∗
such that ξ(x) ∈ ∂2

Cφ(x, u(x)), ζ(x) ∈ ∂2
Cψ(x, u(x)) for 294

almost every x ∈ � and for all v ∈ W 1,p(·)(�) we have 295

∫
�

(
−div(|∇u(x)|p(x)−2∇u(x))+ |u(x)|p(x)−2u(x)

)
v(x)dx =

∫
�

ξ(x)v(x)dx

and 296

∫
∂�

∂u

∂np(·)
v(x)dσ = λ

∫
∂�

ζ(x)v(x)dσ.

Using the Green formula and the definition of the Clarke subdifferential one has that a 297

weak solution u ∈ W 1,p(·)(�) needs to satisfy the following hemivariational inequality 298

∫
�

(
|∇u|p(x)−2∇u · ∇v + |u|p(x)−2uv

)
dx ≤

∫
�

φ0
,2(x, u(x); v(x))dx

+ λ

∫
∂�

ψ0
,2(x, u(x); v(x))dσ (6.27)

Here, and hereafter we shall assume the following hypotheses hold: 299

(H1) φ : �×R→ R is a functional such that 300

(i) φ(x, 0) = 0 for a.e. x ∈ �; 301

(ii) the function x �→ φ(x, t) is measurable for every t ∈ R; 302

(iii) the function t �→ φ(x, t) is locally Lipschitz for a.e. x ∈ �; 303

(iv) there exist cφ > 0 and q ∈ C(�) with 1 < q(x) ≤ q+ < p− s.t. 304

|ξ(x)| ≤ cφ |t|q(x)−1

for a.e. x ∈ �, every t ∈ R and every ξ(x) ∈ ∂2
Cφ(x, t). 305

(v) there exists δ1 > 0 s.t. φ(x, t) ≤ 0 when 0 < |t| ≤ δ1, for a.e. x ∈ �. 306
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(H2) ψ : ∂�× R→ R is a functional such that 307

(i) ψ(x, 0) = 0 for a.e. x ∈ ∂�; 308

(ii) the function x �→ ψ(x, t) is measurable for every t ∈ R; 309

(iii) the function t �→ ψ(x, t) is locally Lipschitz for a.e. x ∈ ∂�; 310

(iv) there exist cψ > 0 and r ∈ C(∂�) with 1 < r(x) ≤ r+ < p− s.t. 311

|ζ(x)| ≤ cψ |t|r(x)−1

for a.e. x ∈ ∂�, every t ∈ R and every ζ(x)2
C ∈ ∂ψ(x, t); 312

(v) there exists δ2 > 0 s.t. ψ(x, t) ≤ 0 when 0 < |t| ≤ δ2, for a.e. x ∈ ∂�. 313

(H3) There exist η > max{δ1, δ2} s.t. ηp(x) ≤ p(x)φ(x, η) for a.e. x ∈ � and ψ(x, η) > 314

0 for a.e. x ∈ ∂�. 315

(H4) There exists m ∈ L1(�) s.t. φ(x, t) ≤ m(x) for all t ∈ R and a.e. x ∈ �. 316

(H5) There exists μ > max
{
c∞(p+‖m‖L1(�))

1/p−; c∞(p+‖m‖L1(�))
1/p+

}
s.t. 317

sup
|t |≤μ

ψ(x, t) ≤ ψ(x, η) < sup
t∈R

ψ(x, t).

Theorem 6.4 ([8]) Assume that (H 1)–(H 3) are fulfilled. Then for each λ > 0 problem 318

(Pλ) admits at least two non-zero solutions. If in addition (H 4) and (H 5) hold, then there 319

exists λ∗ > 0 such that problem (Pλ∗) admits at least three non-zero solutions. 320

Proof Let us denote X := W 1,p(·)(�), Y = Z := C(�) and consider T : X → Y , 321

S : X → Z to be the embedding operators. It is clear that T , S are compact operators 322

and for the sake of simplicity, everywhere below, we will omit to write T u and Su to 323

denote the above operators, writing u instead of T u or Su. We introduce next L : X→ R, 324

J1 : Y → R and J2 : Z → R as follows 325

L(u) :=
∫
�

1

p(x)

[
|∇u(x)|p(x) + |u(x)|p(x)

]
dx, for u ∈ X,

326

J1(y) :=
∫
�

φ(x, y(x))dx, for y ∈ Y,

and 327

J2(z) :=
∫
∂�

ψ(x, z(x))dσ, for z ∈ Z.
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We point out the fact that L is sequentially weakly lower semicontinuous and L′ : X → 328

X∗, 329

〈L′(u), v〉 =
∫
�

(
|∇u|p(x)−2∇u · ∇v + |u|p(x)−2uv

)
dx

has the (S)+ property according to Fan and Zhang [15, Theorem 3.1]. 330

The idea is to prove that the functional Eλ : X→ R defined by 331

Eλ(u) := L(u)− J1(u)− λJ2(u)

satisfies the conditions of Theorem 5.16 and each critical point of this functional is a 332

solution of problem (Pλ) in the sense of Definition 6.4. With this end in view we divide 333

the proof in several steps. 334

STEP 1. The functionals J1 and J2 defined above are locally Lipschitz. 335

Let y ∈ Y , R > 0 and y1, y2 ∈ BY (y;R) be fixed. According to Lebourg’s mean 336

value theorem there exists ȳ := t0y1 + (1− t0)y2 and ξ∗(x) ∈ ∂2
Cφ(x, ȳ(x)), for some 337

t0 ∈ (0, 1), such that 338

φ(x, y1(x))− φ(x, y2(x)) = ξ∗(x)(y1(x)− y2(x)).

Thus, 339

|J1(y1)− J1(y2)| =
∣∣∣∣
∫
�

φ(x, y1(x)) − φ(x, y2(x))dx

∣∣∣∣ ≤
∫
�

|φ(x, y1(x))− φ(x, y2(x))|dx

=
∫
�

|ξ∗(x)||y1(x)− y2(x)|dx ≤
∫
�

cφ |ȳ(x)|q(x)−1|y1(x)− y2(x)|dx ≤ c̃0‖y1 − y2‖∞,

where c̃0 = c̃0(y, R) is a suitable constant. In a similar way we prove that J2 is a locally 340

Lipschitz functional. 341

STEP 2. u0 := 0 satisfies hypothesis (H1) of Theorem 5.16. 342

Indeed, L(0) = J1(0) = J2(0) = 0 and for each R > 0 we have 343

L(u) > 0, ∀u ∈ BX(0;R) \ {0},

which shows that u0 = 0 is a strict minimum point for L. 344

STEP 3. Eλ is coercive. 345

Let u ∈ X be fixed. According to Lebourg’s mean value theorem there exist s0, s1 ∈ 346

(0, 1) and ξ∗(x) ∈ ∂2
Cφ(x, s0u(x)), ζ ∗(x) ∈ ∂2

Cψ(x, s1u(x)) such that 347

φ(x, u(x))− φ(x, 0) = ξ∗(x)u(x) and ψ(x, u(x))− ψ(x, 0) = ζ ∗(x)u(x).
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Thus, 348

J1(u) =
∫
�

(φ(x, u)− φ(x, 0))dx ≤
∫
�

|ξ∗||u|dx ≤ cφ

∫
�

s
q(x)−1
0 |u|q(x)dx

≤ cφ

∫
�

|u|q(x)dx ≤ cφ

∫
�

‖u‖q(x)∞ dx,

and 349

J2(u) =
∫
∂�

(ψ(x, u)− ψ(x, 0))dσ ≤
∫
∂�

|ζ ∗||u|dσ ≤ cψ

∫
∂�

s
r(x)−1
1 |u|r(x)dσ

≤ cψ

∫
∂�

|u|r(x)dσ ≤ cψ

∫
∂�

‖u‖r(x)∞ dσ.

Hence for u ∈ X with ‖u‖ > 1 and ‖u‖∞ > 1 we have 350

Eλ(u) =
∫
�

1

p(x)

[
|∇u|p(x) + |u|p(x)

]
dx −

∫
�

φ(x, u)dx − λ

∫
∂�

ψ(x, u)dσ

≥ 1

p+
‖u‖p− − cφmeas(�)‖u‖q+∞ − λcψmeas(�)‖u‖r+∞

≥ 1

p+
‖u‖p− − cφmeas(�)c

q+∞ ‖u‖q+ − λcψmeas(�)cr
+
∞‖u‖r

+
.

We conclude that Eλ(u)→∞ as ‖u‖ → ∞ since r+ < p− and q+ < p−. 351

STEP 4. There exists ū0 ∈ X such that Eλ(ū0) < 0. 352

Choosing ū0(x) := η for all x ∈ � and taking into account (H 3) we conclude that 353

Eλ(ū0) =
∫
�

1

p(x)
ηp(x)dx −

∫
�

φ(x, η)dx − λ

∫
∂�

ψ(x, η)dσ < 0.

STEP 5. There exists R0 > 0 s.t. J1(u) ≤ L(u) and J2(u) ≤ 0 ∀u ∈ B(0;R0) \ {0}. 354

Let us define R0 < min
{

δ1
c∞ ; δ2

c∞

}
where c∞ is given in (6.26) and δ1, δ2 are given in 355

(H1) and (H2), respectively. For an arbitrarily fixed u ∈ B(0;R0), taking into account 356

the way we defined the operators T and S, we have 357

|u(x)| ≤ ‖u‖∞ ≤ c∞‖u‖ ≤ c∞R0 < δ1, ∀x ∈ �

and 358

|u(x)| ≤ ‖u‖∞ ≤ c∞‖u‖ ≤ c∞R0 < δ2, ∀x ∈ ∂�.
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Hypotheses (H1) and (H2) ensure that φ(x, u(x)) ≤ 0 and ψ(x, u(x)) ≤ 0 for all 359

u ∈ B(0;R0), therefore J1(u) ≤ 0 < L(u) and J2(u) ≤ 0 for all u ∈ B(0;R0) \ {0}. 360

STEP 6. There exists ρ ∈ R such that 361

sup
λ>0

inf
u∈X λ [L(u)− J1(u)+ ρ]− J2(u) < inf

u∈X sup
λ>0

λ [L(u)− J1(u)+ ρ]− J2(u).

Using the same arguments as Ricceri [34] (see the proof of Theorem 6.2) we conclude 362

that it suffices to find ρ ∈ R and ū1, ū2 ∈ X such that 363

L(ū1)− J1(ū1) < ρ < L(ū2)− J1(ū2) (6.28)

and 364

supu∈A J2(u)− J2(ū1)

ρ − L(ū1)+ J1(ū1)
<

supu∈A J2(u)− J2(ū2)

ρ − L(ū2)+ J1(ū2)
, (6.29)

where A := (L− J1)
−1((−∞, ρ]). 365

Let us define ū1 ≡ η and choose ū2 such that 366

ψ(x, ū2(x)) > sup
|t |≤μ

ψ(x, t).

We point out the fact that a ū2 satisfying the above relation exists due to (H5). Next we 367

define 368

ρ := min

{
1

p+

(
μ

c∞

)p+

− ‖m‖L1(�);
1

p+

(
μ

c∞

)p−

− ‖m‖L1(�)

}

and observe that ρ > 0. 369

We shall prove next that for any u ∈ A we have ‖u‖∞ ≤ μ. In order to do this, let us fix 370

u ∈ A. Keeping in mind (H4) and the way we defined ρ we distinguish the following 371

cases: 372

CASE 1. ‖u‖ ≤ 1. 373

Then ‖u‖p+ ≤ I (u) and we obtain the following estimates: 374

1

p+
‖u‖p+ ≤ 1

p+
I (u) ≤

∫
�

1

p(x)

[
|∇u|p(x) + |u|p(x)

]
dx ≤ ρ +

∫
�

φ(x, u)dx

≤ ρ +
∫
�

m(x)dx ≤ 1

p+

(
μ

c∞

)p+

.

We conclude from above that ‖u‖ ≤ μ
c∞ therefore we must have ‖u‖∞ ≤ μ. 375
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CASE 2. ‖u‖ > 1. 376

In this case we have ‖u‖p− ≤ I (u) and we obtain the following estimates: 377

1

p+ ‖u‖
p− ≤ 1

p+ I (u) ≤
∫
�

1

p(x)

[
|∇u|p(x) + |u|p(x)

]
dx ≤ ρ +

∫
�

φ(x, u)dx

≤ ρ +
∫
�

m(x)dx ≤ 1

p+

(
μ

c∞

)p−

.

The above computations enable us to conclude that ‖u‖ ≤ μ
c∞ therefore we must 378

have ‖u‖∞ ≤ μ. 379

We only have to check that (6.28) and (6.29) hold for ū1 and ū2 chosen as above. From 380

above we conclude that ū2 ∈ A and thus 381

sup
u∈A

J2(u) ≤ sup
‖u‖∞≤μ

J2(u) ≤ J2(ū1), sup
u∈A

J2(u) ≤ sup
‖u‖∞≤μ

J2(u) ≤ J2(ū2),

and 382

L(ū1)− J1(ū1) ≤ 0 < ρ < L(ū2)− J1(ū2).

STEP 7. Any critical point of the functional Eλ is a solution of problem (Pλ). 383

It is easy to check that u ∈ W 1,p(·)(�) is a solution of problem (Pλ), if and only if there 384

exist ξ(x) ∈ ∂2
Cφ(x, u(x)) and ζ(x) ∈ ∂2

Cψ(x, u(x)) such that for all v ∈ W 1,p(·)(�) 385

0 =
∫
�

(
|∇u|p(x)−2∇ucdot∇v + |u|p(x)−2uv

)
dx +

∫
�

ξ(−v)dx +
∫
∂�

ζ(−λv)dσ.

Moreover, 386

J 0
1 (y1; y2) ≤

∫
�

φ0(x, y1(x); y2(x))dx, ∀y1, y2 ∈ Y,

and 387

J 0
2 (w1;w2) ≤

∫
∂�

ψ0(x,w1(x);w2(x))dx, ∀w1, w2 ∈ Z.
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Let u ∈ X be a critical point of Eλ and v ∈ X be fixed. Taking into account the 388

properties of the generalized directional derivative we obtain 389

0 ≤ E0
λ(u; v) = (L− J1 − λJ2)

0(u; v) ≤ L0(u; v)+ (−J1)
0(u; v)+ λ(−J2)

0(u; v)

≤ 〈L′(u), v〉 + J 0
1 (u; −v)+ J 0

2 (u; −λv) ≤
∫
�

|∇u|p(x)−2∇u · ∇v + |u|p(x)−2uvdx

+
∫
�

φ0(x, u(x); −v(x))dx +
∫
∂�

ψ0(x, u(x); −λv(x))dσ.

On the other hand, Proposition 2.4 ensures that for almost every x ∈ � there exists 390

ξ(x) ∈ ∂2
Cφ(x, u(x)) such that, for all t ∈ R, we have 391

φ0(x, u(x); t) = ξ(x)t = max
{
zt : z ∈ ∂2

Cφ(x, u(x))
}
.

In a similar way we deduce that for almost every x ∈ ∂� there exist ζ(x) ∈ ∂ψ(x, u(x)) 392

such that 393

ψ0(x, u(x); t) = ζ(x)t = max
{
z̃ : z̃ ∈ ∂2

Cψ(x, u(x))
}
.

Combining the above relations we conclude that any critical point u of Eλ satisfies 394

0 ≤
∫
�

|∇u|p(x)−2∇u · ∇v + |u|p(x)−2uvdx +
∫
�

ξ(−v)dx +
∫
∂�

ζ(−λv)dσ.

Replacing v with −v in the above relation we get 395

0 =
∫
�

|∇u|p(x)−2∇u · ∇v + |u|p(x)−2uvdx +
∫
�

ξ(−v)dx +
∫
∂�

ζ(−λv)dσ,

which shows that u is a solution of (Pλ) 396��

6.5 Dirichlet Differential Inclusions Driven by the �−Laplacian 397

6.5.1 Variational Setting and Existence Results 398

Throughout this section � is a bounded domain of RN , N ≥ 3, with Lipschitz boundary 399

∂�. Consider the problem 400

(P) :
{
−
�u ∈ ∂2

Cf (x, u), in �,

u = 0, on ∂�,
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where � : R → [0,∞) is the N-function given by �(t) := ∫ t

0 a(|s|)sds and 401


�u := div(a(|∇u|)∇u) is the �-Laplace operator. The function a : (0,∞)→ (0,∞) is 402

prescribed, f : �×R→ R is a locally Lipschitz functional w.r.t. the second variable and 403

∂2
Cf (x, t) denotes the Clarke subdifferential of the mapping t �→ f (x, t). 404

Following Clément, de Pagter, Sweers and de Thélin [7] we say that a function ϕ : R→ 405

R is admissible if it is continuous, odd, strictly increasing and onto. In this particular case, 406

ϕ has an inverse and the complementary N-function of � is given by 407

�∗(s) =
∫ s

0
ϕ−1(τ )dτ.

In addition, if we assume that 408

1 < ϕ− ≤ ϕ+ <∞,

where 409

ϕ− := inf
t>0

tϕ(t)

�(t)
and ϕ+ := sup

t>0

tϕ(t)

�(t)
,

then both � and �∗ satisfy the 
2-condition (see Clément et al. [7, Lemma C.6]), hence 410

E�(�) = L�(�) and L�(�), L�∗(�) are reflexive Banach spaces and each is the dual 411

of the other. Moreover, if 1 < ϕ− ≤ ϕ+ < ∞, then the following relations between the 412

Luxemburg norm | · |� and the integral
∫
�
�(| · |)dx can be established (see Clément et al. 413

[7, Lemma C.7]) 414

|u|ϕ+� ≤
∫
�

�(|u|)dx ≤ |u|ϕ−� ,∀u ∈ L�(�), |u|� < 1, (6.30)

|u|ϕ−� ≤
∫
�

�(|u|)dx ≥ |u|ϕ−� ,∀u ∈ L�(�), |u|� > 1. (6.31)

In this section we establish the existence of weak solutions for problem (P) provided 415

t �→ a(|t|)t defines an admissible function. In this case the appropriate function space for 416

problem (P) is W 1
0 L

�(�) with � being the N-function generated by ϕ : R→ R, defined 417

as follows 418

ϕ(t) :=
{

0, if t = 0,

a(|t|)t, otherwise.
(6.32)

419
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Using the definition of the Clarke subdifferential, one can define weak solutions of problem 420

(P) in terms of hemivariational inequalities as follows: a function u ∈ W 1
0 L

�(�) is a weak 421

solution of problem (P) if 422

∫
�

a(|∇u|)∇u · ∇vdx ≤
∫
�

f 0(x, u(x); v(x))dx,∀v ∈ W 1
0 L

�(�). (6.33)

We formulate below the basic assumptions that will be used in this section. 423

(H1) a : (0,∞)→ (0,∞) is s.t. the function ϕ defined in (6.32) is admissible and 424

1 < ϕ− ≤ ϕ+ <∞.

(H2) f : �×R→ R is a Carathéodory function s.t. 425

(i) f (x, 0) = 0 for a.e. x ∈ �; 426

(ii) t �→ f (x, t) is locally Lipschitz for a.e. x ∈ �; 427

(iii) there exist an admissible function ψ : R→ R s.t. 1 < ψ− ≤ ψ+ <∞ and 428

|ζ | ≤ ψ(|t|),

for a.e. x ∈ �, all t ∈ R and all ζ ∈ ∂2
Cf (x, t). 429

(H3) If 430

∫ ∞

1

�−1(s)

s
N+1
N

ds = ∞,

then we assume that "(t) := ∫ t

0 ψ(s)ds grows essentially more slowly than �∗. 431

Let us consider the functionals I : W 1
0 L

�(�)→ R and F : L"(�)→ R defined by 432

I (u) :=
∫
�

�(|∇u|)dx,

and 433

F(w) :=
∫
�

f (x,w(x))dx.

The energy functional corresponding to problem (P), E : W 1
0 L

�(�)→ R, is given by 434

E(u) := I (u) − F(u). (6.34)
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The following lemma guarantees the fact that, in order to solve problem (P), it suffices to 435

seek for critical points of the energy functional associated with our problem. 436

Lemma 6.1 Assume (H1)− (H3) hold. Then the functional E : W 1
0 L

�(�)→ R defined 437

in (6.34) has the following properties: 438

(i) E is locally Lipschitz; 439

(ii) E is weakly lower semicontinuous; 440

(iii) each critical point of E is a weak solution of problem (P). 441

Proof 442

(i) According to García-Huidobro et al. [20, Lemma 3.4] the functional I belongs to 443

C1
(
W 1

0 L
�(�),R

)
and 444

〈I ′(u), v〉 =
∫
�

a(|∇u|)∇u · ∇vdx, (6.35)

hence I is locally Lipschitz (see, e.g., Clarke [6, Section 2.2, p. 32]). 445

Since the embedding W 1
0 L

�(�) ↪→ L"(�) is compact there exists C" > 0 such 446

that 447

|u|" ≤ C"‖u‖,∀u ∈ W 1
0 L

�(�). (6.36)

Let us fix now u0 ∈ W 1
0 L

�(�) and prove that there exists r > 0 448

sufficiently small such that F is Lipschitz continuous on BW 1
0 L

�(�)(u0, r) := 449{
v ∈ W 1

0 L
�(�) : ‖v − u0‖ < r

}
. Theorem 2.7 ensures the existence of an r0 > 0 450

such that F is Lipschitz continuous on BL"(�)(u0, r0), hence there exists a positive 451

constant L such that 452

|F(w1)− F(w2)| ≤ L|w1 −w2|",∀w1, w2 ∈ BL"(�)(u0, r0). (6.37)

From (6.36) and (6.37) we get 453

|F(u1)− F(u2)| ≤ LC"‖u1 − u2‖,∀u1, u2 ∈ BW 1
0 L

�(�)(u0, r0/C"). (6.38)
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(ii) Let us consider {un} ⊂ W 1
0 L

�(�) such that un ⇀ u in W 1
0 L

�(�). It is known that 454

I is weakly lower semicontinuous (see García-Huidobro et al. [20, Lemma 3.2]). On 455

the other hand, un → u in L"(�) and by Fatou’s lemma 456

lim sup
n→∞

F(un) = lim sup
n→∞

∫
�

f (x, un(x))dx ≤
∫
�

lim sup
n→∞

f (x, un(x))dx

=
∫
�

f (x, u(x))dx = F(u),

which shows that F |W 1
0 L

�(�) is weakly upper semicontinuous. 457

(iii) Let u ∈ W 1
0 L

�(�) be a critical point of E. Basic subdifferential calculus ensures 458

that 459

0 ∈ ∂CE(u) ⊆ I ′(u)− ∂C

(
F |W 1

0 L
�(�)

)
(u),

and ∂C

(
F |W 1

0 L
�(�)

)
(u) = ∂CF(u) in the sense that any element of 460

∂C

(
F |W 1

0 L
�(�)

)
(u) admits a unique extension to an element of ∂CF(u). Hence 461

there exists ξ ∈ ∂CF(u) such that 462

I ′(u) = ξ, in
(
W 1

0 L
�(�)

)∗
. (6.39)

On the other hand, Theorem 2.7 ensures the existence of a ζ ∈ L"∗(�) which 463

satisfies 464

{
ζ(x) ∈ ∂2

Cf (x, u(x)), for a.e. x ∈ �,

〈ξ,w〉 = ∫
�
ζ(x)w(x)dx, ∀w ∈ L"(�).

(6.40)

It follows from (6.35), (6.39), and (6.40) that 465

∫
�
a(|∇u|)∇u · ∇vdx =

∫
�
ζ(x)v(x)dx ≤

∫
�
f 0(x, u(x); v(x))dx, ∀v ∈ W1

0 L
�(�).

��

Theorem 6.5 ([10]) Suppose (H1) − (H3) hold and assume in addition that ψ+ < ϕ−. 466

Then problem (P) has at least one weak solution. 467

Proof Let u ∈ W 1
0 L

�(�) be such that ‖u‖ > 1. Then, from (6.31), we have 468

I (u) =
∫
�

�(|∇u|)dx ≥ ∣∣|∇u|∣∣ϕ−
�
= ‖u‖ϕ− . (6.41)
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On the other hand, condition (H2)-(iii) ensures that 469

|f (x, t)| ≤ "(2|t|), for a.e x ∈ � and all t ∈ R. (6.42)

Indeed, Lebourg’s mean value theorem and the 
2-condition ensure that for some r ∈ 470

{μt : μ ∈ (0, 1)} there exists ζ ∈ ∂2
Cf (x, r) such that 471

|f (x, t)| = |f (x, t)−f (x, 0)| = |ζ t| ≤ ψ(|r|)|t| ≤ |t|ψ(|t|) ≤
∫ 2|t |

|t |
ψ(s)ds ≤ "(2|t|).

Thus, 472

|F(u)| ≤
∫
�

"(|2u|)dx ≤ k1

(
|u|ψ−" + |u|ψ+"

)
≤ k2‖u‖ψ+ ,

for some suitable constant k2 > 0. Therefore 473

E(u) = I (u)− F(u) ≥ ‖u‖ϕ− − k2‖u‖ψ+ → ∞ as ‖u‖ → ∞.

The fact that E is weakly lower semicontinuous and coercive ensures that there exists 474

u0 ∈ W 1
0 L

�(�) (see Theorem 1.7) such that 475

E(u0) = inf
v∈W 1

0 L
�(�)

E(v),

which means that u0 is a critical point of E. ��

In the proof of the above theorem it is shown that E possesses a global minimizer, but 476

it may happen that 477

inf
v∈W 1

0 L
�(�)

E(v) = 0 = E(0),

hence our problem might possess only the trivial solution. In order to avoid this it suffices 478

to impose conditions that ensure the existence of at least one point u ∈ W 1
0 L

�(�) \ {0} 479

such that E(u) ≤ 0. An example is given below. 480

(H4) There exist θ ∈ (
1, ϕ−

)
and an open subset of positive measure ω ⊂ � s.t. 481

lim inf
t→0

infx∈ω f (x, t)

|t|θ > 0.
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Lemma 6.2 Suppose (H1)− (H4) hold. Then there exist u∗ ∈ W 1
0 L

�(�) \ {0} and T0 ∈ 482

(0, 1) such that 483

E(tu∗) < 0,∀t ∈ (0, T0). (6.43)

Proof Let ω0 be such that ω0 ⊂⊂ ω and meas(ω0) > 0. Then there exists u∗ ∈ C∞0 (ω) 484

such that ω0 ⊂ supp(u∗), u∗(x) = 1 on ω̄0 and 0 ≤ u∗(x) ≤ 1 on ω \ ω̄0. Obviously 485

u∗ ∈ W 1
0 L

�(�)\{0}, hence ‖u∗‖ > 0. On the other hand, (H4) ensures that for sufficiently 486

small ε > 0 there exists δ > 0 such that 487

f (x, t) ≥ ε|t|θ ,∀(x, t) ∈ ω × [−δ, δ],

thus, for any 0 < t < min
{

1, δ, 1
‖u∗‖

}
we have 488

E(tu∗) =I (tu∗)− F(tu∗) =
∫
�

�(t|∇u∗|)dx −
∫
ω

f (x, tu∗(x))dx ≤ tϕ
−‖u∗‖ϕ−

−
∫
ω̄0

ε|t|θdx = tθ
(
tϕ
−−θ‖u∗‖ϕ− − εmeas(ω0)

)
,

which shows that (6.43) holds with T0 := min

{
1, δ, 1

‖u∗‖ ,
(
εmeas(ω0)

‖u∗‖ϕ−
) 1

ϕ−−θ
}

. ��

Corollary 6.1 Assume (H1)− (H4) hold. If ψ+ < ϕ−, then problem (P) has at least one 489

nontrivial weak solution. 490

In order to find critical points which are not necessarily global minimizers of E, instead of 491

(H1) we shall use the following more restrictive assumption: 492

(H ′
1) a : (0,∞)→ (0,∞) is a non-decreasing function s.t. ϕ is admissible and 493

1 < ϕ− ≤ ϕ+ <∞.

The reasoning behind this is given by the following theorem. 494

Theorem 6.6 ([10]) Assume (H ′
1) holds. Then the following assertions hold: 495

(i) The space
(
W 1

0 L
�(�), ‖ · ‖) is uniformly convex; 496

(ii) I ′ : W 1
0 L

�(�)→ (
W 1

0 L
�(�)

)∗
satisfies the (S)+-condition. 497
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Proof 498

(i) Let ε ∈ (0, 2] be fixed and assume u, v ∈ W 1
0 L

�(�) are such that ‖u‖ = ‖v‖ = 1 and 499

‖u − v‖ ≥ ε. Keeping in mind the way | · |� was defined and relations (6.30)–(6.31) 500

one can easily check that for any w ∈ L�(�) 501

|w|� < 1(> 1,= 1) if and only if
∫
�

�(|w|)dx < 1(> 1,= 1).

Thus 502

∫
�

�(|∇u|)dx =
∫
�

�(|∇v|)dx = 1,

and 503

∫
�

�

( |∇u−∇v|
2

)
dx ≥ min

{(ε
2

)ϕ−
,
(ε

2

)ϕ+}
.

On the other hand, the fact that a is non-decreasing implies that 504

0 ≤ 1

2

(
a(
√
t)− a(

√
s)

)
= �(

√·)′(t)−�(
√·)′(s),∀t ≥ s > 0.

Thus the mapping t �→ �(
√
t) is convex on [0,∞) and according to Lamperti [25, 505

Theorem 2.1] 506

�(|ζ + η|)+�(|ζ − η|) ≥ 2�(|ζ |)+ 2�(|η|),∀ζ, η ∈ R
N . (6.44)

Taking ζ := (∇u+∇v)/2, η := (∇u−∇v)/2 and integrating over � we get 507

∫
�

�

(∣∣∣∣∇u+∇v2

∣∣∣∣
)

dx ≤
∫
�

�(|∇u|)+�(|∇v|)
2

−�

(∣∣∣∣∇u− ∇v2

∣∣∣∣
)

dx,

(6.45)

that is, 508

1 > 1− γ ≥
∫
�

�

(∣∣∣∣∇u+∇v2

∣∣∣∣
)

dx ≥
∥∥∥∥u+ v

2

∥∥∥∥
ϕ+

,

with γ := min{(ε/2)ϕ
−
, (ε/2)ϕ

+}. Then δ := 1− (1− γ )
1

ϕ+ . 509

(ii) Arguing by contradiction, assume there exist ε0 > 0, {un} ⊂ W 1
0 L

�(�) and u ∈ 510

W 1
0 L

�(�) such that un ⇀ u as n→∞, ‖un − u‖ ≥ ε0 for all n ≥ 1 and 511

lim sup
n→∞

〈I ′(un), un − u〉 ≤ 0.
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Then 512

0 < min

{(ε0

2

)ϕ−
,
(ε0

2

)ϕ+} ≤
∫
�

�

(∣∣∣∣∇un − ∇u2

∣∣∣∣
)

dx,∀n ≥ 1.

The convexity of I implies that I (u) − I (un) ≥ 〈I ′(un), u − un〉, for all n ≥ 1, 513

therefore (see (6.45)) the following estimates hold 514

I

(
un + u

2

)
=

∫
�
�

(∣∣∣∣∇un + ∇u2

∣∣∣∣
)

dx ≤
∫
�

�(|∇un|)+�(|∇u|)
2

dx

−
∫
�
�

(∣∣∣∣∇un − ∇u2

∣∣∣∣
)

dx = I (un)+ I (u)

2
−min

{( ε0

2

)ϕ−
,
(ε0

2

)ϕ+}

≤I (u)+ 1

2
〈I ′(un), un − u〉 −min

{( ε0

2

)ϕ−
,
(ε0

2

)ϕ+}
.

Keeping in mind that I is weakly lower semicontinuos and taking the superior limit 515

we get 516

I (u) ≤ I (u)−min

{(ε0

2

)ϕ−
,
(ε0

2

)ϕ+}
,

which clearly is a contradiction. 517��

A key ingredient in applying the Mountain Pass Theorem is to prove that E satisfies the 518

(PS)-condition. The above theorem is useful in this regard as we have the following result 519

concerning bounded (PS)-sequences for E. 520

Lemma 6.3 Assume (H ′
1), (H2), and (H3) and let {un} ⊂ X be a bounded (PS)-sequence 521

for E. Then {un} possesses a (strongly) convergent subsequence. 522

Proof The space W 1
0 L

�(�) is uniformly convex, hence reflexive, thus there exist a 523

subsequence {unk } of {un} and u ∈ W 1
0 L

�(�) such that 524

unk ⇀ u, in W 1
0 L

�(�), and unk → u, in L"(�).

Since λE(unk )→ 0, one gets the following estimates 525

0 ≤ E0(unk ; u− unk )+ εnk‖u− unk‖ = (I − F)0(unk ; u− unk )+ εnk‖u− unk‖
≤ 〈

I ′(unk ), u− unk
〉+ (−F)0(unk ; u− unk )+ εnk‖u− unk‖

≤ 〈
I ′(unk ), u− unk

〉+ F 0(unk ; unk − u)+ εnk‖u− unk‖.
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Using the fact that F 0(·, ·) is upper semicontinuous and εnk → 0 we get 526

lim sup
k→∞

〈
I ′(unk ), unk − u

〉 ≤ lim sup
k→∞

F 0(unk ; unk − u)+ lim sup
k→∞

εnk‖u− unk‖ ≤ 0.

The (S+)-property of I ′ allows us to conclude that 527

unk → u, in W 1
0 L

�(�),

completing the proof. ��

The previous lemma shows that, in order to prove E satisfies the (PS)-condition, we 528

only need to impose conditions which ensure the boundedness of all (PS)-sequences 529

{un} ⊂ X for which {E(un)} is bounded. Obviously this is the case if E is coercive, 530

or equivalently bounded below as a locally Lipschitz functional which satisfies the (PS)- 531

condition is bounded below if and only if it is coercive (see, e.g., Motreanu and Motreanu 532

[30, Corollary 2]). However, this case is not of interest here as the existence of a global 533

minimizer of E can be proved under weaker conditions via Theorem 6.5. Therefore, in 534

the remainder of this section we discuss only the case when E is unbounded below. Let us 535

consider the following nonsmooth counterpart of the Ambrosetti and Rabinowitz condition 536

(see [2]) 537

(H5) There exist σ > ϕ+ and μ > 0 such that 538

σf (x, t) ≤ tζ, for a.e.x ∈ �,

whenever |t| ≥ μ and ζ ∈ ∂2
Cf (x, t). 539

Theorem 6.7 ([10]) Assume (H ′
1), (H2), (H3) and (H5) hold. If E is unbounded below 540

and ϕ+ < ψ−, then problem (P) possesses a nontrivial weak solution. 541

Proof We carry out the proof in several steps as follows. 542

STEP 1. E satisfies the (PS)-condition. 543

Let {un} ⊂ W 1
0 L

�(�) be such that {E(un)} is bounded and λE(un) → 0 as n → ∞. 544

According to Lemma 6.3 it suffices to prove that {un} is bounded. It is readily seen that 545

there exists a sequence {ξn} ⊂
(
W 1

0 L
�(�)

)∗
such that ξn ∈ ∂CF(un) and 546

I ′(un)− ξn → 0, as n→∞.

On the other hand, Theorem 2.7 ensures that there exists ζn ∈ L"∗(�) such that ζn(x) ∈ 547

∂2
Cf (x, un(x)) for a.e. x ∈ � and 548

〈ξn, v〉 =
∫
�

ζn(x)v(x)dx,∀v ∈ W 1
0 L

�(�).
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Thus, there exists N ∈ N such that 549

∣∣∣∣〈J ′�(un), un〉 −
∫
�

ζn(x)un(x)dx

∣∣∣∣ ≤ 1

n
,∀n ≥ N. (6.46)

Fix n ≥ N and define �n := {x ∈ � : |un| ≥ μ} and �c
n := � \ �n. If x ∈ �c

n, then 550

|un(x)| < μ and by (6.42) we have 551

∫
�c

n

f (x, un(x))dx ≤
∫
�c

n

"(2μ)dx ≤ "(2μ)meas(�) =: c1.

If x ∈ �n, then |un(x)| ≥ μ and 552

∫
�n

f (x, un)dx ≤ 1

σ

∫
�n

ζn(x)un(x)dx = 1

σ

∫
�

ζn(x)un(x)dx − 1

σ

∫
�c

n

ζn(x)un(x)dx.

Hypothesis (H2) implies that 553

∣∣∣∣∣
∫
�c

n

ζn(x)un(x)dx

∣∣∣∣∣ ≤
∫
�c

n

ψ(|un(x)|)|un(x)|dx ≤
∫
�c

n

ψ(μ)μdx ≤ μψ(μ)meas(�) =: c2.

But, {E(un)} is bounded, hence there exists M > 0 such that 554

M ≥ E(un) = I (un)−
∫
�

f (x, un)dx = I (un)−
∫
�n

f (x, un)dx −
∫
�c

n

f (x, un)dx

≥ I (un)− c1 − c2

σ
− 1

σ

∫
�

ζn(x)un(x)dx.

Combining this with (6.46) we get 555

I (un)− 1

σ
〈I ′(un), un〉 ≤ M + c1 + c2

σ
+ 1

nσ
,∀n ≥ N. (6.47)

On the other hand, the definition of ϕ+ shows that 556

tϕ(t) ≤ ϕ+�(t),∀t ≥ 0,

therefore, 557

1

σ
〈I ′(un), un〉 = 1

σ

∫
�

ϕ(|∇un|)|∇un|dx ≤ ϕ+

σ
I (un). (6.48)
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Now, (6.30), (6.31), (6.47), and (6.48) and the fact that σ > ϕ+ show that there exists 558

a positive constant c3 such that 559

min
{
‖un‖ϕ− , ‖un‖ϕ+

}
≤ I (un) ≤ c3,∀n ≥ N, (6.49)

which shows that {un} is indeed bounded in W 1
0 L

�(�). 560

STEP 2. There exists r > 0 such that 561

E(u) > 0,∀u ∈ Sr := {u ∈ W 1
0 L

�(�) : ‖u‖ = r}.

Let 0 < r < min
{

1
2 ,

1
2C"

}
. Then 562

max{‖u‖, |2u|"} < 1,∀u ∈ Sr .

Thus, for all u ∈ Sr estimate (6.42) ensures that 563

E(u) = I (u)−
∫
�

f (x, u(x))dx > ‖u‖ϕ+ −
∫
�

"(2|u|)dx > ‖u‖ϕ+ − |u|ψ−"

≥ ‖u‖ϕ+ − C
ψ−
" ‖u‖ψ− = rϕ

+ (
1− C

ψ−
" rψ

−−ϕ+) .

Obviously E(u) > 0 whenever ‖u‖ = r and 0 < r < min

{
1, 1

2C"
,C

− ψ−
ψ−−ϕ+

"

}
. 564

STEP 3. The functional E maps bounded sets into bounded sets. 565

Let W ⊂ W 1
0 L

�(�) and M > 1 be such that 566

‖u‖ ≤M,∀u ∈ W.

Then (6.30), (6.31), and (6.42) show that for all u ∈ W we have 567

|E(u)| ≤
∫
�

�(|∇u|)dx +
∫
�

|f (x, u(x)|dx ≤ max
{
‖u‖ϕ−, ‖u‖ϕ+

}
+

∫
�

"(2|u|)dx

≤ Mϕ+ +max
{

2ψ
−|u|ψ−" , 2ψ

+|u|ψ+"

}
≤ Mϕ+ + 2ψ

+
Mψ+ max

{
C

ψ−
" , C

ψ+
"

}
.

Since E is unbounded below, it follows that there exists {vn} ⊂ W 1
0 L

�(�) such that 568

E(vn)→−∞, as n→∞.

STEP 3 ensures that {vn} is unbounded, thus there exists n0 ≥ 1 such that 569

‖vn0‖ > r and E(vn0) ≤ 0,
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with r > 0 being given by STEP 1. Applying Corollary 5.4 with e := vn0 we conclude that
E possesses a nontrivial critical point. ��

We point out the fact that, in the previous theorem, the requirement “E unbounded 570

below” can be dropped if we use the following stronger version of (H5): 571

(H ′
5) There exist σ > ϕ+ and μ > 0 such that 572

σf (x, t) ≤ tζ, for a.e. x ∈ �,

whenever |t| ≥ μ and ζ ∈ ∂2
Cf (x, t) and f (x, t) > 0, if t ≥ μ or t ≤ −μ. 573

Corollary 6.2 Assume (H ′
1), (H2), (H3), and (H ′

5) hold. If ϕ+ < ψ−, then problem (P) 574

has at least one nontrivial weak solution. 575

Proof We need to prove that (H ′
5) implies thatE is unbounded below. Assume f (x, t) > 0 576

for t ≥ μ. We claim that there exists α ∈ L1(�), α > 0 such that 577

f (x, t) ≥ α(x)tσ , for a.e. x ∈ �, and all t ≥ μ. (6.50)

With this end in mind, let us consider g : �× [μ,∞)→ R defined by 578

g(x, t) := f (x, t)

tσ
.

Then, according to Clarke [6, Proposition 2.3.14], the functional g is locally Lipschitz with 579

respect to the second variable and 580

∂2
Cg(x, t) ⊆

t∂2
Cf (x, t)− σf (x, t)

tσ+1 . (6.51)

Thus, for any t > μ, Lebourg’s mean value theorem ensures that there exist s ∈ (μ, t) and 581

ξ ∈ ∂2
Cg(x, s) such that 582

g(x, t)− g(x,μ) = ξ(t − μ) ≥ 0,

which shows that (6.50) holds with α(x) := μ−σ f (x, μ), whenever t ≥ μ. 583

Let ω0 ⊂⊂ � be such that meas(ω0) > 0. Then there exists u∗ ∈ C∞0 (�) such that 584

u∗(x) = 1 on ω̄0 and 0 ≤ u∗(x) ≤ 1 on � \ ω̄0. Obviously u∗ ∈ W 1
0 L

�(�) \ {0} and for 585

any t > max
{

1, μ, 1
‖u∗‖

}
we have 586

ωt :=
{
x ∈ � : tu∗(x) ≥ μ

} ⊃ ω̄0,
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and 587

I (tu∗) ≤ tϕ
+‖u∗‖ϕ+ .

On the other hand, 588

F(tu∗) =
∫
�

f (x, tu∗(x))dx =
∫
ωt

f (x, tu∗(x))dx +
∫
�\ωt

f (x, tu∗(x))dx

≥
∫
ω0

f (x, tu∗)dx −
∫
�\ωt

"(2μ)dx ≥ tσ
∫
ω0

α(x)dx − "(2μ)meas(�),

which shows that E(tu∗) → −∞ as t → ∞. A similar argument can be employed if
f (x, t) > 0 for t ≤ −μ. ��

If the nonlinearity f satisfies (H5), but does not satisfy (H ′
5), then we can use the 589

following assumption 590

(H6) There exist $ > ϕ+ and an open subset of positive measure ω ⊂ � such that either 591

lim inf
t→∞

infx∈ω f (x, t)

t$
> 0, (6.52)

or, 592

lim inf
t→−∞

infx∈ω f (x, t)

|t|$ > 0. (6.53)

Corollary 6.3 Assume (H ′
1), (H2), (H3), (H5), and (H6) hold. If ϕ+ < ψ−, then problem 593

(P) has at least one nontrivial weak solution. 594

Proof Condition (H6) implies that for any sufficiently small ε > 0 there exists δ > 0 such 595

that 596

f (x, t) ≥ εt$,∀(x, t) ∈ ω × [δ,∞),

if (6.52) holds and 597

f (x, t) ≥ ε|t|$,∀(x, t) ∈ ω × (−∞,−δ],

if (6.53) is satisfied. 598
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Reasoning as in the proof of Corollary 6.3, one can easily prove that there exists u∗ ∈
W 1

0 L
�(�) \ {0} such that either E(tu∗) → −∞ as t → ∞, or E(tu∗) → −∞ as

t →−∞. ��

6.5.2 Dropping the Ambrosetti-Rabinowitz Type Condition 599

Although in general (PS)-sequences do not lead to critical points we have seen in the 600

previous section (see Lemma 6.3) that, under some reasonable assumptions, any bounded 601

(PS)-sequence possesses a subsequence converging to a critical point of our energy 602

functional. However, the Ambrosetti-Rabinowitz type condition (H5), which ensures the 603

boundedness of every (PS)-sequence, is quite restrictive and many nonlinearities fail to 604

fulfil it. Consequently, it is natural to ask ourselves if bounded (PS)-sequences can be 605

obtained without this condition, or even if the energy functional does not satisfy the (PS)- 606

condition at all. 607

Let us consider the following eigenvalue problem obtained by perturbing (P) with the 608

duality mapping 609

(Pλ) :
{
−
�u ∈ λJa(u)+ ∂2

Cf (x, u), in �,

u = 0, on ∂�,

where Ja is the duality mapping on W 1
0 L

�(�) corresponding to the normalization function 610

[0,∞) � t �→ a(t)t . 611

Note that, if (H1) holds, then the norm ‖ ·‖ is Fréchet-differentiable on W 1
0 L

�(�)\ {0} 612

(see, e.g., Dincă and Matei [11, Theorem 3.6]) and for u = 0 613

〈‖ · ‖′(u), v〉 = ‖u‖
∫
�
a
( |∇u|
‖u‖

)
∇u · ∇vdx

∫
�
a
( |∇u|
‖u‖

)
|∇u|2dx

,∀v ∈ W 1
0 L

�(�). (6.54)

Consequently, 614

〈Ja(u), v〉 = 〈�(‖ · ‖)′(u), v〉 =

⎧⎪⎨
⎪⎩

0, if u = 0,

a(‖u‖)‖u‖2
∫
� a

( |∇u|
‖u‖

)
∇u·∇vdx∫

� a
( |∇u|
‖u‖

)
|∇u|2dx

, otherwise.
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Definition 6.5 A number λ ∈ R is called eigenvalue of problem (Pλ) if there exists uλ ∈ 615

W 1
0 L

�(�) \ {0} such that 616

∫
�

a(|∇uλ|)∇uλ · ∇vdx − λ〈Ja(uλ), v〉 ≤
∫
�

f 0(x, uλ(x); v(x))dx,∀v ∈ W 1
0 L

�(�).

The function uλ is called an eigenfunction corresponding to λ. 617

Reasoning as in Lemma 6.1 one can easily check that in order to find eigenvalues 618

of problem (P) it suffices to seek for nontrivial critical points of the locally Lipschitz 619

functional Eλ : W 1
0 L

�(�)→ R 620

Eλ(u) := E(u)− λ�(‖u‖),

or equivalently to solve the following differential inclusion 621

λJa(u) ∈ ∂CE(u), (6.55)

with E being the energy functional corresponding to problem (P). Obviously, any 622

eigenfunction corresponding to λ0 := 0 is a nontrivial solution of problem (P). We 623

prove that either problem (P) possesses multiple nontrivial weak solutions or problem 624

(Pλ) possesses a rich family of negative eigenvalues. Note that, under (H1), the space 625

W 1
0 L

�(�) is reflexive, which combined with (6.54) ensures that (W 1
0 L

�(�))∗ is strictly 626

convex, hence the results from Sect. 5.4 are indeed applicable here. In order to establish 627

the main result of this section we assume, among others, that E(u0) ≤ 0 for some 628

u0 ∈ W 1
0 L

�(�) \ {0}. A simple condition ensuring this is 629

(H7) There exists u0 ∈ W 1
0 L

�(�) \ {0} such that 630

max
{
‖u0‖ϕ+ , ‖u0‖ϕ−

}
≤

∫
�

f (x, u0(x))dx.

Theorem 6.8 Assume (H ′
1), (H2), (H3) and (H7) hold. If ϕ+ < ψ−, then the following 631

alternative takes place: 632

(A1) problem (P) possesses at least two nontrivial weak solutions; 633

or, 634

(A2) for each R ∈ (‖u0‖,∞) there exists an eigenpair (λ, uλ) of problem (Pλ) satisfying 635

λ < 0 and ‖uλ‖ = R. 636
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Proof Let R > ‖u0‖ be fixed. Employing the same arguments as in the proof of 637

Theorem 6.7, we conclude that E maps bounded sets into bounded sets and there exists 638

ρ ∈ (0, ‖u0‖) such that 639

E(u) ≥ ρϕ+
(

1− C
ψ−
" ρψ−−ϕ+) =: α > 0, ∀u ∈ Sρ. (6.56)

Let us define A := {0, u0}, B := Sρ , with ρ > 0 given by (6.56), b0 := inf
B

E ≥ α > 0, 640

mR := inf
BR

E and cR := inf
�∈� sup

t∈[0,1]
u∈A

E(�(t, u)). Then the set A links B w.r.t � in the sense 641

of Definition E.5 (see Example E.1 and Remark E.1 in Appendix E) and 642

−∞ < mR ≤ 0 < b0 ≤ cR <∞. (6.57)

We prove next that E satisfies the assumptions of Theorem 5.13. 643

STEP 1. There exists �R > 0 such that |〈ζ, u〉| ≤ �R , for all u ∈ SR and all ζ ∈ 644

∂CE(u). 645

Let u ∈ SR and ζ ∈ ∂CE(u) be fixed. According to Theorem 2.7 there exists ξ ∈ 646

L"∗(�) such that ξ(x) ∈ ∂2
Cf (x, u(x)) for a.e. x ∈ � and 647

|〈ζ, u〉| =
∣∣∣∣〈I ′(u), u〉 −

∫
�

ξudx

∣∣∣∣ ≤
∫
�

a(|∇u|)|∇u|2dx +
∫
�

|ξ ||u|dx

≤
∫
�

ϕ(|∇u|)|∇u|dx +
∫
�

ψ(|u|)|u|dx ≤
∫
�

�(2|∇u|)dx +
∫
�

"(2|u|)dx

≤ max
{
(2‖u‖)ϕ+, (2‖u‖)ϕ−

}
+max

{
(2|u|")ψ+, (2|u|")ψ−

}

≤ max
{
(2R)ϕ

+
, (2R)ϕ

−}+max
{
(2C"R)ψ

+
, (2C"R)ψ

−} =: �R.

STEP 2. The functional E satisfies (SPS)c in BR for all c ∈ R. 648

Let {un} ⊂ BR and c ∈ R be such that 649

• E(un)→ c as n→∞; 650

• there exist ζn ∈ ∂CE(un) and ν ≤ 0 s.t. ‖πun(ζn)‖ → 0 and 〈ζn, un〉 → ν. 651

The boundedness of {un} and the fact that W 1
0 L

�(�) is reflexive ensure there exist 652

u ∈ W 1
0 L

�(�) and subsequence of {un}, again denoted {un}, such that 653

un ⇀ u in W 1
0 L

�(�) and un → u in L"(�).

654
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Without loss of generality we may assume that ‖un‖ → r . If r = 0, then un → 0 and 655

the proof of the Claim is complete. If r > 0, then 656

0 = lim
n→∞

〈
πun(ζn), un − u

〉

= lim
n→∞〈ζn, un − u〉 − lim

n→∞
〈ζn, un〉

a(‖un‖)‖un‖2 〈Ja(un), un − u〉.

Keeping in mind the definition of Ja and the fact that the duality mapping is 657

demicontinuous on reflexive Banach spaces, we get 658

lim
n→∞〈ζn, un − u〉 = ν

(
1− a(‖u‖)‖u‖2

a(r)r2

)
. (6.58)

On the other hand, for each n ∈ N there exists ξn ∈ ∂CF(un) such that 659

ζn = I ′(un)− ξn. (6.59)

Since L"(�) is reflexive, un → u in L"(�) and ξn ∈ ∂CF(un), it follows (see Costea 660

et al. [9, Proposition 2]) that there exist ξ ∈ ∂CF(u) and a subsequence of {ξn} (for 661

simplicity we do not relabel) such that ξn ⇀ ξ in L"∗(�), hence 662

lim
n→∞〈ξn, un − u〉 = 0. (6.60)

Combining (6.58)–(6.60) we get 663

lim
n→∞〈I

′(un), un − u〉 = ν

(
1− ϕ(‖u‖)‖u‖

ϕ(r)r

)
≤ 0,

as ν ≤ 0, ϕ is strictly incresing and ‖u‖ ≤ lim inf
n→∞ ‖un‖ = r . Therefore un → u in 664

W 1
0 L

�(�), due to the (S+) property of I ′. 665

The above steps show that E satisfies the conditions of Theorem 5.13. Consequently, 666

there exist u1, u2 ∈ BR and λ1, λ2 ≤ 0 such that 667

E(u1) = mR, E(u2) = cR and λkJa(uk) ∈ ∂2
CE(uk), k = 1, 2.

Relation (6.57) implies that u1 = u2 and 0 ∈ {u1, u2}. If λ1 = λ2 = 0, then (A1) is
obtained. Otherwise, at least one eigenvalue is negative which forces the corresponding
eigenfunction to belong to SR . ��
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6.6 Differential Inclusions Involving Oscillatory Terms 668

Let F,G : R+ → R be locally Lipschitz functions and as usual, let us denote by ∂CF 669

and ∂CG their generalized gradients in the sense of Clarke. Hereafter, R+ = [0,∞). Let 670

p > 0, λ ≥ 0 and� ⊂ R
N be a bounded open domain, and consider the elliptic differential 671

inclusion problem 672

⎧⎪⎨
⎪⎩
−
u(x) ∈ ∂CF(u(x))+ λ∂CG(u(x)) in �;
u ≥ 0 in �;
u = 0, on ∂�.

(Dλ)

In the sequel, we provide a quite complete picture about the competition concerning the 673

terms s �→ ∂CF(s) and s �→ ∂CG(s), respectively. In fact, we distinguish the cases when 674

∂CF oscillates near the origin or at infinity; we follow the results of Kristály, Mezei and 675

Szilák [24]. Before stating such competition phenomena, we provide a general localization 676

result. 677

6.6.1 Localization: A Generic Result 678

We consider the following differential inclusion problem 679

{
−
u(x)+ ku(x) ∈ ∂CA(u(x)), u(x) ≥ 0 x ∈ �,

u(x) = 0 x ∈ ∂�,
(Dk

A)

where k > 0 and 680

(H1
A): A : [0,∞)→ R is a locally Lipschitz function with A(0) = 0, and there is MA > 0 681

such that 682

max{|∂CA(s)|} := max{|ξ | : ξ ∈ ∂CA(s)} ≤ MA

for every s ≥ 0; 683

(H2
A): there are 0 < δ < η such that max{ξ : ξ ∈ ∂CA(s)} ≤ 0 for every s ∈ [δ, η]. 684

For simplicity, we extend the function A by A(s) = 0 for s ≤ 0; the extended function 685

is locally Lipschitz on the whole R. The natural energy functional T : H 1
0 (�) → R 686

associated with the differential inclusion problem (Dk
A) is defined by 687

T (u) := 1

2
‖u‖2

H 1
0
+ k

2

∫
�

u2dx −
∫
�

A(u(x))dx.
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The energy functional T is well defined and locally Lipschitz on H 1
0 (�), while its 688

critical points in the sense of Chang are precisely the weak solutions of the differential 689

inclusion problem 690

{
−
u(x)+ ku(x) ∈ ∂CA(u(x)), x ∈ �,

u(x) = 0 x ∈ ∂�; (Dk,0
A )

note that at this stage we have no information on the sign of u. Indeed, if 0 ∈ ∂CT (u), 691

then for every v ∈ H 1
0 (�) we have 692

∫
�

∇u(x)∇v(x)dx − k

∫
�

u(x)v(x)dx −
∫
�

ξx(x)v(x)dx = 0,

where ξx ∈ ∂CA(u(x)) a.e. x ∈ �, see e.g. Motreanu and Panagiotopoulos [31]. By using 693

the divergence theorem for the first term at the left hand side (and exploring the Dirichlet 694

boundary condition), we obtain that 695

∫
�

∇u(x)∇v(x)dx = −
∫
�

div(∇u(x))v(x)dx = −
∫
�


u(x)v(x)dx.

Accordingly, we have that 696

−
∫
�


u(x)v(x)dx + k

∫
�

u(x)v(x) =
∫
�

ξxv(x)dx

for every test function v ∈ H 1
0 (�) which means that −
u(x) + ku(x) ∈ ∂CA(u(x)) in 697

the weak sense in �, as claimed before. 698

699

Let us consider the number η ∈ R from (H2
A) and the set 700

Wη = {u ∈ H 1
0 (�) : ‖u‖L∞ ≤ η}.

Our localization result reads as follows (see Kristály and Moroşanu [22, Theorem 2.1] 701

for its smooth form): 702

Theorem 6.9 Let k > 0 and assume that hypotheses (H1
A) and (H2

A) hold. Then 703

(i) the energy functionalT is bounded from below on Wη and its infimum is attained at 704

some ũ ∈ Wη; 705

(ii) ũ(x) ∈ [0, δ] for a.e. x ∈ �; 706

(iii) ũ is a weak solution of the differential inclusion (Dk
A). 707



6.6 Differential Inclusions Involving Oscillatory Terms 187

Proof 708

(i) Due to (H1
A), it is clear that the energy functional T is bounded from below on 709

H 1
0 (�). Moreover, due to the compactness of the embedding H 1

0 (�) ⊂ Lq(�), q ∈ 710

[2, 2∗), it turns out that T is sequentially weak lower semi-continuous on H 1
0 (�). 711

In addition, the set Wη is weakly closed, being convex and closed in H 1
0 (�). Thus, 712

there is ũ ∈ Wη which is a minimum point of T on the set Wη. 713

(ii) We introduce the set L = {x ∈ � : ũ(x) /∈ [0, δ]} and suppose indirectly that 714

m(L) > 0. Define the function γ : R → R by γ (s) = min(s+, δ), where s+ = 715

max(s, 0). Now, set w = γ ◦ũ. It is clear that γ is a Lipschitz function and γ (0) = 0. 716

Accordingly, based on the superposition theorem of Marcus and Mizel [27], one has 717

that w ∈ H 1
0 (�). Moreover, 0 ≤ w(x) ≤ δ for a.e. �. Consequently, w ∈ Wη. 718

Let us introduce the sets 719

L1 = {x ∈ L : ũ(x) < 0} and L2 = {x ∈ L : ũ(x) > δ}.

In particular, L = L1 ∪ L2, and by definition, it follows that w(x) = ũ(x) for all 720

x ∈ � \ L, w(x) = 0 for all x ∈ L1, and w(x) = δ for all x ∈ L2. In addition, one 721

has 722

T (w) − T (ũ) = 1

2

[
‖w‖2

H 1
0
− ‖ũ‖2

H 1
0

]
+ k

2

∫
�

[
w2 − ũ2

]
−

∫
�

[A(w(x)) − A(ũ(x))]

= −1

2

∫
L

|∇ũ|2 + k

2

∫
L

[w2 − ũ2] −
∫
L

[A(w(x)) − A(ũ(x))].

On account of k > 0, we have 723

k

∫
L

[w2 − ũ2] = −k
∫
L1

ũ2 + k

∫
L2

[δ2 − ũ2] ≤ 0.

Since A(s) = 0 for all s ≤ 0, we have 724

∫
L1

[A(w(x))− A(ũ(x))] = 0.

By means of the Lebourg’s mean value theorem, for a.e. x ∈ L2, there exists θ(x) ∈ 725

[δ, ũ(x)] ⊆ [δ, η] such that 726

A(w(x))− A(ũ(x)) = A(δ)− A(ũ(x)) = a(θ(x))(δ − ũ(x)),
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where a(θ(x)) ∈ ∂CA(θ(x)). Due to (H2
A), it turns out that 727

∫
L2

[A(w(x))− A(ũ(x))] ≥ 0.

Therefore, we obtain that T (w)−T (ũ) ≤ 0. On the other hand, since w ∈ Wη, then 728

T (w) ≥ T (ũ) = infWη T , thus every term in the difference T (w) − T (ũ) should 729

be zero; in particular, 730

∫
L1

ũ2 =
∫
L2

[ũ2 − δ2] = 0.

The latter relation implies in particular that m(L) = 0, which is a contradiction, 731

completing the proof of (ii). 732

(iii) Since ũ(x) ∈ [0, δ] for a.e. x ∈ �, an arbitrarily small perturbation ũ + εv of 733

ũ with 0 < ε , 1 and v ∈ C∞0 (�) still implies that T (ũ + εv) ≥ T (ũ); 734

accordingly, ũ is a minimum point for T in the strong topology of H 1
0 (�), thus 735

0 ∈ ∂CT (ũ). Consequently, it follows that ũ is a weak solution of the differential 736

inclusion (Dk
A). 737��

In the sequel, we need a truncation function of H 1
0 (�). To construct this function, let 738

B(x0, r) ⊂ � be the N-dimensional ball with radius r > 0 and center x0 ∈ �. For s > 0, 739

define 740

ws(x) =

⎧⎪⎨
⎪⎩

0, if x ∈ � \ B(x0, r);
s, if x ∈ B(x0, r/2);
2s
r
(r − |x − x0|), if x ∈ B(x0, r) \ B(x0, r/2).

(6.61)

Note that that ws ∈ H 1
0 (�), ‖ws‖L∞ = s and 741

‖ws‖2
H 1

0
=

∫
�

|∇ws |2 = 4rN−2(1− 2−N)ωNns2 ≡ C(r,Nn)s2 > 0; (6.62)

hereafter ωN stands for the volume of B(0, 1) ⊂ R
N . 742

6.6.2 Oscillation Near the Origin 743

We assume: 744

(F 0
0 ) F (0) = 0; 745

(F 0
1 ) −∞ < lim infs→0+

F(s)

s2 ; lim sups→0+
F(s)

s2 = +∞; 746
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(F 0
2 ) l0 := lim infs→0+

max{ξ :ξ∈∂CF (s)}
s

< 0. 747

(G0
0) G(0) = 0; 748

(G0
1) There exist p > 0 and c, c ∈ R such that 749

c = lim inf
s→0+

min{ξ : ξ ∈ ∂CG(s)}
sp

≤ lim sup
s→0+

max{ξ : ξ ∈ ∂CG(s)}
sp

= c.

Remark 6.3 Hypotheses (F 0
1 ) and (F 0

2 ) imply a strong oscillatory behavior of ∂CF near 750

the origin. Moreover, it turns out that 0 ∈ ∂CF(0); indeed, if we assume the contrary, by 751

the upper semicontinuity of ∂CF we also have that 0 /∈ ∂CF(s) for every small s > 0. 752

Thus, by (F 0
2 ) we have that ∂CF(s) ⊂ (−∞, 0] for these values of s > 0. By using 753

(F 0
0 ) and Lebourg’s mean value theorem, it follows that F(s) = F(s) − F(0) = ξs ≤ 0 754

for some ξ ∈ ∂CF(θs) ⊂ (−∞, 0] with θ ∈ (0, 1). The latter inequality contradicts the 755

second assumption from (F 0
1 ). Similarly, one obtains that 0 ∈ ∂CG(0) by exploring (G0

0) 756

and (G0
1), respectively. 757

In conclusion, since 0 ∈ ∂CF(0) and 0 ∈ ∂CG(0), it turns out that 0 ∈ H 1
0 (�) is a 758

solution of the differential inclusion (Dλ). Clearly, we are interested in nonzero solutions 759

of (Dλ). 760

Example 6.2 Let us consider F0(s) =
∫ s

0
f0(t), s ≥ 0, where f0(t) = √t( 1

2 + sin t−1), 761

t > 0 and f0(0) = 0, or some of its jumping variants. One can prove that ∂CF0 = 762

f0 verifies the assumptions (F 0
0 ) − (F 0

2 ). For a fixed p > 0, let G0(s) = ln(1 + 763

sp+2)max{0, cos s−1}, s > 0 and G0(0) = 0. It is clear that G0 is not of class C1 and 764

verifies (G0
1) with c = −1 and c = 1, respectively; see Fig. 6.1 representing both f0 and 765

G0 (for p = 2). 766
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Fig. 6.1 Graphs of f0 and G0 around the origin, respectively
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First, we are going to show that when p ≥ 1 then the ‘leading’ term is the oscillatory 767

function ∂CF ; roughly speaking, one can say that the effect of s �→ ∂CG(s) is negligible 768

in this competition. More precisely, we prove the following result. 769

Theorem 6.10 ([24]) (Case p ≥ 1) Assume that p ≥ 1 and the locally Lipschitz functions 770

F,G : R+ → R satisfy (F 0
0 )− (F 0

2 ) and (G0
0)− (G0

1). If 771

(i) either p = 1 and λc < −l0 (with λ ≥ 0), 772

(ii) or p > 1 and λ ≥ 0 is arbitrary, 773

then the differential inclusion problem (Dλ) admits a sequence {ui}i ⊂ H 1
0 (�) of distinct 774

weak solutions such that 775

lim
i→∞‖ui‖H 1

0
= lim

i→∞‖ui‖L∞ = 0. (6.63)

In the case when p < 1, the perturbation term ∂CG may compete with the oscillatory 776

function ∂CF ; namely, we have: 777

Theorem 6.11 ([24]) (Case 0 < p < 1) Assume 0 < p < 1 and that the locally Lipschitz 778

functions F,G : R+ → R satisfy (F 0
0 )− (F 0

2 ) and (G0
0)− (G0

1). Then, for every k ∈ N, 779

there exists λk > 0 such that the differential inclusion (Dλ) has at least k distinct weak 780

solutions {u1,λ, . . . , uk,λ} ⊂ H 1
0 (�) whenever λ ∈ [0, λk]. Moreover, 781

‖ui,λ‖H 1
0
< i−1 and ‖ui,λ‖L∞ < i−1 f or any i = 1, k; λ ∈ [0, λk]. (6.64)

Before giving the proof of Theorems 6.10 and 6.11, we study the differential inclusion 782

problem 783

{
−
u(x)+ ku(x) ∈ ∂CA(u(x)), u(x) ≥ 0 x ∈ �,

u(x) = 0 x ∈ ∂�,
(Dk

A)

where k > 0 and the locally Lipschitz function A : R+ → R verifies 784

(H0
0): A(0) = 0; 785

(H0
1): −∞ < lim infs→0+

A(s)

s2 and lim sups→0+
A(s)

s2 = +∞; 786

(H0
2): there are two sequences {δi}, {ηi} with 0 < ηi+1 < δi < ηi , limi→∞ ηi = 0, and 787

max{∂CA(s)} := max{ξ : ξ ∈ ∂CA(s)} ≤ 0

for every s ∈ [δi, ηi ], i ∈ N. 788
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Theorem 6.12 Let k > 0 and assume hypotheses (H0
0), (H0

1) and (H0
2) hold. Then there 789

exists a sequence {u0
i }i ⊂ H 1

0 (�) of distinct weak solutions of the differential inclusion 790

problem (Dk
A) such that 791

lim
i→∞‖u

0
i ‖H 1

0
= lim

i→∞‖u
0
i ‖L∞ = 0. (6.65)

Proof We may assume that {δi}i , {ηi}i ⊂ (0, 1). For any fixed number i ∈ N, we define 792

the locally Lipschitz function Ai : R→ R by 793

Ai(s) = A(τηi (s)), (6.66)

where A(s) = 0 for s ≤ 0 and τη : R → R denotes the truncation function τη(s) = 794

min(η, s), η > 0. For further use, we introduce the energy functional Ti : H 1
0 (�) → R 795

associated with problem (Dk
Ai
). 796

We notice that for s ≥ 0, the chain rule gives 797

∂CAi(s) =

⎧⎪⎨
⎪⎩
∂CA(s) if s < ηi,

co{0, ∂CA(ηi)} if s = ηi,

{0} if s > ηi.

It turns out that on the compact set [0, ηi], the upper semicontinuous set-valued map s �→ 798

∂CAi(s) attains its supremum; therefore, there exists MAi > 0 such that 799

max |∂CAi(s)| := max{|ξ | : ξ ∈ ∂CAi(s)} ≤MAi

for every s ≥ 0, i.e., (H1
Ai

) holds. The same is true for (H2
Ai

) by using (H0
2) on [δi, ηi ], 800

i ∈ N. 801

Accordingly, the assumptions of Theorem 6.9 are verified for every i ∈ N with [δi, ηi ], 802

thus there exists u0
i ∈ Wηi such that 803

u0
i is the minimum point of the functional Ti on Wηi , (6.67)

804

u0
i (x) ∈ [0, δi] for a.e. x ∈ �, (6.68)

805

u0
i is a solution of (Dk

Ai
). (6.69)

On account of relations (6.66), (6.68), and (6.69), u0
i is a weak solution also for the 806

differential inclusion problem (Dk
A). 807
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We are going to prove that there are infinitely many distinct elements in the sequence 808

{u0
i }i . To conclude it, we first prove that 809

Ti (u0
i ) < 0 for all i ∈ N; and (6.70)

810

lim
i→∞Ti (u

0
i ) = 0. (6.71)

The left part of (H0
1) implies the existence of some l0 > 0 and ζ ∈ (0, η1) such that 811

A(s) ≥ −l0s2 for all s ∈ (0, ζ ). (6.72)

One can choose L0 > 0 such that 812

1

2
C(r,N)+

(
k

2
+ l0

)
m(�) < L0(r/2)nωn, (6.73)

where r > 0 and C(r,N) > 0 come from (6.62). Based on the right part of (H0
1), one can 813

find a sequence {s̃i}i ⊂ (0, ζ ) such that s̃i ≤ δi and 814

A(s̃i ) > L0s̃
2
i for all i ∈ N. (6.74)

Let i ∈ N be a fixed number and let ws̃i ∈ H 1
0 (�) be the function from (6.61) 815

corresponding to the value s̃i > 0. Then ws̃i ∈ Wηi , and due to (6.72), (6.74), and (6.62) 816

one has 817

Ti (ws̃i ) =
1

2
‖ws̃i‖2

H 1
0
+ k

2

∫
�

w2
s̃i
−

∫
�

Ai(ws̃i (x))dx =
1

2
C(r,N)s̃2

i +
k

2

∫
�

w2
s̃i

−
∫
B(x0,r/2)

A(s̃i)dx −
∫
B(x0,r)\B(x0,r/2)

A(ws̃i (x))dx

≤
[

1

2
C(r,N)+ k

2
m(�)− L0(r/2)nωn + l0m(�)

]
s̃2
i .

Accordingly, with (6.67) and (6.73), we conclude that 818

Ti (u0
i ) = min

Wηi
Ti ≤ Ti (ws̃i ) < 0 (6.75)

which completes the proof of (6.70). 819
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Now, we prove (6.71). For every i ∈ N, by using the Lebourg’s mean value theorem, 820

relations (6.66) and (6.68) and (H0
0), we have 821

Ti (u0
i ) ≥ −

∫
�

Ai(u
0
i (x))dx = −

∫
�

A1(u
0
i (x))dx ≥ −MA1m(�)δi.

Since limi→∞ δi = 0, the latter estimate and (6.75) provides relation (6.71). 822

Based on (6.66) and (6.68), we have that Ti (u0
i ) = T1(u

0
i ) for all i ∈ N. This relation 823

with (6.70) and (6.71) means that the sequence {u0
i }i contains infinitely many distinct 824

elements. 825

We now prove (6.65). One can prove the former limit by (6.68), i.e. ‖u0
i ‖L∞ ≤ δi for 826

all i ∈ N, combined with limi→∞ δi = 0. For the latter limit, we use k > 0, (6.75), (6.66) 827

and (6.68) to get for all i ∈ N that 828

1

2
‖u0

i ‖2
H 1

0
≤ 1

2
‖u0

i ‖2
H 1

0
+ k

2

∫
�

(u0
i )

2 <

∫
�

Ai(u
0
i (x)) =

∫
�

A1(u
0
i (x)) ≤ MA1m(�)δi,

which completes the proof. ��

Proof of Theorem 6.10 We split the proof into two parts. 829

(i) Case p = 1. Let λ ≥ 0 with λc < −l0 and fix λ̃0 ∈ R such that λc < λ̃0 < −l0. With 830

these choices we define 831

k := λ̃0−λc > 0 and A(s) := F(s)+ λ̃0

2
s2+λ

(
G(s)− c

2
s2

)
for every s ∈ [0,∞).

(6.76)

It is clear that A(0) = 0, i.e., (H0
0) is verified. Since p = 1, by (G0

1) one has 832

c = lim inf
s→0+

min{∂CG(s)}
s

≤ lim sup
s→0+

max{∂CG(s)}
s

= c.

In particular, for sufficiently small ε > 0 there exists γ = γ (ε) > 0 such that 833

max{∂CG(s)} − cs < εs, ∀s ∈ [0, γ ],

and 834

min{∂CG(s)} − cs > −εs, ∀s ∈ [0, γ ].
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For s ∈ [0, γ ], Lebourg’s mean value theorem and G(0) = 0 implies that there exists 835

ξs ∈ ∂CG(θss) for some θs ∈ [0, 1] such that G(s) − G(0) = ξss. Accordingly, for 836

every s ∈ [0, γ ] we have that 837

(c − ε)s2 ≤ G(s) ≤ (c + ε)s2. (6.77)

838

lim inf
s→0+

A(s)

s2 ≥ lim inf
s→0+

F(s)

s2 + λ̃0 − λc

2
+ λ lim inf

s→0+
G(s)

s2

≥ lim inf
s→0+

F(s)

s2 + λ̃0 − λc

2
+ λc > −∞

and 839

lim sup
s→0+

A(s)

s2
≥ lim sup

s→0+

F(s)

s2
+ λ̃0 − λc

2
+ λ lim inf

s→0+
G(s)

s2
= +∞,

i.e., (H0
1) is verified. 840

Since 841

∂CA(s) ⊆ ∂CF(s)+ λ̃0s + λ(∂CG(s)− cs), (6.78)

and λ ≥ 0, we have that 842

max{∂CA(s)} ≤ max{∂CF(s)+ λ̃0s} + λmax{∂CG(s)− cs}. (6.79)

Since 843

lim sup
s→0+

max{∂CG(s)}
s

= c,

cf. (G0
1), and 844

lim inf
s→0+

max{∂CF(s)}
s

= l0 < 0,

cf. (F 0
2 ), it turns out by (6.79) that 845

lim inf
s→0+

max{∂CA(s)}
s

≤ lim inf
s→0+

max{∂CF(s)}
s

+ λ̃0 − λc + λ lim sup
s→0+

max{∂CG(s)}
s

≤ l0 + λ̃0 < 0.
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Therefore, one has a sequence {si}i ⊂ (0, 1) converging to 0 such that max{∂CA(si)}
si

< 846

0 i.e., max{∂CA(si)} < 0 for all i ∈ N. By using the upper semicontinuity of 847

s �→ ∂CA(s), we may choose two numbers δi, ηi ∈ (0, 1) with δi < si < ηi 848

such that ∂CA(s) ⊂ ∂CA(si) + [−εi, εi ] for every s ∈ [δi, ηi ], where εi := 849

−max{∂CA(si)}/2 > 0. In particular, max{∂CA(s)} ≤ 0 for all s ∈ [δi, ηi ]. Thus, 850

one may fix two sequences {δi}i , {ηi}i ⊂ (0, 1) such that 0 < ηi+1 < δi < si < ηi , 851

limi→∞ ηi = 0, and max{∂CA(s)} ≤ 0 for all s ∈ [δi, ηi ] and i ∈ N. Accordingly, 852

(H0
2) is verified as well. Let us apply Theorem 6.12 with the choice (6.76), i.e., there 853

exists a sequence {ui}i ⊂ H 1
0 (�) of different elements such that 854

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
ui(x)+ (λ̃0 − λc)ui(x) ∈ ∂CF(ui(x))+ λ̃0ui(x)

+λ(∂CG(ui(x))− cui(x)) x ∈ �,

ui(x) ≥ 0 x ∈ �,

ui(x) = 0 x ∈ ∂�,

where we used the inclusion (6.78). In particular, ui solves problem (Dλ), i ∈ N, 855

which completes the proof of (i). 856

(ii) Case p > 1. Let λ ≥ 0 be arbitrary fixed and choose a number λ0 ∈ (0,−l0). Let 857

k := λ0 > 0 and A(s) := F(s)+ λG(s)+ λ0
s2

2
for every s ∈ [0,∞). (6.80)

Since F(0) = G(0) = 0, hypothesis (H0
0) clearly holds. By (G0

1) one has 858

c = lim inf
s→0+

min{∂CG(s)}
sp

≤ lim sup
s→0+

max{∂CG(s)}
sp

= c.

In particular, since p > 1, then 859

lim
s→0+

min{∂CG(s)}
s

= lim
s→0+

max{∂CG(s)}
s

= 0 (6.81)

and for sufficiently small ε > 0 there exists γ = γ (ε) > 0 such that 860

max{∂CG(s)} − csp < εsp, ∀s ∈ [0, γ ]

and 861

min{∂CG(s)} − csp > −εsp, ∀s ∈ [0, γ ].

For a fixed s ∈ [0, γ ], by Lebourg’s mean value theorem and G(0) = 0 we conclude 862

again that G(s)−G(0) = ξss. Accordingly, for sufficiently small ε > 0 there exists 863
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γ = γ (ε) > 0 such that (c − ε)sp+1 ≤ G(s) ≤ (c + ε)sp+1 for every s ∈ [0, γ ]. 864

Thus, since p > 1, 865

lim
s→0+

G(s)

s2 = lim
s→0+

G(s)

sp+1 s
p−1 = 0.

Therefore, by using (6.80) and (F 0
1 ), we conclude that 866

lim inf
s→0+

A(s)

s2 = lim inf
s→0+

F(s)

s2 + λ lim
s→0+

G(s)

s2 + λ0

2
> −∞,

and 867

lim sup
s→0+

A(s)

s2 = ∞,

i.e., (H1
0) holds. Since 868

∂CA(s) ⊆ ∂CF(s)+ λ∂CG(s)+ λ0s,

and λ ≥ 0, we have that 869

max{∂CA(s)} ≤ max{∂CF(s)} +max{λ∂CG(s)+ λ0s}.

Since 870

lim sup
s→0+

max{∂CG(s)}
sp

= c,

cf. (G0
1), and 871

lim inf
s→0+

max{∂CF(s)}
s

= l0,

cf. (F0
2), by relation (6.81) it turns out that 872

lim inf
s→0+

max{∂CA(s)}
s

= lim inf
s→0+

max{∂CF(s)}
s

+ λ lim
s→0+

max{∂CG(s)}
s

+ λ0

= l0 + λ0 < 0,

and the upper semicontinuity of ∂CA implies the existence of two sequences {δi}i 873

and {ηi}i ⊂ (0, 1) such that 0 < ηi+1 < δi < si < ηi , limi→∞ ηi = 0, and 874

max{∂CA(s)} ≤ 0 for all s ∈ [δi, ηi ] and i ∈ N. Therefore, hypothesis (H0
2) holds. 875
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Now, we can apply Theorem 6.12, i.e., there is a sequence {ui}i ⊂ H 1
0 (�) of different 876

elements such that 877

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
ui(x)+ λ0ui(x) ∈ ∂CA(ui(x))

⊆ ∂CF(ui(x))+ λ∂CG(ui(x))+ λ0ui(x) x ∈ �,

ui(x) ≥ 0 x ∈ �,

ui(x) = 0 x ∈ ∂�,

which means that ui solves problem (Dλ), i ∈ N. This completes the proof of 878

Theorem 6.10. 879��

Proof of Theorem 6.11 The proof is done in two steps: 880

(i) Let λ0 ∈ (0,−l0), λ ≥ 0 and define 881

k := λ0 > 0 and Aλ(s) := F(s)+ λG(s)+ λ0
s2

2
for every s ∈ [0,∞). (6.82)

One can observe that ∂CAλ(s) ⊆ ∂CF(s) + λ0s + λ∂CG(s) for every s ≥ 0. On 882

account of (F 0
2 ), there is a sequence {si}i ⊂ (0, 1) converging to 0 such that 883

max{∂CAλ=0(si )} ≤ max{∂CF(si)} + λ0si < 0.

Thus, due to the upper semicontinuity of (s, λ) �→ ∂CA
λ(s), we can choose 884

three sequences {δi}i , {ηi}i , {λi}i ⊂ (0, 1) such that 0 < ηi+1 < δi < si < 885

ηi, limi→∞ ηi = 0, and 886

max{∂CAλ(s)} ≤ 0 for all λ ∈ [0, λi], s ∈ [δi, ηi ], i ∈ N.

Without any loss of generality, we may choose 887

δi ≤ min{i−1, 2−1i−2[1+m(�)( max
s∈[0,1] |∂CF(s)| + max

s∈[0,1] |∂CG(s)|)]−1}. (6.83)

For every i ∈ N and λ ∈ [0, λi], let Aλ
i : [0,∞)→ R be defined as 888

Aλ
i (s) = Aλ(τηi (s)), (6.84)

889



198 6 Existence and Multiplicity Results for Differential Inclusions on Bounded. . .

and the energy functional Ti,λ : H 1
0 (�) → R associated with the differential 890

inclusion problem(Dk

Aλ
i

) is given by 891

Ti,λ(u) = 1

2
‖u‖2

H 1
0
+ k

2

∫
�

u2dx −
∫
�

Aλ
i (u(x))dx.

One can easily check that for every i ∈ N and λ ∈ [0, λi], the function Aλ
i verifies the 892

hypotheses of Theorem 6.9. Accordingly, for every i ∈ N and λ ∈ [0, λi]: 893

Ti,λ attains its infinum on Wηi at some u0
i,λ ∈ Wηi (6.85)

894

u0
i,λ(x) ∈ [0, δi]for a.e.x ∈ �; (6.86)

895

u0
i,λis a weak solution of(Dk

Aλ
i

). (6.87)

By the choice of the function Aλ and k > 0, u0
i,λ is also a solution to the differential 896

inclusion problem (Dk
Aλ), so (Dλ). 897

(ii) It is clear that for λ = 0, the set-valued map ∂CA
λ
i = ∂CA

0
i verifies the hypotheses 898

of Theorem 6.12. In particular, Ti := Ti,0 is the energy functional associated with 899

problem (Dk

A0
i

). Consequently, the elements u0
i := u0

i,0 verify not only (6.85)–(6.87) 900

but also 901

Ti (u0
i ) = min

Wηi
Ti ≤ Ti (ws̃i ) < 0for all i ∈ N. (6.88)

Similarly to Kristály and Moroşanu [22], let {θi}i be a sequence with negative 902

terms such that limi→∞ θi = 0. Due to (6.88) we may assume that 903

θi < Ti (u0
i ) ≤ Ti (ws̃i ) < θi+1. (6.89)

Let us choose 904

λ
′
i =

θi+1 − Ti (ws̃i )

m(�)maxs∈[0,1] |G(s)| + 1
andλ

′′
i =

Ti (u0
i )− θi

m(�)maxs∈[0,1] |G(s)| + 1
, i ∈ N,

(6.90)

and for a fixed k ∈ N, set 905

λ0
k = min(1, λ1, . . . , λk, λ1

′
, . . . , λk

′
, λ1

′′
, . . . , λk

′′
) > 0. (6.91)
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Having in our mind these choices, for every i ∈ {1, . . . ., k} and λ ∈ [0, λ0
k] one has 906

Ti,λ(u0
i,λ) ≤ Ti,λ(ws̃i ) =

1

2
‖ws̃i‖2

H 1
0
−

∫
�

F(ws̃i (x))dx − λ

∫
�

G(ws̃i (x))dx

= Ti (ws̃i )− λ

∫
�

G(ws̃i (x))dx

< θi+1, (6.92)

and due to u0
i,λ ∈ Wηi and to the fact that u0

i is the minimum point of Ti on the set 907

Wηi , by (6.89) we also have 908

Ti,λ(u0
i,λ) = Ti (u0

i,λ)− λ

∫
�

G(u0
i,λ(x))dx ≥ Ti (u0

i )− λ

∫
�

G(u0
i,λ(x))dx > θi.

(6.93)

Therefore, by (6.92) and (6.93), for every i ∈ {1, . . . , k} and λ ∈ [0, λ0
k], one has 909

θi < Ti,λ(u0
i,λ) < θi+1,

thus 910

T1,λ(u
0
1,λ) < . . . < Tk,λ(u0

k,λ) < 0.

We notice that u0
i ∈ Wη1 for every i ∈ {1, . . . , k}, so Ti,λ(u0

i,λ) = T1,λ(u
0
i,λ) because 911

of (6.84). Therefore, we conclude that for every λ ∈ [0, λ0
k], 912

T1,λ(u
0
1,λ) < . . . < T1,λ(u

0
k,λ) < 0 = T1,λ(0).

Based on these inequalities, it turns out that the elements u0
1,λ, . . . , u

0
k,λ are distinct 913

and non-trivial whenever λ ∈ [0, λ0
k]. 914

Now, we are going to prove the estimate (6.64). We have for every i ∈ {1, . . . , k} 915

and λ ∈ [0, λ0
k]: 916

T1,λ(u
0
i,λ) = Ti,λ(u0

i,λ) < θi+1 < 0.
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By Lebourg’s mean value theorem and (6.83), we have for every i ∈ {1, . . . , k} and 917

λ ∈ [0, λ0
k] that 918

1

2
‖u0

i,λ‖2
H 1

0
<

∫
�

F(u0
i,λ(x))dx + λ

∫
�

G(u0
i,λ(x))dx

≤ m(�)δi[ max
s∈[0,1] |∂CF(s)| + max

s∈[0,1] |∂CG(s)|]

≤ 1

2i2 .

This completes the proof of Theorem 6.11. 919��

6.6.3 Oscillation at Infinity 920

Let assume: 921

(F∞0 ) F (0) = 0; 922

(F∞1 ) −∞ < lim infs→∞ F(s)

s2 ; lim sups→∞
F(s)

s2 = +∞; 923

(F∞2 ) l∞ := lim infs→∞ max{ξ :ξ∈∂CF (s)}
s

< 0. 924

(G∞0 ) G(0) = 0; 925

(G∞1 ) There exist p > 0 and c, c ∈ R such that 926

c = lim inf
s→∞

min{ξ : ξ ∈ ∂CG(s)}
sp

≤ lim sup
s→∞

max{ξ : ξ ∈ ∂CG(s)}
sp

= c.

Remark 6.4 Hypotheses (F∞1 ) and (F∞2 ) imply a strong oscillatory behavior of the set- 927

valued map ∂CF at infinity. 928

Example 6.3 We consider F∞(s) =
∫ s

0
f∞(t), s ≥ 0, where f∞(t) = √

t( 1
2 + sin t), 929

t ≥ 0, or some of its jumping variants; one has that F∞ verifies the assumptions (F∞0 ) − 930

(F∞2 ). For a fixed p > 0, let G∞(s) = sp max{0, sin s}, s ≥ 0; it is clear that G∞ 931

is a typically locally Lipschitz function on [0,∞) (not being of class C1) and verifies 932

(G∞1 ) with c = −1 and c = 1; see Fig. 6.2 representing both f∞ and G∞ (for p = 2), 933

respectively. 934

In the sequel, we investigate the competition at infinity concerning the terms s �→ 935

∂CF(s) and s �→ ∂CG(s), respectively. First, we show that when p ≤ 1 then the ‘leading’ 936

term is the oscillatory function F , i.e., the effect of s �→ ∂CG(s) is negligible. More 937

precisely, we prove the following result: 938
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Fig. 6.2 Graphs of f∞ and G∞ at infinity, respectively

Theorem 6.13 ([24]) (Case p ≤ 1) Assume that p ≤ 1 and the locally Lipschitz functions 939

F,G : R+ → R satisfy (F∞0 )− (F∞2 ) and (G∞0 )− (G∞1 ). If 940

(i) either p = 1 and λc ≤ −l0 (with λ ≥ 0), 941

(ii) or p < 1 and λ ≥ 0 is arbitrary, 942

then the differential inclusion (Dλ) admits a sequence {ui}i ⊂ H 1
0 (�) of distinct weak 943

solutions such that 944

lim
i→∞‖u

∞
i ‖L∞ = ∞. (6.94)

Remark 6.5 Let 2∗ be the usual critical Sobolev exponent. In addition to (6.94), we also 945

have limi→∞ ‖u∞i ‖H 1
0
= ∞ whenever 946

sup
s∈[0,∞)

max{|ξ | : ξ ∈ ∂CF(s)}
1+ s2∗−1 <∞. (6.95)

In the case when p > 1, it turns out that the perturbation term ∂CG may compete with 947

the oscillatory function ∂CF ; more precisely, we have: 948

Theorem 6.14 ([24]) (Case p > 1) Assume that p > 1 and the locally Lipschitz functions 949

F,G : R+ → R satisfy (F∞0 ) − (F∞2 ) and (G∞0 ) − (G∞1 ). Then, for every k ∈ N,
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there exists λ∞k > 0 such that the differential inclusion (Dλ) has at least k distinct weak 950

solutions {u1,λ, . . . , uk,λ} ⊂ H 1
0 (�) whenever λ ∈ [0, λ∞k ]. Moreover, 951

‖ui,λ‖L∞ > i − 1 f or any i = 1, k; λ ∈ [0, λ∞k ]. (6.96)

Remark 6.6 If (6.95) holds and p ≤ 2∗ − 1 in Theorem 6.95, then we have in addition 952

that 953

‖u∞i,λ‖H 1
0
> i − 1 for any i = 1, k; λ ∈ [0, λ∞k ].

Before giving the proof of Theorems 6.13 and 6.14, we consider again the differential 954

inclusion problem 955

{
−
u(x)+ ku(x) ∈ ∂CA(u(x)), u(x) ≥ 0 x ∈ �,

u(x) = 0 x ∈ ∂�,
, (Dk

A)

where k > 0 and the locally Lipschitz function A : R+ → R verifies 956

(H∞0 ): A(0) = 0; 957

(H∞1 ): −∞ < lim infs→∞ A(s)

s2 and lim sups→∞
A(s)

s2 = +∞; 958

(H∞2 ): there are two sequences {δi}, {ηi} with 0 < δi < ηi < δi+1, limi→∞ δi = ∞, and 959

max{∂CA(s)} := max{ξ : ξ ∈ ∂CA(s)} ≤ 0

for every s ∈ [δi, ηi ], i ∈ N. 960

The counterpart of Theorem 6.12 reads as follows. 961

Theorem 6.15 Let k > 0 and assume the hypotheses (H∞0 ), (H∞1 ), and (H∞2 ) hold. Then 962

the differential inclusion problem (Dk
A) admits a sequence {u∞i }i ⊂ H 1

0 (�) of distinct 963

weak solutions such that 964

lim
i→∞‖u

∞
i ‖L∞ = ∞. (6.97)

Proof The proof is similar to the one performed in Theorem 6.12; we shall show the 965

differences only. We associate the energy functional Ti : H 1
0 (�) → R with problem 966

(Dk
Ai
), where Ai : R→ R is given by 967

Ai(s) = A(τηi (s)), (6.98)

968
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with A(s) = 0 for s ≤ 0. One can show that there exists MAi > 0 such that 969

max |∂CAi(s)| := max{|ξ | : ξ ∈ ∂CAi(s)} ≤MAi

for all s ≥ 0, i.e, hypothesis (H1
Ai
) holds. Moreover, (H2

Ai
) follows by (H∞2 ). Thus 970

Theorem 6.12 can be applied for all i ∈ N, i.e., we have an element u∞i ∈ Wηi such 971

that 972

u∞i is the minimum point of the functional Ti on Wηi , (6.99)

973

u∞i (x) ∈ [0, δi] for a.e. x ∈ �, (6.100)

974

u∞i is a weak solution of (Dk
Ai
). (6.101)

By (6.98), u∞i turns to be a weak solution also for differential inclusion problem (Dk
A). 975

We shall prove that there are infinitely many distinct elements in the sequence {u∞i }i 976

by showing that 977

lim
i→∞Ti (u

∞
i ) = −∞. (6.102)

By the left part of (H∞1 ) we can find lA∞ > 0 and ζ > 0 such that 978

A(s) ≥ −lA∞ for all s > ζ. (6.103)

Let us choose LA∞ > 0 large enough such that 979

1

2
C(r, n)+

(
k

2
+ lA∞

)
m(�) < LA∞(r/2)nωn. (6.104)

On account of the right part of (H∞1 ), one can fix a sequence {s̃i}i ⊂ (0,∞) such that 980

limi→∞ s̃i =∞ and 981

A(s̃i) > LA∞s̃i
2 for every i ∈ N. (6.105)

We know from (H∞2 ) that limi→∞ δi = ∞, therefore one has a subsequence {δmi }i of {δi}i 982

such that s̃i ≤ δmi for all i ∈ N. Let i ∈ N, and recall wsi ∈ H 1
0 (�) from (6.61) with 983

si := s̃i > 0. Then ws̃ i ∈ Wηmi and according to (6.62), (6.103), and (6.105) we have 984

Tmi(ws̃i ) =
1

2
‖ws̃i‖2

H 1
0
+ k

2

∫
�

w2
s̃i
−

∫
�

Ami (ws̃i (x))dx =
1

2
C(r, n)s̃2

i +
k

2

∫
�

w2
s̃i

−
∫
B(x0,r/2)

A(s̃i )dx −
∫
(B(x0,r)\B(x0,r/2))∩{ws̃i

>ζ }
A(ws̃i (x))dx
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−
∫
(B(x0,r)\B(x0,r/2))∩{ws̃i

≤ζ }
A(ws̃i (x))dx

≤
[

1

2
C(r, n)+ k

2
m(�)− LA∞(r/2)nωn + lA∞m(�)

]
s̃2
i + M̃Am(�)ζ,

where M̃A = max{|A(s)| : s ∈ [0, ζ ]} does not depend on i ∈ N. This estimate combined 985

by (6.104) and limi→∞ s̃i = ∞ yields that 986

lim
i→∞Tmi (ws̃i ) = −∞. (6.106)

By Eq. (6.99), one has 987

Tmi (u
∞
mi
) = min

Wηmi
Tmi ≤ Tmi (ws̃i ). (6.107)

It follows by (6.106) that limi→∞ Tmi (u
∞
mi
) = −∞. 988

We notice that the sequence {Ti (u∞i )}i is non-increasing. Indeed, let i < k; due to 989

(6.98) one has that 990

Ti (u∞i ) = min
Wηi
Ti = min

Wηi
Tk ≥ min

Wηk
Tk = Tk(u∞k ), (6.108)

which completes the proof of (6.102). The proof of (6.97) follows easily. ��

Proof of Theorem 6.13 We split the proof into two parts. 991

(i) Case p = 1. Let λ ≥ 0 with λc < −l∞ and fix λ̃∞ ∈ R such that λc < λ̃∞ < −l∞. 992

With these choices, we define 993

k := λ̃∞ − λc > 0 and A(s) := F(s)+ λ̃∞
2

s2 + λ

(
G(s)− c

2
s2

)
for every s ∈ [0,∞).

(6.109)

It is clear that A(0) = 0, i.e., (H∞0 ) is verified. A similar argument for the p-order 994

perturbation ∂CG as before shows that 995

lim inf
s→∞

A(s)

s2
≥ lim inf

s→∞
F(s)

s2
+ λ̃∞ − λc

2
+ λ lim inf

s→∞
G(s)

s2

≥ lim inf
s→∞

F(s)

s2 + λ̃∞ − λc

2
+ λc > −∞,

996
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and 997

lim sup
s→∞

A(s)

s2 ≥ lim sup
s→∞

F(s)

s2 + λ̃∞ − λc

2
+ λ lim inf

s→∞
G(s)

s2 = +∞,

i.e., (H∞1 ) is verified. 998

Since 999

∂CA(s) ⊆ ∂CF(s)+ λ̃∞s + λ(∂CG(s)− cs), s ≥ 0, (6.110)

it turns out that 1000

lim inf
s→∞

max{∂CA(s)}
s

≤ lim inf
s→∞

max{∂CF(s)}
s

+ λ̃∞ − λc + λ lim sup
s→∞

max{∂CG(s)}
s

= l∞ + λ̃∞ < 0.

By using the upper semicontinuity of s �→ ∂CA(s), one may fix two sequences 1001

{δi}i , {ηi}i ⊂ (0,∞) such that 0 < δi < si < ηi < δi+1, limi→∞ δi = ∞, and 1002

max{∂CA(s)} ≤ 0 for all s ∈ [δi, ηi ] and i ∈ N. Thus, (H∞2 ) is verified as well. By 1003

applying the inclusion (6.110) and Theorem 6.12 with the choice (6.109), there exists 1004

a sequence {ui}i ⊂ H 1
0 (�) of different elements such that 1005

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
ui(x)+ (λ̃∞ − λc)ui(x) ∈ ∂CF(ui(x))+ λ̃∞ui(x)

+λ(∂CG(ui(x))− cui(x)) x ∈ �,

ui(x) ≥ 0 x ∈ �,

ui(x) = 0 x ∈ ∂�,

i.e., ui solves problem (Dλ), i ∈ N. 1006

(ii) Case p < 1. Let λ ≥ 0 be arbitrary fixed and choose a number λ∞ ∈ (0,−l∞). Let 1007

k := λ∞ > 0 and A(s) := F(s)+ λG(s)+ λ∞
s2

2
for every s ∈ [0,∞). (6.111)

Since F(0) = G(0) = 0, hypothesis (H∞0 ) clearly holds. Moreover, by (G∞1 ), for 1008

sufficiently small ε > 0 there exists s0 > 0, such that (c − ε)sp+1 ≤ G(s) ≤ 1009

(c + ε)sp+1 for every s > s0. Thus, since p < 1, 1010

lim
s→∞

G(s)

s2 = lim
s→∞

G(s)

sp+1 s
p−1 = 0.

1011
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Accordingly, by using (6.111) we obtain that hypothesis (H∞1 ) holds. A similar 1012

argument as above implies that 1013

lim inf
s→∞

max{∂CA(s)}
s

≤ l0 + λ∞ < 0,

and the upper semicontinuity of ∂CA implies the existence of two sequences {δi}i 1014

and {ηi}i ⊂ (0, 1) such that 0 < δi < si < ηi < δi+1, limi→∞ δi = ∞, and 1015

max{∂CA(s)} ≤ 0 for all s ∈ [δi, ηi ] and i ∈ N. Therefore, hypothesis (H∞2 ) holds. 1016

Now, we can apply Theorem 6.12, i.e., there is a sequence {ui}i ⊂ H 1
0 (�) of different 1017

elements such that 1018

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
ui(x)+ λ∞ui(x) ∈ ∂CA(ui(x))

⊆ ∂CF(ui(x))+ λ∂CG(ui(x))+ λ∞ui(x) in �,

ui(x) ≥ 0 x ∈ �,

ui(x) = 0 x ∈ ∂�,

which means that ui solves problem (Dλ), i ∈ N, which completes the proof. 1019��

Proof of Theorem 6.14 The proof is done in two steps: 1020

(i) Let λ∞ ∈ (0,−l∞), λ ≥ 0 and define 1021

k := λ∞ > 0 and Aλ(s) := F(s)+λG(s)+λ∞
s2

2
for every s ∈ [0,∞). (6.112)

One has clearly that ∂CAλ(s) ⊆ ∂CF(s) + λ∞s + λ∂CG(s) for every s ∈ R. On 1022

account of (F∞2 ), there is a sequence {si}i ⊂ (0,∞) converging to∞ such that 1023

max{∂CAλ=0(si )} ≤ max{∂CF(si)} + λ∞si < 0.

By the upper semicontinuity of (s, λ) �→ ∂CA
λ(s), we can choose the sequences 1024

{δi}i , {ηi}i , {λi}i ⊂ (0,∞) such that 0 < δi < si < ηi < δi+1, limi→∞ δi =∞, and 1025

max{∂CAλ(s)} ≤ 0

for all λ ∈ [0, λi], s ∈ [δi, ηi ] and i ∈ N. 1026

For every i ∈ N and λ ∈ [0, λi], let Aλ
i : [0,∞)→ R be defined by 1027

Aλ
i (s) = Aλ(τηi (s)), (6.113)
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and accordingly, the energy functional Ti,λ : H 1
0 (�) → R associated with the 1028

differential inclusion problem(Dk

Aλ
i

) is 1029

Ti,λ(u) = 1

2
‖u‖2

H 1
0
+ k

2

∫
�

u2dx −
∫
�

Aλ
i (u(x))dx.

Then for every i ∈ N and λ ∈ [0, λi], the function Aλ
i clearly verifies the hypotheses 1030

of Theorem 6.9. Accordingly, for every i ∈ N and λ ∈ [0, λi] there exists 1031

Ti,λ attains its infimum at someũ∞i,λ ∈ Wηi (6.114)

1032

ũ∞i,λ ∈ [0, δi] for a.e. x ∈ �; (6.115)

1033

ũ∞i,λ(x) is a weak solution of (Dk

Aλ
i

). (6.116)

Due to (6.113), ũ∞i,λ is not only a solution to (Dk

Aλ
i

) but also to the differential inclusion 1034

problem (Dk
Aλ), so (Dλ). 1035

(ii) For λ = 0, the function ∂CA
λ
i = ∂CA

0
i verifies the hypotheses of Theorem 6.12. 1036

Moreover, Ti := Ti,0 is the energy functional associated with problem (Dk

A0
i

). 1037

Consequently, the elements u∞i := u∞i,0 verify not only (6.114)–(6.116) but also 1038

Tmi (u
∞
mi
) = min

W
ηmi

(Tmi ) ≤ Tmi (ws̃i ) for alli ∈ N, (6.117)

where the subsequence {u∞mi
}i of {u∞i }i and ws̃i ∈ Wηi appear in the proof of 1039

Theorem 6.15. 1040

Similarly to [22], let {θi}i be a sequence with negative terms such that limi→∞ θi = 1041

−∞. On account of (6.117) we may assume that 1042

θi+1 < Tmi (u
∞
mi
) ≤ Tmi (ws̃i ) < θi. (6.118)

Let 1043

λ
′
i =

θi − Tmi (ws̃i )

m(�)maxs∈[0,1] |G(s)| + 1
and λ

′′
i =

Tmi (u
∞
mi
)− θi+1

m(�)maxs∈[0,1] |G(s)| + 1
, i ∈ N,

(6.119)

and for a fixed k ∈ N, we set 1044

λ∞k = min(1, λ1, . . . , λk, λ1
′
, . . . , λk

′
, λ1

′′
, . . . , λk

′′
) > 0. (6.120)
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Then, for every i ∈ {1, . . . ., k} and λ ∈ [0, λ∞k ], due to (6.118) we have that 1045

Tmi,λ(ũ
∞
mi,λ

) ≤ Tmi,λ(ws̃i ) =
1

2
‖ws̃i‖2

H 1
0
−

∫
�

F(ws̃i (x))dx − λ

∫
�

G(ws̃i (x))dx

= Tmi (ws̃i )− λ

∫
�

G(ws̃i (x))dx

< θi. (6.121)

Similarly, since ũ∞mi,λ
∈ Wηmi and u∞mi

is the minimum point of Ti on the set Wηmi , 1046

on account of (6.118) we have 1047

Tmi,λ(ũ
∞
mi,λ

) = Tmi
(ũ∞mi,λ

)− λ

∫
�

G(ũ∞mi,λ
)dx ≥ Tmi

(u∞mi
)− λ

∫
�

G(ũ∞mi,λ
)dx > θi+1.

(6.122)

Therefore, for every i ∈ {1, . . . , k} and λ ∈ [0, λ∞k ], 1048

θi+1 < Tmi,λ(ũ
∞
mi,λ

) < θi < 0, (6.123)

thus 1049

Tmk,λ(ũ
∞
mk,λ

) < . . . < Tm1,λ(ũ
∞
m1,λ

) < 0. (6.124)

Because of (6.113), we notice that ũ∞mi,λ
∈ Wηmk for every i ∈ {1, . . . , k}, thus 1050

Tmi ,λ(ũ
∞
mi,λ

) = Tmk,λ(ũ
∞
i,λ). Therefore, for every λ ∈ [0, λ∞k ], 1051

Tmk,λ(ũ
∞
mk,λ

) < . . . < Tmk,λ(ũ
∞
m1,λ

) < 0 = Tmk,λ(0),

i.e, the elements ũ∞m1,λ
, . . . , ũ∞mk,λ

are distinct and non-trivial whenever λ ∈ [0, λ∞k ]. 1052

The estimate (6.96) follows in a similar manner as in [22]. 1053��
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11. G. Dincă, P. Matei, Variational and topological methods for operator equations involving duality 1074

mappings on Orlicz-Sobolev spaces. Electron. J. Differential Equations 2007, 1–47 (2007) 1075

12. D. Edmunds, J. Rákosník, Density of smooth functions in Wk,p(x)(�). Proc. R. Soc. Lond. Ser. 1076

A. 437, 229–236 (1992) 1077

13. D. Edmunds, J. Rákosník, Sobolev embedding with variable exponent. Studia Math. 143, 267– 1078

293 (2000) 1079

14. D. Edmunds, J. Lang, A. Nekvinda, On Lp(x) norms. Proc. R. Soc. Lond. Ser. A. 455, 219–225 1080

(1999) 1081

15. K. Fan, Some properties of convex sets related to fixed point theorems. Math. Ann. 266, 519–537 1082

(1984) 1083

16. X. Fan, Q. Zhang, Existence of solutions for p(x)−Laplacian Dirichlet problem. Nonlinear Anal. 1084

52, 1843–1853 (2003) 1085

17. X.L. Fan, Y.Z. Zhao, Linking and multiplicity results for the p-Laplacian on unbounded cylinder. 1086

J. Math. Anal. Appl. 260, 479–489 (2001) 1087

18. X. Fan, J. Shen, D. Zhao, Sobolev embedding theorems for spaces Wk,p(x)(�). J. Math. Anal. 1088

Appl. 262, 749–760 (2001) 1089

19. J. Fernández-Bonder, J. Rossi, Existence results for the p−Laplacian with nonlinear boundary 1090

conditions. J. Math. Anal. Appl. 263, 195–223 (2001) 1091

20. M. García-Huidobro, V.K. Le, R. Manásevich, K. Schmitt, On principal eigenvalues for 1092

quasilinear elliptic operators: an Orlicz-Sobolev space setting. NoDEA Nonlinear Differential 1093

Equations Appl. 6, 207–225 (1999) 1094
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1

72Hemivariational Inequalities and Differential 3

Inclusions on Unbounded Domains 4

7.1 Hemivariational Inequalities Involving the Duality Mapping 5

Let � ⊂ R
N (N ≥ 2) be an unbounded domain with smooth boundary ∂� and p ∈ (1, N) 6

be a real number. Throughout this section X denotes a separable, uniformly convex Banach 7

space with strictly convex topological dual; moreover, we assume that 8

(X) X is compactly embedded in Lr(�) for some r ∈ [p,p∗), 9

p∗ := Np/(N − p) being the Sobolev critical exponent. We denote by ‖ · ‖r the 10

norm in Lr(�) and by cr the embedding constant. Also let Jφ be the duality mapping 11

corresponding to the normalization function φ(t) := tp−1. 12

Condition (X) is equivalent to the assumption that X is a linear subspace of Lr(�), 13

endowed with a norm ‖ · ‖ such that the identity is a compact operator from (X, ‖ · ‖) into 14

(Lr(�), ‖ · ‖r ). 15

Let f : R→ R be a locally Lipschitz function satisfying 16

(f ) f (0) = 0 and there exist k > 0, q ∈ (0, p − 1) such that 17

|ξ | ≤ k|s|q, ∀s ∈ R,∀ξ ∈ ∂Cf (s).

Let b : �→ R be a nonnegative, nonzero function such that 18

(b) b ∈ L1(�) ∩ L∞(�) ∩ Lν(�), where ν := r
r−(q+1) . 19
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We shall prove next that under suitable assumptions, there exist u0 and λ > 0 such that 20

the inequality problem 21

(Pu0,λ) Find u ∈ X such that 22

〈Jφ(u− u0), v〉 + λ

∫
�

b(x)f 0(u(x); −v(x))dx ≥ 0, ∀v ∈ X,

possesses at least three solutions. 23

Let us define the functional F : X→ R by 24

F(u) :=
∫
�

b(x)f (u(x))dx

for all u ∈ X. The next Lemma summarizes the properties of F : 25

Lemma 7.1 The functional F is well-defined, locally Lipschitz, sequentially weakly 26

continuous and satisfies 27

F 0(u; v) ≤
∫
�

b(x)f 0(u(x); v(x))dx, ∀u, v ∈ X.

Proof We begin by giving an estimate of the integral which defines F : from Lebourg’s 28

mean value theorem it follows that for all s ∈ R there exist t ∈ R, with 0 < |t| < |s|, and 29

ξ ∈ ∂Cf (t) such that f (s) = ξs, so, by (f ), 30

|f (s)| ≤ k|s|q+1. (7.1)

Thus, for all u ∈ X we get by applying Hölder’s inequality that 31

∣∣∣∣
∫
�

b(x)f (u(x))dx

∣∣∣∣ ≤ k

∫
�

b(x)|u(x)|q+1dx ≤ k‖b‖ν‖u‖q+1
r ≤ K‖u‖q+1,

where K = c
q+1
r k‖b‖ν . Hence, F is well-defined. 32

By means of (7.1) it is can also proved that F is Lipschitz on bounded sets. Let us 33

choose M > 0 and u, v ∈ X with ‖u‖, ‖v‖ < M: then we have for all x ∈ � 34

|f (u(x))− f (v(x))| ≤ k
(|u(x)|q + |v(x)|q) |u(x)− v(x)|,

hence, again by Hölder’s inequality, 35

|F(u)− F(v)| ≤ k‖b‖ν
(∫

�

(|u(x)|q + |v(x)|q) r
q dx

) q
r ‖u− v‖r

≤ 2k‖b‖ν
(‖u‖rr + ‖v‖rr ) q

r ‖u− v‖r
≤ 2

r+q
r KMq‖u− v‖.
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We prove now that F is sequentially weakly continuous: let {un} be a sequence in X, 36

weakly convergent to some ū ∈ X. Due to condition (X), there is a subsequence, still 37

denoted by {un}, such that ‖un − ū‖r → 0; then, by well-known results, we may assume 38

that un → ū a.e. in � and there exists a positive function g ∈ Lr(�) such that |un(x)| ≤ 39

g(x) for all n ∈ N and almost all x ∈ �. By Lebesgue’s dominated convergence theorem, 40

{F(un)} tends to F(ū). 41

By Proposition 3.3 of [8], the inequality in the thesis follows, and the proof is
concluded. ��

Given u0 ∈ X and λ > 0, the energy functional E : X→ R is defined by 42

E(u) := ‖u− u0‖p
p

− λF(u).

We observe that Theorem C.1 and Proposition C.1 ensure that the the convex functional 43

u → ‖u − u0‖p/p is Gâteaux differentiable with derivative Jφ(u − u0), so it is locally 44

Lipschitz. Hence, E is locally Lipschitz too. 45

Lemma 7.2 Let u0 ∈ and λ > 0 be fixed. If u is a critical point of E, then u is a solution 46

of (Pu0,λ). 47

Proof It follows at once that 48

E0(u, v) ≤ 〈Jφ(u− u0), v〉 + λ(−F)0(u; v) = 〈Jφ(u− u0), v〉 + λF 0(u; −v)

≤ 〈Jφ(u− u0), v〉 + λ

∫
�

b(x)f 0(u(x); −v(x))dx.

But, u is a critical point of E, therefore 49

E0(u; v) ≥ 0, ∀v ∈ X,

and this shows that u solves (Pu0,λ). ��

First we prove the following multiplicity alternative concerning (Pu0,λ). 50

Theorem 7.1 ([13]) Assume (X), (f ) and (b) are fulfilled. Then, for every σ ∈ 51

(infX F, supX F) and every u0 ∈ F−1((−∞, σ )) one of the following conditions is 52

true: 53

(B1) there exists λ > 0 such that the problem (Pu0,λ) has at least three solutions; 54

(B2) there exists v ∈ F−1(σ ) such that, for all u ∈ F−1([σ,+∞)), u = v, 55

‖u− u0‖ > ‖v − u0‖.
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Proof Fix σ and u0 as in the thesis, and assume that (B1) does not hold: we shall prove 56

that (B2) is true. 57

Setting � := [0,+∞) and endowing X with the weak topology, we define the function 58

g : X ×�→ R by 59

g(u, λ) := ‖u− u0‖p
p

+ λ(σ − F(u)),

which satisfies all the hypotheses of Theorem D.12. Indeed, conditions (c1), (c3) are 60

trivial. 61

In examining condition (c2), let λ ≥ 0 be fixed: we first observe that, by Lemma 7.1, 62

the functional g(·, λ) is sequentially weakly lower semicontinuous (l.s.c.). 63

Moreover, g(·, λ) is coercive: indeed, for all u ∈ X we have 64

g(u, λ) ≥ ‖u‖p
(‖u− u0‖p

p ‖u‖p − λ k c
q+1
r ‖b‖ν‖u‖(q+1)−p

)
+ λσ,

and the latter goes to +∞ as ‖u‖ → +∞. As a consequence of the Eberlein-Smulyan 65

theorem, the outcome is that g(·, λ) is weakly l.s.c. 66

We need to check that every local minimum of g(·, λ) is a global minimum. Arguing 67

by contradiction, suppose that g(·, λ) admits a local, non-global minimum; besides, being 68

coercive, it has a global minimum too, that is, it has two strong local minima. 69

We now prove that g(·, λ) satisfies the (PS)−condition: let {un} be a Palais-Smale 70

sequence such that {g(un, λ)} is bounded. The coercivity of g(·, λ) ensures that {un} is 71

bounded, hence we can find a subsequence, which we still denote {un}, weakly convergent 72

to a point ū ∈ X. By condition (X) we can choose {un} to be convergent to ū with respect 73

to the norm of Lr(�). 74

Fix ε > 0. For n ∈ N large enough we have 75

λg(un, λ)‖un − ū‖ < ε

2
,

so, from Lemma 7.1 it follows 76

0 ≤ g0(un, λ; ū− un)+ ε

2
≤ 〈Jφ(un − u0), ū− un〉

+λ
∫
�

b(x)f 0(un(x); un(x)− ū(x))dx + ε

2

77
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(g0(·, λ; ·) denotes the generalized directional derivative of the locally Lipschitz functional 78

g(·, λ)). Moreover, for n large enough 79

∣∣∣∣
∫
�

b(x) f 0(un(x); un(x)− ū(x))dx
∣∣∣ ≤ k

∫
�

b(x)|un(x)|q |un(x)− ū(x)|dx

≤ k c
q
r ‖b‖ν‖un‖q‖un − ū‖r <

ε

2λ
.

Hence 80

〈Jφ(un − u0), un − ū〉 < ε

for n ∈ N large enough. On the other hand, 〈Jφ(ū − u0), un − ū〉 tends to zero as n goes 81

to infinity. From the previous computations, it follows that 82

lim sup
n

〈Jφ(un − u0)− Jφ(ū− u0), un − ū〉 ≤ 0. (7.2)

Using the properties of the duality mapping and keeping in mind that φ(t) = tp−1 we get 83

〈Jφ(un − u0)− Jφ(ū− u0), un − ū〉 ≥(
‖un − u0‖p−1 − ‖ū− u0‖p−1

)
(‖un − u0‖ − ‖ū− u0‖) ≥ 0.

From the previous inequality and (7.2), we deduce that {‖un − u0‖} tends to ‖ū − u0‖ 84

and this, together with the weak convergence, implies that {un} tends to ū in X, that is, the 85

Palais-Smale condition is fulfilled. 86

Then, we can apply Corollary 5.4, deducing that g(·, λ) (or equivalently the energy 87

functional E) admits a third critical point: by Lemma 7.2, the inequality (Pu0,λ) should 88

have at least three solutions in X, against our assumption. Thus, condition (c2) is fulfilled. 89

Now Theorem D.12 assures that 90

sup
λ∈�

inf
u∈X g(u, λ) = inf

u∈X sup
λ∈�

g(u, λ) =: α. (7.3)

Notice that the function λ �→ infu∈X g(u, λ) is upper semicontinuous in �, and tends to 91

−∞ as λ→+∞ (since σ < supX F ): hence, it attains its supremum in λ∗ ∈ �, that is 92

α = inf
u∈X

(‖u− u0‖p
p

+ λ∗(σ − F(u))

)
. (7.4)

93
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The infimum in the right hand side of (7.3) is easily determined as 94

α = inf
u∈F−1([σ,+∞))

‖u− u0‖p
p

= ‖v − u0‖p
p

for some v ∈ F−1([σ,+∞)). 95

It is easily seen that v ∈ F−1(σ ). Hence 96

α = inf
u∈F−1(σ )

‖u− u0‖p
p

(in particular α > 0). (7.5)

By (7.4) and (7.5) it follows that 97

inf
u∈X

(‖u− u0‖p
p

− λ∗F(u)

)
= inf

u∈F−1(σ )

(‖u− u0‖p
p

− λ∗F(u)

)
. (7.6)

We deduce that λ∗ > 0: if λ∗ = 0, indeed, (7.6) would become α = 0, against (7.5). 98

Now we can prove (B2). Arguing by contradiction, let w ∈ F−1([σ,+∞)) \ {v} be
such that ‖w − u0‖ = ‖v − u0‖. As above, we have that w ∈ F−1(σ ), and so both w

and v are global minima of the functional I (for λ = λ∗) over F−1(σ ), hence, by (7.6),
over X. Thus, applying Corollary 5.4, we obtain that I has at least three critical points,
against the assumption that (B1) does not hold (recall that λ∗ is positive). This concludes
the proof. ��

In the next Corollary, the alternative of Theorem 7.1 is resolved, under a very general 99

assumption on the functional F ensuring option (B2) cannot occur and so we are led to a 100

multiplicity result for the hemivariational inequality (Pu0,λ) (for suitable data u0, λ). 101

Corollary 7.1 Let �, p, X, f , b be as in Theorem 7.1 and let S be a convex, dense subset 102

of X. Moreover, let F−1([σ,+∞)) be not convex for some σ ∈ (infX F, supX F). Then, 103

there exist u0 ∈ F−1((−∞, σ )) ∩ S and λ > 0 such that problem (Pu0,λ) admits at least 104

three solutions. 105

Proof Since F is sequentially weakly continuous (see Lemma 7.1), the set M := 106

F−1([σ,+∞)) is sequentially weakly closed. 107

According to an well known result in approximation theory (see, e.g., [9,23]), for some 108

u0 ∈ S, there exist two distinct points v1, v2 ∈ M satisfying 109

‖v1 − u0‖ = ‖v2 − u0‖ = dist(u0,M).
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Clearly u0 /∈ M , that is, F(u0) < σ . In the framework of Theorem 7.1, condition (B2)

is false, so (B1) must be true: there exists λ > 0 such that (Pu0λ) has at least three
solutions. ��

7.2 Hemivariational Inequalities in R
N

110

In this section we investigate the existence multiplicity of solutions for an abstract 111

hemivariational inequality, formulated in R
N . Specific forms of this inequality will be 112

also discussed at the end of the section. 113

Let (X, || · ||) be a real, separable, reflexive Banach space, (X∗, || · ||∗) its dual and we 114

suppose that the inclusion X ↪→ Ll(RN) is continuous with the embedding constant C(l), 115

where l ∈ [p,p∗] (p ≥ 2, p∗ = Np
N−p ), N > p. Let us denote by || · ||l the norm of 116

Ll(RN). Let A : X → X∗ be a potential operator with the potential a : X → R, i.e., a is 117

Gateaux differentiable and 118

lim
t→0

a(u+ tv)− a(u)

t
= 〈A(u), v〉,

for every u, v ∈ X. Here 〈·, ·〉 denotes the duality pairing between X∗ and X. For a 119

potential we always assume that a(0) = 0. We suppose that A : X → X∗ satisfies the 120

following properties: 121

(A1) A is hemicontinuous, i.e., A is continuous on line segments in X and X∗ equipped 122

with the weak (star) topology; 123

(A2) A is homogeneous of degree p− 1, i.e., for every u ∈ X and t > 0 we have A(tu) = 124

tp−1A(u). Consequently, for a hemicontinuous homogeneous operator of degreep− 125

1, we have a(u) = 1
p
〈A(u), u〉; 126

(A3) A : X → X∗ is a strongly monotone operator, i.e., there exists a continuous 127

function κ : [0,∞) → [0,∞) which is strictly positive on (0,∞), κ(0) = 0, 128

and limt→∞ κ(t) = ∞ and such that 129

〈A(v)− A(u), v − u〉 ≥ κ(||v − u||)||v − u||, ∀u, v ∈ X.

Now, we formulate the hemivariational inequality problem, which will be studied in 130

this section. 131

(P ) Find u ∈ X such that 132

〈Au, v〉 +
∫
RN

F 0(x, u(x); −v(x))dx ≥ 0, ∀v ∈ X.
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7.2.1 Existence and Multiplicity Results 133

To study the existence of solutions of the problem (P ) we introduce the functional " : 134

X → R defined by "(u) := a(u) − �(u), where a(u) := 1
p
〈A(u), u〉 and �(u) := 135∫

RN F (x, u(x))dx. We prove that the critical points of the functional " are solutions of 136

the problem (P ). 137

Proposition 7.1 If 0 ∈ ∂C"(u), then u solves the problem (P ). 138

Proof Because 0 ∈ ∂C"(u), we have "0(u; v) ≥ 0 for every v ∈ X. Using Proposition 139

2.16 and a property of Clarke’s derivative we obtain 140

0 ≤"0(u; v) = 〈A(u), v〉 + (−�)0(u; v) = 〈A(u), v〉 +�0(u; −v)

≤〈A(u), v〉 +
∫
RN

F 0(x, u(x),−v(x))dx,

for every v ∈ X. ��

In order to study the existence of the critical points of the function " it is necessary to 141

impose some further conditions on the function F . 142

(F1) F : RN ×R→ R is defined by 143

F(x, t) :=
∫ t

0
f (x, s)ds

and 144

|f (x, s)| ≤ c(|s|p−1 + |s|r−1);

(F ′1) The embedding X ↪→ Lr(RN) is compact for each r ∈ [p,p∗); 145

(F2) There exist α > p, λ ∈
[
0, κ(1)(α−p)

Cp(p)

)
and a continuous function g : R→ R+, such 146

that for a.e. x ∈ R
N and for all s ∈ R we have 147

αF(x, s)+ F 0(x, s; −s) ≤ g(s), (7.7)

where lim|s|→∞ g(s)
|s|p = λ. 148
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(F ′2) There exists α ∈
(

max
{
p,p∗ r−p

p∗−p
}
, p∗

)
and a constant C > 0 such that for a.e. 149

x ∈ R
N and for all s ∈ R we have 150

− C|s|α ≥ F(x, s)+ 1

p
F 0(x, s; −s). (7.8)

Before imposing further assumptions on F , let us we recall that 151

f−(x, s) := lim
δ→0+

essinf{f (x, t) : |t − s| < δ},
152

f+(x, s) := lim
δ→0+

esssup{f (x, t) : |t − s| < δ},

for every s ∈ R and for a.e. x ∈ R
N . It is clear that the function f−(x, ·) is lower 153

semicontinuous and f+(x, ·) is upper semicontinuous. 154

(F3) The functions f−, f+ are N-measurable, i.e., for every measurable function u : 155

R
N → R the functions x �→ f−(x, u(x)), x �→ f+(x, u(x)) are measurable. 156

(F4) For every ε > 0, there exists c(ε) > 0 such that for a.e. x ∈ R
N and for every s ∈ R 157

we have 158

|f (x, s)| ≤ ε|s|p−1 + c(ε)|s|r−1.

(F5) There exist α ∈ (p, p∗) satisfying condition (F2) and c∗ > 0 such that for a.e. 159

x ∈ R
N and all s ∈ R we have 160

F(x, s) ≥ c∗(|s|α − |s|p).

Remark 7.1 We observe that if we impose 161

(F ′4) limε→0+ esssup
{ |f (x,s)|

|s|p : (x, s) ∈ R
N × (−ε, ε)

}
= 0, 162

then this condition together with (F1) implies (F4). 163

Proposition 7.2 Let {un} ⊂ X be a sequence such that "(un) → c and λ"(un) → 0 164

for some c ∈ R. If the conditions (F1) and (F2) are fulfilled, then the sequence {un} is 165

bounded in X. 166

Proof Let {un} ⊂ X be a sequence with the required properties. From the condition 167

"(un)→ c we get in particular c + 1 ≥ "(un) for sufficiently large n ∈ N. 168

Since λ"(un) → 0 then ||un|| ≥ ||un||λ"(un) for every sufficiently large n ∈ N. From 169

the definition of λ"(un) it follows the existence of an element ζun ∈ ∂C"(un) such 170
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that λ"(un) = ||ζun ||∗. For every v ∈ X, we have |〈ζun, v〉| ≤ ||ζun||∗||v||, therefore 171

||ζun ||∗||v|| ≥ −〈ζun, v〉. If we take v = un, then ||ζun ||∗||un|| ≥ −〈ζun, un〉. 172

Using the property "0(u; v) = max{〈ζ, v〉 : ζ ∈ ∂C"(u)} for every v ∈ X, we have 173

−〈ζ, v〉 ≥ −"0(u; v) for all ζ ∈ ∂C"(u) and v ∈ X. If we take u = v = un and ζ := ζun , 174

we get −〈ζ ∗un, un〉 ≥ −"0(un; un). Therefore for every α > 0, we have 175

1

α
||un|| ≥ 1

α
||ζun ||∗||un|| ≥ −

1

α
"0(un; un).

If we add the above inequality with c + 1 ≥ "(un), we obtain 176

c + 1+ 1

α
||un|| ≥ "(un)− 1

α
"0(un; un).

Using the above inequality, the relation "0(u; v) = 〈A(u), v〉 + �0(u; −v) and 177

Proposition 2.16, one has 178

c + 1+ 1

α
||un|| ≥ "(un)− 1

α
"0(un; un)

= 1

p
〈A(un), un〉 −�(un)− 1

α

(
〈A(un), un〉 +�0(un; −un)

)

≥
(

1

p
− 1

α

)
〈A(un), un〉 −

∫
RN

[
F(x, un(x))+ 1

α
F 0
y (x, un(x); −un(x))

]
dx

≥
(

1

p
− 1

α

)
〈A(un), un〉 − 1

α

∫
RN

g(un(x))dx.

Fix 0 < ε <
κ(1)(α−p)
Cp(p)

− λ. The relation lim|u|→∞ g(u)
|u|p = λ assures the existence of a 179

constant M , such that 180

∫
RN

g(un(x))dx ≤ M + (λ+ ε)

∫
RN

|un(x)|pdx.

If we use again that the inclusion X ↪→ Lp(RN) is continuous, and the facts that a(u) = 181

1
p
〈A(u), u〉 and a(u) = ||u||p

〈
A

(
u
||u||

)
, u
||u||

〉
≥ κ(1)||u||p we get 182

c + 1+||un|| ≥
(

1

p
− 1

α

)
〈A(un), un〉 − (λ+ ε)Cp(p)

α
||un||p − M

α

≥κ(1)(α − p)− (λ+ ε)Cp(p)

α
||un||p − M

α
.

From the above inequality it follows that the sequence {un} is bounded. ��
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Proposition 7.3 Let {un} ⊂ X be a sequence such that 183

"(un)→ c and (1+ ‖un‖)λ"(un)→ 0

for some c ∈ R. If the conditions (F1), (F
′
2) and (F4) are fulfilled, then the sequence {un} 184

is bounded in X. 185

Proof Let {un} ⊂ X be a sequence with the above properties. As in Proposition 7.2, there 186

exists ζun ∈ ∂"(un) such that 187

1

p
||ζun||∗||un|| ≥ −"0

(
un; 1

p
un

)
.

From this inequality, Proposition 2.16, condition (F ′2) and the property "0(u; v) = 188

〈Au, v〉 +�0(u; −v) we obtain 189

c + 1 ≥"(un)− 1

p
"0(un; un) ≥ a(un)−�(un)− 1

p

[
〈Aun, un〉 +�0(un; −un)

]

−
∫
RN

[
F(x, un(x))+ 1

p
F 0(x, un(x); −un(x))

]
dx

≥C||un||αα.

Therefore the sequence {un} is bounded in Lα(RN). From the condition (F4) follows that, 190

for every ε > 0, there exists c(ε) > 0, such that for a.e. x ∈ R
N

191

F(x, u(x)) ≤ ε

p
|u(x)|p + c(ε)

r
|u(x)|r .

After integration, we obtain 192

�(u) ≤ ε

p
||u||pp + c(ε)

r
||u||rr .

Using the above inequality, the expression of " and the inequality ||u||p ≤ C(p)||u||, we 193

obtain 194

κ(1)− εCp(p)

p
||u||p ≤ "(u)+ c(ε)

r
||u||rr ≤ c + 1+ ||u||rr .

195
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First of all, we fix an ε ∈
(

0, κ(1)
Cp(p)

)
. Now, we study the behaviour of the sequence 196

{||un||r}. We have the following situations: 197

(i) If r = α, then obviously the sequence {||un||r} is bounded and so is {un}; 198

(ii) If r ∈ (α, p∗) and α > p∗ r−p
p∗−p , then we have 199

||u||rr ≤ ||u||(1−s)αα · ||u||sp∗p∗ ,

where r := (1− s)α + sp∗, s ∈ (0, 1). 200

Using the inequality ||u||sp∗p∗ ≤ Csp∗(p)||u||sp∗ we obtain 201

κ(1)− εCp(p)

p
||u||p ≤ c + 1+ c(ε)

r
||u||(1−s)αα ||u||sp∗ . (7.9)

Since sp∗ < p, we obtain that the sequence {un} is bounded in X. 202��

In the next result we give conditions, when the function " satisfies the (PS)c and (C)c 203

conditions. 204

Theorem 7.2 ([8]) 205

(i) If conditions (F1), (F
′
1) and (F2) − (F4) hold, the function " satisfies the (PS)c 206

condition for every c ∈ R; 207

(ii) If conditions (F1), (F
′
1), (F

′
2), (F3), (F4) hold, the function " satisfies the (C)c 208

condition for every c > 0. 209

Proof Let {un} ⊂ X be a sequence from Propositions 7.2, 7.3, respectively. It follows that 210

it is a bounded sequence in X. Since X is a reflexive Banach space, there exists an element 211

u ∈ X such that un → u weakly in X. Because the inclusion X ↪→ Lr(RN) is compact, 212

we have that un → u strongly in Lr(RN). 213

In the following we provide useful estimate for the sequences I 1
n := "0(un; u − un) 214

and I 2
n := "0(u; un − u). 215

We know that "0(u; v) = max {〈ζ, v〉 : ζ ∈ ∂C"(u)} , ∀ v ∈ X. Therefore, for every 216

ζu ∈ ∂C"(u) we have "0(u; un − u) ≥ 〈ζu, un − u〉. From the above relation and from 217

the fact that un → u weakly in X, we get 218

lim inf
n→∞ I 2

n ≥ 0.

219



7.2 Hemivariational Inequalities in R
N 223

Now, we estimate the expression I 1
n = "0(un; u− un). Since I 1

n ≥ −‖ζun‖∗‖un − u‖, 220

and using ‖ζun‖∗ = λ"(un)→ 0 it follows that 221

lim inf
n→∞ I 1

n ≥ 0.

Finally, we estimate the expression In := �0(un; un − u) + �0(u; u − un). For the 222

simplicity in calculus we introduce the notations h1(s) := |s|p−1 and h2(s) := |s|r−1. 223

For this we observe that if we use the continuity of the functions h1 and h2, the condition 224

(F4) implies that for every ε > 0, there exists a c(ε) > 0 such that 225

max {|f−(x, s)|, |f+(x, s)|} ≤ εh1(s)+ c(ε)h2(s), (7.10)

for a.e. x ∈ R
N and for all s ∈ R. Using this relation and Proposition 2.16, we have 226

In =�0(un; un − u)+�0(u; u− un)

≤
∫
RN

[
F 0(x, un(x); un(x)− u(x))+ F 0(x, u(x); u(x)− un(x))

]
dx

≤
∫
RN

[|f−(x, un(x))| + |f+(x, u(x))|] |u(x)− un(x)|dx ≤

≤2ε
∫
RN

[h1(un(x))+ h1(u(x))] |u(x)− un(x)|dx

+ 2cε

∫
RN

[(h2(un(x))+ h2(u(x))] |u(x)− un(x)|dx.

If we use the Hölder inequality and the fact that the inclusion X ↪→ Lp(RN) is continuous, 227

we obtain: 228

In ≤2εC(p)||un − u||(||h1(u)||p′ + ||h1(un)||p′)
+ 2c(ε)||un − u||r (||h2(u)||r ′ + ||h2(un)||r ′),

where 1
p
+ 1

p′ = 1 and 1
r
+ 1

r ′ = 1. 229

Using the fact that the inclusion X ↪→ Lr(RN) is compact, we get that ||un−u||r → 0 230

as n→∞. For ε→ 0+ and n→∞ we obtain that 231

lim supn→∞In ≤ 0.

232
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One clearly has 〈A(u), v〉 = �0(u; v)−"0(u; −v). If in the above inequality we replace 233

u and v by u = un, v = un − u and then u = u, v = u− un we get 234

〈A(un), un − u〉 = �0(un; un − u)− "0(un; u− un);
235

〈A(u), u− un〉 = �0(u; u− un)− "0(u; un − u).

Adding these relations, we have the following inequality: 236

||un − u||κ(‖un − u‖) ≤〈A(un − u), un − u〉
=

[
�0(un; un − u)+�0(u; u− un)

]

−"0(un; u− un)− "0(u; un − u)

=In − I 1
n − I 2

n .

Using the above relation and the estimates for In, I 1
n and I 2

n , we easily have that ‖un −
u‖ → 0, thanks to the properties of the function κ. ��

Remark 7.2 It is worth to noticing that the above results remain true if we replace the 237

Banach space X with every closed subspace Y of X, and we restrict the functional " to Y. 238

Theorem 7.3 ([8]) 239

(i) If (F1), (F
′
1) and (F2)− (F5) hold, then (P ) has at least a nontrivial solution; 240

(ii) If (F1), (F
′
1), (F

′
2), (F3) and (F4) hold, then (P ) has at least a nontrivial solution. 241

Proof 242

(i) Using (i) of Theorem 7.2 , from the conditions (F1)−(F4) follows that the functional 243

"(u) := 1
p
〈A(u), u〉 − �(u) satisfies the (PS)c condition for every c ∈ R. For 244

the sake of simplicity, we introduce the notations Sρ(0) := {u ∈ X : ||u|| = ρ} 245

and Bρ(0) := {u ∈ X : ||u|| ≤ ρ}. From Theorem 5.2 we only need to verify 246

the following geometric hypotheses (the mountain pass geometry of the energy 247

functional): 248

∃β, ρ > 0 such that "(u) ≥ β on Sρ(0); (7.11)

249

"(0) = 0 and ∃v ∈ X \ Bρ(0) such that "(v) ≤ 0. (7.12)

For the proof of relation (7.11), we use the relation (F4), i.e., |f (x, s)| ≤ 250

ε|s|p−1 + c(ε)|s|r−1. Integrating this inequality and using that the inclusions 251
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X ↪→ Lp(RN),X ↪→ Lr(RN) are continuous, we get that 252

"(u) ≥κ(1)− εC(p)

p
〈A(u), u〉 − 1

r
c(ε)C(r)||u||rr

≥κ(1)− εC(p)

p
||u||p − 1

r
c(ε)C(r)||u||r .

The right-hand side member of the inequality is a function χ : R+ → R of the 253

form χ(t) := Atp − Btr , where A := κ(1)−εC(p)
p

, B := 1
r
c(ε)C(r). The function 254

χ attains its global maximum in the point tM := (
pA
rB

)
1

r−p . If we take ρ := tM and 255

β ∈ (0, χ(tM)], it is easy to see that the condition (7.11) is fulfilled. 256

From the condition (F5) we have 257

"(u) ≤ 1

p
〈A(u), u〉 + c∗||u||pp − c∗||u||αα.

If we fix an element v ∈ X \ {0} and in place of u we put tv, then we have 258

"(tv) ≤
(

1

p
〈A(v), v〉 + c∗||v||pp

)
tp − c∗tα||v||αα.

From this we see that if t is large enough, tv /∈ Bρ(0) and "(tv) < 0. So, the 259

condition (7.12) is satisfied and Theorem 5.2 assures the existence of a nontrivial 260

critical point of " . 261

(ii) Now if we use (ii) of Theorem 7.2, from the condition (F1), (F
′
2) and(F3), (F4) we 262

get that the function " satisfies the condition (C)c for every c > 0. We use again the 263

Theorem 5.2, which ensures the existence of a nontrivial critical point for the function 264

" . It is sufficient to prove only the relation (7.12), because (7.11) can be proved in 265

the same way as above. 266

To prove the relation (7.12) we fix an element u ∈ X and we define the function 267

h : (0,+∞)→ R by 268

h(t) := 1

t
F (x, t

1
p u)− C

p

α − p
t
α
p
−1|u|α.

The function h is locally Lipschitz. We fix a number t > 1, and from the Lebourg’s 269

mean value theorem follows the existence of an element τ ∈ (1, t) such that 270

h(t)− h(1) ∈ ∂tCh(τ )(t − 1),

271
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where ∂tC denotes the generalized gradient of Clarke with respect to t ∈ R. From the 272

Chain Rules we have 273

∂tCtF (x, t
1
p u) ⊂ 1

p
∂CF(x, t

1
p u)t

1
p−1

u.

We also have 274

∂tCh(t) ⊂ −
1

t2
F(x, t

1
p u)+ 1

t
∂CF (x, t

1
p u)t

1
p
−1

u− Ct
α
p
−2|u|α.

Therefore, we have 275

h(t)− h(1) ⊂ ∂tCh(τ )(t − 1)

⊂ − 1

t2

[
F(x, t

1
p u)− t

1
p u∂CF(x, t

1
p u)+ C|t 1

p u|α
]
(t − 1).

Using the relation (F ′2), we obtain that h(t) ≥ h(1) , therefore 276

1

t
F (x, t

1
p u)− C

p

α − p
t
α
p−1|u|α ≥ F(x, u)− C

p

α − p
|u|α.

From this we get 277

F(x, t
1
p u) ≥ tF (x, u)+ C

p

α − p

[
t
α
p − t

]
|u|α, (7.13)

for every t > 1 and u ∈ R. 278

Let us fix an element u0 ∈ X \ {0}; then for every t > 1, we have 279

"(t
1
p u0) = 1

p
〈A(t

1
p u0), t

1
p u0〉 −

∫
RN

F (x, t
1
p u0(x))dx

t

p
〈Au0, u0〉

− t

∫
RN

F (x, u0(x))dx − C
p

α − p

[
t
α
p − t

]
||u0||αα.

If t is sufficiently large, then for v0 = t
1
p u0 we have "(v0) ≤ 0. This completes the 280

proof. 281��

Now we will treat a special case, i.e., when X = H is a Hilbert space with the inner 282

product 〈·, ·〉. The norm of H induced by 〈·, ·〉 is denoted by || · ||. In this case p = 2 and 283

the problem (P ) takes the form 284

Find u ∈ H such that 285

〈u, v〉 +
∫
RN

F 0(x, u(x); −v(x))dx ≥ 0, ∀v ∈ H. (P ′)

286
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Finally, we impose the following condition 287

(F7) f (x,−s) = −f (x, s), for a.e. x ∈ R
N and all s ∈ R. 288

Theorem 7.4 289

(i) If the conditions (F1), (F
′
1), (F2) − (F5) and (F7) hold, then the problem (P ′) has 290

infinitely many distinct solutions. 291

(ii) If the conditions (F1), (F
′
1), (F

′
2), (F3), (F4), (F5) and (F7) hold, then the problem 292

(P ′) has infinitely many distinct solutions. 293

Proof We prove that the function " verifies the conditions from Theorem 5.6. Using 294

Theorem 7.2, the conditions (F1) − (F ′1), (F2) − (F4), we obtain that the function " 295

satisfies the (PS)c for every c ∈ R and from (F1) − (F ′1), (F3) − (F4) we obtain that " 296

satisfies the (C)c condition for every c > 0. 297

From the assumption (F7) we easily have that the function " is even. To prove the 298

assertion of this theorem we verify that the conditions of Theorem 5.6 hold. 299

Let us choose an orthonormal basis {ej }j∈N of H and define the set 300

Hk := span{e1, . . . , ek}.

As above we have "(v) ≤ (c∗C(α) + 1
2 )||v||2H − c∗||v||αα. Thus, we have "(0) = 0. 301

Using the fact that the inclusion H ↪→ Lα(RN) is continuous we have that || · ||α|Hk is 302

continuous. Because on a finite dimensional space the continuous norms are equivalent 303

and since α > 2, there exists an Rk > 0 large enough such that for every u ∈ H with 304

||u||H ≥ Rk , we have "(u) ≤ "(0) = 0. Therefore the condition (f ′1) from Theorem 5.6 305

is verified. 306

Now, we verify the condition (f ′2) from Theorem 5.6. For every u ∈ H⊥
k and k ∈ N

∗ we 307

consider the real numbers βk := supu∈H⊥
k \{0}

||u||p
||u||H . As in [3, Lemma 3.3] we get βk → 0, 308

if k→∞. As in the proof of relation (7.11) we have 309

"(u) ≥
(

1− εC(2)

2

)
||u||2H −

1

p
cε||u||pp.

From the definition of number βk we have ||u||p ≤ βk||u||H and combining this with the 310

above relation we get 311

"(u) ≥
(

1− εC(2)

2

)
||u||2H −

1

p
cεβ

p

k ||u||pH .

312
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If we choose 0 < ε < 1
C(2)

p−2
p

and rk ∈
(
(cεβ

p

k )
1

2−p
]
, then we have 313

"(u) ≥
(

1− εC(2)

2
− 1

p

)
r2
k ,

for every u ∈ H⊥
k with ||u||H = rk . Due to the choice of ε and since βk → 0, the

assumptions of Theorem 5.6 are verified. Therefore there exists a sequence of unbounded
critical values of " , which completes the proof. ��

In the sequel let G be the compact topological group O(N) or a subgroup of O(N). We 314

suppose that G acts continuously and linear isometric on the Banach space X. We denote 315

by 316

XG := {u ∈ H : gu = u for all g ∈ G }

the fixed point set of the action G on X. It is well known that XG is a closed subspace of 317

X. We suppose that the potential a : X → R of the operator A : X → X∗ is G-invariant 318

and the next condition for the function f : RN × R→ R holds: (F6) for a.e. x ∈ R
N and 319

for every g ∈ G, s ∈ R we have f (gx, s) = f (x, s). 320

In several applications the (F ′1) is replaced by the following condition: (F ′′1 ) the 321

embeddings XG ↪→ Lr(RN) are compact ( p < r < p∗). 322

Now, if we use the principle of symmetric criticality for locally Lipschitz functions, i.e., 323

(PSCL) from the above theorem we obtain the following corollary, which is very useful 324

in the applications. 325

Corollary 7.2 We suppose that the potential a : X→ R is G-invariant and the condition 326

(F6) is satisfied. Then the following assertions hold. 327

(a) If the conditions (F1), (F
′′
1 ) and (F2)− (F5) are fulfilled, then the problem (P ) has a 328

nontrivial solution; 329

(b) If the conditions (F1), (F
′′
1 ), (F

′
2), (F3) and (F4) are fulfilled, then the problem (P ) 330

has a nontrivial solution. 331

Now we return to the case, when X = H is a Hilbert space with the inner product 332

〈·, ·〉. We suppose that G acts continuously and linear isometric on the Hilbert space X. 333

Applying again (PSCL) we obtain the next useful result. 334

Corollary 7.3 We suppose that the condition (F6) is satisfied. Then the following 335

assertions hold. 336
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(a) If the conditions (f1), (F
′′
1 ), (F2) − (F5) and (F7) hold, then the problem (P ′) has 337

infinitely many distinct solutions; 338

(b) If the conditions (F1), (F
′′
1 ), (F

′
2), (F3), (F4), (F5) and (F7) hold, then the problem 339

(P ′) has infinitely many distinct solutions. 340

Further, we give an example of a discontinuous function F for which the problem (P ) 341

has a nontrivial solution. 342

Example 7.1 Let {an} ⊂ R be a sequence with a0 = 0, an > 0, n ∈ N such that the series 343∑∞
n=0 an is convergent and

∑∞
n=0 an > 1. We introduce the following notations 344

An :=
n∑

k=0

ak,A :=
∞∑
k=0

ak.

With these notations we have A > 1 and An = An−1 + an for every n ∈ N
∗. Let f : R→ 345

R defined by 346

f (s) := s|s|p−2 (|s|r−p + An

)
,

for all s ∈ (−n − 1,−n] ∪ [n, n + 1), n ∈ N and r, s ∈ R with r > p > 2. The function 347

f defined above satisfies the properties (F1), (F
′
2), (F3) and (F4). The discontinuity set of 348

f is 349

Df = Z \ {0}.

It is easy to see that the function f satisfies the conditions (F1) and (F ′4), therefore (F4). 350

Let F : R→ R be the function defined by 351

F(t) :=
∫ t

0
f (s)ds, with u ∈ [n, n+ 1),

when n ≥ 1. Because F(u) = F(−u), it is sufficient to consider the case u > 0. We have 352

F(u) =
n−1∑
k=0

∫ k+1

k

f (s)ds +
∫ u

n

f (s)ds.

Therefore for every 353

F(u) = 1

r
ur + 1

p
Anu

p − 1

p

n∑
k=0

akk
p, for every u ∈ [n, n+ 1].
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It is easy to see that F 0(u; −u) = −uf (u) for every u ∈ (n, n+ 1], i.e., 354

F 0(u,−u) = −ur − Anu
p.

Thus, 355

F(u)+ 1

p
F 0(u,−u) = −

(
1

p
− 1

r

)
ur − 1

p

n∑
k=0

akk
p ≤ −

(
1

p
− 1

r

)
ur .

If we choose C := 1
p
− 1

r
, α = r > 2, the condition (F ′2) is fulfilled. 356

7.2.2 Applications 357

(1) Let f : RN ×R→ R be a measurable function and b : RN ×R→ R be a continuous 358

function. For b we shall first assume the following. 359

(b1) b0 := infx∈RN b(x) > 0; 360

(b2) For every M > 0, meas({x ∈ R
N : b(x) ≤ M}) <∞. 361

We consider the Hilbert space 362

H :=
{
u ∈ W 1,2(RN) :

∫
RN

(|∇u|2 + b(x)u2)dx <∞
}
,

with the inner product 363

〈u, v〉H :=
∫
RN

(∇u · ∇v + b(x)uv)dx.

In the paper of Bartsch and Wang [2] is proved that the inclusionH ↪→ Ls(RN) is compact 364

for p ∈ [2, 2N
N−2 ). Now we formulate the problem. 365

Find a positive u ∈ H such that 366

∫
RN

(∇u · ∇v + b(x)uv)dx +
∫
RN

F 0(x, u(x); −v(x))dx ≥ 0, ∀v ∈ H. (P1)

The following corollary extends the results of Gazzola and Rădulescu [14] and Bartsch 367

and Wang [2]. 368
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Corollary 7.4 The following assertions are true 369

(i) If the conditions (F1) − (F5) and (b1) − (b2) hold, then the problem (P1) has a 370

positive solution; 371

(ii) If the conditions (F1), (F
′
2), (F3), (F4) and (b1) − (b2) hold then the problem (P1) 372

has a positive solution; 373

(iii) If the conditions (F1)− (F5), (b1)− (b2) and (F7) hold, then the problem (P1) has 374

infinitely many distinct positive solutions; 375

(iv) If the conditions (F1), (F
′
2), (F3)−(F5), (b1)−(b2) and (F7) hold then, the problem 376

(P1) has infinitely many positive solutions. 377

Proof We replace the function f by f+ : RN × R→ R defined by 378

f+(x, u) =
{

f (x, u), if u ≥ 0,

0, if u < 0,
, (7.14)

and we apply Theorems 7.3 and 7.4. ��

(2) Now, we consider Au := −
u+ |x|2u for u ∈ D(A), where 379

D(A) :=
{
u ∈ L2(RN) : Au ∈ L2(RN)

}
.

Here | · | denotes the Euclidian norm of RN . In this case the Hilbert space H is defined 380

by 381

H :=
{
u ∈ L2(RN) :

∫
RN

(|∇u|2 + |x|2u2)dx <∞
}
,

with the inner product 382

〈u, v〉 :=
∫
RN

(∇u∇v + |x|2uv)dx.

The inclusion H ↪→ Ls(RN) is compact for s ∈ [2, 2N
N−2 ) (see, e.g., Kavian [16, 383

Exercise 20, pp. 278]). Therefore the condition (F ′1) is satisfied. 384

We formulate the problem. 385

Find a positive u ∈ H such that 386

∫
RN

(∇u∇v + |x|2uv)dx +
∫
RN

F 0(x, u(x); −v(x))dx ≥ 0, ∀v ∈ H. (P2)
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Corollary 7.5 The following assertions are true 387

(i) If the conditions (F1)− (F5) hold, then the problem (P2) has a positive solution; 388

(ii) If the conditions (F1), (F
′
2), (F3), (F4) hold, then the problem (P2) has a positive 389

solution; 390

(iii) If the conditions (F1) − (F5) and (F7) hold, then the problem (P2) has infinitely 391

many distinct positive solutions; 392

(iv) If the conditions (F1), (F
′
2), (F3) − (F5) and (F7) hold then, the problem (P2) has 393

infinitely many positive solutions. 394

(3) For this application we consider the Hilbert space H given by 395

H := H 1(RN) =
{
u ∈ L2(RN) : ∇u ∈ L2(RN)

}

with the inner product 396

〈u, v〉H :=
∫
RN

(∇u∇v + uv)dx.

Let use consider G := O(N), N ≥ 3. The group G acts linearly and orthogonal on 397

R
N . The action of G on H is defined by gu(x) := u(g−1x) for all g ∈ G and x ∈ R

N . 398

The fixed point set of this action is 399

HG := { u ∈ H 1(RN) : gu = u}.

According to a result of Lions [20] the inclusion HG ↪→ Ls(RN) is compact for 400

s ∈
(

2, 2N
N−2

)
. Thus, condition (F ′′1 ) is satisfied. 401

The proposed problem read as follows. 402

Find u ∈ H such that 403

∫
RN

(∇u∇v + uv)dx +
∫
RN

F 0(x, u(x); −v(x))dx ≥ 0, ∀v ∈ H. (P3)

Corollary 7.6 ([18]) 404

(i) If the conditions (F1)− (F7) hold, then the problem (P3) has infinitely many distinct 405

solutions; 406

(ii) If the conditions (F1), (F
′
2) and (F3)− (F7) hold, then the problem (P3) has infinitely 407

many distinct solutions. 408
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Remark 7.3 By the construction, the above solutions are radially symmetric. In [18] we 409

actually guaranteed also the existence of infinitely many radially non-symmetric solutions 410

of (P3) in the case when N = 4 or N ≥ 6. 411

In the final part of this section, we present an example provided by Kristály [18]. 412

Example 7.2 We denote by -u. the nearest integer to u ∈ R, if u+ 1
2 /∈ Z; otherwise we 413

put -u. = u. Let f : R→ R be defined by 414

f (s) := -|s|s..

Then the conclusion of Corollary 7.6 holds for N ∈ {3, 4, 5}. 415

Proof We will verify the hypotheses from the first item for p := 2, r = α = 3. To have 416

r < 2∗, we need N ∈ {3, 4, 5}. It is easy to show that f is an odd function, i.e. (F7) holds. 417

It is easy to verify that (F1) holds too, while (F3) and (F6) become trivial facts. Moreover, 418

(F4) is also obvious, since f (s) = 0 for every s ∈
[
− 1√

2
, 1√

2

]
, see Remark 7.1. Thus, 419

it remains to verify (F2) and (F5). To this end, we recall two nice inequalities for every 420

n ∈ N, i.e., 421

2n

√
2n+ 1

2
− 3 · 1+√3+ · · · + √2n− 1√

2
− 2n+ 1

8
≤ 0, ; (In≤)

and 422

4n+ 1

2

√
2n− 1

2
− 3 · 1+√3+ · · · + √2n− 1√

2
+ 2n− 1

2
≥ 0.. (In≥)

Let F(s) := ∫ s

0 f (t)dt . Since F is even, it is enough to verify both relations only for 423

non-negative numbers. One has 424

F(s) =
{

0, s ∈
[
0, 1√

2

]
,

Fn(s), s ∈ In,
(7.15)

where In =
(√

2n−1
2 ,

√
2n+1

2

]
, n ∈ N and Fn(s) = ns − 1+√3+···+√2n−1√

2
, s ∈ In. 425

Let us fix s ≥ 0. If s ∈
[
0, 1√

2

]
, then the two inequalities are trivial. Let κ := idR+, 426

and g(s) := s2

4 . Now, we are in the position to prove the main part of (f2). We may assume 427

that there exists a unique n ∈ N such that s ∈ In. If s ∈ intIn then F 0(s; −s) = −ns and



234 7 Hemivariational Inequalities and Differential Inclusions on Unbounded. . .

due to (7.15), we need 428

3

(
ns − 1+√3+ · · · + √2n− 1√

2

)
− ns − s2

4
≤ 0,

which follows precisely by (In≤). If sn =
√

2n+1
2 , then F 0(sn; −sn) = −n

√
2n+1

2 . In this 429

case, (F2) reduces exactly to (In≤). 430

Since the function x �→ 1
3 (x

3 − x2)− nx is decreasing in In, n ∈ N, to show (F5), it 431

is enough to verify that 432

1

3

((
2n− 1

2

) 3
2 − 2n− 1

2

)
≤ n

√
2n− 1

2
− 1+√3+ · · · + √2n− 1√

2
,

which is exactly (In≥). This completes the proof. ��

7.3 Hemivariational Inequalities in � = ω × R
l , l ≥ 2 433

Let ω be a bounded open set in R
m with smooth boundary and let � := ω × R

l be a 434

strip-like domain ; m ≥ 1, l := N − m ≥ 2. Let F : � × R → R be a Carathéodory 435

function which is locally Lipschitz in the second variable such that 436

(F1) F (x, 0) = 0, and there exist c1 > 0 and p ∈ (2, 2∗) such that 437

|ξ | ≤ c1(|s| + |s|p−1), ∀s ∈ R, ∀ξ ∈ ∂2
CF(x, s) and a.e. x ∈ �.

Here, and hereafter, we denote by 2∗ := 2N/(N − 2) the Sobolev critical exponent. 438

In this section we study the following eigenvalue problem for hemivariational inequal- 439

ities. 440

(EPHIμ) Find u ∈ H 1
0 (�) such that 441

∫
�

∇u · ∇vdx + μ

∫
�

F 0(x, u(x); −v(x))dx ≥ 0, ∀v ∈ H 1
0 (�).

The expression F 0(x, s; t) stands for the generalized directional derivative of F(x, ·) at 442

the point s ∈ R in the direction t ∈ R. 443

The motivation to study this type of problem comes from mathematical physics. 444

Moreover, if we particularize the form of F (see Remark 7.5), then (EPHIμ) reduces to 445

the following eigenvalue problem 446

−
u = μf (x, u) in �, u ∈ H 1
0 (�), (EPμ)
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which is a simplified form of certain stationary waves in the non-linear Klein-Gordon or 447

Schrödinger equations (see for instance Amick [1]). Under some restrictive conditions 448

on the nonlinear term f , (EPμ) has been firstly studied by Esteban [10]. Further 449

investigations, closely related to [10] can be found in the papers of Burton [5], Fan and 450

Zhao [12], Schindler [22]. 451

Although related problems to (EPμ) have been extensively studied on bounded 452

domains, in unbounded domains the problem is more delicate, due to the lack of 453

compactness in the Sobolev embeddings. In order to solve (EPμ), Esteban [10] used a 454

minimization procedure via axially symmetric functions. In the case of strip-like domains, 455

the space of axially symmetric functions has been the main tool in the investigations, due to 456

its ‘good behavior’ concerning the compact embeddings (do not forget that N ≥ m+2, see 457

[20]); this is the reason why many authors used this space in their works (see for instance 458

[10, 12]). On the other hand, no attention has been paid in the literature to the existence 459

of axially non-symmetric solutions, even in the classical case (EPμ). Thus, the study of 460

existence of axially non-symmetric solutions for (EPHIμ) constitutes one of the main 461

tasks of this section. A non-smooth version of the fountain theorem of Bartsch provides not 462

only infinitely many axially symmetric solutions but also axially non-symmetric solutions, 463

when N := m+ 4 or N ≥ m+ 6. 464

Throughout this section, H 1
0 (�) denotes the usual Sobolev space endowed with the 465

inner product 466

〈u, v〉0 :=
∫
�

∇u · ∇vdx

and norm ‖ · ‖0 = √〈·, ·〉0, while the norm of Lα(�) will be denoted by ‖ · ‖α. Since � 467

has the cone property, we have the continuous embedding H 1
0 (�) ↪→ Lα(�), α ∈ [2, 2∗], 468

that is, there exists kα > 0 such that ‖u‖α ≤ kα‖u‖0 for all u ∈ H 1
0 (�). 469

We say that a function h : � → R is axially symmetric, if h(x, y) = h(x, gy) for 470

all x ∈ ω, y ∈ R
N−m and g ∈ O(N − m). In particular, we denote by H 1

0,s(�) the 471

closed subspace of axially symmetric functions of H 1
0 (�). u ∈ H 1

0 (�) is called axially 472

non-symmetric, if it is not axially symmetric. 473

We require the following assumptions on nonlinearity F. 474

(F2) lims→0
max{|ξ |: ξ∈∂2

CF (x,s)}
s

= 0 uniformly for a.e.x ∈ �; 475

(F3) There exist ν ≥ 1 and γ ∈ L∞(�) with essinfx∈�γ (x) = γ0 > 0 such that 476

2F(x, s)+ F 0(x, s; −s) ≤ −γ (x)|s|ν,

for all s ∈ R and a.e. x ∈ �. 477

The following theorem can be considered an extension of Bartsch and Willem’s result (see 478

[3]) to the case of strip-like domains. 479
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Theorem 7.5 ([17]) Let F : � × R → R be a function which satisfies (F1), (F2), and 480

(F3) for some ν > max{2, N(p− 2)/2}. If F is axially symmetric in the first variable and 481

even in the second variable then (EPHIμ) has infinitely many axially symmetric solutions 482

for every μ > 0. In addition, if N = m + 4 or N ≥ m + 6, (EPHIμ) has infinitely many 483

axially non-symmetric solutions. 484

Remark 7.4 The inequality from (F3) is a non-smooth version of one introduced by Costa 485

and Magalhães [7]. Let us suppose for a moment that F is autonomous. Note that (F3) is 486

implied in many cases by the following condition (of Ambrosetti-Rabinowitz type): 487

νF (s)+ F 0(s; −s) ≤ 0 for all s ∈ R, (7.16)

where ν > 2. Indeed, from (7.16) and Lebourg’s mean value theorem, applied to the 488

locally Lipschitz function g : (0,+∞) → R, g(t) := t−νF (tu) (with arbitrary fixed 489

u ∈ R) we obtain that t−νF (tu) ≥ s−νF (su) for all t ≥ s > 0. If we assume in addition 490

that lim infs→0
F(s)
|s|ν ≥ a0 > 0, from the above relation (substituting t = 1) we have for 491

u = 0 that F(u) ≥ lim infs→0+
F(su)
|su|ν |u|ν ≥ a0|u|ν. So, 2F(u) + F 0(u; −u) ≤ (2 − 492

ν)F (u) ≤ −γ0|u|ν, where γ0 = a0(ν − 2) > 0. 493

Remark 7.5 Let f : � × R → R be a measurable (not necessarily continuous) function 494

and suppose that there exists c > 0 such that |f (x, s)| ≤ c(|s| + |s|p−1) for all s ∈ R 495

and a.e. x ∈ �. Define F : � × R → R by F(x, s) := ∫ s

0 f (x, t)dt. Then F is a 496

Carathéodory function which is locally Lipschitz in the second variable which satisfies 497

the growth condition from (F1). Indeed, since f (x, ·) ∈ L∞loc(R), by [21, Proposition 498

1.7] we have ∂2
CF(x, s) = [f−(x, s), f+(x, s)] for all s ∈ R and a.e. x ∈ �, where 499

f−(x, s) = limδ→0+ essinf|t−s|<δf (x, t) and f+(x, s) = limδ→0+ esssup|t−s|<δf (x, t). 500

Moreover, if f is continuous in the second variable, then ∂2
CF(x, s) = {f (x, s)} for all 501

s ∈ R and a.e. x ∈ �. Therefore, the inequality from (EPHIμ) takes the form 502

∫
�

∇u · ∇vdx − μ

∫
�

f (x, u(x))v(x)dx = 0, for all v ∈ H 1
0 (�),

that is, u ∈ H 1
0 (�) is a weak solution of (EPμ) in the usual sense. 503

Remark 7.6 In view of Remark 7.5, under appropriate hypotheses on f, corresponding to 504

(F1)− (F3), it is possible to state the smooth counterpart of Theorem 7.5. 505

The remainder of this section is dedicated to the proof of Theorem 7.5. We have the 506

following auxiliary results. 507
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Lemma 7.3 If F : � × R → R satisfies (F1) and (F2), for every ε > 0 there exists 508

c(ε) > 0 such that 509

(i) |ξ | ≤ ε|s| + c(ε)|s|p−1 for all s ∈ R, ξ ∈ ∂2
CF(x, s) and a.e. x ∈ �; 510

(ii) |F(x, s)| ≤ εs2 + c(ε)|s|p for all s ∈ R and a.e. x ∈ �. 511

Proof 512

(i) Let ε > 0 be fixed. Condition (F2) implies that there exists δ := δ(ε) > 0 such that 513

|ξ | ≤ ε|s| for |s| < δ, ξ ∈ ∂2
CF(x, s) and a.e. x ∈ �. If |s| ≥ δ, then (F1) implies 514

that |ξ | ≤ c1(|s|2−p + 1)|s|p−1 ≤ c(δ)|s|p−1 for all ξ ∈ ∂2
CF(x, s) and a.e. x ∈ �. 515

Combining the above relations we get the required inequality. 516

(ii) We use Lebourg’s mean value theorem, obtaining |F(x, s)| = |F(x, s)− F(x, 0)| = 517

|ξθss| for some ξθs ∈ ∂2
CF(x, θs) where θ ∈ (0, 1). Now, we apply (i) to complete 518

the proof. 519��

Define F ,"(·, μ) : H 1
0 (�)→ R by 520

F (u) :=
∫
�

F(x, u(x))dx

and 521

"(u,μ) := 1

2
‖u‖2

0 − μF (u)

for μ ≥ 0. The following result plays a crucial role in the study of (EPHIμ). 522

Lemma 7.4 Let F : �× R→ R be a locally Lipschitz function satisfying (F1). Then F 523

is well-defined and locally Lipschitz. Moreover, let E be a closed subspace of H 1
0 (�) and 524

FE the restriction of F to E. Then 525

F 0
E(u; v) ≤

∫
�

F 0(x, u(x); v(x))dx, ∀u, v ∈ E. (7.17)

Proof The proof is similar to that of Proposition 2.16, but for the sake of completeness we 526

will give it. Let us fix s1, s2 ∈ R arbitrary. By Lebourg’s mean value theorem, there exist 527

θ ∈ (0, 1) and ξθ ∈ ∂2
CF(x, θs1 + (1− θ)s2) such that F(x, s1)−F(x, s2) = ξθ (s1 − s2). 528

By (F1) we conclude that 529

|F(x, s1)− F(x, s2)| ≤ d|s1 − s2| ·
[
|s1| + |s2| + |s1|p−1 + |s2|p−1

]
(7.18)
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for all s1, s2 ∈ R and a.e. x ∈ �, where d = d(c1, p) > 0. In particular, if u ∈ H 1
0 (�), 530

we obtain that 531

|F (u)| ≤
∫
�

|F(x, u(x))|dx ≤ d(‖u‖2
2 + ‖u‖pp) ≤ d(k2

2‖u‖2
0 + k

p
p‖u‖p0 ) < +∞,

that is, the function F is well-defined. Moreover, by (7.18), there exists d0 > 0 such that 532

for every u, v ∈ H 1
0 (�) 533

|F (u)− F (v)| ≤ d0‖u− v‖0

[
‖u‖0 + ‖v‖0 + ‖u‖p−1

0 + ‖v‖p−1
0

]
.

Therefore, F is a locally Lipschitz function on H 1
0 (�). 534

Let us fix u and w in E. Since F(x, ·) is continuous, F 0(x, u(x); v(x)) can be 535

expressed as the upper limit of F(x,y+tv(x))−F(x,y)
t

, where t → 0+ takes rational values 536

and y → u(x) takes values in a countable dense subset of R. Therefore, the map 537

x �→ F 0(x, u(x); v(x)) is measurable as the “countable limsup” of measurable functions 538

of x. According to (F1), the map x �→ F 0(x, u(x); v(x)) belongs to L1(�). 539

Since E is separable, there are functions un ∈ E and numbers tn → 0+ such that 540

un → u in E and 541

F 0
E(u; v) = lim

n→+∞
FE(un + tnv)− FE(un)

tn
,

and without loss of generality, we may assume that there exist h2 ∈ L2(�,R+) and hp ∈ 542

Lp(�,R+) such that |un(x)| ≤ min{h2(x), hp(x)} and un(x) → u(x) a.e. in �, as 543

n→ +∞. 544

We define gn : �→ R ∪ {+∞} by 545

gn(x) := −F(x,un(x)+tnv(x))−F(x,un(x))
tn

+ d|v(x)| [|un(x)+ tnv(x)|+
+ |un(x)| + |un(x)+ tnv(x)|p−1 + |un(x)|p−1

]
.

The maps gn are measurable and non-negative, see (7.18). From Fatou’s lemma we have 546

I = lim sup
n→+∞

∫
�

[−gn(x)]dx ≤
∫
�

lim sup
n→+∞

[−gn(x)]dx = J.

Let Bn := An + gn, where 547

An(x) := F(x, un(x)+ tnv(x))− F(x, un(x))

tn
.

548
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By the Lebesgue dominated convergence theorem, we have 549

lim
n→+∞

∫
�

Bndx = 2d
∫
�

|v(x)|(|u(x)| + |u(x)|p−1)dx.

Therefore, we have 550

I = lim sup
n→+∞

FE(un + tnv) − FE(un)
tn

− lim
n→+∞

∫
�

Bndx

551

= F 0
E(u; v)− 2d

∫
�

|v(x)|
(
|u(x)| + |u(x)|p−1

)
dx.

Now, we estimate J. We have J ≤ JA − JB, where 552

JA :=
∫
�

lim sup
n→+∞

An(x)dx and JB :=
∫
�

lim inf
n→+∞Bn(x)dx.

Since un(x)→ u(x) a.e. in � and tn → 0+, we have 553

JB = 2d
∫
�

|v(x)|
(
|u(x)| + |u(x)|p−1

)
dx.

On the other hand, 554

JA =
∫
�

lim sup
n→+∞

F(x, un(x)+ tnv(x))− F(x, un(x))

tn
dx

≤
∫
�

lim sup
y→u(x),t→0+

F(x, y + tv(x))− F(x, y)

t
dx

=
∫
�

F 0(x, u(x); v(x))dx.

From the above estimations we obtain (7.17), which concludes the proof. ��

We suppose that assumptions of Theorem 7.5 are fulfilled. Let us denote by FE, 555

"E(·, μ), 〈·, ·〉E and ‖ · ‖E the restrictions of F , "(·, μ), 〈·, ·〉0 and ‖ · ‖0, respectively, 556

to a closed subspace E of H 1
0 (�), (μ ≥ 0). 557

Lemma 7.5 If the embedding E ↪→ Lp(�) is compact then "E(·, μ) satisfies (C)c for 558

all μ, c > 0. 559
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Proof Let us fix a μ > 0 and a sequence {un} from E such that "E(un,μ)→ c > 0 and 560

(1+ ‖un‖E)λ"E(·,μ)(un)→ 0 (7.19)

as n → +∞. We shall prove firstly that {un} is bounded in E. Let ζn ∈ ∂C"E(·, μ)(un) 561

such that ‖ζn‖E = λ"E(·,μ)(un); it is clear that ‖ζn‖E → 0 as n → +∞. Moreover, 562

"E(·, μ)0(un; un) ≥ 〈ζn, un〉E ≥ −‖zn‖E‖un‖E ≥ −(1 + ‖un‖E)λ"E(·,μ)(un). 563

Therefore, by Lemma 7.4, for n large enough 564

2c+ 1 ≥ 2"E(un,μ)−"E(·, μ)0(un; un)
= −2μFE(un)− μ(−FE)0(un; un)
≥ −μ

∫
�

[2F(x, un(x))+ F 0(x, un(x); −un(x))]dx

≥ μγ0‖un‖νν .

Thus, 565

{un} is bounded in Lν(�). (7.20)

After integration in Lemma 7.3 ii), we obtain that for all ε > 0 there exists c(ε) > 0 such 566

that FE(un) ≤ ε‖un‖2
E + c(ε)‖un‖pp (note that ‖u‖2

2 ≤ k2
2‖u‖2

0). For n large, one has 567

c+ 1 ≥ "E(un,μ) = 1

2
‖un‖2

E − μFE(un) ≥
(

1

2
− εμ

)
‖un‖2

E − μc(ε)‖un‖pp.

Choosing ε > 0 small enough, we will find c2, c3 > 0 such that 568

c2‖un‖2
E ≤ c + 1+ c3‖un‖pp. (7.21)

Since ν ≤ p (compare Lemma 7.3 ii) and (7.22) below), we distinguish two cases. 569

(I) If ν = p it is clear from (7.21) and (7.20) that {un} is bounded in E. 570

(II) If ν < p, we have the interpolation inequality 571

‖un‖p ≤ ‖un‖1−δ
ν ‖un‖δ2∗ ≤ kδ2∗‖un‖1−δ

ν ‖un‖δE

(since un ∈ E ↪→ Lν(�) ∩ L2∗(�)), where 1/p = (1 − δ)/ν + δ/2∗. Since ν > 572

N(p − 2)/2, we have δp < 2. According again to (7.20) and (7.21), we conclude 573

that {un} should be bounded in E. 574
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Since E ↪→ Lp(�) is compact, up to a subsequence, un ⇀ u in E and un → u in Lp(�). 575

Moreover, we have 576

"E(·, μ)0(un; u− un) = 〈un, u− un〉E + μ(−FE)0(un; u− un),

577

"E(·, μ)0(u; un − u) = 〈u, un − u〉E + μ(−FE)0(u; un − u).

Adding these two relations, we obtain 578

‖un − u‖2
E = μ[FE0(un; −u+ un)+ FE0(u; −un + u)]

−"E(·, μ)0(un; u− un)−"E(·, μ)0(u; un − u).

On the other hand, there exists ζn ∈ ∂C"E(·, μ)(un) such that ‖ζn‖E = λ"E(·,μ)(un). 579

Here, we used the Riesz representation theorem. By (7.19), one has ‖ζn‖E → 0 as n → 580

+∞. Since un ⇀ u in E, fixing an element ζ ∈ ∂C"E(·, μ)(u), we have 〈ζ, un−u〉E → 581

0. Therefore, by the inequality (7.17) and Lemma 7.3 i), we have 582

‖un − u‖2
E ≤ μ

∫
�

[F 0(x, un(x); −u(x)+ un(x))+ F 0(x, u(x); −un(x)+ u(x))]dx
−〈ζn, u− un〉E − 〈ζ, un − u〉E

= μ

∫
�

max
{
ξn(x)(−u(x)+ un(x)) : ξn(x) ∈ ∂2

CF(x, un(x))
}

dx

+μ
∫
�

max
{
ξ(x)(−un(x)+ u(x)) : ξ(x) ∈ ∂2

CF(x, u(x))
}

dx

−〈ζn, u− un〉E − 〈ζ, un − u〉E
≤ μ

∫
�

ε (|un(x)| + |u(x)|) |un(x)− u(x)|dx

+μ
∫
�

c(ε)
(
|un(x)|p−1 + |u(x)|p−1

)
|un(x)− u(x)|dx

+‖ζn‖E‖u− un‖E − 〈ζ, un − u〉E
≤ 2εμk2

2(‖un‖2
E + ‖u‖2

E)+ μc(ε)
(
‖un‖p−1

p + ‖u‖p−1
p

)
‖un − u‖p

+‖ζn‖E‖u− un‖E − 〈ζ, un − u〉E.

Due to the arbitrariness of ε > 0, we have that ‖un − u‖2
E → 0 as n→ +∞. Thus, {un}

converges strongly to u in E. This concludes the proof. ��

Proof of Theorem 7.5 For the first part, we verify the conditions of Theorem 5.6, 583

choosing E := H 1
0,s(�) and f := "E(·, μ), where "E(·, μ) denotes the restriction of 584
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"(·, μ) to E, μ > 0 being arbitrary fixed. By assumption,F is even in the second variable, 585

so "E(·, μ) is also even, and by Lemma 7.4 it is a locally Lipschitz function. 586

Clearly, "E(0, μ) = 0, while condition (C)c is verified, due to Lemma 7.5. Indeed, 587

H 1
0,s(�) is compactly embedded into Lp(�). 588

In order to prove (f ′2) of Theorem 5.6, we consider g : �× (0,+∞)→ R defined by 589

g(x, t) := t−2F(x, t)− γ (x)

ν − 2
tν−2.

Let us fix x ∈ �. Clearly, g(x, ·) is a locally Lipschitz function and by the Chain Rule we 590

have 591

∂g(x, t) ⊆ −2t−3F(x, t)+ t−2∂F (x, t)− γ (x)tν−3, t > 0.

Let t > s > 0. By Lebourg’s mean value theorem, there exist τ := τ (x) ∈ (s, t) and 592

wτ := wτ (x) ∈ ∂g(x, τ ) such that g(x, t) − g(x, s) = wτ (t − s). Therefore, there exists 593

ξτ := ξτ (x) ∈ ∂2
CF(x, τ ) such that wτ = −2τ−3F(x, τ )+ τ−2ξτ − γ (x)τ ν−3 and 594

g(x, t)− g(x, s) ≥ −τ−3[2F(x, τ )+ F 0(x, τ ; −τ )+ γ (x)τ ν](t − s).

By (F3) one has g(x, t) ≥ g(x, s). On the other hand, by Lemma 7.3 we have that 595

F(x, s) = o(s2) as s → 0 for a.e. x ∈ �. If s → 0+ in the above inequality, we 596

have that F(x, t) ≥ γ (x)tν/(ν − 2) for all t > 0 and a.e. x ∈ �. Since F(x, 0) = 0 and 597

F(x, ·) is even, we obtain that 598

F(x, t) ≥ γ (x)

ν − 2
|t|ν, ∀t ∈ R and a.e.x ∈ �. (7.22)

Now, let {ei} be a fixed orthonormal basis of E and Ek = {e1, . . . , ek}, k ≥ 1. Denoting 599

by ‖ · ‖E the restriction of ‖ · ‖0 to E, from (7.22) one has 600

"E(u,μ) ≤ 1

2
‖u‖2

E −
μγ0

ν − 2
‖u‖νν, ∀u ∈ E.

Let us fix k ≥ 1 arbitrary. Since ν > 2 and on the finite dimensional space Ek all norms are 601

equivalent (in particular ‖ · ‖0 and ‖ · ‖ν), choosing a large Rk > 0, we have "E(u,μ) ≤ 602

"E(0, μ) = 0 if ‖u‖E ≥ Rk, u ∈ Ek. This proves (f ′2). 603

Again, from Lemma 7.3 ii) we have that for all ε > 0 there exists c(ε) > 0 such that 604

FE(u) ≤ ε‖u‖2
E + c(ε)‖u‖2

p for all u ∈ E. Let βk = sup{‖u‖p/‖u‖E : u ∈ E⊥k , u = 0}. 605

As in [3, Lemma 3.3], it can be proved that βk → 0 as k →+∞. For u ∈ E⊥k , one has 606

"E(u,μ) ≥
(

1

2
− εμ

)
‖u‖2

E − μc(ε)‖u‖pp ≥
(

1

2
− εμ

)
‖u‖2

E − μc(ε)β
p
k ‖u‖pE.
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Choosing ε < (p − 2)(2pμ)−1 and ρk := (pμc(ε)β
p

k )
1

2−p , we have 607

"E(u,μ) ≥
(

1

2
− 1

p
− εμ

)
ρ2
k

for every u ∈ E⊥k with ‖u‖E = ρk. Since βk → 0, then ρk → +∞ as k → +∞. Thus 608

(f ′1) of Theorem 5.6 is concluded. 609

Hence, "E(·, μ) has infinitely many critical points on E = H 1
0,s(�). Using the 610

principle (PSCL), these points are actually critical point for the original functions "(·, μ). 611

Now, using Lemma 7.4, the above points will be precisely solutions for (EPHIμ). 612

Now, we deal with the second part. The following construction is inspired by [3]. Let 613

N := m + 4 or N ≥ m + 6. In both cases we find at least a number k ∈ [2, N−m
2 ] ∩ 614

N \ {N−m−1
2 }. For a such k ∈ N, we have � := ω × R

k × R
k × R

N−2k−m. Let H := 615

idm ×O(k)×O(k)×O(N − 2k −m) and define 616

Gτ := 〈H ∪ {τ }〉,

where τ (x1, x2, x3, x4) = (x1, x3, x2, x4), for every x1 ∈ ω, x2, x3 ∈ R
k, x4 ∈ R

N−2k−m. 617

Gτ will be a subgroup of O(N) and its elements can be written uniquely as h or hτ with 618

h ∈ H. The action of Gτ on H 1
0 (�) is defined by 619

gu(x1, x2, x3, x4) = π(g)u(x1, g2x2, g3x3, g4x4) (7.23)

for all g = idm× g2× g3× g4 ∈ Gτ , (x1, x2, x3, x4) ∈ ω×R
k ×R

k ×R
N−2k−m, where 620

π : Gτ → {±1} is the canonical epimorphism, that is, π(h) = 1 and π(hτ) = −1 for 621

all h ∈ H. The group Gτ acts linear isometrically on H 1
0 (�), and "(·, μ) is Gτ -invariant, 622

since F is axially symmetric in the first variable and even in the second variable. Let 623

H 1
0,ns(�) := {u ∈ H 1

0 (�) : gu = u, ∀g ∈ Gτ }.

Clearly, H 1
0,ns(�) is a closed subspace of H 1

0 (�) and 624

H 1
0,ns(�) ⊂ H 1

0 (�)H
df.:= {u ∈ H 1

0 (�) : hu = u, ∀h ∈ H }. 625

On the other hand, H 1
0 (�)H ↪→ Lp(�) is compact (see [20, Théorème III.2.]), hence 626

H 1
0,ns(�) ↪→ Lp(�) is also compact. 627

Now, repeating the proof of the first part for E = H 1
0,ns(�) instead of H 1

0,s(�), we

obtain infinitely many solutions for (EPHIμ), which belong to H 1
0,ns(�). But we observe

that 0 is the only axially symmetric function of H 1
0,ns(�). Indeed, let u ∈ H 1

0,ns(�) ∩
H 1

0,s(�). Since gu = u for all g ∈ Gτ , choosing in particular τ ∈ Gτ and using (7.23),

we have that u(x1, x2, x3, x4) = −u(x1, x3, x2, x4) for all (x1, x2, x3, x4) ∈ ω × R
k ×
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R
k×R

N−2k−m. Since u is axially symmetric and |(x2, x3, x4)| = |(x3, x2, x4)|, (| · | being
the norm on R

N−m), it follows that u must be 0. Therefore, the above solutions are axially
non-symmetric functions. This concludes the proof. ��

Remark 7.7 The reader can observe that we considered only N ≥ m + 2. In fact, in this 628

case H 1
0,s(�) can be embedded compactly into Lp(�), p ∈ (2, 2∗) which was crucial in 629

the verification of the Cerami condition. When N := m + 1 the above embedding is no 630

longer compact. In the latter case it is recommended to construct the closed convex cone 631

(see [11, Theorem 2]), defined by 632

K :=
{
u ∈ H 1

0 (ω × R) : u ≥ 0, u(x, y) is nonincreasing in y for x ∈ ω, y ≥ 0

and u(x, y) is nondecreasing in y for x ∈ ω, y ≤ 0

}
,

because the Sobolev embedding from H 1
0 (ω×R) into Lp(ω×R) transforms the bounded 633

closed sets of K into relatively compact sets of Lp(ω × R), p ∈ (2, 2∗) (note that 2∗ = 634

+∞, if m = 1). Since K is not a subspace of H 1
0 (ω×R), the above described machinery 635

does not work. However, we will treat a closely related form of the above problem in the 636

next section. 637

In the final part of this section, we provide two examples, which highlight the 638

applicability of the main result. 639

Example 7.3 Let p ∈ (2, 2∗). Then, for all μ > 0, the problem 640

−
u = μ|u|p−2u in �, u ∈ H 1
0 (�),

has infinitely many axially symmetric solutions. Moreover, if N := m+ 4 or N ≥ m+ 6, 641

the problem has infinitely many axially non-symmetric solutions. 642

Indeed, consider the (continuously differentiable) function F(x, s) = F(s) := |s|p, 643

which verifies obviously the assumptions of Theorem 7.5 (choose ν = p). 644

Example 7.4 We denote by -u. the nearest integer to u ∈ R, if u+ 1
2 /∈ Z; otherwise we 645

put -u. = u. Let N ∈ {3, 4, 5} and let F : �× R→ R be defined by 646

F(x, s) = F(s) :=
∫ s

0
-t|t|.dt + |s|3.

It is clear that F is a locally Lipschitz, even function. Due to the first part of Remark 7.5, 647

F verifies (F1) with the choice p := 3 while (F2) follows from the fact that -t|t|. = 0 648

if t ∈ (−2−1/2, 2−1/2). Since F is even (in particular, F 0(s; −s) = F 0(−s; s) for all 649

s ∈ R), it is enough to very (F3) for s ≥ 0. We have that F(s) = s3 if s ∈ [0, a1], and 650

F(s) = s3 + ns −∑n
k=1

√
2k − 1/

√
2 if s ∈ (an, an+1], where an = (2n − 1)1/22−1/2, 651
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n ∈ N\{0}. Moreover,F 0(s; −s) = −3s3−ns when s ∈ (an, an+1) while F 0(an; −an) = 652

−3a3
n − (n − 1)an, since ∂CF(an) = [3a2

n + n − 1, 3a2
n + n], n ∈ N \ {0}. Choosing 653

γ (x) = γ0 = 1/3 and ν = 3, from the above expressions the required inequality yields. 654

Therefore (EPHIμ) has infinitely many axially symmetric solutions for every μ > 0. 655

Moreover, if � := ω×R
4, where ω is an open bounded interval in R, then (EPHIμ) has 656

infinitely many axially non-symmetric solutions for every μ > 0. 657

7.4 Variational Inequalities in � = ω × R 658

In this section we will continue our study on the strip-like domains, but contrary to the 659

previous section, we consider domains of the form � := ω×R, where ω ⊂ R
m(m ≥ 1) is 660

a bounded open subset. This section is based on the paper of Kristály, Varga and Varga [19]. 661

As we pointed out in the previous section, Lions [20, Théorème III. 2] (see also [11, 662

Theorem 2]) observed that defining the closed convex cone 663

K :=

⎧⎪⎨
⎪⎩

u is nonnegative,

u ∈ H 1
0 (ω × R) : y �→ u(x, y) is nonincreasing for x ∈ ω, y ≥ 0,

y �→ u(x, y) is nondecreasing for x ∈ ω, y ≤ 0,

⎫⎪⎬
⎪⎭ (K)

the bounded subsets ofK are relatively compact in Lp(ω×R) whenever p ∈ (2, 2∗). Note 664

that 2∗ = ∞, if m = 1. Burton [5] was the first who exploited in its entirety the above 665

“compactness”; namely, by means of a version of the Mountain Pass theorem (due to 666

Hofer [15] for an order-preserving operator on Hilbert spaces), he was able to establish the 667

existence of a nontrivial solution for an elliptic equation on domains of the type ω×R. The 668

main ingredient in his proof was the symmetric decreasing rearrangement of the suitable 669

functions, proving that the cone K remains invariant under a carefully chosen nonlinear 670

operator, which is an indispensable hypothesis in the Hofer’s result. 671

The main goal of this section is to give a new approach to treat elliptic (eigenvalue) 672

problems in cylinders of the type � := ω × R. The genesis of our method relies on the 673

Szulkin type functionals. Indeed, since the indicator function of a closed convex subset of 674

a vector space (so, in particular K in H 1
0 (ω × R)) is convex, lower semicontinuous and 675

proper, this approach arises in a natural manner as it was already forecasted in [17]. We 676

point out that in [19] we considered a much general problem; instead of a Szulkin type 677

functional we considered the Motreanu-Panagiotopoulos type function (see [21, Chapter 678

3]). In order to formulate our problem, we shall consider a continuous function f : (ω × 679

R)× R→ R such that 680

(F1) f (x, 0) = 0, and there exist c1 > 0 and p ∈ (2, 2∗) such that 681

|f (x, s)| ≤ c1(|s| + |s|p−1), ∀(x, s) ∈ (ω ×R)×R.
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Let a ∈ L1(ω × R) ∩ L∞(ω × R) with a ≥ 0, a ≡ 0, and q ∈ (1, 2). For λ > 0, we 682

consider the following variational inequality problem: 683

(Pλ) Find u ∈ K such that 684

∫
ω×R

∇u(x) · ∇(v(x)− u(x))dx +
∫
ω×R

f (x, u(x))(−v(x)+ u(x))dx

≥ λ

∫
ω×R

a(x)|u(x)|q−2u(x)(v(x)− u(x))dx, ∀v ∈ K .

For the sake of simplicity, we introduce � := ω × R. Define F : � × R → R by 685

F(x, s) := ∫ s

0 f (x, t)dt and beside of (F1) we assume: 686

(F2) lims→0
f (x,s)

s
= 0, uniformly for every x ∈ �; 687

(F3) There exists ν > 2 such that 688

νF (x, s)− sf (x, s) ≤ 0, ∀(x, s) ∈ �× R;

(F4) There exists R > 0 such that 689

inf {F(x, s) : (x, |s|) ∈ ω × [R,∞)} > 0.

Remark 7.8 It is readily seen that if the conditions (F1) and (F2) hold, then for every 690

ε > 0 there exists c(ε) > 0 such that 691

(i) |f (x, s)| ≤ ε|s| + c(ε)|s|p−1, ∀(x, s) ∈ �× R; 692

(ii) |F(x, s)| ≤ εs2 + c(ε)|s|p, ∀(x, s) ∈ �× R. 693

Lemma 7.6 If the functions f, F : � × R → R satisfies (F1), (F3) and (F4) then there 694

exist c2, c3 > 0 such that 695

F(x, s) ≥ c2|s|ν − c3s
2, ∀(x, s) ∈ �× R.

Proof First, for arbitrary fixed (x, u) ∈ �×R we consider the function g : (0,+∞)→ R 696

defined by 697

g(t) := t−νF (x, tu).

Clearly, g is a function of class C1 and we have 698

g′(t) = −νt−ν−1F(x, tu)+ t−νuf (x, tu), t > 0.
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For t > 1, by mean value theorem, there exist τ := τ (x, u) ∈ (1, t) such that g(t)−g(1) = 699

g′(τ )(t − 1). Therefore, g′(τ ) = −ντ−ν−1F(x, τu)+ τ−νuf (x, τu), thus 700

g(t)− g(1) = −τ−ν−1[νF (x, τu)− τuf (x, τu)](t − 1).

By (F3) one has g(t) ≥ g(1), i.e., F(x, tu) ≥ tνF (x, u), for every t ≥ 1. Define cR := 701

inf {F(x, s) : (x, |s|) ∈ ω × [R,∞)} , which is a strictly positive number, due to (F4). 702

Combining the above facts we derive 703

F(x, s) ≥ cR

Rν
|s|ν, ∀(x, s) ∈ �×R with |s| ≥ R. (7.24)

On the other hand, by (F1) we have |F(x, s)| ≤ c1(s
2 + |s|p) for every (x, s) ∈ �× R. 704

In particular, we have 705

−F(x, s) ≤ c1(s
2 + |s|p) ≤ c1(1+ Rp−2 + Rν−2)s2 − c1|s|ν

for every (x, s) ∈ � × R with |s| ≤ R. Combining the above inequality with (7.24), the
desired inequality yields if one chooses c2 := min {c1, cR/R

ν} and c3 := c1(1 + Rp−2 +
Rν−2). ��

Remark 7.9 In particular, Lemma 7.6 ensures that 2 < ν < p. 706

To investigate the existence of solutions of (Pλ) we shall construct a functional Jλ : 707

H 1
0 (�)→ R associated to (Pλ) which is defined by 708

Jλ(u) := 1

2

∫
�

|∇u|2dx −
∫
�

F(x, u(x))dx − λ

q

∫
�

a(x)|u|qdx + ψK (u),

where ψK is the indicator function of the set K . 709

If we consider the function F : H 1
0 (�)→ R defined by 710

F (u) :=
∫
�

F(x, u(x))dx,

then F is of class C1 and 711

〈F ′(u), v〉H 1
0 (�) =

∫
�

f (x, u(x))v(x)dx, ∀u, v ∈ H 1
0 (�).
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By standard arguments we have that the functionals A1, A2 : H 1
0 (�) → R, defined by 712

A1(u) := ‖u‖2
0 and A2(u) :=

∫
�
a(x)|u|qdx are of class C1 with derivatives 713

〈A′1(u), v〉H 1
0 (�) = 2〈u, v〉0

and 714

〈A′2(u), v〉H 1
0 (�) = q

∫
�

a(x)|u|q−2uvdx.

Therefore the function 715

Hλ(u) := 1

2
‖u‖2

0 −
λ

q

∫
�

a(x)|u|qdx − F (u)

on H 1
0 (�) is of class C1. On the other hand, the indicator function of the set K, i.e., 716

ψK (u) :=
{

0, if u ∈ K,

+∞, if u /∈ K,

is convex, proper, and lower semicontinuous. In conclusion, Jλ = Hλ + ψK is a Szulkin 717

type functional. 718

Proposition 7.4 Fix λ > 0 arbitrary. Every critical point u ∈ H 1
0 (�) of Jλ (in the sense 719

of Szulkin) is a solution of (Pλ). 720

Proof Since u ∈ H 1
0 (�) is a critical point ofJλ = Hλ + ψK , one has 721

〈H ′λ(u), v − u〉H 1
0 (�) + ψK (v)− ψK (u) ≥ 0, ∀v ∈ H 1

0 (�).

We have immediately that u belongs to K . Otherwise, we would have ψK (u) = +∞
which led us to a contradiction, letting for instance v = 0 ∈ K in the above inequality.
Now, we fix v ∈ K arbitrary and we obtain the desired inequality. ��

Remark 7.10 It is easy to see that 0 ∈ K is a trivial solution of (Pλ) for every λ ∈ R. 722

Proposition 7.5 If the conditions (F1)− (F3) hold, thenJλ satisfies the (PS)−condition 723

(in the sense of Szulkin) for every λ > 0. 724
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Proof Let λ > 0 and c ∈ R be some fixed numbers and let {un} be a sequence from 725

H 1
0 (�) such that 726

Jλ(un) = Hλ(un)+ ψK (un)→ c; (7.25)

727

〈H ′λ(un), v − un〉H 1
0 (�) + ψK (v) − ψK (un) ≥ −εn‖v − un‖0,∀v ∈ H 1

0 (�), (7.26)

for a sequence {εn} in [0,∞) with εn → 0. By (7.25) one concludes that the sequence 728

{un} lies entirely in K . Setting v := 2un in (7.26), we obtain 729

〈H ′λ(un), un)〉H 1
0 (�) ≥ −εn‖un‖0.

From the above inequality we derive 730

‖un‖2
0 − λ

∫
�

a(x)|un|qdx −
∫
�

f (x, un(x))un(x)dx ≥ −εn‖un‖0. (7.27)

By (7.25) one has for large n ∈ N that 731

c + 1 ≥ 1

2
‖un‖2

0 −
λ

q

∫
�

a(x)|un|qdx −
∫
�

F(x, un(x))dx (7.28)

Multiplying (7.27) by ν−1 and adding this one to (7.28), by Hölder’s inequality we have 732

for large n ∈ N 733

c + 1+ 1

ν
‖un‖0 ≥ (

1

2
− 1

ν
)‖un‖2

0 − λ(
1

q
− 1

ν
)

∫
�

a(x)|un|q

−1

ν

∫
�

[νF (x, un(x))− un(x)f (x, un(x))]dx
(F3)≥ (

1

2
− 1

ν
)‖un‖2

0 − λ(
1

q
− 1

ν
)‖a‖ν/(ν−q)‖un‖qν

≥ (
1

2
− 1

ν
)‖un‖2

0 − λ(
1

q
− 1

ν
)‖a‖ν/(ν−q)kqν ‖un‖q0 .

In the above inequalities we used the Remark 7.9 and the hypothesis a ∈ L1(�) ∩ 734

L∞(�) thus, in particular, a ∈ Lν/(ν−q)(�). Since q < 2 < ν, from the above estimate 735

we derive that the sequence {un} is bounded inK . Therefore, {un} is relatively compact in 736

Lp(�), p ∈ (2, 2∗). Up to a subsequence, we can suppose that 737

un → u weakly in H 1
0 (�); (7.29)

738

un → u strongly in Lμ(�), μ ∈ (2, 2∗). (7.30)
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Since K is (weakly) closed then u ∈ K . Setting v := u in (7.26), we have 739

〈un, u− un〉0 +
∫
�

f (x, un(x))(un(x)− u(x))dx

740

−λ
∫
�

a(x)|un|q−2un(u− un) ≥ −εn‖u− un‖0.

Therefore, in view of Remark 7.8 i) we derive 741

‖u− un‖2
0 ≤ 〈u, u− un〉0 +

∫
�

f (x, un(x))(un(x)− u(x))dx

−λ
∫
�

a(x)|un|q−2un(u− un)+ εn‖u− un‖0

≤ 〈u, u− un〉0 + λ‖a‖ν/(ν−q)‖un‖q−1
ν ‖u− un‖ν + εn‖u− un‖0

+ε‖un‖0‖un − u‖0 + c(ε)‖un‖p−1
p ‖un − u‖p,

where ε > 0 is arbitrary small. Taking into account relations (7.29) and (7.30), the facts
that ν, p ∈ (2, 2∗), the arbitrariness of ε > 0 and εn → 0+, one has that {un} converges
strongly to u in H 1

0 (�). ��

Proposition 7.6 If the conditions (F1)− (F4) are verified, then there exists a λ0 > 0 such 742

that for every λ ∈ (0, λ0) the function Jλ satisfies the Mountain Pass Geometry, i.e., the 743

following assertions are true: 744

(i) there exist constants αλ > 0 and ρλ > 0 such that Jλ(u) ≥ αλ, for all ‖u‖0 = ρλ; 745

(ii) there exists eλ ∈ H 1
0 (�) with ‖eλ‖0 > ρλ and Jλ(eλ) ≤ 0. 746

Proof 747

(i) Due to Remark 7.8 ii), for every ε > 0 there exists c(ε) > 0 such that F (u) ≤ 748

ε‖u‖2
0+c(ε)‖u‖pp for every u ∈ H 1

0 (�). It suffices to restrict our attention to elements 749

u which belong to K; otherwise Jλ(u) will be +∞, i.e., (i) holds trivially. Fix ε0 ∈ 750

(0, 1
2 ). One has 751

Jλ(u) ≥
(

1

2
− ε0

)
‖u‖2

0 − k
p
pc(ε0)‖u‖p0 −

λk
q
p

q
‖a‖p/(p−q)‖u‖q0 (7.31)

=
(
A− B‖u‖p−2

0 − λC‖u‖q−2
0

)
‖u‖2

0,

where A := ( 1
2 − ε0) > 0, B := k

p
pc(ε0) > 0 and C := k

q
p‖a‖p/(p−q)/q > 0. 752
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For every λ > 0, let us define a function gλ : (0,∞)→ R by 753

gλ(t) = A− Btp−2 − λCtq−2.

Clearly, g′λ(tλ) = 0 if and only if tλ = (λ
2−q
p−2

C
B
)

1
p−q . Moreover, gλ(tλ) = A−Dλ

p−2
p−q , 754

where D := D(p, q,B,C) > 0. Choosing λ0 > 0 such that gλ0(tλ0) > 0, one clearly 755

has for every λ ∈ (0, λ0) that gλ(tλ) > 0. Therefore, for every λ ∈ (0, λ0), setting 756

ρλ := tλ and αλ := gλ(tλ)t
2
λ, the assertion from (i) holds true. 757

(ii) By Lemma 7.6 we have F (u) ≥ c2‖u‖νν − c3‖u‖2
2 for every u ∈ H 1

0 (�). Let us fix 758

u ∈ K . Then we have 759

Jλ(u) ≤ (
1

2
+ c3k

2
2)‖u‖2

0 − c2‖u‖νν +
λ

q
‖a‖ν/(ν−q)kqν ‖u‖q0 . (7.32)

Fix arbitrary u0 ∈ K \ {0}. Letting u := su0 (s > 0) in (7.32), we have that 760

Jλ(su0) → −∞ as s → +∞, since ν > 2 > q. Thus, for every λ ∈ (0, λ0), it 761

is possible to set s := sλ so large that for eλ := sλu0, we have ‖eλ‖0 > ρλ and 762

Jλ(eλ) ≤ 0. 763��

The main result of this section can be read as follows. 764

Theorem 7.6 ([19]) Let f : �×R→ R be a function which satisfies (F1)− (F4). Then 765

there exists λ0 > 0 such that (Pλ) has at least two nontrivial, distinct solutions u1
λ, u

2
λ ∈ K 766

whenever λ ∈ (0, λ0). 767

Proof In the first step we prove the existence of the first nontrivial solution of (Pλ). 768

By Proposition 7.5, the functional Jλ satisfies (PS) and clearly Jλ(0) = 0 for every 769

λ > 0. Let us fix λ ∈ (0, λ0), λ0 being from Proposition 7.6. It follows that there are 770

constants αλ, ρλ > 0 and eλ ∈ H 1
0 (�) such thatJλ fulfills the properties (i) and (ii) from 771

Theorem 5.14. Therefore, the number 772

c1
λ := inf

γ∈� sup
t∈[0,1]

Jλ(γ (t)),

where � := {γ ∈ C([0, 1],H 1
0 (�)) : γ (0) = 0, γ (1) = eλ}, is a critical value of Jλ with 773

c1
λ ≥ αλ > 0. It is clear that the critical point u1

λ ∈ H 1
0 (�) which corresponds to c1

λ cannot 774

be trivial since Jλ(u
1
λ) = c1

λ > 0 = Jλ(0). It remains to apply Proposition 7.4 which 775

concludes that u1
λ is actually an element of K and it is a solution of (Pλ). 776

In the next step we prove the existence of the second solution of the problem (Pλ). For 777

this let us fix λ ∈ (0, λ0) arbitrary, λ0 being from the first step. By Proposition 7.6, there
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exists ρλ > 0 such that 778

inf‖u‖0=ρλ
Jλ(u) > 0. (7.33)

On the other hand, since a ≥ 0, a ≡ 0, there exists u0 ∈ K such that
∫
�
a(x)|u0(x)|qdx > 779

0. Thus, for t > 0 small one has 780

Jλ(tu0) ≤ t2
(

1

2
+ c3k

2
2

)
‖u0‖2

0 − c2t
ν‖u0‖νν −

λ

q
tq

∫
�

a(x)|u0(x)|qdx < 0.

For r > 0, let us denote by B̄r :=
{
u ∈ H 1

0 (�) : ‖u‖0 ≤ r
}

and Sr := ∂B̄r . With these 781

notations, relation (7.33) and the above inequality can be summarized as 782

c2
λ := inf

u∈Bρλ

Jλ(u) < 0 < inf
u∈Sρλ

Jλ(u). (7.34)

We point out that c2
λ is finite, due to (7.31). Moreover, we will show that c2

λ is another 783

critical point of Jλ. To this end, let n ∈ N \ {0} such that 784

1

n
< inf

u∈Sρλ
Jλ(u)− inf

u∈Bρλ

Jλ(u). (7.35)

By Ekeland’s variational principle, applied to the lower semicontinuous functionalJλ|Bρλ , 785

which is bounded below (see (7.34)), there is uλ,n ∈ Bρλ such that 786

Jλ(uλ,n) ≤ inf
u∈Bρλ

Jλ(u)+ 1

n
; (7.36)

787

Jλ(w) ≥ Jλ(uλ,n)− 1

n
‖w − uλ,n‖0, ∀w ∈ Bρλ. (7.37)

By (7.35) and (7.36) we have that Jλ(uλ,n) < infu∈Sρλ Jλ(u); therefore ‖uλ,n‖0 < ρλ. 788

Fix an element v ∈ H 1
0 (�). It is possible to choose t > 0 so small such that w := 789

uλ,n + t (v − uλ,n) ∈ Bρλ. Putting this element into (7.37), using the convexity of ψK and 790

dividing by t > 0, one concludes 791

Hλ(uλ,n + t (v − uλ,n))−Hλ(uλ,n)

t
+ ψK (v)− ψK (uλ,n) ≥ −1

n
‖v − uλ,n‖0.

Letting t → 0+, we derive 792

〈H ′λ(uλ,n), v − uλ,n〉H 1
0 (�) + ψK (v)− ψK (uλ,n) ≥ −1

n
‖v − uλ,n‖0. (7.38)
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By (7.34) and (7.36) we obtain that 793

Jλ(uλ,n) = Hλ(uλ,n)+ ψK (uλ,n)→ c2
λ (7.39)

as n → ∞. Since v was arbitrary fixed in (7.38), the sequence {uλ,n} fulfills (7.25) and 794

(7.26), respectively. Hence, it is possible to prove in a similar manner as in Proposition 7.5 795

that {uλ,n} contains a convergent subsequence; denote it again by {uλ,n} and its limit point 796

by u2
λ. It is clear that u2

λ belongs to Bρλ. By the lower semicontinuity of ψK we have 797

ψK (u
2
λ) ≤ lim infn→∞ ψK (uλ,n). Combining this inequality with limn→∞〈H ′λ(uλ,n), v− 798

uλ,n〉H 1
0 (�) = 〈H ′λ(u2

λ), v − u2
λ〉 and (7.38) we have 799

〈H ′λ(u2
λ), v − u2

λ〉H 1
0 (�) + ψK (v)− ψK (u

2
λ) ≥ 0, ∀v ∈ H 1

0 (�),

i.e. u2
λ is a critical point of Jλ. Moreover, 800

c2
λ

(7.34)= inf
u∈Bρλ

Jλ(u) ≤ Jλ(u
2
λ) ≤ lim inf

n→∞ Jλ(uλ,n)
(7.39)= c2

λ,

i.e. Jλ(u
2
λ) = c2

λ. Since c2
λ < 0, it follows that u2

λ is not trivial. We apply again
Proposition 7.4, concluding that u2

λ is a solution of (Pλ) which differs from u1
λ. This

completes the proof of Theorem 7.6. ��

In the next we give a simple example which satisfies the conditions (F1) − (F4) from 801

Theorem 7.6. 802

Example 7.5 F(x, s) = F(s) := −s3/3 if s ≤ 0, and F(x, s) = F(s) := s3 ln(2 + s) if 803

s ≥ 0. One can choose arbitrary p ∈ (2, 2∗) and ν ∈ (2, 3] in (F1) and (F3), respectively. 804

7.5 Differential Inclusions in R
N

805

In this section we are going to study the differential inclusion problem 806

{
−)pu+ |u|p−2u ∈ α(x)∂CF(u(x)), x ∈ R

N,

u ∈ W 1,p(RN),
(DI)

where 2 ≤ N < p < +∞, α ∈ L1(RN) ∩ L∞(RN) is radially symmetric, and ∂CF 807

stands for the generalized gradient of a locally Lipschitz function F : R→ R. This class 808

of inclusions have been first studied in the paper of Kristály [18]. 809

By a solution of (DI) it will be understood an element u ∈ W 1,p(RN) for which there 810

corresponds a mapping R
N � x �→ ζx with ζx ∈ ∂CF(u(x)) for almost every x ∈ R

N
811
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having the property that for every v ∈ W 1,p(RN), the function x �→ α(x)ζxv(x) belongs 812

to L1(RN) and 813

∫
RN

(|∇u|p−2∇u∇v + |u|p−2uv)dx =
∫
RN

α(x)ζxv(x)dx. (7.40)

Under suitable oscillatory assumptions on the potential F at zero or at infinity, we show 814

the existence of infinitely many, radially symmetric solutions of (DI). 815

For l = 0 or l = +∞, set 816

Fl := lim sup
|ρ|→l

F (ρ)

|ρ|p . (7.41)

Problem (DI) will be studied in the following four cases: 817

• 0 < Fl < +∞, whenever l = 0 or l = +∞ and 818

• Fl = +∞, whenever l = 0 or l = +∞. 819

We assume that: 820

(H) • F : R→ R is locally Lipschitz, F(0) = 0, and F(s) ≥ 0, ∀s ∈ R; 821

• α ∈ L1(RN) ∩ L∞(RN) is radially symmetric, and α(x) ≥ 0, ∀x ∈ R
N . 822

Let F : L∞(RN)→ R be a function defined by 823

F (u) =
∫
RN

α(x)F (u(x))dx.

Since F is continuous and α ∈ L1(RN), we easily seen that F is well-defined. Moreover, 824

if we fix a u ∈ L∞(RN) arbitrarily, there exists ku ∈ L1(RN) such that for every x ∈ R
N

825

and vi ∈ R with |vi − u(x)| < 1, (i ∈ {1, 2}) one has 826

|α(x)F (v1)− α(x)F (v2)| ≤ ku(x)|v1 − v2|.

Indeed, if we fix some small open intervals Ij (j ∈ J ), such that F |Ij is Lipschitz function 827

(with Lipschitz constantLj > 0) and [−‖u‖L∞−1, ‖u‖L∞+1] ⊂ ∪j∈J Ij , then we choose 828

ku = α maxj∈J Lj . (Here, without losing the generality, we supposed that cardJ < +∞.) 829

Thus, we are in the position to apply Theorem 2.7.3 from Clarke [6]; namely,F is a locally 830

Lipschitz function on L∞(RN) and for every closed subspace E of L∞(RN) we have 831

∂C(F |E)(u) ⊆
∫
RN

α(x)∂CF(u(x))dx, for every u ∈ E, (7.42)
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where F |E stands for the restriction of F to E. The interpretation of (7.42) is as follows 832

(see also Clarke [6]): for every ζ ∈ ∂C(F |E)(u) there corresponds a mapping R
N � x �→ 833

ζx such that ζx ∈ ∂CF(u(x)) for almost every x ∈ R
N having the property that for every 834

v ∈ E the function x �→ α(x)ζxv(x) belongs to L1(RN) and 835

〈ζ, v〉E =
∫
RN

α(x)ζxv(x)dx.

Now, let E : W 1,p(RN)→ R be the energy functional associated to our problem (DI), 836

i.e., for every u ∈ W 1,p(RN) set 837

E(u) = 1

p
‖u‖p

W 1,p − F (u).

It is clear that E is locally Lipschitz on W 1,p(RN) and we have 838

Proposition 7.7 Any critical point u ∈ W 1,p(RN) of E is a solution of (DI). 839

Proof Combining 0 ∈ ∂CE(u) = −)pu + |u|p−2u − ∂C(F |W 1,p(RN))(u) with the
interpretation of (7.42), the desired requirement yields, see (7.40). ��

We denote by 840

W
1,p
rad (RN) = {u ∈ W 1,p(RN) : gu = u for all g ∈ O(N)},

the subspace of radially symmetric functions of W 1,p(RN). 841

Proposition 7.8 ([18]) The embedding W
1,p
rad (RN) ↪→ L∞(RN) is compact whenever 842

2 ≤ N < p <∞. 843

Proof Let {un} be a bounded sequence in W
1,p
rad (RN). Up to a subsequence, un ⇀ u in 844

W
1,p
rad (RN) for some u ∈ W

1,p
rad (RN). Let ρ > 0 be an arbitrarily fixed number. Due to the 845

radially symmetric properties of u and un, we have 846

‖un − u‖W 1,p(BN(g1y,ρ))
= ‖un − u‖W 1,p(BN(g2y,ρ))

(7.43)

for every g1, g2 ∈ O(N) and y ∈ R
N . For a fixed y ∈ R

N, we can define 847

m(y, ρ) = sup{n ∈ N : ∃gi ∈ O(N), i ∈ {1, . . . , n} such that

BN(giy, ρ) ∩ BN(gj y, ρ) = ∅, ∀ i = j }.

848
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By virtue of (7.43), for every y ∈ R
N and n ∈ N, we have 849

‖un − u‖W 1,p(BN(y,ρ)) ≤
‖un − u‖W 1,p

m(y, ρ)
≤ supn∈N ‖un‖W1,p + ‖u‖W 1,p

m(y, ρ)
.

The right hand side does not depend on n, and m(y, ρ)→ +∞ whenever |y| → +∞ (ρ 850

is kept fixed, and N ≥ 2). Thus, for every ε > 0 there exists Rε > 0 such that for every 851

y ∈ R
N with |y| ≥ Rε one has 852

‖un − u‖W 1,p(BN(y,ρ)) < ε(2Sρ)
−1 for every n ∈ N, (7.44)

where Sρ > 0 is the embedding constant ofW 1,p(BN(0, ρ)) ↪→ C0(BN [0, ρ]). Moreover, 853

we observe that the embedding constant for W 1,p(BN (y, ρ)) ↪→ C0(BN [y, ρ]) can 854

be chosen Sρ as well, independent of the position of the point y ∈ R
N . This fact 855

can be concluded either by a simple translation of the functions u ∈ W 1,p(BN (y, ρ)) 856

into BN(0, ρ), i.e. ũ(·) = u(· − y) ∈ W 1,p(BN(0, ρ)) (thus ‖u‖W 1,p (BN(y,ρ)) = 857

‖ũ‖W 1,p (BN(0,ρ)) and ‖u‖C0(BN [y,ρ]) = ‖ũ‖C0(BN [0,ρ])); or, by the invariance with respect 858

to rigid motions of the cone property of the balls BN(y, ρ) when ρ is kept fixed. Thus, in 859

view of (7.44), one has that 860

sup
|y|≥Rε

‖un − u‖C0(BN [y,ρ]) ≤ ε/2 for every n ∈ N. (7.45)

On the other hand, since un ⇀ u in W
1,p
rad (RN), then in particular, by Rellich theorem it 861

follows that un → u in C0(BN [0, Rε]), i.e., there exists nε ∈ N such that 862

‖un − u‖C0(BN [0,Rε]) < ε for every n ≥ nε. (7.46)

Combining (7.45) with (7.46), one concludes that ‖un − u‖L∞ < ε for every n ≥ nε, i.e.,
un → u in L∞(RN). This ends the proof. ��

Remark 7.11 We can give an alternate proof of Proposition 7.8 as follows. Lions 863

[Lemme II.1] [20] provided a Strauss-type estimation for radially symmetric functions 864

of W 1,p(RN); namely, for every u ∈ W
1,p
rad (RN) we have 865

|u(x)| ≤ p1/p(AreaSN−1)−1/p‖u‖W 1,p |x|(1−N)/p, x = 0, (7.47)

where SN−1 is the N-dimensional unit sphere. Now, let {un} be a sequence in W
1,p
rad (RN) 866

which converges weakly to some u ∈ W
1,p
rad (RN). By applying inequality (7.47) for un−u, 867

and taking into account that ‖un − u‖W 1,p is bounded and N ≥ 2, for every ε > 0 there
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exists Rε > 0 such that 868

‖un − u‖L∞(|x|≥Rε) ≤ C|Rε|(1−N)/p < ε, ∀n ∈ N,

where C > 0 does not depend on n. The rest is similar as above. 869

Since α is radially symmetric, then E is O(N)-invariant, i.e. E(gu) = E(u) for every 870

g ∈ O(N) and u ∈ W 1,p(RN), we are in the position to apply the Principle of Symmetric 871

Criticality for locally Lipschitz functions, see Theorem 3.3. Therefore, we have 872

Proposition 7.9 Any critical point of Er = E|W 1,p
rad (RN)

will be also a critical point of E. 873

Remark 7.12 In view of Propositions 7.7 and 7.9, it is enough to find critical points of 874

Er in order to guarantee solutions for (DI). This fact will be carried out by means of 875

Theorem 5.17, by setting 876

X := W
1,p
rad (RN), X̃ := L∞(RN), � := −F , and " := ‖ · ‖pr , (7.48)

where the notation ‖ · ‖r stands for the restriction of ‖ · ‖W 1,p into W
1,p
rad (RN). A 877

few assumptions are already verified. Indeed, the embedding X ↪→ X̃ is compact (cf. 878

Theorem 7.8), � = −F is locally Lipschitz, while " = ‖ · ‖pr is of class C1 (thus, locally 879

Lipschitz as well), coercive and weakly sequentially lower semicontinuous (see Brezis 880

[4]). Moreover, Er ≡ �|
W

1,p
rad (RN)

+ 1
p
". According to (7.48), the function ϕ (defined in 881

(5.51)) becomes 882

ϕ(ρ) = inf
‖u‖pr <ρ

sup‖v‖pr ≤ρ F (v) − F (u)

ρ − ‖u‖pr
, ρ > 0. (7.49)

The investigation of the numbers γ and δ (defined in (5.52)), as well as the cases (A) and 883

(B) from Theorem 5.17 constitute our objective. The first result reads as follows. 884

Theorem 7.7 (([18], 0 < Fl < +∞)) Let l = 0 or l = +∞, and let 2 ≤ N < p < +∞. 885

Let F : R → R and α : RN → R be two functions which satisfy the hypotheses (H) 886

and 0 < Fl < +∞. Assume that ‖α‖L∞Fl > 2Np−1 and there exists a number βl ∈ 887

]2N(pFl)
−1, ‖α‖L∞[ such that 888

2

(2−NpβlFl − 1)1/p
< sup{r : meas(BN(0, r) \ α−1(]βl,+∞[)) = 0}. (7.50)

889
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Assume further that there are sequences {ak} and {bk} in ]0,+∞[ with ak < bk, 890

limk→+∞ bk = l, limk→+∞ bk
ak
= +∞ such that 891

sup{sign(s)ξ : ξ ∈ ∂CF(s), |s| ∈]ak, bk[} ≤ 0. (7.51)

Then problem (DI) possesses a sequence {un} of solutions which are radially symmetric 892

and 893

lim
n→+∞‖un‖W 1,p = l.

In addition, if F(s) = 0 for every s ∈] −∞, 0[, then the elements un are non-negative. 894

Proof Since limk→+∞ bk = +∞, instead of the sequence {bk}, we may consider a non- 895

decreasing subsequence of it, denoted again by {bk}. Fix an s ∈ R such that |s| ∈]ak, bk]. 896

By using Lebourg’s mean value theorem (see Theorem 2.1), there exists θ ∈]0, 1[ and 897

ξθ ∈ ∂CF(θs + (1− θ)sign(s)ak) such that 898

F(s)− F(sign(s)ak) = ξθ (s − sign(s)ak) = sign(s)ξθ (|s| − ak)

= sign(θs + (1− θ)sign(s)ak)ξθ (|s| − ak).

Due to (7.51), we obtain that F(s) ≤ F(sign(s)ak) for every s ∈ R complying with 899

|s| ∈]ak, bk]. In particular, we are led to max[−ak,ak] F = max[−bk,bk] F for every k ∈ N. 900

Therefore, one can fix a ρk ∈ [−ak, ak] such that 901

F(ρk) = max[−ak,ak]
F = max[−bk,bk]

F. (7.52)

Moreover, since {bk} is non-decreasing, the sequence {|ρk|} can be chosen non- 902

decreasingly as well. In view of (7.50) we can choose a number μ such that 903

2

(2−Npβ∞F∞ − 1)1/p
< μ < (7.53)

904

< sup{r : meas(BN (0, r) \ α−1(]β∞,+∞[)) = 0}.

In particular, one has 905

α(x) > β∞, for a.e. x ∈ BN(0, μ). (7.54)

906
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For every k ∈ N we define 907

uk(x) =

⎧⎪⎨
⎪⎩

0, if x ∈ R
N \ BN(0, μ);

ρk, if x ∈ BN(0, μ
2 );

2ρk

μ
(μ− |x|), if x ∈ BN(0, μ) \ BN(0, μ

2 ).

(7.55)

It is easy to see that uk belongs to W 1,p(RN) and it is radially symmetric. Thus, uk ∈
W

1,p
rad (RN). Let ρk = ( bk

c∞ )p, where c∞ is the embedding constant of W 1,p(RN) ↪→
L∞(RN). ��

CLAIM 1 There exists a k0 ∈ N such that ‖uk‖pr < ρk for every k > k0. 908

Since limk→+∞ bk
ak
= +∞, there exists a k0 ∈ N such that 909

bk

ak
> c∞(μNωNK(p,N,μ))1/p, for every k > k0, (7.56)

where ωN denotes the volume of the N-dimensional unit ball and 910

K(p,N,μ) := 2p

μp

(
1− 1

2N

)
+ 1. (7.57)

Thus, for every k > k0 one has 911

‖uk‖pr =
∫
RN

|∇uk|pdx +
∫
RN

|uk|pdx

≤
(

2|ρk|
μ

)p

(volBN(0, μ)− volBN(0,
μ

2
))+ |ρk|pvolBN(0, μ)

= |ρk|pμNωNK(p,N,μ) ≤ a
p
k μ

NωNK(p,N,μ)

< (
bk

c∞
)p = ρk,

which proves Claim 1. 912

Now, let ϕ from (7.49) and γ = lim infρ→+∞ ϕ(ρ) defined in (5.52). 913

CLAIM 2 γ = 0. By definition, γ ≥ 0. Suppose that γ > 0. Since limk→+∞ ρk|ρk |p = 914

+∞, there is a number k1 ∈ N such that for every k > k1 we have 915

ρk

|ρk|p
>

2

γ
(F∞ + 1)(‖α‖L1 − β∞μNωN)+ μNωNK(p,N,μ), (7.58)

916



260 7 Hemivariational Inequalities and Differential Inclusions on Unbounded. . .

where μ is an arbitrary fixed number complying with 917

0 < μ < min

{( ‖α‖L1

β∞ωN

)1/N

,
μ

2

}
. (7.59)

Moreover, since |ρk| → +∞ as k → +∞ (otherwise we would have F∞ = 0), by the 918

definition of F∞, see (7.41), there exists a k2 ∈ N such that 919

F(ρk)

|ρk|p
< F∞ + 1, for every k > k2. (7.60)

Now, let v ∈ W
1,p
rad (RN) arbitrarily fixed with ‖v‖pr ≤ ρk. Due to the continuous 920

embedding W 1,p(RN) ↪→ L∞(RN), we have ‖v‖pL∞ ≤ c
p∞ρk = b

p
k . Therefore, one 921

has 922

sup
x∈RN

|v(x)| ≤ bk.

In view of (7.52), we obtain 923

F(v(x)) ≤ max[−bk,bk]
F = F(ρk), for every x ∈ R

N. (7.61)

Hence, for every k > max{k0, k1, k2}, one has 924

sup
‖v‖pr ≤ρk

F (v)− F (uk) = sup
‖v‖pr ≤ρk

∫
RN

α(x)F (v(x))dx −
∫
RN

α(x)F (uk(x))dx

≤ F(ρk)‖α‖L1 −
∫
BN (0,μ)

α(x)F (uk(x))dx

≤ F(ρk)(‖α‖L1 − β∞μNωN)

≤ (F∞ + 1)|ρk|p(‖α‖L1 − β∞μNωN)

≤ γ

2
(ρk − |ρk|pμNωNK(p,N,μ))

≤ γ

2
(ρk − ‖uk‖pr ).

Since ‖uk‖pr < ρk (cf. Claim 1), and ρk →+∞ as k →+∞, we obtain 925

γ = lim inf
ρ→+∞ ϕ(ρ) ≤ lim inf

k→+∞ ϕ(ρk) ≤ lim inf
k→+∞

sup‖v‖pr ≤ρk F (v)− F (uk)

ρk − ‖uk‖pr
≤ γ

2
,

contradiction. This proves Claim 2. 926

CLAIM 3 Er is not bounded from below on W
1,p
rad (RN). 927
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By (7.53), we find a number ε∞ such that 928

0 < ε∞ < F∞ − 2N

pβ∞

((
2

μ

)p

+ 1

)
. (7.62)

In particular, for every k ∈ N, sup|ρ|≥k
F (ρ)
|ρ|p > F∞ − ε∞. Therefore, we can fix ρ̃k with 929

|ρ̃k| ≥ k such that 930

F(ρ̃k)

|ρ̃k|p > F∞ − ε∞. (7.63)

Now, define wk ∈ W
1,p
rad (RN) in the same way as uk, see (7.55), replacing ρk by ρ̃k. We 931

obtain 932

Er (wk) = 1

p
‖wk‖pr − F (wk)

≤ 1

p
|ρ̃k|pμNωNK(p,N,μ) −

∫
BN (0, μ2 )

α(x)F (wk(x))dx

≤ 1

p
|ρ̃k|pμNωNK(p,N,μ) − (F∞ − ε∞)|ρ̃k|pβ∞ωN

(μ
2

)N

= |ρ̃k|pμNωN

(
1

p
K(p,N,μ) − 1

2N
(F∞ − ε∞)β∞

)

< − 1

p
|ρ̃k|pωN

(
2

μ

)p−N
.

Since |ρ̃k| → +∞ as k → +∞, we obtain limk→+∞ Er (wk) = −∞, which ends the 933

proof of Claim 3. 934

The Case 0 < F∞ < +∞ It is enough to apply Remark 7.12. Indeed, since γ = 0 (cf. 935

Claim 2) and the functionEr ≡ −F |W 1,p
rad (RN)

+ 1
p
‖·‖pr is not bounded below (cf. Claim 3), 936

the alternative (A1) from Theorem 5.17, applied to λ = 1
p
, is excluded. Thus, there exists 937

a sequence {un} ⊂ W
1,p
rad (RN) of critical points of Er with limn→+∞ ‖un‖r = +∞. 938

Now, let us suppose that F(s) = 0 for every s ∈] − ∞, 0[, and let u be a solution of 939

(DI). Denote S = {x ∈ R
N : u(x) < 0}, and assume that S = ∅; it is clear that S is open. 940

Define uS : RN → R by uS = min{u, 0}. Applying (7.40) for v := uS ∈ W 1,p(RN) and 941

taking into account that ζx ∈ ∂CF(u(x)) = {0} for every x ∈ S, one has 942

0 =
∫
RN

(|∇u|p−2∇u∇uS + |u|p−2uuS)dx =
∫
S

(|∇u|p + |u|p)dx = ‖u‖p
W 1,p(S)

,

which contradicts the choice of the set S. This ends the proof in this case. 943
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Remark 7.13 A closer inspection of the proof allows us to replace hypothesis (7.50) by 944

a weaker, but a more technical condition. More specifically, it is enough to require that 945

p‖α‖L∞Fl > 1, and instead of (7.50), put 946

sup
M

{
Nβl −

1

(1− σ)(pβlFlσN − 1)1/p

}
> 0, (7.64)

where 947

M = {(σ, βl) : σ ∈](p‖α‖L∞Fl)
−1/N , 1[, βl ∈](pFlσ

N)−1, ‖α‖L∞[}

and 948

Nβl = sup{r : meas(BN(0, r) \ α−1(]βl,+∞[)) = 0}.

Now, in the construction of the functions wk we replace the radius μ
2 of the ball by σμ, 949

where σ is chosen according to (7.64). 950

The Case 0 < F0 < +∞ The proof works similarly as in the case 0 < F∞ < +∞ 951

and we will show only the differences. The sequence {ρk} defined as above, converges 952

now to 0, while the same holds for {ρk}. Instead of Claim 2, we can prove that δ = 953

lim infρ→0+ ϕ(ρ) = 0. Since 0 is the unique global minimum of " = ‖ · ‖pr , it would be 954

enough to show that 0 is not a local minimum of Er ≡ −F |W 1,p
rad (RN)

+ 1
p
‖ · ‖pr , in order 955

to exclude alternative (B1) from Theorem 5.17. To this end, we fix ρ̃k with |ρ̃k| ≤ 1
k

such 956

that 957

F(ρ̃k)

|ρ̃k|p > F0 − ε0,

where ε0 is fixed in a similar manner as in (7.62), replacing β∞, F∞ by β0, F0, 958

respectively. If we take wk as in case 0 < F∞ < +∞, then it is clear that {wk} strongly 959

converges now to 0 in W
1,p
rad (RN), while Er (wk) < − 1

p
|ρ̃k|pωN (2/μ)p−N < 0 = Er (0). 960

Thus, 0 is not a local minimum of Er . So, there exists a sequence {un} ⊂ W
1,p
rad (RN) 961

of critical points of Er such that limn→+∞ ‖un‖r = 0 = inf
W

1,p
rad (RN)

". This concludes 962

completely the proof of Theorem 7.7. 963

In the next result we trait the case when the function F has oscillation at infinity. We 964

have the following result. 965

Theorem 7.8 ([18], Fl = +∞) Let l = 0 or l = +∞, and let 2 ≤ N < p < +∞. Let 966

F : R→ R and α : RN → R be two functions which satisfy (H) and Fl = +∞. Assume
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that ‖α‖L∞ > 0, and there exist μ > 0 and βl ∈]0, ‖α‖L∞[ such that 967

meas(BN (0, μ) \ α−1(]βl,+∞[)) = 0, (7.65)

and there are sequences {ak} and {bk} in ]0,+∞[ with ak < bk, limk→+∞ bk = l, 968

limk→+∞ bk
ak
= +∞ such that 969

sup{sign(s)ξ : ξ ∈ ∂CF(s), |s| ∈]ak, bk[} ≤ 0,

and 970

lim sup
k→+∞

max[−ak,ak] F
b
p
k

< (pc
p∞‖α‖L1)−1, (7.66)

where c∞ is the embedding constant of W 1,p(RN) ↪→ L∞(RN). Then the conclusions of 971

Theorem 7.7 hold. 972

Proof The case F∞ = +∞. Due to (7.65), 973

α(x) > β∞, for a.e. x ∈ BN(0, μ). (7.67)

Let ρk and ρk as in the proof of Theorem 7.7, as well as uk, defined this time by means of 974

μ > 0 from (7.67). 975

CLAIM 1’ There exists a k0 ∈ N such that ‖uk‖pr < ρk, for every k > k0. 976

The proof is similarly as in the proof of Theorem 7.7. 977

CLAIM 2’ γ < 1
p
. 978

Note that F(ρk) = max[−ak,ak] F, cf. (7.52). Since |ρk| ≤ ak, then limk→+∞ |ρk |
bk
= 0. 979

Combining this fact with (7.66), and choosing ε > 0 sufficiently small, one has 980

lim sup
k→+∞

F(ρk)+ |ρk|pμNωNp−1‖α‖−1
L1 K(p,N,μ)

b
p

k

< ((p + ε)c
p∞‖α‖L1)−1,

where K(p,N,μ) is from (7.57). According to the above inequality, there exists k3 ∈ N 981

such that for every k > k3 we readily have 982

F(ρk)‖α‖L1 ≤ (p + ε)−1c
−p∞ b

p

k − p−1|ρk|pμNωNK(p,N,μ)

≤ 1

p + ε

(
ρk − p + ε

p
‖uk‖pr

)
<

1

p + ε

(
ρk − ‖uk‖pr

)
.
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Thus, for every k > k3, one has 983

sup
‖v‖pr ≤ρk

F (v)− F (uk) < F(ρk)‖α‖L1 <
1

p + ε

(
ρk − ‖uk‖pr

)
.

Hence γ ≤ 1
p+ε < 1

p
, which concludes the proof of Claim 2’. 984

CLAIM 3’ Er is not bounded below on W
1,p
rad (RN). 985

Since F∞ = +∞, for an arbitrarily large number M > 0, we can fix ρ̃k with |ρ̃k| ≥ k 986

such that 987

F(ρ̃k)

|ρ̃k|p > M. (7.68)

Define wk ∈ W
1,p
rad (RN) as in (7.55), putting ρ̃k instead of ρk . We obtain 988

Er (wk) = 1

p
‖wk‖pr − F (wk)

≤ 1

p
μNωN |ρ̃k|pK(p,N,μ) −

∫
BN(0, μ2 )

α(x)F (wk(x))dx

≤ |ρ̃k|pμNωN

(
1

p
K(p,N,μ) − 1

2N
Mβ∞

)
.

Since |ρ̃k| → +∞ as k → +∞, and M is large enough we obtain that 989

limk→+∞ Er (wk) = −∞. The proof of Claim 3’ is concluded. 990

Proof Concluded Since γ < 1
p

(cf. Claim 2’), we can apply Theorem 5.17 (A) for λ = 1
p
. 991

The rest is the same as in Theorem 7.7. 992��

The Case F0 = +∞ We follow the line of the proof for F∞ = +∞. The sequences {ρk}, 993

{ρk} are defined as above; they converge to 0. Let μ > 0 be as in (7.67), replacing β∞ by 994

β0. Instead of Claim 2’, we may prove that δ = lim infρ→0+ ϕ(ρ) < 1
p
. Now, we are in 995

the position to apply Theorem 5.17 (B) with λ = 1
p
. Since F0 = +∞, for an arbitrarily 996

large number M > 0, we may choose ρ̃k with |ρ̃k| ≤ 1
k

such that 997

F(ρ̃k)

|ρ̃k|p > M.

998
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Define wk ∈ W
1,p
rad (RN) by means of ρ̃k as above. It is clear that {wk} strongly converges 999

to 0 in W
1,p
rad (RN) while 1000

Er (wk) ≤ |ρ̃k|pμNωN

(
1

p
K(p,N,μ) − 1

2N
Mβ0

)
< 0 = Er (0).

Consequently, in spite of the fact that 0 is the unique global minimum of " = ‖ · ‖pr , it 1001

is not a local minimum of Er; thus, (B1) can be excluded. The rest is the same as in the 1002

proof of Theorem 7.7. This completes the proof of Theorem 7.8. 1003

In the sequel we give some examples where the results apply; we suppose that 2 ≤ N < 1004

p < +∞. 1005

Example 7.6 Let F : R→ R be defined by 1006

F(s) = 2N+p+3

p
|s|p max{0, sin ln(ln(|s| + 1)+ 1)},

and α : RN → R by 1007

α(x) = 1

(1+ |x|N)2 . (7.69)

Then (DI) has an unbounded sequence of radially symmetric solutions. 1008

Proof The functions F and α clearly fulfill (H). Moreover, F∞ = 2N+p+3

p
. Since 1009

‖α‖L∞ = 1, we may fix β∞ = 1/4 which verifies (7.50). For every k ∈ N let 1010

ak = ee
(2k−1)π−1 − 1 and bk = ee

2kπ−1 − 1.

If ak ≤ |s| ≤ bk, then (2k − 1)π ≤ ln(ln(|s| + 1)+ 1) ≤ 2kπ, thus F(s) = 0 for every
s ∈ R complying with ak ≤ |s| ≤ bk. So, ∂CF(s) = {0} for every |s| ∈]ak, bk[ and (7.51)
is verified. Thus, all the assumptions of Theorem 7.7 are satisfied. ��

Example 7.7 Fix σ ∈ R. Let F : R→ R be defined by 1011

F(s) =
{

8N+1

p
sp−σ max{0, sin ln ln 1

s
}, s ∈]0, e−1[;

0, s /∈]0, e−1[,

and let α : RN → R be as in (7.69). Then, for every σ ∈ [0,min{p−1, p(1−e−π)}[, (DI) 1012

admits a sequence of non-negative, radially symmetric solutions which strongly converges 1013

to 0 in W 1,p(RN). 1014
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Proof Since σ < p − 1, (H) is verified. We distinguish two cases: σ = 0, and σ ∈ 1015

]0,min{p − 1, p(1− e−π)}[. 1016

Case 1. σ = 0 We have F0 = 8N+1

p
. If we choose β0 = (1 + 2N)−2, this clearly verifies 1017

(7.50). For every k ∈ N set 1018

ak = e−e2kπ
and bk = e−e(2k−1)π

. (7.70)

For every s ∈ [ak, bk], one has (2k− 1)π ≤ ln ln 1
s
≤ 2kπ; thus F(s) = 0. So, ∂CF(s) = 1019

{0} for every s ∈]ak, bk[ and (7.51) is verified. Now, we apply Theorem 7.7. 1020

Case 2. σ ∈ ]0,min{p − 1, p(1 − e−π)}[ We have F0 = +∞. In order to verify (7.65), 1021

we fix for instance β0 = (1+ 2N)−2 and μ = 2. Take {ak} and {bk} in the same way as in 1022

(7.70). The inequality in (7.66) becomes obvious since 1023

lim sup
k→+∞

max[−ak,ak] F
b
p

k

≤ 8N+1

p
lim sup
k→+∞

a
p−σ
k

b
p

k

=

1024

= 8N+1

p
lim

k→+∞ e[p−eπ (p−σ)]e(2k−1)π = 0.

Therefore, we may apply Theorem 7.8. 1025��

Example 7.8 Let {ak} and {bk} be two sequences such that a1 = 1, b1 = 2 and ak = kk, 1026

bk = kk+1 for every k ≥ 2. Define, for every s ∈ R the function 1027

f (s) =
{

b
p
k+1−bpk
ak+1−bk , if s ∈ [bk, ak+1[;
0, otherwise.

Then the problem 1028

{
−)pu+ |u|p−2u ∈ σ

(1+|x|N)2 [f (u(x)), f (u(x))], x ∈ R
N,

u ∈ W 1,p(RN),

possesses an unbounded sequence of non-negative, radially symmetric solutions whenever 1029

0 < σ < N
p

(
p−N

2p

)p

(AreaSN−1)−1. 1030
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Proof Let F(s) = ∫ s

0 f (t)dt. Since the function f is locally (essentially) bounded, F is 1031

locally Lipschitz. A more explicit expression of F is 1032

F(s) =

⎧⎪⎨
⎪⎩
b
p
k − b

p
1 +

b
p
k+1−bpk
ak+1−bk (s − bk), if s ∈ [bk, ak+1[;

b
p
k − b

p
1 , if s ∈ [ak, bk[;

0, otherwise.

An easy calculation shows, as we expect, that ∂CF(s) = [f (s), f (s)] for every s ∈ R. 1033

Taking α(x) = σ
(1+|x|N)2 , (H) is verified, and ‖α‖L1 = σ

N
AreaSN−1. Moreover, 1034

F∞ = lim sup
|s|→+∞

F(s)

|s|p ≥ lim
k→+∞

F(ak)

a
p
k

= lim
k→+∞

b
p
k − b

p

1

a
p
k

= +∞.

Choosing μ = 1 and β∞ = σ/4, (7.65) is verified, while (7.51) becomes trivial. Since
max[−ak,ak] F = F(ak) = b

p
k − b

p
1 , relation (7.66) reduces to pc

p∞‖α‖L1 < 1. It remains
to apply Theorem 7.8. ��
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Part III 2

Topological Methods for Variational
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1

82Fixed Point Approach 3

8.1 A Set-Valued Approach to Hemivariational Inequalities 4

Let X be a Banach space, X∗ its dual, and let T : X→ Lp(�,Rk) be a linear continuousAQ1
AQ2

5

operator, where 1 ≤ p < ∞, k ∈ N
∗,� being a bounded open set in R

N . Let K be a 6

subset of X and let A : K � X∗ a set-valued map with nonempty values. We denote by 7

σ(A(u), ·) the support function ofA(u), that is 8

σ(A(u), h) := sup
u∗∈A(u)

〈u∗, v〉, ∀v ∈ X.

Definition 8.1 Let X be a Banach space, and let K be a nonempty subset of X. A set- 9

valued map A : K � X∗ with bounded values is said to be upper demicontinuous at 10

u0 ∈ K (u.d.c. at u0 ∈ K) if, for any v ∈ X, the real valued function K � u �→ σ(A(u), v) 11

is upper semicontinuous at u0. 12

A is upper demicontinuous on K (u.d.c. on K) if it is u.d.c. at every u ∈ K . 13

Remark 8.1 IfA(u) := {A(u)} for all u ∈ K , that is A is a single-valued map, thenA is 14

u.d.c. at u0 ∈ K if and only if the map A : K → X∗ is w∗-demicontinuous at u0 ∈ K , i.e., 15

for each sequence {un} ∈ K converging to u0 in the strong topology, the image sequence 16

{A(un)} converges to A(u0) in the weak∗-topology of X∗. It is easy to verify that, for all 17

u ∈ K , the function v ∈ X �→ σ(A(u), v) is lower semicontinuous, subadditive and 18

positive homogeneous. 19

Using Banach-Steinhaus theorem, we can state the following the following useful 20

result. 21

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
N. Costea et al., Variational and Monotonicity Methods in Nonsmooth Analysis,
Frontiers in Mathematics, https://doi.org/10.1007/978-3-030-81671-1_8

271

https://doi.org/10.1007/978-3-030-81671-1_8
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Proposition 8.1 Let K be a nonempty subset of a Banach space X and assumeA : K � 22

X∗ is an upper demicontinuous set-valued map with bounded values. Then the function 23

u �→ σ(A(u), v − u) is upper semicontinuous for all v ∈ K . 24

In the following we consider the following set-valued mapsA : K � X∗, G : K×X � 25

R and F : � × R
k × R

k � R with nonempty values such that the following conditions 26

hold: 27

(H1) x ∈ � � F(x, T u(x), T v(x) − T u(x)) is a measurable set-valued map for all 28

u, v ∈ K; 29

(H2) There exist h1 ∈ Lp/p−1(�,R+) and h2 ∈ L∞(�,R+) such that 30

dist(0, F (x, y, z)) ≤ (h1(x)+ h2(x)|y|p−1)|z|, for a.e. x ∈ �,

for every y, z ∈ R
k; 31

(H3) X � w � G(u,w) and R
k � z � F(x, y, z) are convex for all u ∈ K, x ∈ �, y ∈ 32

R
k; 33

(H4) G(u, 0) ⊆ R+ and F(x, y, 0) ⊆ R+ for all u ∈ K, x ∈ �, y ∈ R
k; 34

(H5) K ×X � (u,w) � G(u,w) is lower semicontinuous; 35

(H6) R
k ×R

k � (y, z) � F(x, y, z) is lower semicontinuous for all x ∈ �. 36

Remark 8.2 If F : �× R
k × R

k � R is a closed-valued Carathéodory map, i.e., for any 37

(y, z) ∈ R
k × R

k, x ∈ � � F(x, y, z) is measurable and for any x ∈ �, (y, z) ∈ R
k × 38

R
k � F(x, y, z) is continuous, then the hypotheses (H1) and (H6) hold automatically. 39

The aim of this section is to study the following hemivariational inclusion problem: 40

(HI) Find u ∈ K such that 41

σ(A(u), v − u)+G(u, v − u)+
∫
�

F(x, T u(x), T v(x)− T u(x))dx ⊆ R+, ∀v ∈ K.

(8.1)

The main result of this section is the following. 42

Theorem 8.1 ([11]) Let K be a nonempty compact convex subset of a Banach space X. 43

Suppose F : �×R
k × R

k � R and G : K ×X � R are two set-valued maps satisfying 44

(H1)− (H6) and F is closed valued. IfA : K � X∗ is upper demicontinuous on K with 45

bounded values, then (HI) has at least one solution. 46

Proof For any v ∈ K we set 47

Sv :=
{
u ∈ K : R+ ⊇ σ(A(u), v − u)+G(u, v − u)

+ ∫
�
F(x, T u(x), T v(x)− T u(x))dx

}
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First, we prove that Sv is closed set for all v ∈ K . Fix a v ∈ K . Of course, Sv = ∅, since 48

v ∈ Sv , due to (H4). Now, let {un} be a sequence in Sv which converges to u ∈ X. We 49

prove that u ∈ Sv . Since T : X→ Lp(�,Rk) is continuous, it follows that T un → T u in 50

Lp(�,Rk) as n→∞. Using Proposition 8.1 we get the existence of a subsequence {um} 51

of {un}, such that 52

lim sup
n→∞

σ(A(un), v − un) = lim
m→∞ σ(A(um), v − um). (8.2)

Moreover, there exists a subsequence {T ul} of {T um} and g ∈ Lp(�,R+) such that 53

|T ul(x)| ≤ g(x), T ul(x)→ T u(x) fora.e. x ∈ �. (8.3)

In the relation 54

σ(A(u), v − u)+G(u, v − u)+
∫
�

F(x, T u(x), T v(x)− T u(x))dx ⊆ R+

taking the lower limit and using Lemma B.1 with X := R we obtain 55

R+ = lim inf
l→∞ R+ ⊇ lim inf

l→∞ σ(A(ul), v − ul)+ lim inf
l→∞ G(ul, v − ul) (8.4)

+ lim inf
l→∞

∫
�

F(x, T ul(x), T v(x)− T ul(x))dx .

Using Proposition B.2, relation (8.2) and Proposition 8.1, we obtain 56

lim inf
l→∞ σ(A(ul), v − ul) = lim

l→∞ σ(A(ul), v − ul) (8.5)

= lim sup
n→∞

σ(A(un), v − un) ≤ σ(A(u), v − u).

From (H5) and the characterization of lower semicontinuity of set-valued function we 57

obtain 58

G(u, v − u) ⊆ lim inf
l→∞ G(ul, v − ul). (8.6)

Let Fl := F(·, T ul(·), T v(·)− T ul(·)). From (H1) follows that, Fl is measurable, for any 59

l. The function x ∈ � �→ supl dist(0, Fl(x)) is integrable. Indeed, from (H2) and relation 60

(8.3) we have 61

dist(0, F (x)) ≤(h1(x)+ h2(x)[g(x)]p−1)|T v(x)− T ul(x)|
≤(h1(x)+ h2(x)[g(x)]p−1)(|T v(x)| + g(x)),
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a.e. x ∈ �. Let h(x) := (h1(x) + h2(x)[g(x)]p−1)(|T v(x)| + g(x)). Hölder’s inequality 62

and condition for h1 and h2 ensure that h ∈ L1(�,R). Therefore the function x ∈ � �→ 63

supl dist(0, Fl(x)) is integrable. Applying the Lebesque dominated convergence theorem 64

for set-valued map, on hase 65

∫
�

lim inf
l→∞ Fl(x)dx ⊆ lim inf

i→∞

∫
�

Fl(x)dx. (8.7)

Of course
∫
�

lim infl→∞ Fl(x)dx = ∫
�

lim infl→∞ F(x, T ul(x), T v(x) − T ul(x)) is 66

measurable (see, e.g., Aubin-Frankowska [1, Theorem 8.6.7]). Using hypothesis (H6) and 67

the characterization of lower semicontinuity of set-valued maps with sequences and (8.3), 68

one has 69

F(x, T u(x), T v(x)− T u(x)) ⊆ lim inf
l→∞ F(x, T ul(x), T v(x)− T ul(x))

for a.e. x ∈ �. Using the elementary property of the set-valued integral and (8.7) we obtain 70

∫
�

F(x, T u(x), T v(x)− T u(x))dx ⊆ lim inf
l→∞

∫
�

Fl(x)dx (8.8)

Therefore, from (8.5), (8.6), (8.8) and (8.4) we obtain 71

σ(A(u), v − u)+G(u, v − u)+
∫
�

F(x, T u(x), T v(x)− T u(x))dx ⊆ R+,

i.e. u ∈ Sv . 72

Finally we prove that S : K � K is a KKM-map. To this end, let {v1, . . . , vn} be 73

an arbitrary finite subset of K . We prove that co{v1, . . . , vn} ⊆ ⋃n
i=1 Svi . Assuming the 74

contrary, there exists λi ≥ 0 (i ∈ {1, . . . , n}) such that
∑n

i=1 λi = 1 and v̄ =∑n
i=1 λivi /∈ 75

Svi for all i ∈ {1, . . . , n}. The above relation means that for all i ∈ {1, . . . , n} 76

[
σ(A(v̄, vi − v̄)+G(v̄, vi − v̄ +

∫
�

F(x, T v̄(x), T vi(x)− T v̄(x))dx)

]
∩R

∗− = ∅.

Let I := {i ∈ {1, . . . , n} : λi > 0 }. From the above obtain 77

∅ =
{∑

i∈I
λiσ (A(v̄), vi − v̄)+G(v̄, vi − v̄)

+
∫
�

F(x, T v̄(x), T vi(x)− T v̄(x))dx]
}
∩ R

∗−.
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Using the sublinearity of the function h ∈ X �→ σ(A(v̄), h), (H3) the linearity of T and 78

(H4), we obtain 79

∅ =
{
σ

(
A(v̄),

∑
i∈I

λivi −
∑
i∈I

λi v̄

)
+

∑
i∈I

λiG(v̄, vi − v̄)

+
{∑

i∈I
λi

∫
�

F(x, T v̄(x), T vi(x)− T v̄(x))dx

}
∩ R

∗−

⊆
{
σ(A(v̄), 0)+G(v̄,

∑
i∈I

λivi −
∑
i∈I

λi v̄)

+
∫
�

∑
i∈I

λiF (x, T v̄(x), T vi(x)− T v̄(x))dx

}
∩ R

∗−

⊆
{
G(v̄, 0)

∫
�

F(x, T v̄(x),
∑
i∈I

T vi(x)−
∑
i∈I

T v̄(x))dx

}
∩ R

∗−

=
{
G(v̄, 0)

∫
�

F(x, T v̄(x), 0)dx

}
∩ R

∗− ⊆
{
R+ +

∫
�

R+
}
∩ R

∗−

=∅,

which is contradiction. This means that S is a KKM-map. Since K is compact, applying
Corollary D.1, we obtain that

⋂
v∈K Sv = ∅,, i.e., (8.1) has at least a solution. ��

When K is not compact, we can state the following result, using the coercivity 80

assumption. 81

Theorem 8.2 ([11]) Let K be a nonempty closed convex subset of a Banach space X. Let 82

A,G and F as in Theorem 8.1. In addition, suppose that there exists a compact subset K0 83

of K and an element w0 ∈ K0 such that 84

{
σ(A(u), u0 − u)+

∫
�

F(x, T u, T w0 − T u)dx +G(u,w0 − u)

}
∩R

∗− = ∅ (8.9)

for all u ∈ K \K0. Then (HI) has at least a solution. 85

Proof We define the map S as in Theorem 8.1. Clearly, S is a KKM-map and Sv is closed
for all v ∈ K , as seen above. Moreover, Sw0 ⊂ K0. Indeed, assuming the contrary, there
exists an element u ∈ Sw0 ⊆ K such that u /∈ K0. But this contradicts (8.9). Since K0 is
compact, the set Sw0 is also compact. Applying again Corollary D.1, we obtain a solution
for (HI). ��
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8.2 Variational-Hemivariational Inequalities with Lack 86

of Compactness 87

In this section we prove the existence of at least one solution for a variational- 88

hemivariational inequality on a closed and convex set using the well-known theorem 89

of Knaster-Kuratowski-Mazurkiewicz due to Ky Fan, i.e., Corollary D.1. The theoretical 90

results can be applied to Schrödinger type problems and for problems with radially 91

symmetric functions. 92

Let (X, ‖ · ‖) be a Banach space and X∗ its topological dual, 〈·, ·〉 denotes the duality 93

pairing between X∗ and X. Let � ⊆ R
n be an unbounded domain, let p be such that 94

1 < p < n and we denote p∗ := np
n−p . Assume the following conditions hold. 95

(X) Assume that for s ∈ [p,p∗) the embedding X ↪→ Ls(�) is compact; 96

(A1) Let A : X→ X∗ be an operator with the following property: for any sequence {un}n 97

in X which converges weakly to u ∈ X it holds 98

〈Au, u−w〉 ≤ lim inf
n→∞ 〈Aun, un −w〉, ∀w ∈ X;

(A2) There exists λ := infu∈X\{0} 〈Au,u〉
‖u‖p > 0. 99

Remark 8.3 Let A : X → X∗ be a linear and continuous operator, which is positive, 100

i.e., 〈Au, u〉 ≥ 0, for all u ∈ X. These assumptions imply that A is weakly sequentially 101

continuous and that (A1) is satisfied. 102

If a : X × X → R is a bilinear form, which is compact, i.e., for any sequences {un}n 103

and {vn}n from X such that un ⇀ u and vn ⇀ v (u, v ∈ X) it follows that a(un, vn) → 104

a(u, v), then the operator A : X→ X∗ defined by 105

〈Au, v〉 := a(u, v), ∀u, v ∈ X

satisfies assumption (A1). 106

We continue with the assumptions for our problem. 107

(f1) Let f : �×R→ R be a Carathéodory function, such that for some α > 0 it holds 108

|f (x, y)| ≤ α|y|p−1 + β(x),

for a.e. x ∈ � and all y ∈ R, where β ∈ L
p

p−1 (�); 109

(f2) we assume that the constants from (f1) and (A2) satisfy αC
p
p < λ. 110
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(j1) Assume that j : � × R → R is a Carathéodory function, which is locally Lipschitz 111

with respect to the second variable, and there exists c > 0, r ∈ [p,p∗) such that 112

|ξ | ≤ c(|y|p−1 + |y|r−1)

for a.e. x ∈ �, all y ∈ R and all ξ ∈ ∂2
Cj (x, y); 113

(j2) there exists k ∈ L
p

p−1 (�) such that 114

|j0(x, y; −y)| ≤ k(x)|y|, ∀x ∈ �, ∀y ∈ R,

where j0(x, y; z) denotes the generalized directional derivative of j (x, ·) at the point 115

y ∈ X in the direction z ∈ X. 116

Let K ⊆ X. In this paper we investigate the existence of at least one solution for the 117

following variational-hemivariational inequality: 118

(VHI) Find u ∈ K such that 119

〈Au, v − u〉 +
∫
�

f (x, u(x))(v(x)− u(x))dx +
∫
�

j0(x, u(x); v(x)− u(x))dx ≥ 0,

for all v ∈ K . 120

Lemma 8.1 Suppose that X is a Banach space. 121

1. Assume that (j1) is satisfied and X1 and X2 are nonempty subsets of X. 122

(a) If the embeddingX ↪→ Ls(�) is continuous for each s ∈ [p,p∗], then the mapping 123

X1 ×X2 � (u, v) �→
∫
�

j0(x, u(x); v(x))dx ∈ R

is upper semicontinuous; 124

(b) Moreover, if X ↪→ Ls(�) is compact for s ∈ [p,p∗), then the above mapping is 125

weakly upper semicontinuous; 126

2. Assume that (f1) holds and that X ↪→ Lp(�) is compact. Then, for each v ∈ X the 127

mapping 128

X � u �→
∫
�

f (x, u(x))(v(x)− u(x))dx ∈ R

is weakly sequentially continuous. 129
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Proof 130

(1a) Let {(un, vn)}n ⊂ X1 × X2 be a sequence converging to (u, v) ∈ X1 × X2. Since 131

X ↪→ Lp(�), X ↪→ Lr(�) are continuous, it follows that 132

un → u, vn → v in Lp(�) and in Lr(�) as n→∞.

There exists a subsequence {(unk , vnk )}k of {(un, vn)}n such that 133

lim sup
n→∞

∫
�

j0(x, un(x); vn(x))dx = lim
k→∞

∫
�

j0(x, unk (x); vnk (x))dx. (8.10)

By Theorem 4.9 in [3] it follows that there exists ū, v̄ ∈ Lp(�) and û, v̂ ∈ Lr(�) 134

and two subsequences {uni }i and {vni }i of {unk }k and {vnk }k such that for a.e. x ∈ � 135

it hold 136

uni (x)→ u(x), and vni (x)→ v(x) as i →∞ (8.11)

and 137

|uni (x)| ≤ ū(x), |uni (x)| ≤ û(x) and |vni (x)| ≤ v̄(x), |vni (x)| ≤ v̂(x) for all i ∈ N.

By assumption (j1) and the properties of j0, see Proposition 2.3, it follows that for 138

all i ∈ N and for a.e. x ∈ � it holds 139

|j0(x, uni (x); vni (x))| ≤ |ξi ||vni (x)| ≤ c|ū(x)|p−1|v̄(x)| + c|û(x)|r−1|v̂(x)|,

where ξi ∈ ∂2
Cj (x, uni (x); vni (x)). By using ū, v̄ ∈ Lp(�), û, v̂ ∈ Lr(�) and 140

Hölder’s inequality we have |ū|p−1|v̄| + |û|r−1|v̂| ∈ L1(�). The Fatou-Lebesgue 141

Theorem implies 142

lim
i→∞

∫
�

j0(x, uni (x); vni (x))dx ≤
∫
�

lim sup
i→∞

j0(x, uni (x); vni (x))dx. (8.12)

The mapping j0(x, ·; ·) is upper-semicontinuous, see Proposition 2.3 and by (8.11) 143

we obtain 144

lim sup
i→∞

j0(x, uni (x); vni (x)) ≤ j0(x, u(x); v(x)). (8.13)

We use (8.10), (8.12) and (8.13) to get 145

lim sup
n→∞

∫
�

j0(x, un(x); vn(x))dx ≤
∫
�

j0(x, u(x); v(x))dx.
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(1b) Let {(un, vn)}n ⊂ X1 × X2 be a sequence converging weakly to (u, v) ∈ X1 × X2. 146

Since X ↪→ Ls(�) is compact for s ∈ [p,p∗), it follows that 147

un → u, vn → v in in Lp(�) and in Lr(�) as n→∞.

From now on the proof is similar to the case (1a). 148

(2) Let {un}n ⊂ X be a sequence converging weakly to u ∈ X. Since X ↪→ Lp(�) is 149

compact, it follows that 150

un → u in in Lp(�) as n→∞.

By Theorem 4.9 in [3] it follows that there exists ū ∈ Lp(�) and a subsequences 151

{uni }i of {un}n such that for a.e. x ∈ � it holds 152

uni (x)→ u(x) as i →∞ (8.14)

and 153

|uni (x)| ≤ |ū(x)|, for all i ∈ N.

By assumption (f1) it follows that for all i ∈ N and for a.e. x ∈ � it hold 154

|f (x, uni (x))(uni (x)− v(x))| ≤ (α|ū(x)|p−1 + β(x))(|ū(x)| + |v(x)|).

By using ū ∈ Lp(�), β ∈ L
p

p−1 (�) and Hölder’s inequality we have (α|ū|p−1 + 155

β)(|ū| + |v|) ∈ L1(�). Since f is a Carathéodory function, it follows by the 156

Dominated Convergence Theorem and by (8.14) that 157

lim
i→∞

∫
�

f (x, uni (x))(uni (x)− v(x))dx =
∫
�

lim
i→∞ f (x, uni (x))(uni (x)− v(x))dx

=
∫
�

f (x, u(x))(u(x)− v(x))dx.

Hence, every subsequence admits a subsequence which converges to the same limit, 158

and we get 159

lim
n→∞

∫
�

f (x, un(x))(un(x)− v(x))dx =
∫
�

f (x, u(x))(u(x)− v(x))dx.

��
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Theorem 8.3 ([11]) Suppose that X is a reflexive Banach space and that K ⊆ X is a 160

nonempty, closed, convex and bounded set and that the hypotheses (X), (A1), (f1), (j1), 161

are fulfilled. Then, (VHI) has at least one solution. 162

Proof Let G : K � X be the multivalued mapping defined by 163

G(v) :=
{
u ∈ K : 〈Au, v − u〉 + ∫

� f (x, u(x))(v(x)− u(x))dx

+ ∫
� j0(x, u(x); v(x)− u(x))dx ≥ 0

}

Note that for each v ∈ K one has G(v) = ∅ as v ∈ G(v). We verify the assumptions of 164

Corollary D.1 are fulfilled the weak topology. 165

STEP 1. For v ∈ K the set G(v) is weakly closed. 166

Let {un}n ⊂ G(v) such that un ⇀ u in the space X. By Lemma 8.1 and (A1) it follows 167

that 168

0 ≤ lim sup
n→∞

(
〈Aun, v − un〉 +

∫
�

f (x, un(x))(v(x)− un(x))dx

+
∫
�

j0(x, un(x); v(x)− un(x))dx

)

≤〈Au, v − u〉 +
∫
�

f (x, u(x))(v(x)− u(x))dx +
∫
�

j0(x, u(x); v(x)− u(x))dx.

Hence u ∈ G(v). 169

STEP 2. Gis a KKM mapping. 170

We argue by contradiction, let v1, . . . , vn ∈ K and u ∈ co{v1, . . . , vn} such that u /∈ 171⋃n
i=1 G(vi). This implies that for all i ∈ {1, . . . , n} we have 172

〈Au, v − u〉 +
∫
�

f (x, u(x))(v(x)− u(x))dx +
∫
�

j0(x, u(x); v(x)− u(x))dx < 0.

We denote by 173

C :=
{
v ∈ K : 〈Au, v − u〉 + ∫

�
f (x, u(x))(v(x)− u(x))dx

+ ∫
� j0(x, u(x); v(x)− u(x))dx < 0

}

Observe that u1, . . . , un ∈ C and thatC is a convex set, since j0(x, u(x); ·) is positively 174

homogeneous and subadditive. This implies u ∈ C, which is a contradiction. 175

STEP 3. For each w ∈ K the set G(w) is weakly compact. 176

G(v) is a bounded set (since K is bounded) and it is weakly closed (by STEP 1). The 177

Eberlein-Šmulian Theorem implies that G(v) is weakly compact. 178
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The above steps ensure that the conditions of Corollary D.1 are satisfied (for the weak
topology), therefore

⋂
v∈K G(v) = ∅, i.e., the solution set of (VHI) is nonempty. ��

Theorem 8.4 ([11]) Suppose that X is a reflexive Banach space and K ⊆ X is a 179

nonempty, closed, and convex set and that the hypotheses (X), (A1), (A2), (f1), (f2), 180

(j1), (j2) are fulfilled. Then, (VHI) has at least one solution. 181

Proof Without loss of generality we assume that 0 ∈ K . For any positive integer n, set 182

Kn := {v ∈ K : ‖v‖ ≤ n}.

Thus, 0 ∈ Kn for all n ∈ N. 183

Let n ∈ N. Applying Theorem 8.3 there exists un ∈ Kn such that for all v ∈ Kn it holds 184

〈Aun, v − un〉 +
∫
�

f (x, un(x))(v(x)− un(x))dx (8.15)

+
∫
�

j0(x, un(x); v(x)− un(x))dx ≥ 0.

We prove that {un}n is a bounded sequence in X. In (8.15) we take v = 0 and get 185

〈Aun, un〉 +
∫
�

f (x, un(x))un(x)dx ≤
∫
�

j0(x, un(x); −un(x))dx. (8.16)

By the assumption (j2), (f1) and by the continuity of the embedding X ↪→ Lp(�), it 186

follows that 187

∫
�

j0(x, un(x); −un(x))dx ≤
∫
�

k(x)|un(x)|dx ≤ ‖k‖Lp′ (�)
Cp‖un‖, (8.17)

and 188

∣∣∣
∫
�

f (x, un(x))un(x)dx
∣∣∣ ≤ αC

p
p‖un‖p + ‖β‖Lp′ (�)

Cp‖un‖,

where Cp denotes the embedding constant. Using (f2) we obtain 189

(
λ− αC

p
p

) ‖un‖p − Cp‖β‖Lp′ (�)‖un‖ ≤ 〈Aun, un〉 +
∫
�

f (x, un(x))un(x)dx.

Since p > 1, it follows by (f2), (8.16) and (8.17) that {un}n is a bounded sequence in X. 190

This property and the closedness of K , implies that there exist u ∈ K and a 191

subsequence, which we denote also {un}n, such that un ⇀ u in X. 192
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By (A1), Lemma 8.1 it follows that 193

lim sup
n→∞

∫
�

j0(x, un(x); vn(x))dx ≤
∫
�

j0(x, u(x); v(x))dx, (8.18)
194

lim
n→∞

∫
�

f (x, un(x))(un(x)− v(x))dx =
∫
�

f (x, u(x))(u(x)− v(x))dx, (8.19)
195

lim sup
n→∞

〈Aun, v − un〉 ≤ 〈Au, v − u〉. (8.20)

Let v ∈ K be fixed. Then there exists n0 ∈ N such that v ∈ Kn for all n ≥ n0. We pass
to lim sup as n→∞ in (8.15), use (8.18), (8.19) and (8.20) and obtain that u ∈ K is a
solution of (VHI). ��

Example 8.1 This is an example of a Schrödinger type problem. Let n > 2 and V : Rn → 196

R be a continuous function such that 197

inf
x∈Rn

V (x) > 0 and for every M > 0 meas
(
{x ∈ R

n : V (x) ≤ M}
)
<∞.

The space 198

X :=
{
u ∈ W 1,2(Rn) :

∫
Rn

|∇u(x)|2 + V (x)u2(x)dx <∞
}

equipped with the inner product 199

(u, v)X :=
∫
Rn

∇u(x)∇v(x)+ V (x)u(x)v(x)dx

is a Hilbert space. It is known that X ↪→ Ls(Rn) is continuous for s ∈
[
2, 2n

n−2

]
, since 200

W 1,2(Rn) ↪→ Ls(Rn) is continuous for s ∈
[
2, 2n

n−2

]
. Bartsch and Wang proved in [2] 201

that X ↪→ Ls(Rn) is compact for s ∈
[
2, 2n

n−2

)
. Hence, assumption (X) is satisfied for 202

p = 2. We consider A : X→ X to be defined by 203

〈Au, v〉 := (u, v)X.

By the properties of the norm and of the weak convergence, it follows that (A1) and (A2) 204

are satisfied. Theorem 8.3 can be applied assuming that f and j satisfy (f1) and (j1), 205

respectively, and that K ⊂ X is a nonempty, closed, convex and bounded set. If f and j
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satisfy (f1), (f2) and (j1), (j2), respectively, and if K ⊆ X is a nonempty, closed, and 206

convex set, then by Theorem 8.4, it follows that (VHI) has at least one solution. 207

Example 8.2 Another Schrödinger type problem can be analogously formulated, if we 208

consider for n > 2 the Hilbert space 209

X :=
{
u ∈ L2(Rn) :

∫
Rn

|∇u(x)|2 + |x|2u2(x)dx <∞
}

equipped with the inner product 210

(u, v)X :=
∫
Rn

∇u(x)∇v(x)+ |x|2u(x)v(x)dx.

Note, that X ↪→ Ls(Rn) is compact for s ∈
[
2, 2n

n−2

)
(see Kavian, [9]). Similarly, as in 211

Example 8.1, Theorems 8.3 and 8.4 can be applied. 212

In Theorems 8.3 and 8.4 it is very important that the conditions (X), (j1) and (j2) are 213

satisfied. In this example we modify the conditions (j1), (j2) and prove that Theorems 8.3 214

and 8.4 still hold. 215

Let a : RL × R
M → R (L ≥ 2) be a nonnegative continuous function satisfying the 216

following assumptions: 217

(a1) a(x, y) ≥ a0 > 0 if |(x, y)| ≥ R for a large R > 0; 218

(a2) a(x, y)→+∞, when |y| → +∞ uniformly for x ∈ R
L; 219

(a3) a(x, y) = a(x ′, y) for all x, x ′ ∈ R
L with |x| = |x ′| and all y ∈ R

M. 220

Consider the following subspaces of W 1,p(RL × R
M) 221

Ẽ :=
{
u ∈ W 1,p(RL ×R

M) : u(s, t) = u(s′, t) ∀ s, s′ ∈ R
L, |s| = |s′|,∀t ∈ R

M
}
,

222

E :=
{
u ∈ W 1,p(RL × R

M) :
∫
RL+M

a(x)|u(x)|pdx <∞
}
,

223

X := Ẽ ∩ E =
{
u ∈ Ẽ :

∫
RL+M

a(x)|u(x)|pdx <∞
}

endowed with the norm 224

‖u‖p =
∫

RL+M

|∇u(x)|pdx +
∫

RL+M

a(x)|u(x)|pdx.
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Morais Filho, Souto and Marcos Do proved in [7] the following result: X is continu- 225

ously embedded in Ls(RL×R
M) if s ∈ [p,p∗], and compactly embedded if s ∈ (p, p∗). 226

Let 227

G :=
{
g : E → E : g(v) = v ◦

(
R 0

0 IdRM

)
, R ∈ O(RL)

}
,

where O(RL) is the set of all rotations on R
L and IdRM denotes the M × M identity 228

matrix. The elements of G leave RL+M invariant, i.e. g(RL+M) = R
L+M for all g ∈ G. 229

The action of G over E is defined by 230

(gu)(x) = u(g−1x), g ∈ G, u ∈ E, a.e. x ∈ R
L+M.

As usual we write gu in place of π(g)u. 231

A function u defined on R
L+M is said to be G-invariant if 232

u(gx) = u(x), ∀g ∈ G, a.e. x ∈ R
L+M.

Then u ∈ E is G-invariant if and only if u ∈ X. We observe that the norm ‖ · ‖ is G- 233

invariant. 234

We assume that j : RL × R
M × R → R is a Carathéodory function, which is locally 235

Lipschitz in the second variable (the real variable) and satisfies the following conditions: 236

(j ′1) j (x, 0) = 0, and there exist c > 0 and r ∈ (p, p∗) such that 237

|ξ | ≤ c(|y|p−1 + |y|r−1),∀ξ ∈ ∂2
Cj (x, y), (x, y) ∈ R

L+M × R;

(j3) limy→0
max{|ξ |:ξ∈∂2

Cj (x,y)}
|y|p−1 = 0 uniformly for everyx ∈ R

L+M ; 238

(j4) j (·, y) is G-invariant for all y ∈ R. 239

To derive the results of Theorem 8.3 we use the following result proved in [13, 240

Proposition 5.1] instead of Lemma 8.1: 241

If j : RL × R
M × R→ R verifies the conditions (j ′1), (j3) and (j4) then 242

u ∈ X �→
∫
RL+M

j (x, u(x))dx

is weakly sequentially continuous. 243
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In the same way as in Theorems 8.3 and 8.4 we can prove the following existence result: 244

Theorem 8.5 245

(i) Let K ⊂ X be a nonempty, closed, convex and bounded set. Let A : E → E∗ be an 246

operator satisfying (A1). Assume that j satisfies (j ′1), (j3) and (j4). Then, there exists 247

u ∈ K such that 248

〈Au, v − u〉 +
∫
RL+M

j0(x, u(x); v(x)− u(x))dx ≥ 0, ∀v ∈ K. (8.21)

(ii) Moreover, if K ⊂ X is a nonempty, closed and convex set and A : X → X∗ is an 249

operator satisfying (A1), (A2) and if we assume that j satisfies (j ′1), (j2), (j3) and 250

(j4). Then, there exists u ∈ K such that (8.21) holds. 251

8.3 Nonlinear Hemivariational Inequalities 252

This section is dedicated to the study of the following nonlinear hemivariational 253

inequality 254

(NHI) Find u ∈ K such that 255

�(u, v) +
∫
�

j 0(x, û(x); v̂(x)− û(x))dx ≥ 〈f, v − u〉, ∀ v ∈ K,

where X is a real Banach space, ∅ = K ⊆ X, � : K × K → R is a given function and 256

T : X → Lp(�;Rk) is a linear and continuous operator, where 1 < p < ∞, k ≥ 1, 257

and � is a bounded open set in R
N . We shall denote T u := û and by p′ the conjugated 258

exponent of p. Let K be a subset of X and j : � × R
k → R is a function such that the 259

mapping 260

j (·, y) : �→ R is measurable ∀y ∈ R
k. (H 1

j )

We assume that at least one of the following conditions holds true: either there exist l ∈ 261

Lp′(�;R) such that 262

|j (x, y1)− j (x, y2)| ≤ l(x)|y1 − y2|, ∀x ∈ �, ∀y1, y2 ∈ R
k, (H 2

j )

or 263

the mapping j (x, ·) is locally Lipschitz∀x ∈ �, (H 3
j )
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and there exist C > 0 such that 264

|ζ | ≤ C(1+ |y|p−1), ∀x ∈ �,∀ζ ∈ ∂2
Cj (x, y). (H 4

j )

Regarding � : K ×K → R we assume 265

(H 1
�) �(u, u) = 0, for all u ∈ K; 266

(H 2
�) v �→ �(u, v) is convex, for all u ∈ K; 267

(H 3
�) u �→ �(u, v) is upper semicontinuous, for all v ∈ K; 268

We point out the fact that the study of inequality problems involving nonlinear terms 269

has captured special attention in the last few years. We just refer to the prototype problem 270

of finding u ∈ K such that 271

�(u, v) ≥ 〈f, v − u〉, ∀v ∈ K. (8.22)

Nonlinear inequality problems of the type (8.22) model some equilibrium problems drawn 272

from operations research, as well as some unilateral boundary value problems stemming 273

from mathematical physics and were introduced by Gwinner [8] who investigated the 274

existence theory and abstract stability analysis in the setting of reflexive Banach spaces. 275

The main object of this section is to establish existence results for the nonlinear hemi- 276

variational inequality (NHI) for general maps, without monotonicity assumptions. As a 277

consequence to our theorems, we will derive some existence results for hemivariational 278

inequalities that have been studied in [14, 15] and [16] as it will be seen at the end of this 279

section. 280

Theorem 8.6 ([4]) Let K be a nonempty, closed and convex subset of X and assume j 281

satisfies the conditions (H 1
j ) and (H 2

j ) or (H 3
j ) − (H 4

j ), T : X → Lp(�;Rk) is linear 282

and continuous and � satisfies (H 1
�)− (H 3

�). If K is not compact assume in addition 283

(HK) The set K possesses a nonempty compact convex subset K1 with the property that 284

for each u ∈ K \K1 there exists v ∈ K1 such that 285

�(u, v)+
∫
�

j0(x, û(x); v̂(x)− û(x))dx < 〈f, v − u〉.

Then for each f ∈ X∗ problem (NHI) has at least one solution in K . 286

Proof For each v ∈ K we define the set 287

N(v) :=
{
u ∈ K : �(u, v)+

∫
�

j 0(x, û(x); v̂(x)− û(x))dx ≥ 〈f, v − u〉
}
.
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We point out the fact that the solution set of (NHI) is S :=⋂
v∈K N(v). 288

First we prove that for each v ∈ K the set N(v) is closed. Let {un} ⊂ N(v) be a 289

sequence which converges to u as n →∞. We show that u ∈ N(v). Since j satisfies the 290

conditions (H 1
j )− (H 2

j ) or (H 1
j ), (H 3

j ), (H 4
j ) the application 291

(u, v) �→
∫
�

j 0(x, û(x); v̂(x)− û(x))dx

is upper semicontinuous (see Panagiotopoulos et al. [16, Lemma 1]). Since T is linear and 292

continuous, ûn → û and by the fact that un ∈ N(v) for each n, we have 293

〈f, v − u〉 = lim sup
n→∞

〈f, v − un〉 ≤ lim sup
n→∞

[
�(un, v)+

∫
�

j 0(x, ûn(x); v̂(x)− ûn(x))dx

]

≤ lim sup
n→∞

�(un, v) + lim sup
n→∞

∫
�

j 0(x, ûn(x); v̂(x)− ûn(x))dx

≤�(u, v) +
∫
�

j 0(x, û(x); v̂(x) − û(x))dx.

This is equivalent to u ∈ N(v). 294

Arguing by contradiction, suppose that S = ∅. Then for each u ∈ K there exists v ∈ K 295

such that 296

�(u, v)+
∫
�

j 0(x, û(x); v̂(x)− û(x)) dx < 〈f, v − u〉. (8.23)

We define the set valued map F : K � K by 297

F(u) :=
{
v ∈ K : �(u, v)+

∫
�

j 0(x, û(x); v̂(x)− û(x))dx < 〈f, v − u〉
}
.

Taking (8.23) into account we deduce that F(u) is nonempty for each u ∈ K . Using the 298

fact that � is convex with respect to the second variable, T is linear and the application 299

v̂ �→ j 0(x, û; v̂) is also convex, we obtain that F(u) is a convex set. 300

Now, for each v ∈ K , the set 301

F−1(v) :={u ∈ K : v ∈ F(u)}

=
{
u ∈ K : �(u, v) +

∫
�

j 0(x, û(x); v̂(x)− û(x))dx < 〈f, v − u〉
}

=
{
u ∈ K : �(u, v) +

∫
�

j 0(x, û(x); v̂(x)− û(x))dx ≥ 〈f, v − u〉
}c

= [N(v)]c =: Ov
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is open in K. We claim next that
⋃

v∈K Ov = K . To prove that, let u ∈ K . As F(u) is 302

nonempty it follows that there exists v ∈ F(u) which implies u ∈ F−1(v). Thus K ⊆ 303⋃
v∈K Ov , the converse inclusion being obvious. 304

Finally, (HK) ensures that u ∈ N(v). This implies that the set D := ⋂
v∈K1

Oc
v = 305⋂

v∈K1
N(v) ⊂ K1 is empty or compact as a closed subset of the compact set K1. 306

Taking K0 = K1 we have proved that the set valued map F satisfies the conditions of 307

Theorem D.3, hence there exists u0 ∈ K such that u0 ∈ F(u0), that is, 308

0 = �(u0, u0)+
∫
�

j 0(x, û0(x); û0(x)− û0(x))dx < 〈f, u0 − u0〉 = 0,

which is a contradiction. Hence the solution set S of problem (NHI) is nonempty. ��

Remark 8.4 If X is reflexive, K is bounded, closed and convex, the operator T : X → 309

Lp(�;Rk) is linear and compact and � is weakly upper semicontinuous with respect to the 310

first variable (instead of being upper semicontinuous), then condition (HK) in Theorem 8.6 311

can be dropped, because in these conditions, 312

(u, v) �→
∫
�

j 0(x, û(x); v̂(x)− û(x))dx

is weakly upper semicontinuous. The proof is identical to that of Theorem 8.6, but the 313

conditions of Theorem D.3 are satisfied for the weak topology. 314

Lemma 8.2 If K is a nonempty, bounded, closed and convex subset of a real reflexive 315

Banach space X and f ∈ X∗ be fixed. Consider a Banach space Y and let L : X→ Y be 316

linear and compact and J : Y → R be a locally Lipschitz functional. Suppose in addition 317

that � : X ×X→ R is a function which satisfies (H 1
�) and 318

(H 4
�) �(u, v) +�(v, u) ≥ 0, for all u, v ∈ X; 319

(H 5
�) u �→ �(u, v) is weakly upper semicontinuous and concave. 320

Then there exists u ∈ K such that 321

�(u, v)+ J 0(Lu;Lv − Lu) ≥ 〈f, v − u〉, ∀v ∈ K.

Proof Set 322

g(v, u) := −�(u, v)− 〈f, u− v〉 − J 0(Lu;Lv − Lu)

and 323

h(v, u) := �(v, u) − 〈f, u− v〉 − J 0(Lu;Lv − Lu).
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By condition (H 4
�) we have 324

g(v, u) − h(v, u) = −[�(u, v)+�(v, u)] ≤ 0, ∀u, v ∈ X.

The mapping u �→ g(v, u) is weakly lower semicontinuous for each v ∈ X, while 325

the mapping v �→ h(v, u) is concave for each u ∈ X. We apply Mosco’s Alternative 326

(Theorem D.8) with λ := 0 and φ := IK , where IK denotes the indicator function of 327

the set K . Clearly IK is proper, convex and lower semicontinuous since K is nonempty, 328

convex and closed. We obtain that exists u ∈ K satisfying 329

g(v, u) + IK(u)− IK(v) ≤ 0, ∀v ∈ X;

A simple computation yields that there exists u ∈ K such that 330

�(u, v)+ J 0(Lu;Lv − Lu) ≥ 〈f, v − u〉, ∀v ∈ K,

which exactly the desired conclusion. ��

The second existence result concerning the nonlinear hemivariational inequality prob- 331

lem can now be stated as follows: 332

Theorem 8.7 ([4]) Let K be a bounded, closed and convex subset of a real reflexive 333

Banach space X and assume j satisfies (H 1
j ) and (H 2

j ) or (H 1
j ), (H

3
j ) and (H 4

j ). If T 334

is linear and compact and � satisfies (H 1
�), (H

4
�) and (H 5

�), then (NHI) has at least one 335

solution. 336

Proof Apply Lemma 8.2 with Y := Lp(�;Rk), L := T and J : Lp(�;Rk) → R

J (u) := ∫
� j (x, u(x))dx. ��

8.4 Systems of Nonlinear Hemivariational Inequalities 337

In the last section of this chapter we take a step further and study a system of nonlinear 338

hemivariational inequalities. We use a fixed-point for multivalued functions due to Lin 339

[12] to establish several existence results including some sufficient coercivity conditions 340

for the case of unbounded subsets. Such results come in handy in Contact Mechanics when 341

describing the contact between a piezoelectric body and a foundation (see Part IV) or in 342

the study of Nash-type equilibrium points (see, e.g., [6, 10, 17, 18]). 343

Let n be a positive integer, let X1, . . . , Xn be real reflexive Banach spaces and 344

Y1, . . . , Yn be real Banach spaces such that Xk is compactly embedded into Yk , for each 345

k ∈ {1, . . . , n}. We denote by ik : Xk → Yk the embedding operator and ûk := ik(uk). 346
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Throughout this section we investigate the existence of solutions for the following 347

system of nonlinear hemivariational inequalities: 348

(SNHI) Find (u1, . . . , un) ∈ K1 × . . .×Kn such that 349

⎧⎪⎨
⎪⎩
ψ1(u1, . . . , un, v1)+ J 0

,1(û1, . . . , ûn; v̂1 − û1) ≥ 〈F1(u1, . . . , un), v1 − u1〉X1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ψn(u1, . . . , un, vn)+ J 0
,n(û1, . . . , ûn; v̂n − ûn) ≥ 〈Fn(u1, . . . , un), vn − un〉Xn,

for all (v1, . . . , vn) ∈ K1 × . . .×Kn. 350

Here and hereafter, for each k ∈ {1, . . . , n}, we assume 351

• Kk ⊆ Xk is nonempty closed and convex; 352

• ψk : X1 × . . .×Xk × . . .×Xn ×Xk → R is a nonlinear functional; 353

• J : Y1 × . . .× Yn → R is a regular locally Lipschitz functional; 354

• Fk : X1 × . . .×Xk × . . .×Xn → X∗k is a nonlinear operator. 355

In order to establish the existence of at least one solution for problem (SNHI) we 356

assume: 357

(H1) For each k ∈ {1, . . . , n}, the functional ψk : X1 × . . .×Xk × . . .×Xn ×Xk → R 358

satisfies 359

(i) ψk(u1, . . . , uk, . . . , un, uk) = 0, for all uk ∈ Xk; 360

(ii) For each vk ∈ Xk the mapping (u1, . . . , un) �→ ψk(u1, . . . , un, vk) is weakly 361

upper semicontinuous; 362

(iii) For each (u1, . . . , un) ∈ X1× . . .×Xn the mapping vk �→ ψk(u1, . . . , un, vk) 363

is convex. 364

(H2) For each k ∈ {1, . . . , n}, Fk : X1× . . .×Xk× . . .×Xn → X∗k is a nonlinear operator 365

such that 366

lim inf
m→∞

〈
Fk

(
um1 , . . . , umn

)
, vk − umk

〉
Xk
≥ 〈Fk (u1, . . . , un) , vk − uk〉Xk

whenever
(
um1 , . . . , umn

)
⇀ (u1, . . . , un) as m→∞ and vk ∈ Xk is fixed. 367

The first existence result of this section refers to the case when the sets Kk are bounded, 368

closed and convex and it is given by the following theorem. 369

Theorem 8.8 ([6]) For each k ∈ {1, . . . , n} let Kk ⊂ Xk be a nonempty, bounded, closed 370

and convex set and assume that conditions (H1) − (H2) hold. Then (SNHI) has at least 371

one solution. 372



8.4 Systems of Nonlinear Hemivariational Inequalities 291

The existence of solutions for our system will be a direct consequence of the fact 373

that a vector hemivariational inequality admits solutions. Let us introduce the following 374

notations: 375

• X := X1 × . . .×Xn, K := K1 × . . .×Kn and Y := Y1 × . . .× Yn; 376

• u := (u1, . . . , un) and û := (û1, . . . , ûn); 377

• " : X ×X→ R, "(u, v) :=∑n
k=1 ψk(u1, . . . , uk, . . . , un, vk); 378

• F : X→ X∗, 〈Fu, v〉X :=
∑n

k=1〈Fk(u1, . . . , un), vk〉Xk . 379

and formulate the following vector hemivariational inequality 380

(VHI) Find u ∈ K such that 381

"(u, v)+ J 0(û; v̂ − û) ≥ 〈Fu, v − u〉X, ∀v ∈ K.

Remark 8.5 If (H1) − (i) holds, then any solution u0 := (u0
1, . . . , u

0
n) ∈ K1 × . . . × Kn 382

of the vector hemivariational inequality (VHI) is also a solution of the system (SNHI). 383

Indeed, if for a k ∈ {1, . . . , n} we fix vk ∈ Kk and for j = k we consider vj := u0
j , using 384

Proposition 2.3 and the fact that u0 solves (VHI) we obtain 385

〈
Fk

(
u0

1, . . . , u
0
n

)
, vk − u0

k

〉
Xk

=
n∑

j=1

〈
Fj

(
u0

1, . . . , u
0
n

)
, vj − u0

j

〉
Xj

=
〈
Fu0, v − u0

〉
X
≤ "

(
u0, v

)
+ J 0

(
û0; v̂ − û0

)

≤
n∑

j=1

ψj

(
u0

1, . . . , u
0
j , . . . , u

0
n, vj

)
+

n∑
j=1

J 0
,j

(
û0

1, . . . , û
0
n; v̂j − û0

j

)

=ψk

(
u0

1, . . . , u
0
k, . . . , u

0
n, vk

)
+ J 0

,k

(
û0

1, . . . , û
0
n; v̂k − û0

k

)
.

As k ∈ {1, . . . , n} and vk ∈ Kk were arbitrarily fixed, we conclude that (u0
1, . . . , u

0
n) ∈ 386

K1 × . . .×Kn is a solution of our system (SNHI). 387

388

Proof of Theorem 8.8 According to Remark 8.5 it suffices to prove that problem (VHI) 389

possesses a solution. With this end in view we consider the setA ⊂ K ×K as follows 390

A :=
{
(v, u) ∈ K ×K : "(u, v)+ J 0(û; v̂ − û)− 〈Fu, v − u〉X ≥ 0

}
.

The following steps ensure that the set A satisfies the conditions required in Theo- 391

rem D.2 for the weak topology of the space X. 392
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STEP 1. For each v ∈ K the set N(v) := {u ∈ K : (v, u) ∈ A} is weakly closed. 393

In order to prove the above assertion, for a fixed v ∈ K we consider the functional 394

α : K → R defined by 395

α(u) := "(u, v)+ J 0(û; v̂ − û)− 〈Fu, v − u〉X

and we shall prove that it is weakly upper semicontinuous. Let us consider a sequence 396

{um} ⊂ K such that um ⇀ u as m → ∞. Taking into account that ik is compact for 397

each k ∈ {1, . . . , n} we deduce that ûm → û as m→∞. Using (H1)− (ii) we obtain 398

lim sup
m→∞

"(um, v) = lim sup
m→∞

n∑
k=1

ψk(u
m
1 , . . . , umn , vk) ≤

n∑
k=1

lim sup
m→∞

ψk(u
m
1 , . . . , umn , vk)

≤
n∑

k=1

ψk(u1, . . . , un, vk) = "(u, v).

On the other hand, using Proposition 2.3 we deduce that 399

lim sup
m→∞

J 0(ûm; v̂ − ûm) ≤ J 0(û; v̂ − û).

Finally, using (H2) we have 400

lim sup
m→∞

[− 〈
Fum, v − um

〉
X
] = − lim inf

m→∞
〈
Fum, v − um

〉
X

=− lim inf
m→∞

n∑
k=1

〈
Fk(u

m
1 , . . . , umn ), vk − umk

〉
Xk

≤−
n∑

k=1

〈Fk(u1, . . . , un), vk − uk〉Xk
= −〈Fu, v − u〉X

It is clear from the above relations that the functionalα is weakly upper semicontinuous, 401

therefore the set 402

[α ≥ λ] := {u ∈ K : α(u) ≥ λ}

is weakly closed for any λ ∈ R. Taking λ = 0 we obtain that the set N(v) is weakly 403

closed. 404

STEP 2. For each u ∈ K the set M(u) := {v ∈ K : (v, u) ∈ A} is either convex or 405

empty. 406
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Let us fix u ∈ K and assume thatM(u) is nonempty. Let v1, v2 be two elements of 407

M(u), t ∈ (0, 1) and vt := tv1 + (1− t)v2. Using (H1)-(iii) we obtain 408

"(u, vt ) =
n∑

k=1

ψk

(
u1, . . . , un, tv

1
k + (1− t)v2

k

)

≤t
n∑

k=1

ψk

(
u1, . . . , un, v

1
k

)
+ (1− t)

n∑
k=1

ψk

(
u1, . . . , un, v

2
k

)

=t"(u, v1)+ (1− t)"(u, v2),

which shows that the mapping v �→ "(u, v) is convex. On the other hand Proposi- 409

tion 2.3 ensures that the mapping v̂ �→ J 0(û; v̂ − û) is convex. Using the fact that the 410

mapping v �→ 〈Fu, v − u〉X is affine we are led to 411

"(u,vt )+ J 0(û; v̂t − û)− 〈Fu, vt − u〉X ≤ t
[
"(u, v1)+ J 0(û; v̂1 − û)− 〈Fu, v1 − u〉X

]

+ (1− t)
[
"(u, v2)+ J 0(û; v̂2 − û)− 〈Fu, v2 − u〉X

]
< 0,

which means that vt ∈M(u), thereforeM(u) is a convex set. 412

STEP 3. (u, u) ∈ A for each u ∈ K . 413

Let u ∈ K be fixed. Using (H1)− (i) we obtain 414

"(u, u)+ J 0(û; û− û)− 〈Fu, u− u〉X =
n∑

k=1

ψk(u1, . . . , uk, . . . , un, uk) = 0,

and this is equivalent to (u, u) ∈ A. 415

STEP 4. The set B := {u ∈ K : (v, u) ∈ A for all v ∈ K} is compact. 416

First we observe that K is a weakly compact subset of the reflexive space X as it is 417

bounded, closed and convex. Then, we observe that the set B can be rewritten in the 418

following way 419

B =
⋂
v∈K
N(v).

This shows that B is also a weakly compact set as it is an intersection of weakly closed 420

subsets of K . 421

We are now able to apply Lin’s theorem (see Theorem D.2) and conclude that there 422

exists u0 ∈ B ⊆ K such that K × {u0} ⊂ A. This means that 423

"(u0, v)+ J 0(û0; v̂ − û0) ≥ 〈Fu0, v − u0〉X, for all v ∈ K,
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therefore u0 solves problem (VHI) and, according to Remark 8.5, it is a solution of 424

(SNHI). 425

We will show next that if we change the hypotheses on the nonlinear functionals ψk we 426

are still able to prove the existence of at least one solution for our system. Let us consider 427

that instead of (H1) we have the following set of hypotheses 428

(H3) For each k ∈ {1, . . . , n}, the functional ψk : X1 × . . .×Xk × . . .×Xn ×Xk → R 429

satisfies 430

(i) ψk(u1, . . . , uk, . . . , un, uk) = 0 for all uk ∈ Xk; 431

(ii) For each k ∈ {1, . . . , n} and any pair (u1, . . . , uk, . . . , un), 432

(v1, . . . , vk, . . . , vn) ∈ X1 × . . .×Xk × . . .×Xn we have 433

ψk(u1, . . . , uk, . . . , un, vk)+ ψk(v1, . . . , vk, . . . , vn, uk) ≥ 0;

(iii) For each (u1, . . . , un) ∈ X1 × . . . × Xn the mapping vk �→ ψk(u1, . . . , un, vk) is 434

weakly lower semicontinuous; 435

(iv) For each vk ∈ Xk the mapping (u1, . . . , un) �→ ψk(u1, . . . , un, vk) is concave. 436��

Theorem 8.9 ([6]) For each k ∈ {1, . . . , n} let Kk ⊂ Xk be a nonempty, bounded, closed 437

and convex set and let us assume that conditions (H2)− (H3) are fulfilled. Then (SNHI) 438

has at least one solution. 439

In order to prove Theorem 8.9 we will need the following lemma. 440

Lemma 8.3 Assume that (H3) holds. Then 441

(a) "(u, v)+ "(v, u) ≥ 0 for all u, v ∈ X; 442

(b) For each v ∈ X the mapping u �→ −"(v, u) is weakly upper semicontinuous; 443

(c) For each u ∈ X the mapping v �→ −"(v, u) is convex. 444

Proof 445

(a) Taking into account (H3) − (ii) and the way the functional " : X × X → R was 446

defined we find 447

"(u, v)+"(v, u) =
n∑

k=1

[ψk(u1, . . . , uk, . . . , un, vk)+ ψk(v1, . . . , vk, . . . , vn, uk)] ≥ 0.
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(b) Let v ∈ X be fixed and let {um} ⊂ X be a sequence which converges weakly to some 448

u ∈ X. Using (H3)− (iii) and the fact that um → u we obtain 449

lim sup
m→∞

[−"(v, um)
] =− lim inf

m→∞ "(v, um) = − lim inf
m→∞

n∑
k=1

ψk(v1, . . . , vn, u
m
k )

≤−
n∑

k=1

lim inf
m→∞ ψk(v1, . . . , vn, u

m
k ) ≤ −

n∑
k=1

ψk(v1, . . . , vn, uk)

=−"(v, u).

(c) Let u, v1, v2 ∈ X and t ∈ (0, 1). Keeping (H3)− (iv) in mind we deduce that 450

"
(
tv1 + (1− t)v2, u

)
=

n∑
k=1

ψk

(
tv1

1 + (1− t)v2
1 , . . . , tv

1
n + (1− t)v2

n, uk

)

≥
n∑

k=1

tψk

(
v1

1, . . . , v
1
n, uk

)
+ (1− t)ψk

(
v2

1 , . . . , v
2
n, uk

)

=t"(v1, u)+ (1− t)"(v2, u).

We have prove that the mapping v �→ "(v, u) is concave, hence the application v �→ 451

−"(v, u) must be convex. 452��

Proof of Theorem 8.9 Let us consider the setA ⊂ K ×K defined by 453

A := {(v, u) ∈ K ×K : −"(v, u)+ J 0(û; v̂ − û)− 〈Fu, v − u〉X ≥ 0}.

Lemma 8.3 ensures that we can follow the same steps as in the proof of Theorem 8.8 454

to conclude that the conditions required in Lin’s theorem are fulfilled. Thus we get the 455

existence of an element u0 ∈ K such that K × {u0} ⊂ A which is equivalent to 456

− "(v, u0)+ J 0(û0; v̂ − û0) ≥ 〈Fu0, v − u0〉X for all v ∈ K. (8.24)

On the other hand Lemma 8.3 tells us that 457

"(u0, v)+"(v, u0) ≥ 0, for all v ∈ K. (8.25)

Combining relations (8.24) and (8.25) we deduce that u0 solves problem (VHI), therefore 458

it is a solution of problem (SNHI). 459
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Let us consider now the case when at least one of the subsets Kk is unbounded and 460

either conditions (H1)−(H2) or (H2)−(H3) hold. Let R > 0 be such that the set Kk,R := 461

Kk ∩ B̄Xk (0;R) is nonempty for every k ∈ {1, . . . , n}. Then, for each k ∈ {1, . . . , n} 462

the set Kk,R is nonempty, bounded, closed and convex and according to Theorem 8.8 or 463

Theorem 8.9 the following problem possesses at least one solution. 464

(SR) Find (u1, . . . , un) ∈ K1,R × . . .×Kn,R such that 465

⎧⎪⎨
⎪⎩
ψ1(u1, . . . , un, v1)+ J 0

,1(û1, . . . , ûn; v̂1 − û1) ≥ 〈F1(u1, . . . , un), v1 − u1〉X1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ψn(u1, . . . , un, vn)+ J 0
,n(û1, . . . , ûn; v̂n − ûn) ≥ 〈Fn(u1, . . . , un), vn − un〉Xn,

for all (v1, . . . , vn) ∈ K1,R × . . .×Kn,R . 466

We have the following existence result concerning the case of at least one unbounded
subset. ��

Theorem 8.10 ([6]) For each k ∈ {1, . . . , n} let Kk ⊂ Xk be a nonempty, closed and 467

convex set and assume that there exists at least one index k0 ∈ {1, . . . , n} such that Kk0 468

is unbounded. Assume in addition that either (H1) − (H2) or (H2) − (H3) hold. Then 469

(SNHI) possesses at least one solution if and only if the following condition holds: 470

(H4) there exists R > 0 such that Kk,R is nonempty for every k ∈ {1, . . . , n} and at least 471

one solution (u0
1, . . . , u

0
n) of problem (SR) satisfies 472

u0
k ∈ BXk (0;R), ∀k ∈ {1, . . . , n}.

Proof The necessity is obvious. 473

In order to prove the sufficiency for each k ∈ {1, . . . , n} let us fix vk ∈ Kk and define 474

the scalar 475

λk :=
⎧⎨
⎩

1
2 , if u0

k = vk

min

{
1
2 ;

R−‖u0
k‖Xk

‖vk−u0
k‖Xk

}
, otherwise.

Condition (H4) ensures that λk ∈ (0, 1), therefore wλk := u0
k + λk(vk − u0

k) is an element 476

of Kk,R due to the convexity of the set Kk . 477

CASE 1. (H1)− (H2) hold. 478

Using the fact (u0
1, . . . , u

0
n) is a solution of (SR) for each k ∈ {1, . . . , n} we have 479

ψk(u
0
1, . . . , u

0
n,wλk )+ J 0

,k(û
0
1, . . . , û

0
n; ŵλk − û0

k) ≥ 〈Fk(u
0
1, . . . , u

0
n),wλk − u0

k〉Xk

(8.26)
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In this case relation (8.26) leads to 480

λk〈Fk(u
0
1, . . . , u

0
n), vk − u0

k〉Xk = 〈Fk(u
0
1, . . . , u

0
n),wλk − u0

k〉Xk

≤λkψk(u
0
1, . . . , u

0
n, vk)+ (1− λk)ψk(u

0
1, . . . , u

0
n, u

0
k)+ λkJ

0
,k(û

0
1, . . . , û

0
n; v̂k − û0

k)

=λk
[
ψk(u

0
1, . . . , u

0
n, vk)+ J 0

,k(û
0
1, . . . , û

0
n; v̂k − û0

k)
]
.

Dividing by λk the above inequality and taking into account that vk ∈ Kk was arbitrary 481

fixed we conclude that (u0
1, . . . , u

0
n) is a solution of (SNHI). 482

CASE 2. (H2)− (H3) hold. 483

Theorem 8.9 ensures that (see (8.24)) 484

−"(w, u0)+ J 0(û0; ŵ − u0) ≥ 〈Fu0, w − u0〉, ∀w ∈ KR = K1,R × . . .×Kn,R.

Choosing wk := wλk and wj = u0
j for j = k in the above relation we obtain 485

λk

〈
Fk(u

0
1, . . . , u

0
n), vk − u0

k

〉
Xk

=
〈
Fk(u

0
1, . . . , u

0
n),wλk − u0

k

〉
Xk

=
n∑

j=1

〈
Fk(u

0
1, . . . , u

0
n),wj − u0

j

〉
Xk

= 〈Fu0, w − u0〉X

≤−"(w, u0)+ J 0(û0; ŵ − û0)

=−
n∑

j=1

ψj (w1, . . . , wj , . . . , wn, u
0
j )+

n∑
j=1

J 0
,j (û

0
1, . . . , û

0
n; ŵj − û0

j )

=− ψk(u
0
1, . . . , wλk , . . . , u

0
n, u

0
k)+ J 0

,k(û
0
1, . . . , û

0
n; ŵλk − û0

k)

≤− λkψk(u
0
1, . . . , vk, . . . , u

0
n, u

0
k)− (1− λk)ψk(u

0
1, . . . , u

0
k, . . . , u

0
n, u

0
k)

+ λkJ
0
,k(û

0
1, . . . , û

0
n; v̂k − û0

k)

≤λk
[
−ψk(u

0
1, . . . , vk, . . . , u

0
n, u

0
k)+ J 0

,k(û
0
1, . . . , û

0
n; v̂k − û0

k)
]

Dividing by λk we obtain that 486

−ψk(u
0
1, . . . , vk, . . . , u

0
n, u

0
k)+ J 0

,k(û
0
1, . . . , û

0
n; v̂k − û0

k) ≥
〈
Fk(u

0
1, . . . , u

0
n), vk − u0

k

〉
Xk

.
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Combining the above inequality and (H3)− (ii) we deduce the for each k ∈ {1, . . . , n} 487

the following inequality takes place 488

ψk(u
0
1, . . . , u

0
k, . . . , u

0
n, vk)+J 0

,k(û
0
1, . . . , û

0
n; v̂k−û0

k) ≥
〈
Fk(u

0
1, . . . , u

0
n), vk − u0

k

〉
Xk

,

which means that (u0
1, . . . , u

0
n) is a solution of (SNHI), since vk ∈ Kk was arbitrary 489

fixed. 490��

Corollary 8.1 For each k ∈ {1, . . . , n} let Kk ⊂ Xk be a nonempty, closed and convex set 491

and assume that there exists at least one index k0 ∈ {1, . . . , n} such that Kk0 is unbounded. 492

Assume in addition that either (H1)−(H2) or (H2)−(H3) hold. Then a sufficient condition 493

for (SNHI) to possess solution is 494

(H5) there exists R0 > 0 such that Kk,R0 is nonempty for every k ∈ {1, . . . , n} and for 495

each (u1, . . . , un) ∈ K1× . . .×Kn \K1,R0× . . .×Kn,R0 there exists (v0
1, . . . , v

0
n) ∈ 496

K1,R0 × . . .×Kn,R0 such that 497

ψk(u1, . . . , un, v
0
k )+ J 0

,k(û1, . . . , ûn; v̂0
k − ûk) < 〈Fk(u1, . . . , un), v

0
k − uk〉Xk ,

(8.27)

for all k ∈ {1, . . . , n}. 498

Proof Let us fix R > R0. According to Theorem 8.8 or Theorem 8.9 problem (SR) has at 499

least one solution. Let (u1, . . . , un) ∈ K1,R × . . .×Kn,R be a solution of (SR). We shall 500

prove that (u1, . . . , un) also solves (SNHI). 501

CASE 1. uk ∈ BXk (0, R) for all k ∈ {1, . . . , n}. 502

In this case we have nothing to prove as Theorem 8.10 ensures that (u1, . . . , un) is a 503

solution of (SNHI). 504

CASE 2. There exists at least one index j0 ∈ {1, . . . , n} such that uj0 ∈ BXj0
(0, R). 505

In this case ‖uj0‖Xj0
= R > R0, therefore (u1, . . . , un) ∈ K1,R0 × . . . × Kn,R0 and 506

according to (H5) there exist (v0
1 , . . . , v

0
n) ∈ K1,R0 × . . .×Kn,R0 such that 8.27 holds. 507

For each k ∈ {1, . . . , n} let us fix vk ∈ Kk and define the scalar 508

λk :=
⎧⎨
⎩

1
2 if vk = v0

k

min

{
1
2 ,

R−R0

‖vk−v0
k‖Xk

}
otherwise.

Obviously λk ∈ (0, 1) and wλk = v0
k + λk(vk − v0

k ) ∈ Kk,R . Furthermore, we observe 509

that 510

wλk −uk = v0
k −uk +λkvk −λkv

0
k +λkuk −λkuk = λk(vk −uk)+ (1−λk)(v

0
k −uk).
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CASE 2.1 (H1)− (H2) hold. 511

Using the fact that (u1, . . . , un) solves (SR) we obtain the following estimates 512

〈Fk(u1, . . . , un),wλk − uk〉 = λk〈Fk(u1, . . . , un), vk − uk〉Xk

+ (1− λk)〈Fk(u1, . . . , un), v
0
k − uk〉Xk

≤ψk(u1, . . . , un,wλk )+ J 0
,k(û1, . . . , ûn; ŵλk − ûk)

≤λk
[
ψk(u1, . . . , un, vk)+ J 0

,k(û1, . . . , ûn; v̂k − ûk)
]

+ (1− λk)
[
ψk(u1, . . . , un, v

0
k )+ J 0

,k(û1, . . . , ûn; v̂0
k − ûk)

]
.

Combining the above relation and (8.27) we obtain that 513

Fk(u1, . . . , un), vk − uk〉Xk ≤ ψk(u1, . . . , un, vk)+ J 0
,k(û1, . . . , ûn; vk − uk)

for all k ∈ {1, . . . , n}, which means that (u1, . . . , un) is a solution of (SNHI). 514

CASE 2.2. (H2)− (H3)hold. 515

The fact that (u1, . . . , un) solves (SR) and relation 8.24 allow us to conclude that 516

−"(w, u)+ J 0(û, ŵ − û) ≥ 〈Fu,w − u〉X, ∀w ∈ KR := K1,R × . . .×Kn,R.

Choosing wk := wλk and wj = uj for j = k in the above relation and using 517

(H3)− (iv) we obtain 518

〈Fk(u1, . . . , un),wλk − uk〉Xk = λk 〈Fk(u1, . . . , un), vk − uk〉Xk

+ (1− λk)
〈
Fk(u1, . . . , un), v

0
k − uk

〉
Xk

=
n∑

j=1

〈
Fk(u1, . . . , un),wj − uj

〉
Xk
= 〈Fu,w − u〉

≤ − "(w, u)+ J 0(û; ŵ − û)

=−
n∑

j=1

ψj (w1, . . . , wj , . . . , wn, uj )+
n∑

j=1

J 0
,j (û1, . . . , ûn; ŵj − ûj )

=− ψk(u1, . . . , wλk , . . . , un, uk))+ J 0
,k(û1, . . . , ûn; ŵλk − ûk)

≤− λkψk(u1, . . . , vk, . . . , un, uk)− (1− λk)ψk(u1, . . . , v
0
k , . . . , un, uk)

+ λkJ
0
,k(û1, . . . , ûn; v̂k − ûk)+ (1− λk)J

0(û1, . . . , ûn; v̂0
k − ûk).

519
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Using (H3)− (ii) and (8.27) we deduce that 520

Fk(u1, . . . , un), vk − uk〉Xk ≤ ψk(u1, . . . , un, vk)+ J 0
,k(û1, . . . , ûn; vk − uk)

for all k ∈ {1, . . . , n} which means that (u1, . . . , un) is a solution of (SNHI). 521��

In order to simplify some computations let us assume next that 0 ∈ Kk for each k ∈ 522

{1, . . . , n}. In this case Kk,R = ∅ for every k ∈ {1, . . . , n} and every R > 0. 523

Corollary 8.2 For each k ∈ {1, . . . , n} let Kk ⊂ Xk be a nonempty, closed and convex 524

set and assume that there exists at least one index k0 ∈ {1, . . . , n} such that Kk0 is 525

unbounded and either (H1) − (H2) or (H2) − (H3) hold. Assume in addition that for 526

each k ∈ {1, . . . , n} the following conditions hold 527

(H6) There exists a function c : R+ → R+ with the property that lim
t→∞ c(t) = +∞ such 528

that 529

−
n∑

k=1

ψk(u1, . . . , uk, . . . , un, 0) ≥ c(‖u‖X)‖u‖X,

for all (u1, . . . , un) ∈ X1 × . . .×Xn, where ‖u‖X :=
(∑n

k=1 ‖uk‖2
Xk

)1/2
; 530

(H7) There exists Mk > 0 such that 531

J 0
,k(w1, . . . , wk, . . . , wn; −wk) ≤Mk‖wk‖Yk , ∀(w1, . . . , wn) ∈ Y1 × . . .× Yn;

(H8) There exists mk > 0 such that 532

‖Fk(u1, . . . , uk, . . . , un)‖X∗k ≤ mk, ∀(u1, . . . , un) ∈ X1 × . . .×Xn.

Then the system (SNHI) has at least one solution. 533

Proof For each R > 0 Theorem 8.8 (or Theorem 8.9) enables us to conclude that there 534

exists a solution (u1R, . . . , unR) ∈ K1,R × . . . × Kn,R of problem (SR). We shall prove 535

that there exists R0 > 0 such that 536

ukR0 ∈ int BXk(0;R0), for all k ∈ {1, . . . , n},

which, according to Theorem 8.10, means that (u1R0, . . . , unR0) is a solution of the system 537

(SNHI). 538

Arguing by contradiction let us assume that for each R > 0 there exists at least one 539

index j0 ∈ {1, . . . , n} such that uj0R ∈ BXj0
(0, R), therefore ‖uj0R‖Xj0

= R. Using 540
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the fact that (u1R, . . . , unR) solves (SR) we conclude that for each k ∈ {1, . . . , n} the 541

following inequality holds 542

ψk(u1R, . . . , unR, vk)+J 0
,k(û1R, . . . , ûnR; v̂k− ûkR) ≥ 〈Fk(u1R, . . . , unR), vk−ukR〉Xk ,

(8.28)

for all vk ∈ Kk,R . 543

Taking vk = 0 in (8.28), summing and using (H6)− (H8) we have 544

c(‖u‖X)‖u‖X ≤ −
n∑

k=1

ψk(u1R, . . . , uj0R, . . . , unR, 0)

≤
n∑

k=1

[
〈Fk(u1R, . . . , unR), ukR〉Xk + J 0

,k(û1R, . . . , ûk, . . . , ûnR; −ûk)
]

≤
n∑

k=1

(
‖Fk(u1R, . . . , unR)‖X∗k ‖uk‖Xk +Mk‖ûkR‖Yk

)

≤
n∑

k=1

[
(mk +Mk‖Tk‖)‖ukR‖Xk

]

≤ C‖u‖X.

Dividing by ‖u‖X and letting R→ +∞we obtain a contradiction since the left-hand term
of the inequality is unbounded while the right-hand term remains bounded. ��
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92Nonsmooth Nash Equilibria on Smooth Manifolds 3

9.1 Nash Equilibria on Curved Spaces 4

After the seminal paper of Nash [14] there has been considerable interest in the theory of 5

Nash equilibria due to its applicability in various real-life phenomena (game theory, price 6

theory, networks, etc). The Nash equilibrium problem involves n players such that each 7

player know the equilibrium strategies of the partners, but moving away from his/her own 8

strategy alone a player has nothing to gain. Formally, if the sets Ki denote the strategies 9

of the players and fi : K1 × . . . × Kn → R are their loss-functions, i ∈ {1, . . . , n}, the 10

objective is to find an n-tuple p = (p1, . . . , pn) ∈ K = K1 × . . .×Kn such that 11

fi(p) = fi(pi,p−i ) ≤ fi(qi,p−i ) for every qi ∈ Ki and i ∈ {1, . . . , n},

where (qi,p−i ) = (p1, . . . , pi−1, qi, pi+1, . . . , pn) ∈ K. Such point p is called a Nash 12

equilibrium point for (f,K) = (f1, . . . , fn;K1, . . . ,Kn), the set of these points being 13

denoted by SNE(f,K). The starting point of our analysis is the following result of Nash 14

[14, 15]: 15

Theorem 9.1 (Nash [14, 15]) Let K1, . . . ,Kn be nonempty, compact, convex subsets of 16

Hausdorff topological vector spaces and fi : K1 × . . . × Kn → R (i = 1, . . . , n) be 17

continuous functions such that Ki � qi �→ fi(qi,p−i ) is quasiconvex for all fixed p ∈ K. 18

Then SNE(f,K) = ∅. 19

The original proof of Theorem 9.1 is based on the Kakutani fixed point theorem, and 20

we postpone it since a more general result will be provided in the sequel. 21

While most of the known developments in the Nash equilibrium theory deeply exploit 22

the usual convexity of the sets Ki together with the vector space structure of their ambient 23

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
N. Costea et al., Variational and Monotonicity Methods in Nonsmooth Analysis,
Frontiers in Mathematics, https://doi.org/10.1007/978-3-030-81671-1_9
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spaces Mi (i.e., Ki ⊂ Mi), it is nevertheless true that these results are in large part 24

geometrical in nature. The main purpose of the present section is to enhance those 25

geometrical and analytical structures which serve as a basis of a systematic study of 26

location of Nash-type equilibria in a general setting as presently possible. In the light of 27

these facts our contribution to the Nash equilibrium theory should be considered intrinsical 28

and analytical rather than game-theoretical, based on nonsmooth analysis on manifolds. In 29

fact, we assume a priori that the strategy sets of the players are geodesic convex subsets 30

of certain finite-dimensional Riemannian manifolds. This approach can be widely applied 31

when the strategy sets are ‘curved’. We also notice that the choice of such Riemannian 32

structures does not influence the Nash equilibrium points. 33

Let K1, . . . ,Kn (n ≥ 2) be non-empty sets, corresponding to the strategies of n players 34

and fi : K1 × . . . × Kn → R (i ∈ {1, . . . , n}) be the payoff functions, respectively. 35

Throughout this section, the following notations/conventions are used: 36

• K = K1 × . . .×Kn; f = (f1, . . . , fn); (f,K) = (f1, . . . , fn;K1, . . . ,Kn); 37

• p = (p1, . . . , pn); 38

• p−i is a strategy profile of all players except for player i; 39

(qi,p−i ) = (p1, . . . , pi−1, qi, pi+1, . . . , pn); in particular, (pi,p−i ) = p; 40

• K−i is the strategy set profile of all players except for player i; 41

(Ui,K−i ) = K1 × . . .×Ki−1 × Ui ×Ki+1 × . . .×Kn for some Ui ⊃ Ki. 42

We recall that a set K ⊂ M is geodesic convex if every two points q1, q2 ∈ K can be 43

joined by a unique minimizing geodesic whose image belongs to K. Note that (2.14) is 44

also valid for every q1, q2 ∈ K in a geodesic convex set K since exp−1
qi

is well-defined on 45

K , i ∈ {1, 2}. The function f : K → R is convex, if f ◦ γ : [0, 1] → R is convex in the 46

usual sense for every geodesic γ : [0, 1] → K provided that K ⊂ M is a geodesic convex 47

set. 48

An immediate extension of Theorem 9.1 reads as follows: 49

Theorem 9.2 ([6]) Let (Mi, gi) be finite-dimensional Riemannian manifolds, Ki ⊂ Mi 50

be non-empty, compact, geodesic convex sets, and fi : K → R be continuous functions 51

such that Ki � qi �→ fi(qi,p−i ) is convex on Ki for every p−i ∈ K−i , i ∈ {1, . . . , n}. 52

Then there exists at least one Nash equilibrium point for (f,K), i.e., SNE(f,K) = ∅. 53

In order to prove Theorem 9.2 we first start with the following expected result. 54

Proposition 9.1 Any geodesic convex set K ⊂ M is contractible. 55

Proof Let us fix p ∈ K arbitrarily. Since K is geodesic convex, every point q ∈ K can
be connected to p uniquely by the geodesic segment γq : [0, 1] → K , i.e., γq(0) =
p, γq(1) = q . Moreover, the map K � q �→ exp−1

p (q) ∈ TpM is well-defined and
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continuous. Note that γq(t) = expp(t exp−1
p (q)). We define the map F : [0, 1] ×K → K

by F(t, q) = γq(t); it is clear that F is continuous, F(1, q) = q and F(0, q) = p for all
q ∈ K , i.e., the identity map idK is homotopic to the constant map p. ��

Proof of Theorem 9.2 Let X = K = !n
i=1Ki and h : X ×X → R defined by h(q,p) = 56∑n

i=1[fi(qi,p−i ) − fi(p)]. First of all, note that the sets Ki are ANRs, due to Hanner’s 57

theorem, see Bessaga and Pelczyński [2, Theorem 5.1]. Moreover, since a product of a 58

finite family of ANRs is an ANR, see [2, Corollary 5.5], it follows that X is an ANR. Due 59

to Proposition 9.1, X is contractible, thus acyclic. 60

We notice that the function h is continuous, and h(p,p) = 0 for every p ∈ X. 61

Consequently, the set {(q,p) ∈ X ×X : 0 > h(q,p)} is open. 62

It remains to prove that Sp = {q ∈ X : 0 > h(q,p)} is contractible or empty for all 63

p ∈ X. Assume that Sp = ∅ for some p ∈ X. Then, there exists i0 ∈ {1, . . . , n} such 64

that fi0 (qi0,p−i0)− fi0(p) < 0 for some qi0 ∈ Ki0 . Therefore, q = (qi0 ,p−i0) ∈ Sp, i.e., 65

priSp = ∅ for every i ∈ {1, . . . , n}. Now, we fix qj = (q
j

1 , . . . , q
j
n) ∈ Sp, j ∈ {1, 2} 66

and let γi : [0, 1] → Ki be the unique geodesic joining the points q1
i ∈ Ki and q2

i ∈ Ki 67

(note that Ki is geodesic convex), i ∈ {1, . . . , n}. Let γ : [0, 1] → K be defined by 68

γ (t) = (γ1(t), . . . , γn(t)). Due to the convexity of the function Ki � qi �→ fi(qi,p−i ), 69

for every t ∈ [0, 1], we have 70

h(γ (t),p) =
n∑

i=1

[fi(γi(t),p−i )− fi(p)]

≤
n∑

i=1

[tfi(γi(1),p−i )+ (1− t)fi (γi(0),p−i )− fi(p)]

= th(q2,p)+ (1− t)h(q1,p)

< 0.

Consequently, γ (t) ∈ Sp for every t ∈ [0, 1], i.e., Sp is a geodesic convex set in the 71

product manifold M = !n
i=1Mi endowed with its natural (warped-)product metric (with 72

the constant weight functions 1), see O’Neill [17, p. 208]. Now, Proposition 9.1 implies 73

that Sp is contractible. 74

We are in the position to apply Theorem D.9. Therefore, there exists p ∈ K such that
0 = h(p,p) ≤ h(q,p) for every q ∈ K. In particular, putting q = (qi,p−i ), qi ∈ Ki

fixed, we obtain that fi(qi,p−i ) − fi(p) ≥ 0 for every i ∈ {1, . . . , n}, i.e., p is a Nash
equilibrium point for (f,K). ��
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9.2 Comparison of Nash-Type Equilibria on Manifolds 75

Similarly to Theorem 9.2, let us assume that for every i ∈ {1, . . . , n}, one can find a 76

finite-dimensional Riemannian manifold (Mi, gi) such that the strategy set Ki is closed 77

and geodesic convex in (Mi, gi). Let M = M1 × . . .×Mn be the product manifold with 78

its standard Riemannian product metric 79

g(V,W) =
n∑

i=1

gi(Vi,Wi) (9.1)

for every V = (V1, . . . , Vn),W = (W1, . . . ,Wn) ∈ Tp1M1 × . . . × TpnMn = TpM. Let 80

U = U1× . . .×Un ⊂ M be an open set such that K ⊂ U; we always mean that Ui inherits 81

the Riemannian structure of (Mi, gi). Let 82

L(K,U,M) =
{
f = (f1, . . . , fn) ∈ C0(K,Rn) : fi : (Ui,K−i )→ R is continuous and

fi(·,p−i ) is locally Lipschitz on (Ui, gi)

for all p−i ∈ K−i , i ∈ {1, . . . , n}}.
Definition 9.1 [6] Let f ∈ L(K,U,M). The set of Nash-Clarke equilibrium points for (f,K) 83

is 84

SNC(f,K) = {
p ∈ K : f 0

i (p; exp−1
pi

(qi)) ≥ 0 for all qi ∈ Ki, i ∈ {1, . . . , n}}.
Here, f 0

i (p; exp−1
pi

(qi)) denotes the Clarke generalized derivative of fi(·,p−i ) at point 85

pi ∈ Ki in direction exp−1
pi

(qi) ∈ TpiMi. More precisely, 86

f 0
i (p; exp−1

pi
(qi)) = lim sup

q→pi,q∈Ui, t→0+

fi(σq,exp−1
pi

(qi)
(t),p−i )− fi(q,p−i )

t
, (9.2)

where σq,v(t) = expq(tw), and w = d(exp−1
q ◦ exppi

)exp−1
pi

(q)
v for v ∈ TpiMi , and t > 0 87

is small enough. 88

The following existence result is available concerning the Nash-Clarke points for (f,K). 89

Theorem 9.3 ([6]) Let (Mi, gi) be complete finite-dimensional Riemannian manifolds, 90

Ki ⊂ Mi be non-empty, compact, geodesic convex sets, and f ∈ L(K,U,M) such that for 91

every p ∈ K, i ∈ {1, . . . , n}, Ki � qi �→ f 0
i (p; exp−1

pi
(qi)) is convex and f 0

i is upper 92

semicontinuous on its domain of definition. Then SNC(f,K) = ∅. 93
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Proof The proof is similar to that of Theorem 9.2; we show only the differences. Let 94

X = K = !n
i=1Ki and h : X ×X → R defined by h(q,p) =∑n

i=1 f
0
i (p; exp−1

pi
(qi)). It 95

is clear that h(p,p) = 0 for every p ∈ X. 96

First of all, the upper-semicontinuity of h(·, ·) on X × X implies the fact that the set 97

{(q,p) ∈ X ×X : 0 > h(q,p)} is open. 98

Now, let p ∈ X such that Sp = {q ∈ X : 0 > h(q,p)} is not empty. Then, there exists 99

i0 ∈ {1, . . . , n} such that f 0
i (p; exp−1

pi
(qi0)) < 0 for some qi0 ∈ Ki0 . Consequently, q = 100

(qi0,p−1) ∈ Sp, i.e., priSp = ∅ for every i ∈ {1, . . . , n}. Now, we fix qj = (q
j

1 , . . . , q
j
n ) ∈ 101

Sp, j ∈ {1, 2}, and let γi : [0, 1] → Ki be the unique geodesic joining the points q1
i ∈ Ki 102

and q2
i ∈ Ki . Let also γ : [0, 1] → K defined by γ (t) = (γ1(t), . . . , γn(t)). Due to the 103

convexity assumption on the function Ki � qi �→ f 0
i (p; exp−1

pi
(qi)) for every p ∈ K, 104

i ∈ {1, . . . , n}, the convexity of the function [0, 1] � t �→ h(γ (t),p), t ∈ [0, 1] easily 105

follows. Therefore, γ (t) ∈ Sp for every t ∈ [0, 1], i.e., Sp is a geodesic convex set, thus 106

contractible. 107

Lemma D.9 implies the existence of p ∈ K such that 0 = h(p,p) ≤ h(q,p) for every
q ∈ K. In particular, if q = (qi,p−i ), qi ∈ Ki fixed, we obtain that f 0

i (p; exp−1
pi

(qi)) ≥ 0
for every i ∈ {1, . . . , n}, i.e., p is a Nash-Clarke equilibrium point for (f,K). ��

Remark 9.1 Although Theorem 9.3 gives a possible approach to locate Nash equilibria 108

on Riemannian manifolds, its applicability is quite reduced. Indeed, fi0(p; exp−1
pi

(·)) has 109

no convexity property in general, unless we are in the Euclidean setting or the set Ki is a 110

geodesic segment. For instance, if H2 is the standard Poincaré upper-plane with the metric 111

gH = (
δij

y2 ) and we consider the function f : H2 × R → R, f ((x, y), r) = rx and the 112

geodesic segment γ (t) = (1, et ) in H
2, t ∈ [0, 1], the function 113

t �→ f 0
1 (((2, 1), r); exp−1

(2,1)(γ (t))) = r

(
e2t sinh 2

2
+ et cosh 1

√
e2t (cosh 1)2 − 1

)−1

is not convex. 114

The limited applicability of Theorem 9.3 comes from the involved form of the set 115

SNC(f,K) which motivates the introduction and study of the following concept which 116

plays the central role in the present section. 117

Definition 9.2 [7] Let f ∈ L(K,U,M). The set of Nash-Stampacchia equilibrium points for 118

(f,K) is 119

SNS(f,K) = {
p ∈ K : ∃ξ iC ∈ ∂iCfi(p) such that 〈ξ iC, exp−1

pi
(qi)〉gi ≥ 0,

for all qi ∈ Ki, i ∈ {1, . . . , n}}.
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Here, ∂iCfi(p) denotes the Clarke subdifferential of the function fi(·,p−i ) at point pi ∈ 120

Ki, i.e., ∂Cfi(·,p−i )(pi) = co(∂Lfi(·,p−i )(pi)). 121

Our first aim is to compare the three Nash-type equilibrium points. Before to do that, 122

we introduce another two classes of functions. If Ui ⊂ Mi is geodesic convex for every 123

i ∈ {1, . . . , n}, we may define 124

K(K,U,M) =
{
f ∈ C0(K,Rn) : fi : (Ui,K−i )→ R is continuous and fi(·,p−i ) is

convex on (Ui, gi) for all p−i ∈ K−i , i ∈ {1, . . . , n}},
and 125

C(K,U,M) =
{
f ∈ C0(K,Rn) : fi : (Ui,K−i )→ R is continuous and fi(·,p−i ) is of

class C1 on (Ui, gi) for all p−i ∈ K−i , i ∈ {1, . . . , n}}.
Remark 9.2 Due to Azagra, Ferrera and López-Mesas [1, Proposition 5.2], one has that 126

K(K,U,M) ⊂ L(K,U,M). Moreover, it is clear that C(K,U,M) ⊂ L(K,U,M). 127

The main result of this subsection reads as follows. 128

Theorem 9.4 ([7]) Let (Mi, gi) be finite-dimensional Riemannian manifolds, Ki ⊂ Mi 129

be non-empty, closed, geodesic convex sets, Ui ⊂ Mi be open sets containing Ki , and 130

fi : K → R be some functions, i ∈ {1, . . . , n}. Then, we have 131

(i) SNE(f,K) ⊂ SNS(f,K) = SNC(f,K) whenever f ∈ L(K,U,M); 132

(ii) SNE(f,K) = SNS(f,K) = SNC(f,K) whenever f ∈ K(K,U,M); 133

Proof (i) First, we prove that SNE(f,K) ⊂ SNS(f,K). Indeed, we have 134

p ∈ SNE(f,K)⇔ 135

⇔ fi(qi,p−i ) ≥ fi(p) for all qi ∈ Ki, i ∈ {1, . . . , n}
⇔ 0 ∈ ∂cl(fi(·,p−i )+ δKi )(pi), i ∈ {1, . . . , n}
⇒ 0 ∈ ∂L(fi(·,p−i )+ δKi )(pi), i ∈ {1, . . . , n} (cf. Theorem 2.4)

⇒ 0 ∈ ∂Lfi(·,p−i )(pi)+ ∂LδKi (pi), i ∈ {1, . . . , n} (cf. Propositions 2.12 and 2.13)

⇒ 0 ∈ ∂Cfi(·,p−i )(pi)+ ∂LδKi (pi), i ∈ {1, . . . , n}
⇔ 0 ∈ ∂iCfi(p)+NL(pi;Ki), i ∈ {1, . . . , n}
⇔ ∃ξ iC ∈ ∂iCfi(p) such that 〈ξ iC, exp−1

pi
(qi)〉gi ≥ 0 for all qi ∈ Ki, i ∈ {1, . . . , n}

(cf. Corollary 2.1)

⇔ p ∈ SNS(f,K).
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Now, we prove SNS(f,K) ⊂ SNC(f,K); more precisely, we have 136

p ∈ SNS(f,K)⇔ 137

⇔ 0 ∈ ∂iCfi(p)+NL(pi;Ki), i ∈ {1, . . . , n}
⇔ 0 ∈ ∂iCfi(p)+ ∂clδKi (pi), i ∈ {1, . . . , n} (cf. Corollary 2.1)

⇔ 0 ∈ ∂cl(fi
0(p; exp−1

pi
(·)))(pi)+ ∂clδKi (pi), i ∈ {1, . . . , n} (cf. Theorem 2.5)

⇒ 0 ∈ ∂cl(fi
0(p; exp−1

pi
(·))+ δKi )(pi), i ∈ {1, . . . , n} (cf. Proposition 2.14 )

⇔ f 0
i (p; exp−1

pi
(qi)) ≥ 0 for all qi ∈ Ki, i ∈ {1, . . . , n}

⇔ p ∈ SNC(f,K).

In order to prove SNC(f,K) ⊂ SNS(f,K), we recall that fi
0(p; exp−1

pi
(·)) is locally 138

Lipschitz in a neighborhood of pi . Thus, we have 139

p ∈ SNC(f,K)⇔ 140

⇔ 0 ∈ ∂cl(fi
0(p; exp−1

pi
(·))+ δKi )(pi), i ∈ {1, . . . , n}

⇒ 0 ∈ ∂L(fi
0(p; exp−1

pi
(·))+ δKi )(pi), i ∈ {1, . . . , n} (cf. Theorem 2.1)

⇒ 0 ∈ ∂L(fi
0(p; exp−1

pi
(·)))(pi)+ ∂LδKi (pi), i ∈ {1, . . . , n}

(cf. Propositions 2.12 and 2.13)

⇔ 0 ∈ ∂C(fi(·,p−i))(pi)+ ∂LδKi (pi), i ∈ {1, . . . , n} (cf. Theorem 2.5 )

⇔ 0 ∈ ∂iC(fi(p))+NL(pi;Ki), i ∈ {1, . . . , n}
⇔ p ∈ SNS(f,K).

(ii) Due to (i) and Remark 9.2, it is enough to prove that SNC(f,K) ⊂ SNE(f,K). Let 141

p ∈ SNC(f,K), i.e., for every i ∈ {1, . . . , n} and qi ∈ Ki , 142

f 0
i (p; exp−1

pi
(qi)) ≥ 0. (9.3)

Fix i ∈ {1, . . . , n} and qi ∈ Ki arbitrary. Since fi(·,p−i ) is convex on (Ui, gi), on account 143

of (2.18), we have 144

f 0
i (p; exp−1

pi
(qi)) = lim

t→0+
fi(exppi

(t exp−1
pi

(qi)),p−i )− fi(p)

t
. (9.4)

Note that the function 145

R(t) = fi(exppi
(t exp−1

pi
(qi)),p−i )− fi(p)

t
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is well-defined on the whole interval (0, 1]; indeed, t �→ exppi
(t exp−1

pi
(qi)) is the minimal 146

geodesic joining the points pi ∈ Ki and qi ∈ Ki which belongs to Ki ⊂ Ui. Moreover, it 147

is well-known that t �→ R(t) is non-decreasing on (0, 1]. Consequently, 148

fi(qi,p−i )− fi(p) = fi(exppi
(exp−1

pi
(qi)),p−i )− fi(p) = R(1) ≥ lim

t→0+
R(t).

Now, (9.3) and (9.4) give that limt→0+ R(t) ≥ 0, which concludes the proof. ��

Remark 9.3 149

(a) As we can see, the key tool in the proof of SNS(f,K) = SNC(f,K) is the locally 150

Lipschitz property of the function fi
0(p; exp−1

pi
(·)) near pi . 151

(b) In [6] only the sets SNE(f,K) and SNC(f,K) have been considered. Note however 152

that the Nash-Stampacchia concept is more appropriate to find Nash equilibrium 153

points in general contexts, see also the applications in Sect. 9.4 for both compact and 154

non-compact cases. Moreover, via SNS(f,K) we realize that the optimal geometrical 155

framework to develop this study is the class of Hadamard manifolds. In the next 156

sections we develop this approach. 157

9.3 Nash-Stampacchia Equilibria on Hadamard Manifolds 158

Before providing the main results on this subsection, we recall some basic notions from 159

the theory of metric projections on Hadamard manifolds. 160

Let (M, g) be an m-dimensional Riemannian manifold (m ≥ 2), K ⊂ M be a non- 161

empty set. Let 162

PK(q) = {p ∈ K : dg(q, p) = inf
z∈K dg(q, z)}

be the set of metric projections of the point q ∈ M to the set K . Due to the theorem 163

of Hopf-Rinow, if (M, g) is complete, then any closed set K ⊂ M is proximinal, i.e., 164

PK(q) = ∅ for all q ∈ M . In general, PK is a set-valued map. When PK(q) is a singleton 165

for every q ∈ M, we say that K is a Chebyshev set. The map PK is non-expansive if 166

dg(p1, p2) ≤ dg(q1, q2) for all q1, q2 ∈ M and p1 ∈ PK(q1), p2 ∈ PK(q2).

In particular, K is a Chebyshev set whenever the map PK is non-expansive. 167
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A non-empty closed set K ⊂ M verifies the obtuse-angle property if for fixed q ∈ M 168

and p ∈ K the following two statements are equivalent: 169

(OA1) p ∈ PK(q); 170

(OA2) If γ : [0, 1] → M is the unique minimal geodesic from γ (0) = p ∈ K to 171

γ (1) = q , then for every geodesic σ : [0, δ] → K (δ ≥ 0) emanating from the 172

point p, we have g(γ̇ (0), σ̇ (0)) ≤ 0. 173

Remark 9.4 174

(a) In the Euclidean case (Rm, 〈·, ·〉Rm), (here, 〈·, ·〉Rm is the standard inner product in 175

Rm), every non-empty closed convex set K ⊂ Rm verifies the obtuse-angle property, 176

see Moskovitz-Dines [13], which reduces to the well-known geometric form: 177

p ∈ PK(q)⇔ 〈q − p, z − p〉Rm ≤ 0 for all z ∈ K.

(b) The first variational formula of Riemannian geometry shows that (OA1) implies 178

(OA2) for every closed set K ⊂ M in a complete Riemannian manifold (M, g). 179

However, the converse does not hold in general; for a detailed discussion, see Kristály, 180

Rădulescu and Varga [8]. 181

A Riemannian manifold (M, g) is a Hadamard manifold if it is complete, simply 182

connected and its sectional curvature is non-positive. It is easy to check that on a Hadamard 183

manifold (M, g) every geodesic convex set is a Chebyshev set. Moreover, we have 184

Proposition 9.2 Let (M, g) be a finite-dimensional Hadamard manifold, K ⊂ M be a 185

closed set. The following statements hold true: 186

(i) (Walter [19]) If K ⊂M is geodesic convex, it verifies the obtuse-angle property; 187

(ii) (Grognet [5]) PK is non-expansive if and only if K ⊂ M is geodesic convex. 188

We also recall that on a Hadamard manifold (M, g), if h(p) = d2
g(p, p0), p0 ∈ M is fixed, 189

then 190

gradh(p) = −2 exp−1
p (p0). (9.5)

In the sequel, let (Mi, gi) be finite-dimensional Hadamard manifolds, i ∈ {1, . . . , n}, 191

and M = M1 × . . . × Mn be the product manifold with its Riemannian product metric 192

from (9.1) Standard arguments show that (M, g) is also a Hadamard manifold, see O’Neill 193

[17, Lemma 40, p. 209]. Moreover, on account of the characterization of (warped) product
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geodesics, see O’Neill [17, Proposition 38, p. 208], if expp denotes the usual exponential 194

map on (M, g) at p ∈ M, then for every V = (V1, . . . , Vn) ∈ TpM, we have 195

expp(V) = (expp1
(V1), . . . , exppn

(Vn)).

We consider that Ki ⊂ Mi are non-empty, closed, geodesic convex sets and Ui ⊂ Mi are 196

open sets containing Ki , i ∈ {1, . . . , n}. 197

Let f ∈ L(K,U,M). The diagonal Clarke subdifferential of f = (f1, . . . , fn) at p ∈ K is 198

∂
C f(p) = (∂1
Cf1(p), . . . , ∂nCfn(p)).

From the definition of the metric g, for every p ∈ K and q ∈ M it turns out that 199

〈ξ
C , exp−1
p (q)〉g =

n∑
i=1

〈ξ iC, exp−1
pi

(qi)〉gi , ξ
C = (ξ1
C, . . . , ξ

n
C) ∈ ∂
C f(p). (9.6)

9.3.1 Fixed Point Characterization of Nash-Stampacchia Equilibria 200

For each α > 0 and f ∈ L(K,U,M), we define the set-valued map Af
α : K → 2K by 201

Af
α(p) = PK(expp(−α∂
C f(p))), p ∈ K.

Note that for each p ∈ K, the set Af
α(p) is non-empty and compact. The following result 202

plays a crucial role in our further investigations. 203

Theorem 9.5 ([7]) Let (Mi, gi) be finite-dimensional Hadamard manifolds, Ki ⊂ Mi 204

be non-empty, closed, geodesic convex sets, Ui ⊂ Mi be open sets containing Ki , i ∈ 205

{1, . . . , n}, and f ∈ L(K,U,M). Then the following statements are equivalent: 206

(i) p ∈ SNS(f,K); 207

(ii) p ∈ Af
α(p) for all α > 0; 208

(iii) p ∈ Af
α(p) for some α > 0. 209

Proof In view of relation (9.6) and the identification between TpM and T ∗p M, see (2.11), 210

we have that 211

p ∈ SNS(f,K)⇔ ∃ξ
C = (ξ1
C, . . . , ξ

n
C) ∈ ∂
C f(p) such that (9.7)

〈ξ
C , exp−1
p (q)〉g ≥ 0 for all q ∈ K

⇔ ∃ξ
C = (ξ1
C, . . . , ξ

n
C) ∈ ∂
C f(p) such that

g(−αξ
C , exp−1
p (q)) ≤ 0 for all q ∈ K and

for all/some α > 0.
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On the other hand, let γ, σ : [0, 1] → M be the unique minimal geodesics defined by 212

γ (t) = expp(−tαξ
C ) and σ(t) = expp(t exp−1
p (q)) for any fixed α > 0 and q ∈ K. Since 213

K is geodesic convex in (M, g), then Imσ ⊂ K and 214

g(γ̇ (0), σ̇ (0)) = g(−αξ
C , exp−1
p (q)). (9.8)

Taking into account relation (9.8) and Proposition 9.2-(i), i.e., the validity of the obtuse- 215

angle property on the Hadamard manifold (M, g), (9.7) is equivalent to 216

p = γ (0) = PK(γ (1)) = PK(expp(−αξ
C )),

which is nothing but p ∈ Af
α(p). ��

Remark 9.5 Note that the implications (ii) ⇒ (i) and (iii) ⇒ (i) hold for arbitrarily 217

Riemannian manifolds, see Remark 9.4. These implications are enough to find Nash- 218

Stampacchia equilibrium points for (f,K) via fixed points of the map Af
α. However, in 219

the sequel we exploit further aspects of the Hadamard manifolds as non-expansiveness of 220

the projection operator of geodesic convex sets and a Rauch-type comparison property. 221

Moreover, in the spirit of Nash’s original idea that Nash equilibria appear exactly as 222

fixed points of a specific map, Theorem 9.5 provides a full characterization of Nash- 223

Stampacchia equilibrium points for (f,K) via the fixed points of the set-valued map Af
α 224

whenever (Mi, gi) are Hadamard manifolds. 225

In the sequel, two cases will be considered to guarantee Nash-Stampacchia equilibrium 226

points for (f,K), depending on the compactness of the strategy sets Ki . 227

9.3.2 Nash-Stampacchia Equilibrium Points: Compact Case 228

Our first result guarantees the existence of a Nash-Stampacchia equilibrium point for (f,K) 229

whenever the sets Ki are compact, i ∈ {1, . . . , n}. 230

Theorem 9.6 ([7]) Let (Mi, gi) be finite-dimensional Hadamard manifolds, Ki ⊂ Mi 231

be non-empty, compact, geodesic convex sets, and Ui ⊂ Mi be open sets containing 232

Ki , i ∈ {1, . . . , n}. Assume that f ∈ L(K,U,M) and K � p �→ ∂
C f(p) is upper 233

semicontinuous. Then there exists at least one Nash-Stampacchia equilibrium point for 234

(f,K), i.e., SNS(f,K) = ∅. 235

Proof Fix α > 0 arbitrary. We prove that the set-valued map Af
α has closed graph. Let 236

(p,q) ∈ K×K and the sequences {pk}, {qk} ⊂ K such that qk ∈ Af
α(pk) and (pk,qk)→ 237

(p,q) as k → ∞. Then, for every k ∈ N, there exists ξ
C,k ∈ ∂
C f(pk) such that qk = 238

PK(exppk
(−αξ
C,k)). On account of Proposition 2.13 (i) ⇔ (ii), the sequence {ξ
C,k} is 239
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bounded on the cotangent bundle T ∗M. Using the identification between elements of the 240

tangent and cotangent fibers, up to a subsequence, we may assume that {ξ
C,k} converges 241

to an element ξ
C ∈ T ∗p M. Since the set-valued map ∂
C f is upper semicontinuous on K 242

and pk → p as k → ∞, we have that ξ
C ∈ ∂
C f(p). The non-expansiveness of PK (see 243

Proposition 9.2-(ii)) gives that 244

dg(q, PK(expp(−αξ
C ))) ≤ dg(q,qk)+ dg(qk, PK(expp(−αξ
C )))

= dg(q,qk)+ dg(PK(exppk
(−αξ
C,k)), PK(expp(−αξ
C )))

≤ dg(q,qk)+ dg(exppk
(−αξ
C,k), expp(−αξ
C ))

Letting k →∞, both terms in the last expression tend to zero. Indeed, the former follows 245

from the fact that qk → q as k →∞, while the latter is a simple consequence of the local 246

behaviour of the exponential map. Thus, 247

q = PK(expp(−αξ
C )) ∈ PK(expp(−α∂
C f(p))) = Af
α(p),

i.e., the graph of Af
α is closed. 248

By definition, for each p ∈ K the set ∂
C f(p) is convex, so contractible. Since both PK 249

and the exponential map are continuous, Af
α(p) is contractible as well for each p ∈ K, so 250

acyclic (see [12]). 251

Now, we are in the position to apply Begle’s fixed point theorem, equivalent to Lemma
D.9, see e.g. McClendon [12, Proposition 1.1]. Consequently, there exists p ∈ K such that
p ∈ Af

α(p). On account of Theorem 9.5, p ∈ SNS(f,K). ��

Remark 9.6 252

(a) Since f ∈ L(K,U,M) in Theorem 9.6, the partial Clarke gradients q �→ ∂Cfi(·,p−i )(q) 253

are upper semicontinuous, i ∈ {1, . . . , n}. However, in general, the diagonal Clarke 254

subdifferential ∂
C f(·) does not inherit this regularity property. 255

(b) Two applications to Theorem 9.6 will be given in Examples 9.1 and 9.2; the first on 256

the Poincaré disc, the second on the manifold of positive definite, symmetric matrices. 257

9.3.3 Nash-Stampacchia Equilibrium Points: Non-compact Case 258

In the sequel, we are focusing to the location of Nash-Stampacchia equilibrium points 259

for (f,K) in the case when Ki are not necessarily compact on the Hadamard manifolds 260

(Mi, gi). Simple examples show that even the C∞−smoothness of the payoff functions 261

are not enough to guarantee the existence of Nash(-Stampacchia) equilibria. 262

Indeed, if f1, f2 : R
2 → R are defined as f1(x, y) = f2(x, y) = e−x−y , and 263

K1 = K2 = [0,∞), then SNS(f,K) = SNE(f,K) = ∅. Therefore, in order to prove 264
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existence/location of Nash(-Stampacchia) equilibria on not necessarily compact strategy 265

sets, one needs to require more specific assumptions on f = (f1, . . . , fn). Two such 266

possible ways are described in the sequel. 267

The first existence result is based on a suitable coercivity assumption and Theorem 9.6. 268

For a fixed p0 ∈ K, we introduce the hypothesis: 269

(Hp0) There exists ξ0
C ∈ ∂
C f(p0) such that 270

Lp0 = lim sup
dg(p,p0)→∞

supξC∈∂
C f(p)〈ξC, exp−1
p (p0)〉g + 〈ξ0

C, exp−1
p0

(p)〉g
dg(p,p0)

< −‖ξ0
C‖g, p ∈ K.

Remark 9.7 271

(a) A similar assumption to hypothesis (Hp0) can be found in Németh [16] in the context 272

of variational inequalities. 273

(b) Note that for the above numerical example, (Hp0) is not satisfied for any p0 = 274

(x0, y0) ∈ [0,∞) × [0,∞). Indeed, one has L(x0,y0) = −ex0+y0, and ‖ξ0
C‖g = 275

ex0+y0
√

2. Therefore, the facts that SNS(f,K) = SNE(f,K) = ∅ are not unexpected. 276

The precise statement of the existence result is as follows. 277

Theorem 9.7 ([7]) Let (Mi, gi) be finite-dimensional Hadamard manifolds, Ki ⊂ Mi 278

be non-empty, closed, geodesic convex sets, and Ui ⊂ Mi be open sets containing Ki , 279

i ∈ {1, . . . , n}. Assume that f ∈ L(K,U,M), the map K � p �→ ∂
C f(p) is upper 280

semicontinuous, and hypothesis (Hp0) holds for some p0 ∈ K. Then there exists at least 281

one Nash-Stampacchia equilibrium point for (f,K), i.e., SNS(f,K) = ∅. 282

Proof Let E0 ∈ R such that Lp0 < −E0 < −‖ξ0
C‖g. On account of hypothesis (Hp0) 283

there exists R > 0 large enough such that for every p ∈ K with dg(p,p0) ≥ R, we have 284

sup
ξC∈∂
C f(p)

〈ξC, exp−1
p (p0)〉g + 〈ξ0

C, exp−1
p0

(p)〉g ≤ −E0dg(p,p0).

It is clear that K ∩ Bg(p0, R) = ∅, where Bg(p0, R) denotes the closed geodesic ball in 285

(M, g) with center p0 and radius R. In particular, from (2.14) and (2.12), for every p ∈ K 286

with dg(p,p0) ≥ R, the above relation yields 287

sup
ξC∈∂
C f(p)

〈ξC, exp−1
p (p0)〉g ≤ −E0dg(p,p0)+ ‖ξ0

C‖g‖ exp−1
p0

(p)‖g (9.9)

= (−E0 + ‖ξ0
C‖g)dg(p,p0)

< 0.
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Let KR = K ∩ Bg(p0, R). It is clear that KR is a geodesic convex, compact subset of 288

M. By applying Theorem 9.6, we immediately have that p̃ ∈ SNS(f,KR) = ∅, i.e., there 289

exists ξ̃C ∈ ∂
C f(p̃) such that 290

〈ξ̃C, exp−1
p̃ (p)〉g ≥ 0 for all p ∈ KR. (9.10)

It is also clear that dg(p̃,p0) < R. Indeed, assuming the contrary, we obtain from (9.9)
that 〈ξ̃C, exp−1

p̃ (p0)〉g < 0, which contradicts relation (9.10). Now, fix q ∈ K arbitrarily.

Thus, for ε > 0 small enough, the element p = expp̃(ε exp−1
p̃ (q)) belongs both to K and

Bg(p0, R), so KR. By substituting p into (9.10), we obtain that 〈ξ̃C, exp−1
p̃ (q)〉g ≥ 0. The

arbitrariness of q ∈ K shows that p̃ ∈ K is actually a Nash-Stampacchia equilibrium point
for (f,K), which ends the proof. ��

The second result in the non-compact case is based on a suitable Lipschitz-type 291

assumption. In order to avoid technicalities in our further calculations, we will consider 292

that f ∈ C(K,U,M). In this case, ∂
C f(p) and Af
α(p) are singletons for every p ∈ K and 293

α > 0. 294

For f ∈ C(K,U,M), α > 0 and 0 < ρ < 1 we introduce the hypothesis: 295

(H
α,ρ

K ) dg(expp(−α∂
C f(p)), expq(−α∂
C f(q))) ≤ (1− ρ)dg(p,q) for all p,q ∈ K.

Remark 9.8 One can show that (Hα,ρ

K ) implies (Hp0) for every p0 ∈ K whenever (Mi, gi) 296

are Euclidean spaces. However, it is not clear if the same holds for Hadamard manifolds. 297

Finding fixed points for Af
α, one could expect to apply dynamical systems; we consider 298

both discrete and continuous ones. First, for some α > 0 and p0 ∈ M fixed, we consider 299

the discrete dynamical system 300

pk+1 = Af
α(PK(pk)). ((DDS)α)

Second, according to Theorem 9.5, we clearly have that 301

p ∈ SNS(f,K)⇔ 0 = exp−1
p (Af

α(p)) for all/some α > 0.

Consequently, for some α > 0 and p0 ∈ M fixed, the above equivalence motivates the 302

study of the continuous dynamical system 303

{
η̇(t) = exp−1

η(t)(A
f
α(PK(η(t))))

η(0) = p0.
((CDS)α)

The following result describes the exponential stability of the orbits in both cases. 304
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Theorem 9.8 ([7]) Let (Mi, gi) be finite-dimensional Hadamard manifolds, Ki ⊂ Mi 305

be non-empty, closed geodesics convex sets, Ui ⊂ Mi be open sets containing Ki , and 306

fi : K → R be functions, i ∈ {1, . . . , n} such that f ∈ C(K,U,M). Assume that (Hα,ρ

K ) 307

holds true for some α > 0 and 0 < ρ < 1. Then the set of Nash-Stampacchia equilibrium 308

points for (f,K) is a singleton, i.e., SNS(f,K) = {p̃}. Moreover, for each p0 ∈ M, we have 309

(i) the orbit {pk} of (DDS)α converges exponentially to p̃ ∈ K and 310

dg(pk, p̃) ≤ (1− ρ)k

ρ
dg(p1,p0) f or all k ∈ N;

(ii) the orbit η of (CDS)α is globally defined on [0,∞) and it converges exponentially to 311

p̃ ∈ K and 312

dg(η(t), p̃) ≤ e−ρtdg(p0, p̃) f or all t ≥ 0.

Proof Let p,q ∈ M be arbitrarily fixed. On account of the non-expansiveness of the 313

projection PK (see Proposition 9.2-(ii)) and hypothesis (Hα,ρ
K ), we have that 314

dg((A
f
α ◦ PK)(p), (Af

α ◦ PK)(q)) 315

= dg(PK(expPK(p)(−α∂
C f(PK(p)))), PK(expPK(q)(−α∂
C f(PK(q)))))

≤ dg(expPK(p)(−α∂
C f(PK(p))), expPK(q)(−α∂
C f(PK(q))))

≤ (1− ρ)dg(PK(p), PK(q))

≤ (1− ρ)dg(p,q),

which means that the map Af
α ◦ PK : M → M is a (1− ρ)-contraction on M. 316

(i) Since (M,dg) is a complete metric space, the standard Banach fixed point argument 317

shows that Af
α ◦ PK has a unique fixed point p̃ ∈ M. Since ImAf

α ⊂ K, then p̃ ∈ K. 318

Therefore, we have that Af
α(p̃) = p̃. Due to Theorem 9.5, SNS(f,K) = {p̃} and the 319

estimate for dg(pk, p̃) yields in a usual manner. 320

(ii) Since Af
α ◦ PK : M → M is a (1 − ρ)-contraction on M (thus locally Lipschitz in 321

particular), the map M � p �→ G(p) := exp−1
p (Af

α(PK(p))) is of class C1−0. Now, 322

we may guarantee the existence of a unique maximal orbit η : [0, Tmax) → M of 323

(CDS)α. 324

We assume that Tmax <∞. Let us consider the Lyapunov function h : [0, Tmax) → R 325

defined by 326

h(t) = 1

2
d2

g(η(t), p̃).
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The function h is differentiable for a.e. t ∈ [0, Tmax) and in the differentiable points of η 327

we have 328

h′(t) = −g(η̇(t), exp−1
η(t)(p̃))

= −g(exp−1
η(t)(A

f
α(PK(η(t)))), exp−1

η(t)(p̃)) (cf. (CDS)α)

= −g(exp−1
η(t)(A

f
α(PK(η(t))))− exp−1

η(t)(p̃), exp−1
η(t)(p̃))

−g(exp−1
η(t)(p̃), exp−1

η(t)(
Qp))

≤ ‖ exp−1
η(t)(A

f
α(PK(η(t))))− exp−1

η(t)(p̃)‖g · ‖ exp−1
η(t)(p̃))‖g − ‖ exp−1

η(t)(p̃))‖2
g.

In the last estimate we used the Cauchy-Schwartz inequality (2.12). From (2.14) we have 329

that 330

‖ exp−1
η(t)(p̃))‖g = dg(η(t), p̃). (9.11)

We claim that for every t ∈ [0, Tmax) one has 331

‖ exp−1
η(t)(A

f
α(PK(η(t))))− exp−1

η(t)(p̃)‖g ≤ dg(A
f
α(PK(η(t))), p̃). (9.12)

To see this, fix a point t ∈ [0, Tmax) where η is differentiable, and let γ : [0, 1] → M, 332

γ̃ : [0, 1] → Tη(t)M and γ : [0, 1] → Tη(t)M be three curves such that 333

• γ is the unique minimal geodesic joining the two points γ (0) = p̃ ∈ K and γ (1) = 334

Af
α(PK(η(t))); 335

• γ̃ (s) = exp−1
η(t)(γ (s)), s ∈ [0, 1]; 336

• γ (s) = (1− s) exp−1
η(t)(p̃)+ s exp−1

η(t)(A
f
α(PK(η(t)))), s ∈ [0, 1]. 337

By the definition of γ, we have that 338

Lg(γ ) = dg(A
f
α(PK(η(t))), p̃). (9.13)

Moreover, since γ is a segment of the straight line in Tη(t)M that joins the endpoints of γ̃ , 339

we have that 340

l(γ ) ≤ l(γ̃ ); (9.14)

here, l denotes the length function on Tη(t)M. Moreover, since the curvature of (M, g) is 341

non-positive, we may apply a Rauch-type comparison result for the lengths of γ and γ̃ , 342

see do Carmo [4, Proposition 2.5, p.218], obtaining that 343

l(γ̃ ) ≤ Lg(γ ). (9.15)
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Combining relations (9.13), (9.14) and (9.15) with the fact that 344

l(γ ) = ‖ exp−1
η(t)(A

f
α(PK(η(t))))− exp−1

η(t)(p̃)‖g,

relation (9.12) holds true. 345

Coming back to h′(t), in view of (9.11) and (9.12), it turns out that 346

h′(t) ≤ dg(A
f
α(PK(η(t))), p̃) · dg(η(t), p̃)− d2

g(η(t), p̃). (9.16)

On the other hand, note that p̃ ∈ SNS(f,K), i.e., Af
α(p̃) = p̃. By exploiting the non- 347

expansiveness of the projection operator PK, see Proposition 9.2-(ii), and (H
α,ρ
K ), we 348

have that 349

dg(A
f
α(PK(η(t))), p̃) = dg(A

f
α(PK(η(t))), Af

α(p̃))

= dg(PK(expPK(η(t))(−α∂
C f(PK(η(t))))), PK(expp̃(−α∂
C f(p̃))))

≤ dg(expPK(η(t))(−α∂
C f(PK(η(t)))), expp̃(−α∂
C f(p̃)))

≤ (1− ρ)dg(PK(η(t)), p̃)

= (1− ρ)dg(PK(η(t)), PK(p̃))

≤ (1− ρ)dg(η(t), p̃).

Combining the above relation with (9.16), for a.e. t ∈ [0, Tmax) it yields 350

h′(t) ≤ (1− ρ)d2
g(η(t), p̃)− d2

g(η(t), p̃) = −ρd2
g(η(t), p̃),

which is nothing but 351

h′(t) ≤ −2ρh(t) for a.e. t ∈ [0, Tmax).

Due to the latter inequality, we have that 352

d

dt
[h(t)e2ρt ] = [h′(t)+ 2ρh(t)]e2ρt ≤ 0 for a.e. t ∈ [0, Tmax).

After integration, one gets 353

h(t)e2ρt ≤ h(0) for all t ∈ [0, Tmax). (9.17)

According to (9.17), the function h is bounded on [0, Tmax); thus, there exists p ∈ M such 354

that limt↗Tmax η(t) = p. The last limit means that η can be extended toward the value 355

Tmax, which contradicts the maximality of Tmax. Thus, Tmax = ∞. 356
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Now, relation (9.17) leads to the required estimate; indeed, we have 357

dg(η(t), p̃) ≤ e−ρtdg(η(0), p̃) = e−ρtdg(p0, p̃) for all t ∈ [0,∞),

which concludes the proof of (ii). ��

9.3.4 Curvature Rigidity 358

The obtuse-angle property and the non-expansiveness of PK for the closed, geodesic 359

convex set K ⊂ M played indispensable roles in the proof of Theorems 9.5–9.8, which are 360

well-known features of Hadamard manifolds (see Proposition 9.2). In Sect. 9.3 the product 361

manifold (M, g) is considered to be a Hadamard one due to the fact that (Mi, gi) are 362

Hadamard manifolds themselves for each i ∈ {1, . . . , n}. We actually have the following 363

characterization which is also of geometric interests in its own right and entitles us to 364

assert that Hadamard manifolds are the natural framework to develop the theory of Nash- 365

Stampacchia equilibria on manifolds. 366

Theorem 9.9 ([7]) Let (Mi, gi) be complete, simply connected Riemannian manifolds, 367

i ∈ {1, . . . , n}, and (M, g) their product manifold. The following statements are 368

equivalent: 369

(i) Any non-empty, closed, geodesic convex set K ⊂ M verifies the obtuse-angle property 370

and PK is non-expansive; 371

(ii) (Mi, gi) are Hadamard manifolds for every i ∈ {1, . . . , n}. 372

Proof (ii) ⇒ (i). As mentioned before, if (Mi, gi) are Hadamard manifolds for every 373

i ∈ {1, . . . , n}, then (M, g) is also a Hadamard manifold, see O’Neill [17, Lemma 40, p. 374

209]. It remains to apply Proposition 9.2 for the Hadamard manifold (M, g). 375

(i) ⇒ (ii). We first prove that (M, g) is a Hadamard manifold. Since (Mi, gi) are 376

complete and simply connected Riemannian manifolds for every i ∈ {1, . . . , n}, the same 377

is true for (M, g). We now show that the sectional curvature of (M, g) is non-positive. To 378

see this, let p ∈ M and W0,V0 ∈ T pM \ {0}. We claim that the sectional curvature of the 379

two-dimensional subspace S =span{W0,V0} ⊂ T pM at the point p is non-positive, i.e., 380

Kp(S) ≤ 0. We assume without loosing the generality that V0 and W0 are g-perpendicular, 381

i.e., g(W0,V0) = 0. 382

Let us fix rp > 0 and δ > 0 such that Bg(p, rp) is a totally normal ball of p and 383

δ
(‖W0‖g + 2‖V0‖g

)
< rp. (9.18)
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Fig. 9.1 The construction of parallel transport along the geodesic segment σ

Let σ : [−δ, 2δ] → M be the geodesic segment σ(t) = expp(tV0) and W be the unique 384

parallel vector field along σ with the initial data W(0) = W0. For any t ∈ [0, δ], let 385

γt : [0, δ] → M be the geodesic segment γt (u) = expσ(t)(uW(t)). 386

Let us fix t, u ∈ [0, δ] arbitrarily, u = 0. Due to (9.18), the geodesic segment 387

γt |[0,u] belongs to the totally normal ball Bg(p, rp) of p; thus, γt |[0,u] is the unique 388

minimal geodesic joining the point γt (0) = σ(t) to γt (u). Moreover, since W is the 389

parallel transport of W(0) = W0 along σ , we have g(W(t), σ̇ (t)) = g(W(0), σ̇ (0)) = 390

g(W0,V0) = 0; therefore, 391

g(γ̇t (0), σ̇ (t)) = g(W(t), σ̇ (t)) = 0,

see Fig. 9.1. 392

Consequently, the minimal geodesic segment γt |[0,u] joining γt (0) = σ(t) to γt (u), and 393

the set K = Imσ = {σ(t) : t ∈ [−δ, 2δ]} fulfill hypothesis (OA2). Note that Imσ is a 394

closed, geodesic convex set in M; thus, from hypothesis (i) it follows that Imσ verifies the 395

obtuse-angle property and PImσ is non-expansive. Thus, (OA2) implies (OA1), i.e., for 396

every t, u ∈ [0, δ], we have σ(t) ∈ PImσ (γt (u)). Since Imσ is a Chebyshev set (cf. the 397

non-expansiveness of PImσ ), for every t, u ∈ [0, δ], we have 398

PImσ (γt (u)) = {σ(t)}. (9.19)

Thus, for every t, u ∈ [0, δ], relation (9.19) and the non-expansiveness of PImσ imply 399

dg(p, σ (t)) = dg(σ (0), σ (t)) = dg(PImσ (γ0(u)), PImσ (γt (u))) (9.20)

≤ dg(γ0(u), γt (u)).

400
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The above construction (i.e., the parallel transport of W(0) = W0 along σ ) and the formula 401

of the sectional curvature in the parallelogramoid of Levi-Civita defined by the points p, 402

σ(t), γ0(u), γt (u) give 403

Kp(S) = lim
u,t→0

d2
g(p, σ (t))− dmathrm2

g (γ0(u), γt (u))

dg(p, γ0(u)) · dg(p, σ (t))
.

According to (9.20), the latter limit is non-positive, so Kp(S) ≤ 0, which concludes the 404

first part, namely, (M, g) is a Hadamard manifold. 405

Now, a result of Chen [3, Theorem 1] implies that the metric spaces (Mi, dgi ) are 406

Aleksandrov NPC spaces for every i ∈ {1, . . . , n}. Consequently, for each i ∈ {1, . . . , n}, 407

the Riemannian manifolds (Mi, gi) have non-positive sectional curvature, thus they are 408

Hadamard manifolds. The proof is complete. ♦ 409

Remark 9.9 The obtuse-angle property and the non-expansiveness of the metric projection 410

are also key tools behind the theory of monotone vector fields, proximal point algorithms 411

and variational inequalities developed on Hadamard manifolds; see Li, López and Martín- 412

Márquez [10, 11], and Németh [16]. Within the class of Riemannian manifolds, Theorem 413

9.9 shows in particular that Hadamard manifolds are indeed the appropriate frameworks 414

for developing successfully the approaches in [10,11], and [16] and further related works. 415

9.4 Examples of Nash Equilibria on Curved Settings 416

In this subsection we present various examples where our main results for Nash equilibria 417

can be efficiently applied; for convenience, we give all the details in our calculations by 418

keeping also the notations from the previous subsections. 419

Example 9.1 Let 420

K1 = {(x1, x2) ∈ R
2+ : x2

1 + x2
2 ≤ 4 ≤ (x1 − 1)2 + x2

2}, K2 = [−1, 1],

and the functions f1, f2 : K1 ×K2 → R defined for (x1, x2) ∈ K1 and y ∈ K2 by 421

f1((x1, x2), y) = y(x3
1 + y(1− x2)

3); f2((x1, x2), y) = −y2x2 + 4|y|(x1 + 1).

It is clear that K1 ⊂ R
2 is not convex in the usual sense while K2 ⊂ R is. However, 422

if we consider the Poincaré upper-plane model (H2, gH), the set K1 ⊂ H
2 is geodesic 423

convex (and compact) with respect to the metric gH = (
δij

x2
2
). Therefore, we embed the 424

set K1 into the Hadamard manifold (H2, gH), and K2 into the standard Euclidean space 425

(R, g0). After natural extensions of f1(·, y) and f2((x1, x2), ·) to the whole U1 = H
2

426
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and U2 = R, respectively, we clearly have that f1(·, y) is a C1 function on H
2 for every 427

y ∈ K2, while f2((x1, x2), ·) is a locally Lipschitz function on R for every (x1, x2) ∈ K1. 428

Thus, f = (f1, f2) ∈ L(K1×K2,H2×R,H2×R) and for every ((x1, x2), y) ∈ K = K1 × K2, 429

we have 430

∂1
Cf1((x1, x2), y) = gradf1(·, y)(x1, x2) =

(
g
ij

H

∂f1(·, y)
∂xj

)
i

= 3yx2
2(x

2
1 ,−y(1− x2)

2);

431

∂2
Cf2((x1, x2), y) =

⎧⎪⎨
⎪⎩
−2yx2 − 4(x1 + 1) if y < 0,

4(x1 + 1)[−1, 1] if y = 0,

−2yx2 + 4(x1 + 1) if y > 0.

It is now clear that the map K � ((x1, x2), y) �→ ∂
C f(((x1, x2), y)) is upper semicon- 432

tinuous. Consequently, on account of Theorem 9.6, SNS(f,K) = ∅, and its elements are 433

precisely the solutions ((x̃1, x̃2), ỹ) ∈ K of the system 434

{
〈∂1

Cf1((x̃1, x̃2), ỹ), exp−1
(x̃1,x̃2)

(q1, q2)〉gH ≥ 0 for all (q1, q2) ∈ K1,

ξ2
C(q − ỹ) ≥ 0 for some ξ2

C ∈ ∂2
Cf2((x̃1, x̃2), ỹ) for all q ∈ K2.

((S1))

In order to solve (S1) we first observe that 435

K1 ⊂ {(x1, x2) ∈ R
2 : √3 ≤ x2 ≤ 2(x1 + 1)}. (9.21)

We distinguish four cases: 436

(a) If ỹ = 0 then both inequalities of (S1) hold for every (x̃1, x̃2) ∈ K1 by choosing 437

ξ2
C = 0 ∈ ∂2

Cf2((x̃1, x̃2), 0) in the second relation. Thus, ((x̃1, x̃2), 0) ∈ SNS(f,K) for 438

every (x̃1, x̃2) ∈ K. 439

(b) Let 0 < ỹ < 1. The second inequality of (S1) gives that −2ỹx̃2 + 4(x̃1 + 1) = 0; 440

together with (9.21) it yields 0 = ỹx̃2−2(x̃1+1) < x̃2−2(x̃1+1) ≤ 0, a contradiction. 441

(c) Let ỹ = 1. The second inequality of (S1) is true if and only if −2x̃2 + 4(x̃1 + 1) ≤ 0. 442

Due to (9.21), we necessarily have x̃2 = 2(x̃1 + 1); this Euclidean line intersects the 443

set K1 in the unique point (x̃1, x̃2) = (0, 2) ∈ K1. By the geometrical meaning of the 444

exponential map one can conclude that 445

{t exp−1
(0,2)(q1, q2) : (q1, q2) ∈ K1, t ≥ 0} = {(x,−y) ∈ R

2 : x, y ≥ 0}.

Taking into account this relation and ∂1
Cf1((0, 2), 1) = (0,−12), the first inequality 446

of (S1) holds true as well. Therefore, ((0, 2), 1) ∈ SNS(f,K). 447

(d) Similar reason as in (b) (for −1 < ỹ < 0) and (c) (for ỹ = −1) gives that 448

((0, 2),−1) ∈ SNS(f,K). 449
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Thus, from (a)–(d) we have that 450

SNS(f,K) = (K1 × {0}) ∪ {((0, 2), 1), ((0, 2),−1)}.

Now, on account of Theorem 9.4 (i) we may easily select the Nash equilibrium points for 451

(f,K) among the elements of SNS(f,K) obtaining that SNE(f,K) = K1 × {0}. 452

In the rest of this subsection we deal with some applications involving matrices; thus, 453

we recall some basic notions from the matrix-calculus. Fix n ≥ 2. Let Mn(R) be the set of 454

symmetric n×n matrices with real values, and M+
n (R) ⊂ Mn(R) be the cone of symmetric 455

positive definite matrices. The standard inner product on Mn(R) is defined as 456

〈U,V 〉 = tr(UV ). (9.22)

Here, tr(Y ) denotes the trace of Y ∈ Mn(R). It is well-known that (Mn(R), 〈·, ·〉) is an 457

Euclidean space, the unique geodesic between X,Y ∈ Mn(R) is 458

γ E
X,Y (s) = (1− s)X + sY, s ∈ [0, 1]. (9.23)

The set M+
n (R) will be endowed with the Killing form 459

〈〈U,V 〉〉X = tr(X−1VX−1U), X ∈ M+
n (R), U, V ∈ TX(M

+
n (R)). (9.24)

Note that the pair (M+
n (R), 〈〈·, ·〉〉) is a Hadamard manifold, see Lang [9, Chapter XII], 460

and TX(M
+
n (R)) 3 Mn(R). The unique geodesic segment connecting X,Y ∈ M+

n (R) is 461

defined by 462

γH
X,Y (s) = X1/2(X−1/2YX−1/2)sX1/2, s ∈ [0, 1]. (9.25)

In particular, d
ds
γ H
X,Y (s)|s=0 = X1/2 ln(X−1/2YX−1/2)X1/2; consequently, for each 463

X,Y ∈ M+
n (R), we have 464

exp−1
X Y = X1/2 ln(X−1/2YX−1/2)X1/2.

Moreover, the metric function on M+
n (R) is given by 465

d2
H(X, Y ) = 〈〈exp−1

X Y, exp−1
X Y 〉〉X = tr(ln2(X−1/2YX−1/2)). (9.26)

Example 9.2 Let 466

K1 = [0, 2], K2 = {X ∈ M+
n (R) : tr(ln2 X) ≤ 1 ≤ detX ≤ 2},



9.4 Examples of Nash Equilibria on Curved Settings 325

and the functions f1, f2 : K1 ×K2 → R defined by 467

f1(t,X) = (max(t, 1))n−1tr2(X)− 4n ln(t + 1)S2(X), (9.27)

468

f2(t,X) = g(t)
(

tr(X−1)+ 1
)t+1 + h(t) ln detX. (9.28)

Here, S2(Y ) denotes the second elementary symmetric function of the eigenvalues 469

λ1, . . . , λn of Y , i.e., 470

S2(Y ) =
∑

1≤i1<i2≤n
λi1λi2 , (9.29)

and g, h : K1 → R are two continuous functions such that 471

h(t) ≥ 2(n+ 1)g(t) ≥ 0 for all t ∈ K1. (9.30)

The elements of SNE(f,K) are the solutions (t̃ , X̃) ∈ K of the system 472

⎧⎨
⎩

[
(max(t, 1))n−1 − (max(t̃, 1))n−1

]
tr2(X̃) ≥ 4nS2(X̃) ln t+1

t̃+1
, ∀t ∈ K1,

g(t̃)
[
(tr(Y−1)+ 1)t̃+1 − (tr(X̃−1)+ 1)t̃+1

]
+ h(t̃) ln detY

det X̃
≥ 0, ∀Y ∈ K2.

(S2)

The involved forms in (S2) suggest an approach via the Nash-Stampacchia equilibria for 473

(f,K); first of all, we have to find the appropriate context where the machinery described 474

in Sect. 9.3 works efficiently. 475

At first glance, the natural geometric framework seems to be Mn(R) with the inner 476

product 〈·, ·〉 defined in (9.22). Note however that the set K2 is not geodesic convex with 477

respect to 〈·, ·〉. Indeed, let X = diag(2, 1, . . . , 1) ∈ K2 and Y = diag(1, 2, . . . , 1) ∈ 478

K2 and γ E
X,Y be the Euclidean geodesic connecting them, see (9.23); although γ E

X,Y (s) ∈ 479

M+
n (R) and tr(ln2(γ E

X,Y (s))) = ln2(2 − s) + ln2(1 + s) ≤ ln2 2 for every s ∈ [0, 1], we 480

have that det(γ E
X,Y (s)) > 2 for every 0 < s < 1. Consequently, a more appropriate metric 481

is needed to provide some sort of geodesic convexity for K2. To complete this fact, we 482

restrict our attention to the cone of symmetric positive definite matrices M+
n (R) with the 483

metric introduced in (9.24). 484

Let In ∈ M+
n (R) be the identity matrix, and BH (In, 1) be the closed geodesic ball in 485

M+
n (R) with center In and radius 1. Note that 486

K2 = BH(In, 1) ∩ {X ∈ M+
n (R) : 1 ≤ detX ≤ 2}.

Indeed, for every X ∈ M+
n (R), we have 487

d2
H(In,X) = tr(ln2 X). (9.31)
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Since K2 is bounded and closed, on account of the Hopf-Rinow theorem, K2 is compact. 488

Moreover, as a geodesic ball in the Hadamard manifold (M+
n (R), 〈〈·, ·〉〉), the set 489

BH (In, 1) is geodesic convex. Keeping the notation from (9.25), if X,Y ∈ K2, one has 490

for every s ∈ [0, 1] that 491

det(γ H
X,Y (s)) = (detX)1−s (detY )s ∈ [1, 2],

which shows the geodesic convexity of K2 in (M+
n (R), 〈〈·, ·〉〉). 492

After naturally extending the functions f1(·,X) and f2(t, ·) to U1 = (− 1
2 ,∞) and 493

U2 = M+
n (R) by the same expressions (see (9.27) and (9.28)), we clearly have that f = 494

(f1, f2) ∈ L(K,U,M), where U = U1×U2, and M = R×M+
n (R). A standard computation 495

shows that for every (t,X) ∈ U1 ×K2, we have 496

∂1
Cf1(t,X) = −4nS2(X)

t + 1
+ tr2(X) ·

⎧⎪⎨
⎪⎩

0 if −1/2 < t < 1,

[0, n− 1] if t = 1,

(n− 1)tn−2 if 1 < t.

For every t ∈ K1, the Euclidean gradient of f2(t, ·) at X ∈ U2 = M+
n (R) is 497

f ′2(t, ·)(X) = −g(t)(t + 1)
(

tr(X−1)+ 1
)t

X−2 + h(t)X−1,

thus the Riemannian derivative has the form 498

∂2
Cf2(t,X) = gradf2(t, ·)(X) = Xf ′2(t, ·)(X)X

= −g(t)(t + 1)
(

tr(X−1)+ 1
)t

In + h(t)X.

The above expressions show that K � (t,X) �→ ∂
C f(t,X) is upper semicontinuous. 499

Therefore, Theorem 9.6 implies that SNS(f,K) = ∅, and its elements (t̃, X̃) ∈ K are 500

precisely the solutions of the system 501

{
ξ1(t − t̃ ) ≥ 0 for some ξ1 ∈ ∂1

Cf1(t̃ , X̃) for all t ∈ K1,

〈〈∂2
Cf2(t̃, X̃), exp−1

X̃
Y 〉〉X̃ ≥ 0 for all Y ∈ K2,

((S′2))

We notice that the solutions of (S′2) and (S2) coincide. In fact, we may show that f ∈ 502

K(K,U,M); thus from Theorem 9.4 (ii) we have thatSNE(f,K) = SNS(f,K) = SNC(f,K). 503

It is clear that the map t �→ f1(t,X) is convex on U1 for every X ∈ K2. Moreover, 504

X �→ f2(t,X) is also a convex function on U2 = M+
n (R) for every t ∈ K1. Indeed, fix



9.4 Examples of Nash Equilibria on Curved Settings 327

X,Y ∈ K2 and let γH
X,Y : [0, 1] → K2 be the unique geodesic segment connecting X and 505

Y , see (9.25). For every s ∈ [0, 1], we have that 506

ln det(γ H
X,Y (s)) = ln((detX)1−s(det Y )s)

= (1− s) ln detX + s ln det Y

= (1− s) ln det(γ H
X,Y (0))+ s ln det(γ H

X,Y (1)).

The Riemannian Hessian of X �→ tr(X−1) with respect to 〈〈·, ·〉〉 is 507

Hess(tr(X−1))(V , V ) = tr(X−2VX−1V ) = |X−1VX−1/2|2F ≥ 0,

where | · |F denotes the standard Fröbenius norm. Thus, X �→ tr(X−1) is convex (see 508

Udrişte [18, §3.6]), so X �→ (tr(X−1) + 1)t+1. Combining the above facts with the non- 509

negativity of g and h (see (9.30)), it yields that f ∈ K(K,U,M) as we claimed. 510

By recalling the notation from (9.29), the inequality of Newton has the form 511

S2(Y ) ≤ n− 1

2n
tr2(Y ) for all Y ∈ Mn(R). (9.32)

The possible cases are as follow: 512

(a) Let 0 ≤ t̃ < 1. Then the first relation from (S′2) implies− 4nS2(X̃)

t̃+1
≥ 0, a contradiction. 513

(b) If 1 < t̃ < 2, the first inequality from (S′2) holds if and only if 514

S2(X̃) = n− 1

4n
t̃n−2(t̃ + 1)tr2(X̃),

which contradicts Newton’s inequality (9.32). 515

(c) If t̃ = 2, from the first inequality of (S′2) it follows that 516

3(n− 1)2n−4tr2(X̃) ≤ nS2(X̃),

contradicting again (9.32). 517

(d) Let t̃ = 1. From the first relation of (S′2) we necessarily have that 0 = ξ1 ∈ 518

∂1
Cf1(1, X̃). This fact is equivalent to 519

2nS2(X̃)

tr2(X̃)
∈ [0, n− 1],

520
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which holds true, see (9.32). In this case, the second relation from (S′2) becomes 521

−2g(1)
(

tr(X̃−1)+ 1
)
〈〈In, exp−1

X̃
Y 〉〉X̃ + h(1)〈〈X̃, exp−1

X̃
Y 〉〉X̃ ≥ 0, ∀Y ∈ K2.

By using (9.24) and the well-known formula etr(lnX) = detX, the above inequality 522

reduces to 523

− 2g(1)(tr(X̃−1)+ 1)tr(X̃−1 ln(X̃−1/2YX̃−1/2))+ h(1) ln
det Y

det X̃
≥ 0, ∀Y ∈ K2. (9.33)

We also distinguish three cases: 524

(d1) If g(1) = h(1) = 0, then SNE(f,K) = SNS(f,K) = {1} ×K2. 525

(d2) If g(1) = 0 and h(1) > 0, then (9.33) implies that SNE(f,K) = SNS(f,K) = 526

{(1, X̃) ∈ K : det X̃ = 1}. 527

(d3) If g(1) > 0, then (9.30) implies that (1, In) ∈ SNE(f,K) = SNS(f,K). ♦ 528

Remark 9.10 We easily observed in the case (d3) that X̃ = In solves (9.33). Note that 529

the same is not evident at all for the second inequality in (S2). We also notice that the 530

determination of the whole set SNS(f,K) in (d3) is quite difficult; indeed, after a simple 531

matrix-calculus we realize that (9.33) is equivalent to the equation 532

X̃ = PK2

(
e
− h(1)

2g(1)(tr(X̃−1)+1) X̃eX̃
−1

)
,

where PK2 is the metric projection with respect to the metric dH . 533

Example 9.3 534

(a) Assume that Ki is closed and convex in the Euclidean space (Mi, gi) = 535

(Rmi , 〈·, ·〉Rmi ), i ∈ {1, . . . , n}, and let f ∈ C(K,U,Rm) where m = ∑n
i=1 mi . If 536

∂
C f is L−globally Lipschitz and κ-strictly monotone on K ⊂ R
m, then the function 537

f verifies (H
α,ρ

K ) with α = κ
L2 and ρ = κ2

2L2 . (Note that the above facts imply that 538

κ ≤ L, thus 0 < ρ < 1.) Indeed, for every p,q ∈ K we have that 539

540

d2
g(expp(−α∂
C f(p)), expq(−α∂
C f(q))) 541

= ‖p− α∂
C f(p)− (q− α∂
C f(q))‖2
Rm = ‖p− q− (α∂
C f(p)− α∂
C f(q))‖2

Rm

= ‖p− q‖2
Rm − 2α〈p − q, ∂
C f(p)− ∂
C f(q)〉Rm + α2‖∂
C f(p)− α∂
C f(q)‖2

Rm

≤ (1− 2ακ + α2L2)‖p− q‖2
Rm =

(
1− κ2

L2

)
d2

g(p,q)

≤ (1− ρ)2d2
g(p,q).
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(b) Let 542

K1 = [0,∞), K2 = {X ∈ Mn(R) : tr(X) ≥ 1},

and the functions f1, f2 : K1 ×K2 → R defined by 543

f1(t,X) = g(t) − cttr(X), f2(t,X) = tr((X − h(t)A)2).

Here, g, h : K1 → R are two functions such that g is of class C2 verifying 544

0 < inf
K1

g′′ ≤ sup
K1

g′′ <∞, (9.34)

h is Lh−globally Lipschitz, while A ∈ Mn(R) and c > 0 are fixed such that 545

c + Lh

√
tr(A2) < 2 inf

K1
g′′ and cn+ 2Lh

√
tr(A2) < 4. (9.35)

Now, we consider the space Mn(R) endowed with the inner product defined in (9.22). 546

We observe that K2 is geodesic convex but not compact in (Mn(R), 〈·, ·〉). After a 547

natural extension of functions f1(·,X) to R and f2(t, ·) to the whole Mn(R), we can 548

state that f = (f1, f2) ∈ C(K,U,M), where U = M = R × Mn(R). On account of 549

(9.34), after a computation it follows that the map 550

∂
C f(t,X) = (g′(t)− ctr(X), 2(X − h(t)A))

is L-globally Lipschitz and κ-strictly monotone on K with 551

L = max

(
(2 sup

K1

g′′ + 8Lhtr(A2))1/2,
(

2c2n+ 8
)1/2

)
> 0,

552

κ = min

(
inf
K1

g′′ − c

2
− Lh

√
tr(A2)

2
, 1− cn

4
− Lh

√
tr(A2)

2

)
> 0.

According to (a), f verifies (H
α,ρ
K ) with α = κ

L2 and ρ = κ2

2L2 . On account of 553

Theorem 9.8, the set of Nash-Stampacchia equilibrium points for (f,K) contains 554

exactly one point (t̃, X̃) ∈ K and the orbits of both dynamical systems (DDS)α and 555

(CDS)α exponentially converge to (t̃, X̃). Moreover, one also has that f ∈ K(K,U,M); 556

thus, due to Theorem 9.4-(ii) we have that SNE(f,K) = SNS(f,K) = {(t̃, X̃)}. 557
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1

102Inequality Problems Governed by Set-valued 3

Maps of Monotone Type 4

10.1 Variational-Hemivariational Inequalities 5

Throughout this section X will denote a real reflexive Banach space with its dual space X∗ 6

and T : X → Lp(�;Rk) will be a linear and compact operator where 1 < p <∞ and � 7

is a bounded and open subset of RN . We shall denote û := T u and by p′ the conjugated 8

exponent of p. Let j = j (x, y) : � × R
k → R be a Carathéodory function, locally 9

Lipschitz with respect to the second variable which satisfies the following condition: 10

(Hj ) there exist C > 0 such that 11

|ζ | ≤ C(1+ |y|p−1) (10.1)

for a.e. x ∈ �, all y ∈ R
k and all ζ ∈ ∂2

Cj (x, y). 12

Let K be a nonempty closed, convex subset of X and φ : X → (−∞,+∞] a convex 13

and lower semicontinuous functional such that 14

Kφ := D(φ) ∩K = ∅. (10.2)

Assuming A is a set valued mapping from K into X∗, with D(A) = K our aim is to 15

study the following multivalued variational-hemivariational inequality: 16

(MVHI) Find u ∈ K and u∗ ∈ A(u) such that 17

〈u∗, v− u〉 +φ(v)−φ(u)+
∫
�

j0
,2(x, û(x); v̂(x)− û(x))dx ≥ 0, ∀v ∈ K. (10.3)

18
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As it will be seen, this problem closely links to the dual variational-hemivariational 19

inequality: 20

(DVHI) Find u ∈ K such that 21

sup
v∗∈A(v)

〈v∗, u−v〉 ≤ φ(v)−φ(u)+
∫
�

j0
,2(x, û(x); v̂(x)−û(x))dx, ∀v ∈ K. (10.4)

Definition 10.1 A set valued mapping A : K � X∗ is said to be lower hemicontinuous 22

on K if the restriction of A to every line segment of K is lower semicontinuous from s−X 23

into w∗ −X∗. 24

We denote by S and S# the solutions sets of problem (MVHI) and problem (DHV I), 25

respectively. The following result, due to Costea and Lupu [1], highlights the relationship 26

between the two problems. 27

Theorem 10.1 Let K be a nonempty closed and convex subset of the real reflexive Banach 28

space X. If A : K � X∗ is monotone, then S ⊆ S#. In addition, if A is lower 29

hemicontinuous, then S# = S. 30

Proof Let u ∈ S and v ∈ K be arbitrary fixed. Then it exists u∗ ∈ A(u) such that (10.3) 31

holds. Since A is monotone we have 32

〈v∗ − u∗, v − u〉 ≥ 0, ∀v∗ ∈ A(v). (10.5)

Hence, adding (10.3) and (10.5) we have 33

〈v∗, v−u〉+φ(v)−φ(u)+
∫
�

j0
,2(x, û(x); v̂(x)− û(x)) dx ≥ 0, ∀v∗ ∈ A(v). (10.6)

This is equivalent to 34

sup
v∗∈A(v)

〈v∗, u− v〉 ≤ φ(v) − φ(u)+
∫
�

j0
,2(x, û(x); v̂(x)− û(x)) dx. (10.7)

Since v has been arbitrary chosen, it follows that (10.7) holds for all v ∈ K which implies 35

that u ∈ S#. 36

In addition if A is lower hemicontinuous, we will show that S = S#. Suppose u ∈ 37

S# and let v ∈ K be arbitrary fixed. We define the sequence {un}n≥1 by un := u + 38

1
n
(v − u). Clearly {un} ⊂ K by the convexity of K . For any u∗ ∈ A(u), using the lower 39

hemicontinuity of A, a sequence u∗n ∈ A(un) can be determined such that u∗n ⇁ u∗. Taking
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into account that u ∈ S#, for each n ≥ 1 we have 40

〈u∗n, u− un〉 ≤ φ(un)− φ(u)+
∫
�

j0
,2(x, û(x); ûn(x)− û(x)) dx (10.8)

But φ is convex and j0
,2(x, û; λv̂) = λj0

,2(x, û; v̂) for all λ > 0. Therefore (10.8) may be 41

written, equivalently 42

0 ≤
〈
u∗n,

1

n
(v − u)

〉
+ φ

(
1

n
v + n− 1

n
u

)
− φ(u)+

∫
�

j 0
,2

(
x, û(x); 1

n
(v̂(x)− û(x))

)
dx

≤ 1

n

[
〈u∗n, v − u〉 + φ(v) − φ(u)+

∫
�

j 0
,2(x, û(x); v̂(x) − û(x)) dx

]
.

Multiplying the last relation by n and passing to the limits as n → ∞ we obtain the
u ∈ S. ��

We are now in position to establish the existence of solutions when the constraint set K 43

is bounded. More precisely we have the following result. 44

Theorem 10.2 ([1]) Let K be a nonempty, bounded, closed and convex subset of the real 45

reflexive Banach space X and A : K � X∗ a set valued mapping which is monotone and 46

lower hemicontinuous on K . If T : X→ Lp(�;Rk) is linear and compact and j satisfies 47

the condition (10.1) then problem (MVHI) possesses at least one solution. 48

Proof For any v ∈ Kφ define two set valued mappings F,G : K ∩D(φ) � X as follows: 49

F(v) :=
⎧⎨
⎩u ∈ Kφ :

∃u∗ ∈ A(u) s.t. 〈u∗, v − u〉 + φ(v) − φ(u)

+
∫
�

j0
,2(x, û(x); v̂(x)− û(x))dx ≥ 0

⎫⎬
⎭

and 50

G(v) :=
⎧⎨
⎩u ∈ Kφ :

supv∗∈A(v)〈v∗, u− v〉 ≤ φ(v)− φ(u)

+
∫
�

j0
,2(x, û(x); v̂(x)− û(x))dx

⎫⎬
⎭ .

We divide the proof into several steps as follows. 51

STEP 1. F is a KKM mapping. 52

If F is not a KKM mapping, then there exists {v1, . . . , vn} ⊂ Kφ such that 53

co{v1, . . . , vn} ⊂
n⋃

i=1

F(vi),
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i.e., there exists a v0 ∈ co{v1, . . . , vn}, v0 := ∑n
i=1 λivi , where λi ∈ [0, 1], i ∈ 1, n, 54∑n

i=1 λi = 1, but v0 ∈ ⋃n
i=1 F(vi). By the definition of F , we have 55

〈v∗0 , vi − v0〉 + φ(vi)− φ(v0)+
∫
�

j0
,2(x, v̂0(x); v̂i(x)− v̂0(x))dx < 0, ∀v∗0 ∈ A(v0)

for i ∈ 1, n. It follows from the convexity of v̂ �−→ j0
,2(x, û; v̂) and the convexity of φ 56

that for each v∗0 ∈ A(v0) we have 57

0 = 〈v∗0 , v0 − v0〉 + φ(v0)− φ(v0)+
∫
�

j0
,2(x, v̂0(x); v̂0(x)− v̂0(x))dx

=
〈
v∗0 ,

n∑
i=1

λivi − v0

〉
+ φ

(
n∑

i=1

λivi

)
− φ(v0)

+
∫
�

j0
,2

(
x, v̂0(x);

n∑
i=1

λiv̂i (x)− v̂0(x)

)
dx

≤
n∑

i=1

λi

[
〈v∗0 , vi − v0〉 + φ(vi)− φ(v0)+

∫
�

j0
,2(x, v̂0(x); v̂i(x)− v̂0(x))dx

]

< 0.

which is a contradiction. This implies that F is a KKM mapping. 58

STEP 2. F(v) ⊆ G(v)for all v ∈ Kφ . 59

For a given v ∈ Kφ , let u ∈ F(v). Then, there exists u∗ ∈ A(u) such that 60

〈u∗, v − u〉 + φ(v)− φ(u)+
∫
�

j0
,2(x, û(x); v̂(x)− û(x)) dx ≥ 0.

Since A is monotone, we have 61

〈v∗ − u∗, v − u〉 ≥ 0, ∀v∗ ∈ A(v).

It follows from the last two relations that 62

〈v∗, v − u〉 + φ(v)− φ(u)+
∫
�

j0
,2(x, û(x); v̂(x)− û(x))dx ≥ 0, ∀v∗A(v)

which may be equivalently rewritten 63

sup
v∗∈A(v)

〈v∗, u− v〉 ≤ φ(v) − φ(v)+
∫
�

j0
,2(x, û(x); v̂(x)− û(x))dx

and so u ∈ G(v). In particular, this implies that G is also a KKM mapping. 64
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STEP 3. G(v)is weakly closed for each v ∈ Kφ . 65

Let {un} ⊂ G(v) be a sequence which converges weakly to u as n → ∞. We 66

must prove that u ∈ G(v). Since un ∈ G(v) for all n ≥ 1 and φ is weakly lower 67

semicontinuous, for each v∗ ∈ A(v) we have 68

0 ≤ lim sup
n→∞

[
〈v∗, v − un〉 + φ(v)− φ(un)+

∫
�

j 0
,2(x, ûn(x); v̂(x) − ûn(x))dx

]

≤ lim
n→∞〈v

∗, v − un〉 + φ(v) − lim inf
n→∞ φ(un)+ lim sup

n→∞

∫
�

j 0
,2(x, ûn(x); v̂(x) − ûn(x))dx

≤ 〈v∗, v − u〉 + φ(v)− φ(u)+
∫
�

j 0
,2(x, û(x); v̂(x)− û(x))dx.

This is equivalent to u ∈ G(v). 69

STEP 4. G(v)is weakly compact for all v ∈ Kφ . 70

Indeed, since K is bounded, closed and convex, we know that K is weakly compact, 71

and so G(v) is weakly compact for each v ∈ K ∩D(φ), as it is a weakly closed subset 72

of an weakly compact set. 73

Therefore conditions of Corollary D.1 are satisfied in the weak topology. It follows that 74

⋂
v∈Kφ

G(v) = ∅.

This yields that there exists an element u ∈ Kφ such that, for any v ∈ Kφ 75

sup
v∗∈A(v)

〈v∗, v − u〉 ≤ φ(v)− φ(u)+
∫
�

j0
,2(x, û(x); v̂(x)− û(x))dx.

This inequality is trivially satisfied for any v ∈ D(φ) which means that the inequality
problem (DVHI) has at least one solution. Theorem 10.1 enables us to claim that
inequality problem (MVHI) also possesses a solution. ��

We present below some coercivity conditions ensuring the existence of solutions for 76

unbounded constraint sets. Without loss of generality we may assume that 0 ∈ Kφ and let 77

us consider the sets Kn := {u ∈ K : ‖u‖ ≤ n} for n ≥ 1. 78

If K is nonempty, unbounded, closed and convex subset of X and A : K � X∗ is 79

monotone and lower hemicontinuous, then by Theorem 10.2, for every n ≥ 1 there exists 80

un ∈ Kn and u∗n ∈ A(un) such that 81

〈u∗n, v−un〉+φ(v)−φ(un)+
∫
�

j0
,2(x, ûn(x); v̂(x)−ûn(x)) dx ≥ 0, ∀v ∈ Kn, (10.9)
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Theorem 10.3 ([1]) Assume that the same hypotheses as in Theorem 10.2 hold without 82

the assumption of boundedness of K and let un ∈ Kn and u∗n ∈ A(un) be two sequences 83

such that (10.9) is satisfied for every n ≥ 1. Then each of the following condition is 84

sufficient for the problem (MVHI) to possess a solution: 85

(C1) There exists a positive integer n0 such that ‖un0‖ < n0; 86

(C2) There exists a positive integer n0 such that 87

〈u∗n0
,−un0〉 + φ(0)− φ(un0)+

∫
�

j0
,2(x, ûn0(x); −ûn0(x))dx ≤ 0;

(C3) There exists u0 ∈ Kφ and q ≥ p such that for any unbounded sequence {wn} ⊂ K 88

one has 89

〈w∗n,wn − u0〉
‖wn‖q →∞, as n→∞

for every w∗n ∈ A(wn). 90

Proof Let v ∈ K be arbitrary fixed. 91

Assume (C1) holds and take t > 0 small enough such that w := un0 + t (v − un0) 92

satisfies w ∈ Kn0 (it suffices to take t = 1 if v := un0 and t < (n0 − ‖un0‖)/‖v − un0‖ 93

otherwise). By (10.9) we have 94

0 ≤ 〈u∗n0
, w − un0〉 + φ(w)− φ(un0)+

∫
�

j0
,2(x, ûn0(x); ŵ(x)− ûn0(x))dx

≤ t

[
〈u∗n0

, v − un0〉 + φ(v)− φ(un0)+
∫
�

j0
,2(x, ûn0(x); v̂(x)− ûn0(x))dx

]
.

Dividing by t the last relation we observe that un0 is a solution of (MVHI). 95

Now, let us assume that (C2) is fulfilled. In this case, some t ∈ (0, 1) can be found such 96

that tv ∈ Kn0 . Taking (10.9) into account 97

0 ≤ 〈u∗n0
, tv − un0〉 + φ(tv) − φ(un0)+

∫
�

j0
,2(x, ûn0(x); t v̂(x)− ûn0(x))dx

= 〈u∗n0
, t (v − un0)+ (1− t)(−un0)〉 + φ(tv + (1− t)0)− φ(un0)

+
∫
�

j0
,2

(
x, ûn0(x); t (v̂(x)− ûn0(x))+ (1− t)(−ûn0(x)

)
)dx

≤ t

[
〈u∗n0

, v − un0〉 + φ(v)− φ(un0)+
∫
�

j0
,2(x, ûn0(x); v̂(x)− ûn0(x))dx

]
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+(1− t)

[
〈u∗n0

,−un0〉 + φ(0)− φ(un0)+
∫
�

j0
,2(x, ûn0(x); −ûn0(x))dx

]

≤ t

[
〈u∗n0

, v − un0〉 + φ(v)− φ(un0)+
∫
�

j0
,2(x, ûn0(x); v̂(x)− ûn0(x))dx

]
.

Dividing again by t the conclusion follows. 98

Assuming that (C3) holds we observe that there exists n0 > 0 such that u0 ∈ Kn for 99

all n ≥ n0. We claim that the sequence {un} is bounded. Suppose by contradiction that up 100

to a subsequence ‖un‖ → ∞. Since wn := un/‖un‖ is bounded, passing eventually to a 101

subsequence (still denoted wn for the sake of simplicity), we may assume that wn ⇀ w. 102

The function φ being convex and lower semicontinuous, it is bounded from below by an 103

affine and continuous function (see Theorem 1.3), which means that for some ζ ∈ X∗ and 104

some α ∈ R we have 105

〈ζ, u〉 + α ≤ φ(u), ∀u ∈ X.

This leads to 106

− φ(u) ≤ ‖ζ‖ · ‖u‖ − α, ∀u ∈ X. (10.10)

On the other hand, for any y, h ∈ R
k there exists ξ ∈ ∂Cj (x, y) such that 107

j0
,2(x, y; h) = ξ · h = max

{
η · h : η ∈ ∂2

Cj (x, y)
}
.

It follows from (10.1) that 108

∣∣∣j0
,2(x, û(x); v̂(x))

∣∣∣ ≤ C
(

1+ |û(x)|p−1
)
|v̂(x)|

and using Hölder’s inequality we obtain that 109

∣∣∣∣
∫
�

j0
,2(x, û(x); v̂(x))dx

∣∣∣∣ ≤ C

(
(meas(�))

p−1
p ‖v̂‖p + ‖û‖p−1

p ‖v̂‖p
)

≤ C1‖v‖ + C2‖u‖p−1‖v‖ (10.11)

for some suitable constants C1, C2 > 0. Relations (10.9), (10.10), and (10.11) show that 110

〈u∗n, un − u0〉 ≤ φ(u0)− φ(un)+
∫
�

j0
,2(x, ûn(x); û0(x)− ûn(x))dx

≤ φ(u0)+ ‖ζ‖ · ‖un‖ − α + C1‖un − u0‖ + C2‖un‖p−1‖un − u0‖.

111
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Thus 112

〈u∗n, un − u0〉
‖un‖q ≤φ(u0)− α

‖un‖q + ‖ζ‖
‖un‖q−1 + C1

∥∥∥∥ wn

‖un‖q−1 −
u0

‖un‖q
∥∥∥∥+

C2

∥∥∥∥ wn

‖un‖q−p −
u0

‖un‖q−p+1

∥∥∥∥
and passing to the limit as n→∞ we reach a contradiction, since 1 < p ≤ q . 113

Since {un} is bounded, a n0 ≥ 1 can be found such that ‖un0‖ < n0 and by (C1) the
corresponding solution of (10.9) un0 solves (MHVI). ��

10.2 Quasi-Hemivariational Inequalities 114

Let (X, ‖ · ‖) be a real Banach space which is continuously embedded in Lp(�;Rn), for 115

some 1 < p < +∞ and n ≥ 1, where � is a bounded domain in R
m, m ≥ 1. Let i be the 116

canonical injection of X into Lp(�;Rn) and denote by i∗ : Lq(�;Rn)→ X∗ the adjoint 117

operator of i (1/p + 1/q = 1). 118

Throughout this section A : X � X∗ is a nonlinear set-valued mapping, F : X → X∗ 119

is a nonlinear operator and J : Lp(�;Rn)→ R is a locally Lipschitz functional. We also 120

assume that h : X→ R is a given nonnegative functional. 121

The aim is to study the existence of solutions for the following multivalued quasi- 122

hemivariational inequality: 123

(MQHI) Find u ∈ X and u∗ ∈ A(u) such that 124

〈u∗, v〉 + h(u)J 0(iu; iv) ≥ 〈Fu, v〉, ∀v ∈ X.

The above problem is called a quasi-hemivariational inequality because, in general, we 125

cannot determine a function G such that ∂CG(u) = h(u)∂J (u). 126

As we will see next problem (MQHI) can be rewritten equivalently as an inclusion in 127

the following way: 128

(IP ) Find u ∈ X such that 129

Fu ∈ A(u)+ h(u)i∗∂CJ (iu), in X∗.

An element u ∈ X is called a solution of (IP ) if there exist u∗ ∈ A(u) and ζ ∈ ∂CJ (iu) 130

such that 131

〈u∗, v〉 + h(u)〈i∗ζ, v〉 = 〈Fu, v〉, ∀v ∈ X. (10.12)
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Proposition 10.1 An element u ∈ X is a solution of problem (IP ) if and only if it solves 132

problem (MQHI). 133

Proof 134

(MQHI)⇒ (IP ) Let u ∈ X be a solution of (MQHI). Then, by Proposition 2.4, 135

there exists ζu ∈ ∂CJ (iu) such that for all w ∈ Lp(�;Rn) we have 136

J 0(iu;w) = 〈ζu,w〉Lq×Lp = max {〈ζ,w〉Lq×Lp : ζ ∈ ∂CJ (iu)} .

Taking w := iv and using the fact that u is a solution of (MQHI) we obtain 137

〈u∗, v〉 + h(u)〈i∗ζu, v〉 ≥ 〈Fu, v〉, ∀v ∈ X,

for some u∗ ∈ A(u). Taking −v instead of v in the above relation we deduce that 138

(10.12) holds therefore u is a solution of problem (IP ). 139

(IP )⇒ (MQHI) Let u ∈ X be a solution of (IP ). Then, there exist u∗ ∈ A(u) and 140

ζ ∈ ∂CJ (iu) such that (10.12) takes place. As ζ ∈ ∂CJ (iu) we obtain that 141

〈ζ,w〉Lq×Lp ≤ J 0(iu;w), ∀w ∈ Lp(�;Rn).

For a fixed v ∈ X we define w := iv and taking into account that h is nonnegative we 142

get 143

h(u)〈i∗ζ, v〉 = h(u)〈ζ, iv〉Lq×Lp ≤ h(u)J 0(iu; iv) (10.13)

Combining (10.12) and (10.13) we obtain that u solves inequality problem 144

(MQHI). 145��

Sometimes, due to some technical reasons, it is useful to study hemivariational 146

inequalities of the type (MQHI) whose solution is sought in a nonempty, closed and 147

convex subset K of X, the so-called set of constraints. This leads us to the study of the 148

following inequality problem: 149

(PK) Find u ∈ K and u∗ ∈ A(u) such that 150

〈u∗, v − u〉 + h(u)J 0(iu; iv − iu) ≥ 〈Fu, v − u〉, ∀v ∈ K.

The first main result of this section is given by the following theorem. 151
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Theorem 10.4 ([2]) Let K be a nonempty compact convex subset of the real Banach 152

space X. Assume that: 153

(H1) A : X→ X∗ is l.s.c. from s − X into w∗ −X∗; 154

(H2) h : X→ R is a continuous nonnegative functional; 155

(H3) F : X→ X∗ satisfies lim sup
n→∞

〈Fun, v − un〉 ≥ 〈Fu, v − u〉, whenever un → u. 156

Then the inequality problem (PK) has at least one solution. 157

Proof Arguing by contradiction, let us assume that problem (PK) has no solution. Then, 158

for each u ∈ K , there exists v ∈ K such that 159

sup
u∗∈A(u)

〈u∗, v − u〉 + h(u)J 0(iu; iv − iu) < 〈Fu, v − u〉. (10.14)

We introduce the set-valued mapping � : K � K defined by 160

�(v) :=
{
u ∈ K : inf

u∗∈A(u)
〈u∗, v − u〉 + h(u)J 0(iu; iv − iu) ≥ 〈Fu, v − u〉

}
.

We claim that the set-valued map � has nonempty closed values. 161

The fact that �(v) is nonempty is obvious as v ∈ �(v) for each v ∈ K . 162

In order to prove the above claim let us fix v ∈ K and consider a sequence {un}n≥1 ⊂ 163

�(v) which converges to some u ∈ K . We shall prove that u ∈ �(v). As un ∈ �(v), for 164

each n ≥ 1 we get that 165

〈u∗n, v − un〉 + h(un)J
0(iun; iv − iun) ≥ 〈Fun, v − un〉, ∀u∗n ∈ A(un). (10.15)

Let u∗ ∈ A(u) be fixed and let ū∗n ∈ A(un) such that ū∗n ⇀ u∗ in X∗ (the existence of such 166

a sequence is ensured by the fact that A is l.s.c. with respect to the weak* topology of X∗). 167

On the other hand, using the continuous embedding of X into Lp(�;Rn) we obtain that 168

iun → iu in Lp(�;Rn). Passing to lim sup as n→∞ in (10.15) we obtain the following 169

estimates: 170

〈Fu, v − u〉 ≤ lim sup
n→∞

〈Fun, v − un〉 ≤ lim sup
n→∞

[
〈ū∗n, v − un〉 + h(un)J

0(iun; iv − iun)
]

≤ lim sup
n→∞

〈ū∗n, v − un〉 + lim sup
n→∞

[h(un)− h(u)] J 0(iun; iv − iun)

+ lim sup
n→∞

h(u)J 0(iun; iv − iun)

≤ 〈u∗, v − u〉 + h(u)J 0(iu; iv − iu).

This shows that u ∈ �(v) hence � has closed values. 171
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According to (10.14) for each u ∈ K there exists v ∈ K such that u ∈ [�(v)]c := 172

X − �(v). This means that the family {[�(v)]c}v∈K is an open covering of the compact 173

set K . Therefore there exists a finite subset {v1, . . . , vN } of K such that {[�(vj )]c}1≤j≤N 174

is a finite subcover of K . For each j ∈ {1, . . . , N} let δj (u) be the distance between u and 175

the set �(vj ) and define βj : K → R as follows: 176

βj (u) := δj (u)

N∑
k=1

δk(u)

.

Clearly, for each j ∈ {1, . . . , N}, βj is a Lipschitz continuous function that vanishes on 177

�(vj ) and 0 ≤ βj (u) ≤ 1, for all u ∈ K . Moreover,
∑N

j=1 βj (u) = 1. Let us consider 178

next the operator S : K → K defined by 179

S(u) :=
N∑

j=1

βj (u)vj .

We shall prove that S is a completely continuous operator. We have 180

‖Su1 − Su2‖ =
∥∥∥∥∥∥

N∑
j=1

(β(u1)− β(u2))vj

∥∥∥∥∥∥ ≤
N∑

j=1

‖vj‖ ‖β(u1)− β(u2)‖

≤
N∑

j=1

‖vj‖ Lj ‖u1 − u2‖ ≤ L ‖u1 − u2‖,

which shows that S is Lipschitz continuous hence continuous. 181

Let M be a bounded subset of K . As S(M) is a closed subset of the compact set K 182

we conclude that S(M) is relatively compact, hence S maps bounded sets into relatively 183

compact sets which shows that S is a compact map. Thus, by Schauder’s fixed point 184

theorem, there exists u0 ∈ K such that S(u0) = u0. 185

Let us define next the functional g : K → R 186

g(u) := inf
u∗∈A(u)

〈u∗, S(u)− u〉 + h(u)J 0(iu, iS(u)− iu)− 〈Fu, S(u) − u〉.

187
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Taking into account the way the operator S was constructed, for each u ∈ K , we have: 188

g(u) = inf
u∗∈A(u)

〈
u∗,

N∑
j=1

βj (u)(vj − u)

〉
+ h(u)J 0

⎛
⎝iu,

N∑
j=1

βj (u)(ivj − iu)

⎞
⎠

−
〈
Fu,

N∑
j=1

βj (u)(vj − u)

〉

≤
N∑

j=1

βj (u)

[
inf

u∗∈A(u)
〈u∗, vj − u〉 + h(u)J 0(iu, ivj iu)− 〈Fu, vj − u〉

]
.

Let u ∈ K be arbitrary fixed. For each index j ∈ {1, . . . , N} we distinguish the following 189

possibilities: 190

CASE 1. u ∈ [
�(vj )

]c. 191

In this case we have 192

βj (u) > 0

and 193

inf
u∗∈A(u)

〈u∗, vj − u〉 + h(u)J 0(iu, ivj − iu)− 〈Fu, vj − u〉 < 0.

CASE 2. u ∈ �(vj ). 194

In this case we have 195

βj (u) = 0

and 196

inf
u∗∈A(u)

〈u∗, vj − u〉 + h(u)J 0(iu, ivj − iu)− 〈Fu, vj − u〉 ≥ 0.

Taking into account that K ⊆ ⋃N
j=1

[
�(vj )

]c we deduce that there exists at least one 197

index j0 ∈ {1, . . . , N} such that u ∈ [
�(vj0)

]c
. This shows that g(u) < 0 for all u ∈ K . 198

On the other hand, g(u0) = 0 and thus we have obtained a contradiction that completes
the proof. ��

We point out the fact that in the above case when K is a compact convex subset of X we 199

do not impose any monotonicity conditions on A, nor we assume X to be a reflexive space. 200

However, in applications, most problems lead to an inequality whose solution is sought in a 201
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closed and convex subset of the space X. Weakening the hypotheses on K by assuming that 202

K is only bounded, closed and convex, we need to impose certain monotonicity properties 203

on A and assume in addition that X is reflexive. 204

Theorem 10.5 ([2]) Let K be a nonempty, bounded, closed and convex subset of the real 205

reflexive Banach space X which is compactly embedded in Lp(�;Rn). Assume that: 206

(H4) A : X→ X∗ is l.s.c. from s − X into w −X∗ and relaxed α monotone; 207

(H5) α : X → R is a functional such that lim sup
n→∞

α(un) ≥ α(u) whenever un ⇀ u and 208

lim
t↓0

α(tu)
t
= 0; 209

(H6) h : X→ R is a nonnegative sequentially weakly continuous functional; 210

(H7) F : X → X∗ is an operator such that u �→ 〈Fu, v − u〉 is weakly lower 211

semicontinuous. 212

Then the inequality problem (PK) has at least one solution in K . 213

Proof Let us define the set-valued mapping $ : K � K 214

$(v) :=
⎧⎨
⎩
u ∈ K : α(v − u) ≤ inf

v∗∈A(v)
〈v∗, v − u〉 + h(u)J 0(iu; iv − iu)

−〈Fu, v − u〉

⎫⎬
⎭ .

We show first that $ has weakly closed values. Let us fix v ∈ K and consider a sequence 215

{un}n≥1 ⊂ $(v) such that un ⇀ u in X. We must prove that u ∈ $(v). First we observe 216

that the compactness of the embedding operator i implies that the sequence {iun}n≥1 217

converges strongly to iu in Lp(�,Rn). 218

For each v∗ ∈ A(v) we have 219

α(v − u) ≤ lim sup
n→∞

[
〈v∗, v − un〉 + h(un)J

0(iun; iv − iun)− 〈Fun, v − un〉
]

≤ 〈v∗, v − u〉 + h(u)J 0(iu, iv − iu)− 〈Fu, v − u〉,

which shows that u ∈ $(v) and thus the proof of the claim is complete. 220

Let us prove next that $ is a KKM mapping. Arguing by contradiction, assume there 221

exists a finite subset {v1, . . . , vN } ⊂ K and u0 := ∑N
j=1 λjvj , with λj ∈ [0, 1] and 222∑N

j=1 λj = 1 such that u0 ∈ ⋃N
j=1 $(vj ). This is equivalent to 223

inf
v∗j∈A(vj )

〈v∗j , vj−u0〉+h(u0)J
0(iu0; ivj−iu0)−〈Fu0, vj−u0〉 < α(vj−u0), (10.16)

for all j ∈ {1, . . . , N}. 224
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On the other hand, A is a relaxed α monotone operator and thus, for each j ∈ 225

{1, . . . , N} we have 226

〈u∗0 − v∗j , vj − u0〉 ≤ −α(vj − u0), ∀u∗0 ∈ A(u0), ∀v∗j ∈ A(vj ). (10.17)

Combining (10.16) and (10.17) we are led to 227

〈u∗0, vj −u0〉+h(u0)J
0(iu0; ivj − iu0)−〈Fu0, vj −u0〉 < 0, ∀u∗0 ∈ A(u0). (10.18)

Using (10.18) and the fact that J 0(iu0; ·) is subadditive, for fixed u∗0 ∈ A(u0) we have 228

0 = 〈u∗0, u0 − u0〉 + h(u0)J
0(iu0; iu0 − iu0)− 〈Fu0, u0 − u0〉

=
〈
u∗0,

N∑
j=1

λj (vj − u0)

〉
+ h(u0)J

0

⎛
⎝iu0;

N∑
j=1

λj (ivj − iu0)

⎞
⎠−

〈
Fu0,

N∑
j=1

λj (vj − u0)

〉

≤
N∑

j=1

λj

[
〈u∗0, vj − u0〉 + h(u0)J

0(iu0; ivj − iu0)− 〈Fu0, vj − u0〉
]

< 0,

which obviously is a contradiction and thus the proof of the claim is complete. 229

Since $(v) is a weakly closed subset of K and K is weakly compact set as it is a 230

bounded, closed and convex subset of the real reflexive Banach space X, it follows that 231

$(v) it is weakly compact for each v ∈ K . Thus we can apply Corollary D.1 to conclude 232

that
⋂

v∈K $(v) = ∅. 233

Let u0 ∈⋂
v∈K $(v). This implies that for each w ∈ K we have 234

inf
w∗∈A(w)

〈w∗, w − u0〉 + h(u0)J
0(iu0; iw − iu0)− 〈Fu0, w − u0〉 ≥ α(w − u0).

Let v ∈ K be fixed and define wλ := u0 + λ(v − u0), λ ∈ (0, 1). Using the fact that 235

wλ ∈ K and taking into account the above relation we deduce that 236

〈w∗λ, v − u0〉 + h(u0)J
0(iu0, iv − iu0)− 〈Fu0, v − u0〉 ≥ α(λ(v − u0))

λ
,∀w∗λ ∈ A(wλ).

Letting λ→ 0 and using the l.s.c. of A we obtain that u0 solves problem (PK). ��

As we have seen above the boundedness of the set K played a key role in proving 237

that problem (PK) admits at least one solution. In the case when K is the whole space 238

X, assuming that the same hypotheses as in Theorem 10.5 hold, we shall need an extra 239
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condition to overcome the lack of boundedness. For each real number R > 0 taking K := 240

B̄(0;R) = {u ∈ X : ‖u‖ ≤ R} we know from Theorem 10.5 that problem 241

(PR) Find uR ∈ B̄(0;R) and u∗R ∈ A(uR) such that 242

〈u∗R, v − uR〉 + h(uR)J
0(iuR; iv − iuR) ≥ 〈FuR, v − uR〉, ∀v ∈ B̄(0;R),

admits at least one solution. 243

Theorem 10.6 ([2]) Assume that the same hypotheses as in Theorem 10.5 hold in the case 244

K := X. Then problem (MQHI) admits at least one solution if and only if the following 245

condition holds true: 246

(H8) There exists R > 0 such that at least one solution uR of problem (PR) satisfies 247

uR ∈ B(0;R). 248

Proof The necessity is obvious. 249

In order to prove the sufficiency fix v ∈ X. We shall prove that uR is a solution of 250

(MQHI). First we define 251

λ :=
{

1, if uR = v
R−‖uR‖‖v−uR‖ , otherwise .

Since uR ∈ B(0;R) we conclude that λ > 0 and that wλ := uR + λ(v − uR) ∈ B̄(0;R). 252

Using that uR solves problem (PR) we find 253

〈FuR, λ(v − uR)〉 =〈FuR,wλ − uR〉 ≤ 〈u∗R,wλ − uR)〉 + h(uR)J
0(iuR; iwλ − iuR)

=〈u∗R, λ(v − uR)〉 + h(uR)J
0(iuR; λ(iv − iuR))

=λ
[
〈u∗R, v − uR〉 + h(uR)J

0(iuR; iv − iuR)
]
.

Dividing by λ > 0 we conclude that uR solves problem (MQHI). ��

Corollary 10.1 Let us assume that the same hypotheses as in Theorem 10.5 hold in the 254

case K := X. Then a sufficient condition for problem (MQHI) to posses a solution is: 255

(H9) There exists R0 > 0 such that for each u ∈ X \ B̄(0;R0) there exists v ∈ B(0;R0) 256

with the property that 257

sup
u∗∈A(u)

〈u∗, v − u〉 + h(u)J 0(iu; iv − iu) < 〈Fu, v − u〉.
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Proof Let us fix R > R0. According to Theorem 10.5 there exists uR ∈ B̄(0, R) and 258

ū∗R ∈ A(uR) such that 259

〈ū∗R, v− uR〉 + h(uR)J
0(iuR; iv− iuR) ≥ 〈FuR, v− uR〉, ∀v ∈ B̄(0;R). (10.19)

CASE 1. uR ∈ B(0;R). 260

Then we have nothing to prove, Theorem 10.6 showing that uR is a solution of problem 261

(MQHI). 262

CASE 2. uR ∈ ∂B̄(0;R). 263

In this case ‖uR‖ = R > R0 and thus uR ∈ X \ B̄(0;R0). According to our hypothesis 264

there exists v̄ ∈ B(0;R0) such that 265

sup
u∗R∈A(uR)

〈u∗R, v̄ − uR〉 + h(uR)J
0(iuR; iv̄ − iuR) < 〈FuR, v̄ − uR〉. (10.20)

Let us fix v ∈ X. Defining 266

λ :=
{

1, if v = v̄
R−R0‖v−v̄‖ , otherwise,

we observe that wλ := v̄ + λ(v − v̄) ∈ B̄(0;R). On the other hand we observe that 267

wλ − uR = v̄ − uR + λ(v − v̄)+ λuR − λuR = λ(v − uR)+ (1− λ)(v̄ − uR).

Takingwλ instead of v in (10.19) and using (10.20) we are led to the following estimates 268

〈FuR, λ(v − uR)+ (1− λ)(v̄ − uR)〉 = 〈FuR,wλ − uR〉
≤〈ū∗R,wλ − uR〉 + h(uR)J

0(iuR; iwλ − iuR)

≤λ
[
〈ū∗R, v − uR〉 + h(uR)J

0(iuR; iv − iuR)
]

+ (1− λ)
[
〈ū∗R, v̄ − uR〉 + h(uR)J

0(iuR; iv̄ − iuR)
]

≤λ
[
〈ū∗R, v − uR〉 + h(uR)J

0(iuR; iv − iuR)
]
+ (1− λ)〈FuR, v̄ − uR〉.

This shows that 269

〈ū∗R, v − uR〉 + h(uR)J
0(iuR; iv − iuR) ≥ 〈FuR; v − uR〉, ∀v ∈ X,

which means that uR solves problem (MQHI) and thus the proof is complete. 270��
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Corollary 10.2 Let us assume that the same hypotheses as in Theorem 10.5 hold in the 271

case K := X. Assume in addition that: 272

(H10) A is coercive, i.e. there exists a function c : R+ → R+ with the property that 273

lim
r→∞ c(r) = +∞ such that 274

inf
u∗∈A(u)

〈u∗, u〉 ≥ c(‖u‖)‖u‖;

(H11) there exists a constant k > 0 such that h(v)J 0(iv; −iv) ≤ k‖v‖ for all v ∈ X; 275

(H12) there exists a constant m > 0 such that ‖Fu‖X∗ ≤ m for all u ∈ X. 276

Then problem (MQHI) has at least one solution. 277

Proof For each R > 0 Theorem 10.5 guarantees that there exist uR ∈ X and u∗R ∈ A(uR) 278

such that 279

〈u∗R, v − uR〉 + h(uR)J
0(iu; iv − iuR) ≥ 〈FuR, v − uR〉, ∀v ∈ B̄(0;R). (10.21)

We shall prove that there exists R0 > 0 such that uR0 ∈ B(0;R0) which according 280

Theorem 10.6 is equivalent to the fact that uR is a solution of problem (MQHI). Arguing 281

by contradiction, assume that uR ∈ ∂B̄(0;R) for all R > 0. Taking v = 0 in (10.21) we 282

have 283

c(R)R = c(‖uR‖)‖uR‖ ≤ 〈u∗R, uR〉 ≤ 〈FuR, uR〉 + h(uR)J
0(iuR; −iuR)

≤ ‖FuR‖X∗‖uR‖ + k ‖uR‖ ≤ (m+ k)R.

Dividing by R > 0 we obtain that c : R+ → R+ is bounded from above which contradicts
the fact that lim

R→∞ c(R) = +∞. ��

10.3 Variational-Like Inequalities 284

In 1989 Parida, Sahoo, and Kumar [4] introduced a new type of inequality problem of 285

variational type which had the form: 286

Find u ∈ K such that 287

〈A(u), η(v, u)〉 ≥ 0, ∀v ∈ K, (10.22)

where K ⊆ R
n is a nonempty closed and convex set and A : K → R

n, η : K × K → 288

R
n are two continuous maps. The authors called (10.22) variational-like inequality 289
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problem and showed that this kind of inequalities can be related to some mathematical 290

programming problems. 291

In this section the goal is to extend the results obtained in [4] to the following setting: 292

X is a Banach space (not necessarily reflexive) with X∗ and X∗∗ = (X∗)∗ its dual and 293

bidual, respectively, K is a nonempty closed and convex subset X∗∗ and A : K → X∗ is 294

a set-valued map. More precisely, we are interested in finding solutions for the following 295

inequality problems: 296

(QVLI) Find u ∈ Kφ such that 297

∃u∗ ∈ A(u) : 〈u∗, η(v, u)〉 + φ(v) − φ(u) ≥ 0, ∀v ∈ K, (10.23)

(V LI) Find u ∈ K such that 298

∃u∗ ∈ A(u) : 〈u∗, η(v, u)〉 ≥ 0, ∀v ∈ K, (10.24)

where K ⊆ X∗∗ is nonempty closed and convex, η : K × K → X∗∗, A : K → X∗ is 299

a set-valued map, φ : X∗∗ → R ∪ {+∞} is a proper convex and lower semicontinuous 300

functional such that Kφ := K ∩ D(φ) = ∅, with D(φ) the effective domain of the 301

functional φ. We call these problems quasi-variational-like inequality and variational-like 302

inequality, respectively. Note that if φ is the indicator function of the set K , then (QVLI) 303

reduces to (VLI). 304

Definition 10.2 A solution u0 ∈ Kφ of inequality problem (10.23) is called strong if 305

〈u∗, η(v, u0)〉 + φ(v)− φ(u0) ≥ 0 holds for all v ∈ K and all u∗ ∈ A(u0). 306

It is clear from the above definition that if A is a single-valued operator, then the 307

concepts of solution and strong solution are one and the same. 308

First we consider the case of non-reflexive Banach spaces. Before stating the results 309

concerning the existence of solutions for problem (10.23) we indicate below some 310

hypotheses that will be needed in the sequel. 311

(H1
A) A : K � X∗ is l.s.c. from s − X into w∗ −X∗ and has nonempty values; 312

(H2
A) A : K → X∗ is u.s.c. from s −X into w∗ −X∗ has nonempty w∗-compact values; 313

(Hφ) φ : X∗∗ → R ∪ {+∞} is a proper convex l.s.c. functional; 314

(Hη) η : K ×K → X∗∗ is such that 315

(i) for all v ∈ K the map u �→ η(v, u) is continuous; 316

(ii) for all u, v,w ∈ K and all w∗ ∈ A(w), the map v �→ 〈w∗, η(v, u)〉 is convex 317

and 〈w∗, η(u, u)〉 ≥ 0; 318

Theorem 10.7 ([3]) Let X be a nonreflexive Banach space and K ⊆ X∗∗ nonempty 319

closed and convex. Assume that (Hφ), (Hη) and either (H1
A) or (H2

A) hold. If the set 320
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Kφ is not compact we assume in addition that for some nonempty compact convex subset 321

C of Kφ the following condition holds 322

(HC) for each u ∈ Kφ \ C there exist u∗0 ∈ A(u) and v̄ ∈ C with the property that 323

〈u∗0, η(v̄, u)〉 + φ(v̄)− φ(u) < 0.

Then (QVLI) has at least one strong solution. 324

Proof Arguing by contradiction let us assume that (10.23) has no strong solution. Then, 325

for each u ∈ Kφ there exist ū∗ ∈ A(u) and v = v(u, ū∗) ∈ K such that 326

〈ū∗, η(v, u)〉 + φ(v)− φ(u) < 0. (10.25)

It is clear that the element v for which (10.25) takes place satisfies v ∈ D(φ), therefore 327

v ∈ Kφ . We consider next the set-valued map F : Kφ → 2Kφ defined by 328

F(u) := {
v ∈ Kφ : 〈ū∗, η(v, u)〉 + φ(v) − φ(u) < 0

}
,

where ū∗ ∈ A(u) is given in (10.25). 329

STEP 1. For each u ∈ Kφ the set F(u) is nonempty and convex. 330

Let u ∈ Kφ be arbitrarily fixed. Then (10.25) implies that F(u) is nonempty. Let 331

v1, v2 ∈ F(u), λ ∈ (0, 1) and define w = λv1 + (1− λ)v2. We have 332

〈ū∗, η(w, u)〉 + φ(w)− φ(u) ≤ λ
[〈ū∗, η(v1, u)〉 + φ(v1)− φ(u)

]
+ (1− λ)

[〈ū∗, η(v2, u)〉 + φ(v2)− φ(u)
]
< 0,

which shows that w ∈ F(u), therefore F(u) in a convex subset of Kφ . 333

STEP 2. For each v ∈ Kφ the set F−1(v) := {u ∈ Kφ : v ∈ F(u)} is open. 334

Let us fix v ∈ Kφ . Taking into account that 335

F−1(v) = {
u ∈ Kφ : ∃ū∗ ∈ A(u) s.t. 〈ū∗, η(v, u)〉 + φ(v)− φ(u) < 0

}

we shall prove that 336

[
F−1(v)

]c = {
u ∈ Kφ : 〈u∗, η(v, u)〉 + φ(v) − φ(u) ≥ 0, for all u∗ ∈ A(u)

}

is a closed subset of Kφ . Let {uλ}λ∈I ⊂
[
F−1(v)

]c
be a net converging to some u ∈ Kφ . 337

Then for each λ ∈ I we have 338

〈u∗λ, η(v, uλ)〉 + φ(v) − φ(uλ) ≥ 0, for all u∗λ ∈ A(uλ). (10.26)
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Taking into account that η(·, ·) is continuous with respect to the second variable we 339

obtain that 340

η(v, uλ)→ η(v, u). (10.27)

CASE 1. (H1
A) holds. 341

We fix u∗ ∈ A(u) and for each λ ∈ I we can determine u∗λ ∈ A(uλ) such that 342

u∗λ ⇁ u∗ in X∗,

since A is l.s.c. from K endowed with the strong topology into X∗ endowed 343

with the w∗-topology, which combined with (10.27) shows that 〈u∗λ, η(v, uλ)〉 → 344

〈u∗, η(v, u)〉. 345

CASE 2. (H2
A) holds. 346

We define the compact set D := {uλ : λ ∈ I } ∪ {u} and apply Proposition B.9 to 347

conclude that A(D) is a w∗-compact set, which means that {u∗λ}λ∈I admits a subnet 348

{u∗λ}λ∈J such that u∗λ ⇁ u∗ for some u∗ ∈ X∗. But, A is u.s.c. and thus u∗ ∈ 349

A(u). Since u∗λ ⇁ u∗ and η(v, uλ) → η(v, u) we deduce that 〈u∗λ, η(v, uλ)〉 → 350

〈u∗, η(v, u)〉. 351

Using (10.26) we get 352

0 ≤ lim sup
[〈u∗λ, η(v, uλ)〉 + φ(v)− φ(uλ)

]
≤ lim sup 〈u∗λ, η(v, uλ)〉 + φ(v) − lim infφ(uλ)

≤ 〈u∗, η(v, u)〉 + φ(v)− φ(u),

which means that u ∈ [
F−1(v)

]c
, therefore

[
F−1(v)

]c
is a closed subset of Kφ . 353

STEP 3. Kφ = ⋃
v∈Kφ

intKφF
−1(v). 354

We only need to prove that Kφ ⊆ ⋃
v∈Kφ

intKφF
−1(v) as the converse inclusion is 355

satisfied since F−1(v) is a subset Kφ for all v ∈ Kφ . For each u ∈ Kφ there exist 356

v ∈ Kφ such that v ∈ F(u) (such a v exists since F(u) is nonempty) and thus u ∈ 357

F−1(v) ⊆⋃
v∈Kφ

F−1(v) =⋃
v∈Kφ

intKφF
−1(v). 358

If the Kφ is not compact then the last condition of our theorem implies that for each u ∈ 359

Kφ \C there exists v̄ ∈ C such that u ∈ F−1(v̄) = intKφF
−1(v̄). This observation and the 360

above Claims ensure that all the conditions of Theorem D.4 are satisfied for S = T = F 361

and we deduce that the set-valued map F : Kφ → 2Kφ admits a fixed point u0 ∈ Kφ , i.e. 362

u0 ∈ F(u0). This can be rewritten equivalently as 363

0 ≤ 〈ū∗0, η(u0, u0)〉 + φ(u0)− φ(u0) < 0.

We have reached thus a contradiction which completes the proof. ��
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We consider next the case of reflexive Banach spaces. In order to prove our existence 364

results, throughout this subsection, we shall use some of the following hypotheses: 365

(H 1
A) A : K � X∗ is l.s.c. from s −X into w −X∗ and has nonempty values; 366

(H 2
A) A : K � X∗ is u.s.c. from s −X into w −X∗ has nonempty w-compact values; 367

(Hφ) φ : X→ R ∪ {+∞} is a proper convex l.s.c. functional such that Kφ = ∅ ; 368

(H 1
η ) η : K ×K → X is such that 369

(i) for all v ∈ K the map u �→ η(v, u) is continuous; 370

(ii) for all u, v,w ∈ K and all w∗ ∈ A(w) the map v �→ 〈w∗, η(v, u)〉 is convex 371

and 〈w∗, η(u, u)〉 ≥ 0 ; 372

(H 2
η ) η : K ×K → X is such that 373

(i) η(u, v) + η(v, u) = 0 for all u, v ∈ K; 374

(ii) for all u, v,w ∈ K and all w∗ ∈ A(w), v �→ 〈w∗, η(v, u)〉 is convex and l.s.c; 375

(H 1
α) α : X→ R is weakly l.s.c. and lim sup

λ↓0

α(λv)
λ
≥ 0 for all v ∈ X; 376

(H 2
α) α : X→ R is a such that 377

(i) α(0) = 0; 378

(ii) lim supλ↓0
α(λv)

λ
≥ 0, for all v ∈ X; 379

(iii) α(u) ≤ lim supα(uλ), whenever uλ ⇀ u in X; 380

The following theorem is a variant of Theorem 10.7 in the framework of reflexive 381

Banach spaces. 382

Theorem 10.8 ([3]) Let X be a real reflexive Banach space and K ⊆ X nonempty 383

compact and convex. Assume that (Hφ), (H 1
η ) and either (H 1

A) or (H 2
A) hold. Then 384

(QVLI) has at least one strong solution. 385

The proof of Theorem 10.8 follows basically the same steps as the proof of Theo- 386

rem 10.7, therefore we shall omit it. 387

We point out the fact that in the above case when K is a compact convex subset of X 388

we do not impose any monotonicity conditions on the set-valued operator A. However, in 389

applications, most problems lead to an inequality whose solution is sought in a closed and 390

convex subset of the space X. Weakening the hypotheses on K by assuming that K is only 391

bounded, closed and convex, we need to impose certain monotonicity properties on A. 392

Theorem 10.9 ([3]) Let K be a nonempty bounded closed and convex subset of the real 393

reflexive Banach space X. Let A : K → X∗ be a relaxed η−α monotone map and assume 394

that (Hφ), (H 2
η ), and (H 1

α) hold. If in addition 395

(H 1
A) holds, then (QVLI) has at least one strong solution; 396

(H 2
A) holds, then (QVLI) has at least one solution. 397



352 10 Inequality Problems Governed by Set-valued Maps of Monotone Type

Proof We shall apply Mosco’s Alternative for the weak topology of X. First we note that 398

K is weakly compact as it is a bounded closed and convex subset of the real reflexive 399

space X and φ : X → R ∪ {+∞} is weakly lower semicontinuous as it is convex and 400

lower semicontinuous. We define f, g : X ×X→ R as follows 401

f (v, u) := − inf
v∗∈A(v)

〈v∗, η(v, u)〉 + α(v − u)

and 402

g(v, u) := sup
u∗∈A(u)

〈u∗, η(u, v)〉.

Let us fix u, v ∈ X and choose v̄∗ ∈ A(v) such that 〈v̄∗, η(v, u)〉 = inf
v∗∈A(v)

〈v∗, η(v, u)〉. 403

For and arbitrary fixed u∗ ∈ A(u) we have 404

g(v, u) − f (v, u) = sup
u∗∈A(u)

〈u∗, η(u, v)〉 + inf
v∗∈A(v)

〈v∗, η(v, u)〉 − α(v − u)

≥ 〈u∗, η(u, v)〉 + 〈v̄∗, η(v, u)〉 − α(v − u)

= 〈v̄∗, η(v, u)〉 − 〈u∗, η(v, u)〉 − α(v − u) ≥ 0.

It is easy to check that conditions imposed on η and α ensure that the map u �→ f (v, u) is 405

weakly lower semicontinuous, while the map v �→ g(v, u) is concave. Applying Mosco’s 406

Alternative for μ := 0 we conclude that there exists u0 ∈ Kφ such that 407

f (v, u0)+ φ(u0)− φ(v) ≤ 0, ∀v ∈ X,

since g(v, v) = 0 for all v ∈ X. A simple computation shows that for each w ∈ K we 408

have 409

〈w∗, η(w, u0)〉 + φ(w)− φ(u0) ≥ α(w − u0), ∀w∗ ∈ A(w). (10.28)

Let us fix v ∈ K and define wλ := u0 + λ(v − u0), with λ ∈ (0, 1). Then for a fixed 410

w∗λ ∈ A(wλ) from (10.28) we have 411

α(λ(v − u0)) ≤〈w∗λ, η(wλ, u0)〉 + φ(wλ)− φ(u0) ≤ λ〈w∗λ, η(v, u0)〉
+ (1− λ)〈w∗λ, η(u0, u0)〉 + λφ(v) + (1− λ)φ(u0)− φ(u0)

=λ [〈w∗λ, η(v, u0)〉 + φ(v) − φ(u0)
]
,

412
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which leads to 413

α(λ(v − u0))

λ
≤ 〈w∗λ, η(v, u0)〉 + φ(v) − φ(u0). (10.29)

CASE 1. (H 1
A) holds. 414

We shall prove next that u0 is a strong solution of inequality problem (10.23). Let 415

u∗0 ∈ A(u0) be arbitrarily fixed. Combining the fact that wλ → u0 as λ ↓ 0 with the 416

fact that A is l.s.c. from K endowed with the strong topology into X∗ endowed with 417

the w−topology we deduce that for each λ ∈ (0, 1) we can find w∗λ ∈ A(wλ) such that 418

w∗λ ⇀ u∗0 as λ ↓ 0. Taking the superior limit in (10.29) as λ ↓ 0 and keeping in mind 419

(H 1
α) we get 420

0 ≤ lim sup
λ↓0

α(λ(v − u0))

λ
≤ lim sup

λ↓0

[〈w∗λ, η(v, u0)〉 + φ(v) − φ(u0)
]

= 〈u∗0, η(v, u0)〉 + φ(v) − φ(u0),

which shows that u0 is a strong solution of (10.23), since v ∈ K and u∗0 ∈ A(u0) were 421

arbitrarily fixed. 422

CASE 2. (H 2
A) holds. 423

We shall prove in this case that u0 is a solution of (10.23). Reasoning as in the proof 424

of Theorem 10.7-CASE 2 we infer that there exists ū∗0 ∈ A(u0) and a subnet
{
w∗λ

}
λ∈J 425

of
{
w∗λ

}
λ∈(0,1) such that w∗λ ⇀ ū∗0 as λ ↓ 0. Combining this with relation (10.29) and 426

hypothesis (H 1
α) we conclude that 427

0 ≤ lim sup
λ↓0

α(λ(v − u0))

λ
≤ lim sup

λ↓0

[〈w∗λ, η(v, u0)〉 + φ(v) − φ(u0)
]

= 〈ū∗0, η(v, u0)〉 + φ(v) − φ(u0),

which shows that u0 is a solution of (10.23), since v ∈ K was arbitrarily fixed. 428��

Weakening even more the hypotheses by assuming that the set-valued map A : K → 429

X∗ is relaxed η−α quasimonotone instead of being relaxed η−α monotone the existence 430

of solutions for inequality problem (10.23) is an open problem in the case when K is 431

nonempty bounded closed and convex. However, in this case we can prove the following 432

existence result concerning inequality (V LI). 433
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Theorem 10.10 ([3]) Let K be a nonempty bounded closed and convex subset of the real 434

reflexive Banach space X. Let A : K → X∗ be a relaxed η − α quasimonotone map and 435

assume that (H 2
η ) and (H 2

α) hold. If in addition 436

(H 1
A) holds, then (V LI) possesses at least one strong solution; 437

(H 2
A) holds, then (V LI) possesses at least one solution. 438

Proof Define G : K � X in the following way: 439

G(v) := {
u ∈ K : 〈v∗, η(v, u)〉 ≥ α(v − u), ∀v∗ ∈ A(v)

}
.

First of all, note that v ∈ G(v) for all v ∈ K hence G(v) is nonempty for all v ∈ K . Now, 440

we prove that G(v) is weakly closed for all v ∈ K . Let {uλ}λ∈I ⊂ G(v) be a net such that 441

uλ converges weakly to some u ∈ K . Then, we have 442

α(v − u) ≤ lim supα(v − uλ) ≤ lim sup〈v∗, η(v, uλ)〉 = lim sup
[−〈v∗, η(uλ, v)〉]

= − lim inf〈v∗, η(uλ, v)〉 ≤ −〈v∗, η(u, v)〉 = 〈v∗, η(v, u)〉,

for all v∗ ∈ A(v). It follows that u ∈ G(v), so G(v) is weakly closed. 443

CASE 1. G is a KKM map. 444

Since K is bounded closed and convex in X which is reflexive, it follows that K is 445

weakly compact and thus G(v) is weakly compact for all v ∈ K as it is a weakly closed 446

subset of K . Applying Corollary D.1, we have
⋂

v∈K G(v) = ∅ and the set of solutions 447

of (VLI) is nonempty. In order to see that let u0 ∈ ⋂
v∈K G(v). This implies that for 448

each w ∈ K we have 449

〈w∗, η(w, u)〉 ≥ α(w − u), for all w∗ ∈ A(w).

Let v be fixed in K and for λ ∈ (0, 1) define wλ = u0 + λ(v − u0). We infer that 450

α(λ(v − u0)) ≤ 〈w∗λ, η(wλ, u0)〉 ≤ λ〈w∗λ, η(v, u0)〉 + (1− λ)〈w∗λ, η(u0, u0)〉
= λ〈w∗λ, η(v, u0)〉

for all w∗λ ∈ A(wλ). 451

Applying the same arguments as in the previous proof we conclude that u0 is a strong 452

solution of inequality problem (10.24) if (H 1
A) holds, while if (H 2

A) holds then u0 is a 453

solution of inequality problem (10.24). 454

CASE 2. G is not a KKM map. 455

Consider {v1, v2, . . . , vN } ⊆ K and u0 =∑N
j=1 λj vj with λj ∈ [0, 1] and

∑N
j=1 λj = 456

1 such that u0 ∈ ⋃N
j=1 G(vj ). The existence of such u0 is guaranteed by the fact that 457
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G is not a KKM map. This implies that for all j ∈ {1, . . . , N} there exists v̄∗j ∈ A(vj ) 458

such that 459

〈v̄∗j , η(vj , u0)〉 < α(vj − u0) (10.30)

Now, we claim that there exists a neighborhood U of u0 such that (10.30) takes place 460

for all w ∈ U ∩K , that is 461

〈v̄∗j , η(vj ,w)〉 < α(vj −w), ∀w ∈ U ∩K.

Arguing by contradiction let us assume that for any neighborhood U of u0 there exists 462

an index j0 ∈ {1, . . . , N} and an element w0 ∈ U ∩K such that 463

〈v∗j0
, η(vj0 , w0)〉 ≥ α(vj0 −w0), ∀v∗j0

∈ A(vj0). (10.31)

Choose U = B̄X (u0; λ) and for each λ > 0 one can find a j0 ∈ {1, . . . , N} and 464

wλ ∈ B̄X (u0; λ) ∩K such that 465

〈v∗j0
, η(vj0 , wλ)〉 ≥ α(vj − wλ), ∀v∗j0

∈ A(vj0).

Let us fix v∗j0
∈ A(vj0). Using the fact that wλ → u0 as λ ↓ 0 and taking the superior 466

limit in the above relation, we obtain 467

α(vj0 − u0) ≤ lim sup
λ↓0

α(vj0 − wλ) ≤ lim sup
λ↓0

〈v∗j0
, η(vj0 , wλ)〉

= − lim inf
λ↓0

〈v∗j0
, η(wλ, vj0)〉 ≤ −〈v∗j0

, η(u0, vj0)〉

= 〈v∗j0
, η(vj0 , u0)〉,

which contradicts with relation (10.30) and this contradiction completes the proof of 468

the claim. Now, using the fact that A is relaxed η−α quasimonotne map, we prove that 469

〈w∗, η(vj ,w)〉 ≤ 0, ∀w ∈ K ∩ U, ∀w∗ ∈ A(w),∀j ∈ {1, . . . , N}. (10.32)

In order to prove (10.32) assume by contradiction there exists w0 ∈ K∩U , w∗0 ∈ A(w0) 470

and j0 ∈ {1, . . . , N} such that 〈w∗0 , η(vj0 , w0)〉 > 0. From the fact that A is relaxed 471

η − α quasimonotone it follows that 472

〈v∗j0
, η(vj0 , w0)〉 ≥ α(vj0 −w0), ∀v∗j0

∈ A(vj0),
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which contradicts the fact that (10.30) holds for all w ∈ U ∩K and all j ∈ {1, . . . , N}. 473

On the other hand, for arbitrary fixed w ∈ K ∩ U and w̄∗ ∈ A(w) we have 474

〈w̄∗, η(u0, w)〉 =
〈
w̄∗, η

⎛
⎝ N∑

j=1

λj vj ,w

⎞
⎠

〉
≤

N∑
j=1

λj 〈w̄∗, η(vj ,w)〉 ≤ 0.

Thus, we obtain 475

0 ≤ 〈w̄∗,−η(u0, w)〉 = 〈w̄∗, η(w, u0)〉.

But w̄∗ ∈ A(w) was choosen arbitrary but fixed and thus for each w ∈ U ∩K we have 476

〈w∗, η(w, u0)〉 ≥ 0, for all w∗ ∈ A(w) (10.33)

We shall prove next that u0 solves inequality problem (10.24). Consider v ∈ K to be 477

arbitrary fixed. 478

CASE 2.1 v ∈ U . 479

In this case the entire line segment 480

(u0, v) := {u0 + λ(v − u0) : λ ∈ (0, 1)}

is contained in U ∩ K and, according to (10.33), for each wλ ∈ (u0, v) and each 481

w∗λ ∈ A(wλ) we have 482

0 ≤ 〈w∗λ, η(wλ, u0)〉 ≤ λ〈w∗λ, η(v, u0)〉 + (1− λ)〈w∗λ, η(u0, u0)〉 = λ〈w∗λ, η(v, u0)〉

483

Let us assume that (H 1
A) and fix u∗ ∈ A(u). Then for each λ ∈ (0, 1) we can 484

determine w̄∗λ ∈ A(wλ) such that w̄∗λ ⇀ u∗ as λ ↓ 0. 485

If (H 2
A) holds, then there exists ū∗0 ∈ A(u0) for which we can determine a subnet 486{

w∗λ
}
λ∈J of

{
w∗λ

}
λ∈(0,1) such that w∗λ ⇀ ū∗0 in X∗ as λ ↓ 0. 487

Dividing by λ > 0 the above relation and taking into account the previous 488

observation we conclude (after passing to the limit as λ ↓ 0) that u0 is a strong 489

solution of problem (10.24) if (H 1
A) holds (u0 is a solution of problem (10.24) if 490

(H 2
A) holds). 491

CASE 2.2 v ∈ K \ U . 492

Since K is convex and u0, v ∈ K , then we have that (u0, v) ⊆ K . From v ∈ U there 493

exists λ0 ∈ (0, 1) such that v0 = u0 + λ0(v − u0) ∈ (u0, v) and has the property 494

that the entire line segment (u0, v0) is contained in U ∩K . Thus, for each λ ∈ (0, 1) 495

the element wλ = u0 + λ(v0 − u0) ∈ K ∩ V , but v0 = u0 + λ0(v − u0), hence 496

wλ = u0 + λ0λ(v − u) ∈ K ∩ V and wλ → u0 as λ ↓ 0. Applying the same 497
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arguments as in CASE 2.1 we infer that u0 is a strong solution of problem (10.24) if 498

(H 1
A) holds (u0 is a solution of problem (10.24) if (H 2

A) holds) and this completes 499

the proof. 500��

Let us turn our attention towards the case when K is a unbounded closed and convex 501

subset of X. We shall establish next some sufficient conditions for the existence of 502

solutions of problems (QVLI) and (V LI). For every r > 0 we define 503

Kr := {u ∈ K : ‖u‖ ≤ r} and K−
r := {u ∈ K : ‖u‖ < r},

and consider the problems 504

Find ur ∈ Kr ∩D(φ) such that 505

∃u∗r ∈ A(ur) : 〈u∗r , η(v, ur )〉 + φ(v)− φ(ur) ≥ 0, ∀v ∈ Kr, (10.34)

and 506

Find ur ∈ Kr such that 507

∃u∗r ∈ A(ur) : 〈u∗r , η(v, ur )〉 ≥ 0, ∀v ∈ Kr. (10.35)

It is clear from above that the solution sets of problems (10.34) and (10.35) are nonempty. 508

We have the following characterization for the existence of solutions in the case of 509

unbounded closed and convex subsets. 510

Theorem 10.11 ([3]) Assume that the same hypotheses as in Theorem 10.9 hold without 511

the assumption of boundedness of K . Then each of the following conditions is sufficient 512

for inequality problem (QVLI) to admit at least one strong solution (solution): 513

(C1) there exists r0 > 0 and u0 ∈ K−
r0

such that ur0 solves (10.34). 514

(C2) there exists r0 > 0 such that for each u ∈ K \Kr0 we can find v̄ ∈ Kr0 such that 515

〈u∗, η(v̄, u)〉 + φ(v̄)− φ(u) ≤ 0, ∀u∗ ∈ A(u).

(C3) there exists ū ∈ K and a function c : R+ → R+ with the property that lim
r→+∞ c(r) = 516

+∞ such that 517

inf
u∗∈A(u)

〈u∗, η(u, ū)〉 ≥ c(‖u‖)‖u‖, ∀u ∈ K.
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Proof Let v ∈ K be arbitrary fixed. 518

Assume (C1) holds. 519

We define 520

s0 :=
{

1
2 , if v = ur0

min
{

1
2 ;

r0−‖ur0‖‖v−ur0‖
}
, otherwise,

and observe that ws0 := ur0+ s0(v−ur0) belongs to Kr0 as 0 < s0 < 1 and Kr0 is convex. 521

Assuming that (H 1
A) holds and using the fact that ur0 is a strong solution of problem 522

(10.34) we deduce that for each u∗r0
∈ A(ur0) we have 523

0 ≤〈u∗r0
, η(ws0, ur0)〉 + φ(ws0)− φ(ur0)

≤s0〈u∗r0
, η(v, ur0)〉 + (1− s0)〈u∗r0

, η(ur0, ur0)〉
+ s0φ(v)+ (1− s0)φ(ur0)+ φ(ur0)

=s0
[〈u∗r0

, η(v, ur0)+ φ(v) − φ(ur0)〉
]
.

Dividing by s0 > 0 we obtain that ur0 is a strong solution of (QVLI) as v ∈ K was 524

chosen arbitrary. 525

In a similar way we prove that ur0 is a solution of inequality problem (QVLI) if (H 2
A) 526

holds. 527

Assume (C2) holds. 528

Let us fix r > r0. Then problem (10.34) admits at one solution ur ∈ Kr . We observe 529

that we only need to study the case when ‖ur‖ = r . Indeed, if ‖ur‖ < r , then ur ∈ K−
r 530

and by condition (H1) ur solves problem (10.23). The fact that ‖ur‖ = r implies that 531

ur ∈ K \Kr0 and thus we have 532

〈u∗r , η(v̄, ur )〉 + φ(v̄)− φ(ur) ≤ 0, ∀u∗r ∈ A(ur). (10.36)

We define 533

s1 :=
{

1
2 , if v = v̄

min
{

1
2 ,

r−r0‖v−v̄‖
}
, otherwise,

and observe that ws1 := v̄ + s1(v − v̄) belongs to Kr and 534

ws1 − ur = s1(v − ur)+ (1− s1)(v̄ − ur).

535
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Let us assume that (H 1
A) holds and ur is a strong solution of inequality (10.34). Then for 536

each u∗r ∈ A(ur) we have 537

0 ≤ 〈u∗r , η(ws1, ur )〉 + φ(ws1)− φ(ur)

≤ s1〈u∗r , η(v, ur )〉 + (1− s1)〈u∗r , η(v̄, ur )〉 + s0φ(v)+ (1− s1)φ(v̄)− φ(ur),

which leads to 538

0 ≤ s1
[〈u∗r , η(v, ur )〉 + φ(v)− φ(ur)

]+ (1− s1)
[〈u∗r , η(v̄, ur )〉 + φ(v̄)− φ(ur)

]
,

(10.37)

for all u∗r ∈ A(ur). Combining (10.36) and (10.37) we infer that ur is a strong solution of 539

(QVLI). 540

In a similar way we prove that ur0 is a solution of inequality problem (QVLI) if (H 2
A) 541

holds. 542

Assume (C3) holds. 543

For each r > 0 problem (10.34) admits at least a solution ur ∈ Kr . We shall prove 544

that there exists r0 such that ur0 ∈ K−
r0

, which according to (H1) means that ur0 solves 545

(QVLI). Arguing by contradiction, let us assume that ‖ur‖ = r for all r > 0. First we 546

observe that the function φ is bounded from below by an affine and continuous function as 547

it is convex and lower semicontinuous, therefore there exists ξ ∈ X∗ and β ∈ R such that 548

φ(u) ≥ 〈ξ, u〉 + β, ∀u ∈ X.

Taking v := ū in (10.34) we obtain: 549

c(r)r = c(‖ur‖)‖ur‖ ≤ 〈u∗r , η(ur , ū)〉 ≤ φ(ū)− φ(ur) ≤ φ(ū)− β − 〈ξ, ur 〉
≤ r ‖ξ‖∗ + φ(ū)− β.

Dividing by r > 0 and then letting r →+∞ we obtain a contradiction since the left-hand
side term of the inequality diverges, while the right-hand side term remains bounded. ��

Using the same arguments as above we are also able to prove the following characteri- 550

zation for the existence of solution of inequality problem (10.24) in the case of unbounded 551

closed and convex subsets. 552

Theorem 10.12 ([3]) Assume that the same hypotheses as in Theorem 10.10 hold without 553

the assumption of boundedness of K . Then each of the following conditions is sufficient 554

for inequality problem (V LI) to admit at least one strong solution (solution): 555

(C′1) there exists r0 > 0 and u0 ∈ K−
r0

such that ur0 solves (10.35). 556
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(C′2) there exists r0 > 0 such that for each u ∈ K \Kr0 we can find v̄ ∈ Kr0 such that 557

〈u∗, η(v̄, u)〉 ≤ 0, ∀u∗ ∈ A(u).

(C′3) there exists ū ∈ K and a function c : R+ → R+ with the property that lim
r→+∞ c(r) = 558

+∞ such that 559

inf
u∗∈A(u)

〈u∗, η(u, ū)〉 ≥ c(‖u‖)‖u‖, ∀u ∈ K.
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Part IV 2

Applications to Nonsmooth Mechanics 3



1

112Antiplane Shear Deformation of Elastic 3

Cylinders in Contact with a Rigid Foundation 4

11.1 The Antiplane Model and Formulation of the Problem 5

Let us consider a deformable bodyB that we refer to a cartesian system Ox1x2x3. Assume 6

B is a cylinder with generators parallel to the x3-axes and the cross section is a regular 7

domain � in the plane Ox1x2. Furthermore, the generators are sufficiently long so the end 8

effects in the axial direction are negligible. Thus, we can consider thatB := �×(−∞,∞). 9

We denote by ∂� =: � the boundary of � and we assume that �1, �2, �3 are three open 10

measurable parts that form a partition of � (i.e., � = �1 ∪ �2 ∪ �3; �i ∩ �j = ∅ ∀i, j ∈ 11

{1, 2, 3}, i = j ) such that meas(�1) > 0. Suppose B is clamped on �1 × (−∞,∞) 12

and it is in frictional contact over �3 × (−∞,∞) with a rigid foundation. In addition, 13

the cylindrical body is subjected to volume forces of density f0 in � × (−∞,∞) and to 14

surface tractions of density f2 on �2 × (−∞,∞). 15

Let S3 be the linear space of second order symmetric tensors in R
3 (or, equivalently, the 16

space of symmetric matrices of order 3), while “·”, “:”and ‖ ·‖ stand for the inner products 17

and the Euclidean norms on R
3 and S3, respectively. We have: 18

u · v = uivi , ‖v‖ = (v · v)1/2, ∀u := (ui), v := (vi) ∈ R
3,

19

σ : τ = σij τij , ‖τ‖ = (τ : τ )1/2, ∀σ := (σij ), τ := (τij ) ∈ S3.

Here and below, the indices i and j run between 1 and 3 and the summation convention of 20

the repeated indices is adopted. 21
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Loading the body in the following particular way, 22

f0 := (0, 0, f0) with f0 := f0(x1, x2) : �→ R, (11.1)

23

f2 := (0, 0, f2) with f2 := f2(x1, x2) : �2 → R, (11.2)

we get a displacement field of the form 24

u := (0, 0, u) with u := u(x1, x2) : �→ R. (11.3)

Concerning the unit outward normal to �, we have to write 25

n := (ν1, ν2, 0), νi := νi(x1, x2) : � → R, i ∈ {1, 2}. (11.4)

The infinitesimal strain tensor becomes 26

ε(u) =
⎛
⎜⎝

0 0 1
2u,1

0 0 1
2u,2

1
2u,1

1
2u,2 0

⎞
⎟⎠ , (11.5)

where u,i := ∂u/∂xi , i ∈ {1, 2}. 27

Let σ := (σij ) denote the stress field and recall that, for the stationary processes, the 28

equilibrium equation 29

Div σ + f0 = 0R3, in �× (−∞,∞) (11.6)

takes place, where Div σ := (σij,j ), i ∈ {1, 2, 3}. 30

Let us assume that the stress field σ has the following form 31

σ(x) :=
⎛
⎜⎝

0 0 a1(x,∇u)
0 0 a2(x,∇u)

a1(x,∇u) a2(x,∇u) 0

⎞
⎟⎠ (11.7)

where x := (x1, x2) ∈ � ⊂ R
2 and a(x, y) := (a1(x, y), a2(x, y)) : �×R

2 → R
2. 32

Taking into account (11.1), (11.3), and (11.6), it follows that the equilibrium equation 33

reduces to the following scalar equation 34

div(a(x,∇u))+ f0 = 0, in �. (11.8)

35



11.1 The Antiplane Model and Formulation of the Problem 365

To complete the model, the boundary conditions must be specified. According to the 36

physical setting, 37

u = 0R3, on �1 × (−∞,∞),

and 38

σn = f2, on �2 × (−∞,∞).

Taking into account (11.2), (11.3), and (11.7), the previous vectorial boundary conditions 39

reduce to the following scalar conditions 40

u = 0, on �1 (11.9)

and 41

a(x,∇u) · ν = f2, on �2, (11.10)

where ν := (ν1, ν2), i.e, the 2-dimensional vector comprising only the first two 42

components of the unit outward normal to �. 43

For a vector w we denote by wn and wT its normal and tangential components on the 44

boundary, that is 45

wn := w · n, wT := w − wnn. (11.11)

Similarly, for a regular tensor field σ , we define its normal and tangential components to 46

be the normal and the tangential components of the Cauchy vector σn, that is, 47

σn := (σn) · n, σT := σn− σnn. (11.12)

Let us describe the frictional contact on �3 × (−∞,∞). Taking into account (11.3) and 48

(11.4) we conclude that the normal displacement vanishes, which shows that the contact is 49

bilateral, i.e., the contact is kept during the process. From (11.3), (11.4), (11.7), (11.11), 50

and (11.12) we deduce 51

uT = (0, 0, u), σT = (0, 0, στ ), with στ (x) := a(x,∇u(x)) · ν(x). (11.13)

We model the frictional contact by the following boundary condition, 52

− στ (x) ∈ h(x, u(x)) ∂2
Cj (x, u(x)), on �3, (11.14)
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where h and j are given functions which depend on the variable x := (x1, x2) and do not 53

depend on x3 and, the notation ∂2
Cj (x, t) denotes the Clarke’s generalized gradient of the 54

mapping t �→ j (x, t). 55

Putting together equations and conditions (11.8), (11.9), (11.10), and (11.14) we obtain 56

a mathematical model which describes the antiplane shear deformation of an elastic 57

cylinder in frictional contact with a rigid foundation: 58

Find a displacement u : �→ R such that 59

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

div(a(x,∇u))+ f0 = 0, in �

u = 0, on �1

a(x,∇u) · ν = f2, on �2

−a(x,∇u) · ν ∈ h(x, u) ∂2
Cj (x, u), on �3.

((P ) :)

Once the displacement field u is determined, the stress tensor σ can be obtained via relation 60

(11.7). 61

11.2 Weak Formulation and Solvability of the Problem 62

We assume that � is an open, connected, bounded subset of R2, with Lipshitz continuous 63

boundary. In addition, we admit the following hypotheses: 64

(Hf ) f0 ∈ L2(�) and f2 ∈ L2(�2). 65

(Hh) h : �3 × R → R is a Carathéodory function. Moreover, there exists a positive 66

constant h0 such that 0 ≤ h(x, t) ≤ h0, for all t ∈ R, a.e. x ∈ �3. 67

(Hj ) j : �3 ×R→ R is a function which is measurable with respect to the first variable, 68

and there exists k ∈ L2(�3) such that, for all x ∈ �3 and all t1, t2 ∈ R, we have 69

|j (x, t1)− j (x, t2)| ≤ k(x)|t1 − t2|.

(Ha) a : �× R
2 → R

2 is a Carathéodory function which satisfies: 70

(i) there exist α > 0 and b ∈ L2(�) such that for a.e. x ∈ � and all y ∈ R
2

71

‖a(x, y)‖ ≤ α(b(x)+ ‖y‖);

(ii) There exists m > 0 such that a(x, y) · y ≥ m‖y‖2 for all y ∈ R
2 and a.e. 72

x ∈ �; 73

(iii) [a(x, y1)− a(x, y2)] · (y1 − y2) ≥ 0, for all y1, y2 ∈ R
2 and a.e. x ∈ �. 74
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Let us consider the functional space 75

V := {v ∈ H 1(�) : γ v = 0 a.e. on �1},

where γ : H 1(�) → L2(�) denotes the Sobolev trace operator. For simplicity, 76

everywhere below, we will omit to write γ to indicate the Sobolev trace on the boundary, 77

writing v instead of γ v. Since meas(�1) > 0, it is well known that V is a Hilbert space 78

endowed with the inner product 79

〈u, v〉V :=
∫
�

∇u · ∇vdx, ∀u, v ∈ V,

and the associated norm is 80

‖v‖V :=
(∫

�

‖∇v‖2dx

)1/2

,

which is equivalent with the usual norm on H 1(�). Using Sobolev’s trace theorem we 81

deduce that there exists C > 0 such that 82

‖v‖L2(�3)
≤ C‖v‖V , ∀v ∈ V.

Next, we define the operator A : V → V by 83

〈Au, v〉V :=
∫
�

a(x,∇u) · ∇vdx, ∀u, v ∈ V. (11.15)

Remark 11.1 It is easy to check that, if hypotheses (Ha) are fulfilled, then 84

(i) the operator A is well defined; 85

(ii) 〈Aun, v〉V → 〈Au, v〉V , for each v ∈ V , whenever un → u in V as n→∞; 86

(iii) 〈Av, v〉V ≥ m‖v‖2
V , for all v ∈ V ; 87

(iv) 〈Av − Au, v − u〉V ≥ 0, for all u, v ∈ V . 88

We are now able to provide a variational formulation for problem (P ). To this end, 89

consider v ∈ V to be a test function and we multiply the first line of the problem (P ) 90

by v − u. To simplify the notation, we will not indicate explicitly the dependence on x. 91

Assuming that the functions involved in the writing of the problem (P ) are regular enough, 92

after integration by parts, we obtain 93

∫
�

a(x,∇u) · (∇v − ∇u)dx =
∫
�

a(x,∇u) · ν(v − u)d� +
∫
�

f0(v − u)dx.
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Taking into account the boundary conditions, we see that 94

∫
�

a(x,∇u) · ν(v − u)d� =
∫
�3

a(x,∇u) · ν(v − u)d� +
∫
�2

f2(v − u)d�.

On the other hand, from the definition of Clarke’s generalized gradient, combined with the 95

last line of problem (P ), we have 96

−a(x,∇u) · ν(v − u) ≤ h(x, u)j0(x, u; v − u), a.e. on �3 97

which implies 98

∫
�3

a(x,∇u) · ν(v − u)d� ≥ −
∫
�3

h(x, u)j0(x, u; v − u)d�.

Thus, we arrive to the following variational formulation of the problem (P ). 99

(PV ) Find u ∈ V such that 100

〈Au− g, v − u〉V +
∫
�3

h(x, u)j0(x, u; v − u)d� ≥ 0, ∀v ∈ V, (11.16)

where g is the element of V given by the Riesz’s representation theorem as follows, 101

〈g, v〉V =
∫
�

f0vdx +
∫
�2

f2vd�, ∀v ∈ V.

Any function u ∈ V which satisfies (11.16) is called a weak solution of problem (P ). 102

Next we focus on the weak solvability of the problem (P ). More precisely, we prove 103

the following existence result. 104

Theorem 11.1 ([2, Theorem 4.1]) Assume conditions (Hf ), (Hh), (Hj ), and (Ha) are 105

fulfilled. Then, there exists at least one solution for problem (PV ). 106

In order to prove Theorem 11.1 we need several auxiliary results. 107

Lemma 11.1 Let K be a nonempty, closed and convex subset of V . Under hypotheses 108

(Hh), (Hj ), and (Ha) the set of the solutions for the problem 109

(P1) Find u ∈ K such that 110

〈Au− g, v − u〉V +
∫
�3

h(x, u)j0(x, u; v − u)d� ≥ 0, ∀v ∈ K, (11.17)

coincides with the set of the solutions for the problem 111
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(P2) Find u ∈ K such that 112

〈Av − g, v − u〉V +
∫
�3

h(x, u)j0(x, u; v − u)d� ≥ 0, ∀v ∈ K. (11.18)

Proof Let u ∈ K be a solution of (P1). By Remark 11.1-(iv) we have 113

〈Av − Au, v − u〉V ≥ 0, ∀v ∈ K.

Summing the last relation and (11.17) we conclude that u is a solution of (P2). 114

Conversely, let us assume that u is a solution of (P2). Fix v ∈ K and define 115

w := u+ t (v − u), t ∈ (0, 1).

We have 116

〈Aw − g,w − u〉V +
∫
�3

h(x, u)j0(x, u;w − u)d� ≥ 0.

Using the positive homogeneity of the map j0(x, u; ·) it follows that 117

t〈Aw − g, v − u〉V + t

∫
�3

h(x, u)j0(x, u; v − u)d� ≥ 0.

Keeping in mind Remark 11.1-(ii), we divide by t > 0 and pass to the limit as t → 0.
Thus, we get (11.18). Therefore, u ∈ K is a solution of (P1). ��

Lemma 11.2 Let K be a nonempty, bounded, closed and convex subset of V . Under 118

hypotheses (Hh), (Hj ), and (Ha), there exists at least one solution for (P1). 119

Proof For each v ∈ K , we define two set valued mappings G,H : K � K as follows: 120

G(v) :=
{
u ∈ K : 〈Au− g, v − u〉V +

∫
�3

h(x, u)j0(x, u; v − u)d� ≥ 0

}
,

121

H(v) :=
{
u ∈ K : 〈Av − g, v − u〉V +

∫
�3

h(x, u)j0(x, u; v − u)d� ≥ 0

}
.

STEP 1. G is a KKM mapping. 122

If G is not a KKM mapping, then there exists {v1 . . . , vN } ⊂ K such that 123

co{v1, . . . , vN } ⊂
N⋃
i=1

G(vi),
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i.e., there exists v0 ∈ co{v1, . . . , vN }, v0 := ∑N
i=1 λivi , with λi ≥ 0, i ∈ {1, . . . , N} 124

and
∑N

i=1 λi = 1, such that v0 ∈⋃N
i=1 G(vi). By the definition of G, we have 125

〈Av0 − g, vi − v0〉V +
∫
�3

h(x, v0)j
0(x, v0; vi − v0)d� < 0,

for each i ∈ {1, . . . , N}. It follows that, 126

0 =〈Av0 − g, v0 − v0〉V +
∫
�3

h(x, v0)j
0(x, v0; v0 − v0)d�

=
〈
Av0 − g,

N∑
i=1

λivi − v0

〉

V

+
∫
�3

h(x, v0)j
0

(
x, v0;

N∑
i=1

λivi − v0

)
d�

≤
N∑
i=1

λi

[
〈Av0 − g, vi − v0〉V +

∫
�3

h(x, v0)j
0(x, v0; vi − v0)d�

]
< 0,

which is a contradiction. 127

STEP 2. G(v) ⊆ H(v)for all v ∈ K . 128

For a given v ∈ K , arbitrarily fixed, let u ∈ G(v). This implies by the definition of G 129

that 130

〈Au− g, v − u〉V +
∫
�3

h(x, u)j0(x, u; v − u)d� ≥ 0.

On the other hand, we recall that 131

〈Av − Au, v − u〉V ≥ 0,

and summing the last two relations it follows that u ∈ H(v). 132

Thus G(v) ⊆ H(v), which implies that H is also a KKM mapping. 133

STEP 3. H(v) is weakly closed for all v ∈ K . 134

For a fixed v ∈ K let us consider the sequence {un}n ⊂ H(v) such that un ⇀ u in V . 135

We will prove that u ∈ H(v). We have 136

0 ≤ lim sup
n→∞

[
〈Av − g, v − un〉V +

∫
�3

h(x, un)j
0(x, un; v − un)d�

]

≤ 〈Av − g, v − u〉V + lim sup
n→∞

∫
�3

h(x, un)j
0(x, un; v − un)d�.

137
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Using Sobolev’s trace theorem we conclude that 138

un → u in L2(�3)

and passing eventually to a subsequence we get 139

un(x)→ u(x) a.e. on �3.

On the other hand, (Hj ) enables us to conclude that 140

|j0(x, u(x); v(x))| ≤ k(x)|v(x)| a.e. x ∈ �3. (11.19)

Next, using Fatou’s lemma, we have 141

lim sup
n→∞

∫
�3

h(x, un(x))j
0(x, un(x); v(x)− un(x))d� ≤

∫
�3

lim sup
n→∞

|h(x, un(x))− h(x, u(x))|k(x)|un(x)− v(x)|d�

+
∫
�3

h(x, u(x)) lim sup
n→∞

j0(x, un(x); v(x)− un(x))d� ≤
∫
�3

h(x, u(x))j0(x, u(x); v(x)− u(x))d�.

We can conclude that 142

0 ≤ 〈Av − g, v − u〉V +
∫
�3

h(x, u)j0(x, u; v − u)d�,

which is equivalent to u ∈ H(v). 143

Since K is bounded, closed and convex, we know that K is weakly compact. So, H(v) 144

is weakly compact for each v ∈ K as it is a closed subset of a compact set (in the weak 145

topology). Therefore, the conditions of Corollary D.1 are satisfied in the weak topology. It 146

follows that 147

⋂
v∈K

H(v) = ∅,

and, from Lemma 11.1, we get 148

⋂
v∈K

G(v) =
⋂
v∈K

H(v) = ∅.

Hence, there exists at least one solution of problem (P1). ��
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Proof of Theorem 11.1 For each n ≥ 1, set Kn := {u ∈ V : ‖u‖V ≤ n}. Lemma 11.2 149

guarantees the existence of a sequence {un}n such that for all v ∈ Kn one has 150

〈Aun − g, v − un〉V +
∫
�3

h(x, un)j
0(x, un; v − un)d� ≥ 0. (11.20)

STEP 1. There exists a positive integer n0 such that ‖un0‖V < n0. 151

Arguing by contradiction let us suppose that ‖un‖V = n for each n ≥ 1. Taking v := 152

0V in (11.20), we have 153

〈Aun, un〉V ≤ 〈g, un〉V +
∫
�3

h(x, un)j
0(x, un; −un)d�.

Taking into account (11.19) and using (Ha)− (iii), we get, 154

〈Aun, un〉V ≤ ‖g‖V ‖un‖V +
∫
�3

h0k(x)|un(x)|d�

≤ ‖g‖V ‖un‖V + h0‖k‖L2(�3)
‖un‖L2(�3)

≤ ‖g‖V ‖un‖V + h0‖k‖L2(�3)
C‖un‖V .

Thus, 155

〈Aun, un〉V
‖un‖V ≤ ‖g‖V + h0C‖k‖L2(�3)

<∞,

which contradicts the fact that 156

〈Aun, un〉V
‖un‖V ≥ m‖un‖2

V

‖un‖V = m‖un‖V →∞.

STEP 2. un0 solves problem (PV ). 157

Since ‖un0‖V < n0, for each v ∈ V we can choose t > 0 such that w := un0 + t (v − 158

un0) ∈ Kn0 (it suffices to take t := 1 if v = un0 and t < (n0 − ‖un0‖V )/‖v − un0‖V 159

otherwise). It follows from (11.20) and the positive homogeneity of the map v �→ 160

j0(x, u; v) that 161

0 ≤ 〈Aun0 − g,w − un0〉V +
∫
�3

h(x, un0)j
0(x, un0;w − un0)d�

= t〈Aun0 − g, v − un0〉V + t

∫
�3

h(x, un0)j
0(x, un0; v − un0)d�.

Dividing by t > 0 the conclusion follows. 162��
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11.3 Examples of Constitutive Laws 163

In this section we present examples of elastic constitutive laws which lead to the particular 164

form of the stress field σ considered in (11.7). 165

Example 11.1 (Linear Constitutive Law) We can describe the behavior of the material 166

with the constitutive law 167

σ := λ(tr ε(u))I3 + 2με(u), (11.21)

where λ and μ are Lamé’s coefficients, tr ε(u) = εkk(u) and I3 is the unit tensor. 168

Using (11.21) and (11.5) we obtain that, in the antiplane context, the stress field has the 169

following form 170

σ =
⎛
⎜⎝

0 0 μu,1

0 0 μu,2

μu,1 μu,2 0

⎞
⎟⎠ .

We assume that μ depends on the variable x := (x1, x2) and it is independent on x3. 171

Furthermore, we assume that μ satisfies 172

(Hμ) μ ∈ L∞(�) and there exists μ∗ ∈ R such that μ(x) ≥ μ∗ > 0 a.e. x ∈ �. 173

We take a : � × R
2 → R

2, a(x, y) := μ(x)y and point out the fact that under (Hμ), 174

the hypotheses (Ha) are fulfilled. 175

Example 11.2 (Piecewise Linear Constitutive Law) We can consider the following con- 176

stitutive law, see for example Han and Sofonea [3], 177

σ := λ(tr ε(u))I3 + 2με(u)+ 2β(ε(u)− PKε(u)) (11.22)

where λ, μ, β > 0 are the coefficients of the material, tr ε := εkk, I3 is the identity 178

tensor,K is the nonempty, closed and convex von Mises set 179

K :=
{
σ ∈ S

3 : 1

2
σD · σD ≤ k2, k > 0

}
(11.23)

PK : S3 → K represents the projection operator on K and σD is the deviatoric part of σ, 180

i.e., σD := σ − 1
3 (tr σ )I3. 181
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In the antiplane framework, the constitutive law (11.22) becomes 182

σ := (μ+ β)

⎛
⎜⎝

0 0 u,1

0 0 u,2

u,1 u,2 0

⎞
⎟⎠− 2β

⎛
⎜⎝

0 0 (PK̃
1
2∇u)1

0 0 (PK̃
1
2∇u)2

(PK̃
1
2∇u)1 (PK̃

1
2∇u)2 0

⎞
⎟⎠ ,

where K̃ := B(0, k), (k given by (11.23)) and PK̃ : R2 → K̃ is the projection operator 183

on K̃ . 184

Let us define a : �×R
2 → R

2, a(x, y) := [μ(x)+β(x)]y−2β(x)PK̃
1
2y. We assume 185

that the following conditions are fulfilled 186

(Hμ) μ ∈ L∞(�) and there exists μ∗ ∈ R such that μ(x) ≥ μ∗ > 0 a.e. x ∈ �; 187

(Hβ ) β ∈ L∞(�). 188

Taking into account the non-expansivity of the projection map PK̃ , under the assumptions 189

(Hμ) and (Hβ ), the hypotheses (Ha) are verified with α := ‖μ‖L∞(�) + 2‖β‖L∞(�), 190

b ≡ 0, and m := μ∗. 191

Example 11.3 (Nonlinear Constitutive Law) For Hencky materials, see, e.g., Zeidler [7], 192

the stress-strain relation is 193

σ := k0(tr ε(u))I3 + ψ(‖εD(u)‖2)εD(u), (11.24)

where k0 > 0 is a coefficient of the material, ψ : R → R is a constitutive function and 194

εD(u) is the deviatoric part of ε = ε(u). From (11.24) and (11.5) we obtain the following 195

form for the stress field 196

σ =

⎛
⎜⎜⎜⎝

0 0 1
2ψ

(
1
2 |∇u|2

)
u,1

0 0 1
2ψ

(
1
2 |∇u|2

)
u,2

1
2ψ

(
1
2 |∇u|2

)
u,1

1
2ψ

(
1
2 |∇u|2

)
u,2 0

⎞
⎟⎟⎟⎠ .

We define a : �× R
2 → R

2 by 197

a(x, y) := 1

2
ψ

(
1

2
|y|2

)
y (11.25)

and we assume the following hypotheses, 198

(Hψ ) ψ : R→ R is a given function satisfying: 199

(i) ψ ∈ L∞(R) ∩ C(R); 200

(ii) there exists ψ∗ ∈ R such that ψ(t) ≥ ψ∗ > 0 for all t ≥ 0; 201

(iii) the function t �→ tψ(t2) is increasing on [0,∞). 202
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It remains to prove that conditions (Ha) are fulfilled if (Hψ ) hold. We will prove only 203

(Ha)-(iii), the proof of the others being trivial. 204

Let x ∈ � and y1, y2 ∈ R
2 be arbitrarily fixed. Keeping in mind (Ha) and (11.25), we 205

have to prove that 206

0 ≤ 1

2

[
ψ

(
1

2
|y1|2

)
y1 − ψ

(
1

2
|y2|2

)
y2

]
· (y1 − y2).

The above inequality is equivalent to 207

ψ

(
1

2
|y1|2

)
|y1|2 + ψ

(
1

2
|y2|2

)
|y2|2 ≥

[
ψ

(
1

2
|y1|2

)
+ ψ

(
1

2
|y2|2

)]
y1 · y2.

To obtain this last inequality, it suffices to prove that 208

ψ

(
1

2
|y1|2

)
|y1|2 + ψ

(
1

2
|y2|2

)
|y2|2 ≥

[
ψ

(
1

2
|y1|2

)
+ ψ

(
1

2
|y2|2

)]
|y1||y2|

or, equivalently, 209

[
ψ

(
1

2
|y1|2

)
|y1| − ψ

(
1

2
|y2|2

)
|y2|

]
· (|y1| − |y2|) ≥ 0. (11.26)

Since the function t �→ tψ(t2) is increasing on [0,∞), we have 210

[
t1ψ(t2

1 )− t2ψ(t2
2 )

]
(t1 − t2) ≥ 0; ∀t1, t2 ∈ [0,∞).

Now, taking t1 :=
√

2
2 |y1| and t2 :=

√
2

2 |y2| we obtain (11.26). 211

11.4 Examples of Friction Laws 212

In this section we present examples of functions h : �3×R→ R and j : �3×R→ R, that 213

allow us to model the frictional contact of the cylindrical bodyB with the rigid foundation 214

by (11.14) and, in the same time, verify the required properties in (Hh) and (Hj ). 215

Example 11.4 (Slip Dependent Friction Law) We can consider 216

h(x, t) := k0

(
1+ δe−|t |

)
; j (x, t) := |t|, (11.27)

217
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with δ, k0 > 0. In this case, the friction law (11.14) is equivalent with the friction law 218

|στ (x)| ≤ h(x, u(x)), |στ (x)| = −h(x, u(x)) u(x)

|u(x)| if u(x) = 0, on �3,

(11.28)

or, equivalently, taking into account (11.3) and (11.13), we arrive at the well known 219

Coulomb’s law of dry friction, 220

‖στ (x)‖ ≤ h(x, ‖uτ (x)‖), στ (x) = −h(x, ‖uτ (x)‖) uτ (x)

‖uτ (x)‖ if uτ (x) = 0, on �3.

We note that h and j in (11.27) are non-differentiable functions. This feature leads to 221

mathematical difficulties for optimal control or numerical reasons. 222

Example 11.5 (Regularized Friction Law) Let us consider the differentiable functions 223

h(x, t) := k0

(
1+ δeρ−

√
t2+ρ2

)
; j (x, t) :=

√
t2 + ρ2 − ρ,

with k0, δ, ρ > 0. The friction law (11.14) becomes equivalent with the friction law 224

− στ (x) = h(x, u(x))
u(x)√

u(x)2 + ρ2
on �3. (11.29)

The friction laws (11.28) and (11.29) model situation in which surfaces are dry; they 225

are characterized by the existence of the positive function friction bound, h, that depends 226

on the magnitude of the tangential displacement, see e.g., [5, 6], such that slip may occur 227

only when the friction force reaches the critical value provided by the friction bound. 228

Example 11.6 (The Power Friction Law) Another choice with regularization effect is the 229

following one 230

h(x, t) := k0

(
1+ δe

− |t|ρ+1

ρ+1

)
; j (x, t) := |t|

ρ+1

ρ + 1
,

with k0, δ > 0 and ρ ≥ 1. This time, the friction law (11.14) is equivalent with the power 231

friction law 232

− στ (x) =
{
h(x, u(x))|u(x)|ρ−1u(x) u(x) = 0;

0 u(x) = 0.
(11.30)

In this situations, the slip appears even for small tangential shear. Such kind of situations 233

appear in practice when the contact surfaces are lubricated. 234
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Example 11.7 (Non-monotone Friction Law) Let us take 235

h(x, t) ≡ 1, j (x, t) :=
∫ t

0
p(s)ds, (11.31)

where 236

p(t) :=

⎧⎪⎨
⎪⎩
(−αt0 + k0)e

t0+t − k0 if t < −t0;
α t if − t0 ≤ t ≤ t0;

(αt0 − k0)e
t0−t + k0 if t > t0,

237

with α, k0, t0 > 0. In this case, the friction law (11.14) is equivalent with the friction law 238

− στ (x) = p(u(x)) on �3. (11.32)

The friction law (11.32) is used in geomechanics or rock interface analysis; see [4] for 239

more details. 240

Example 11.8 (Multivalued Friction Law) Let us consider p : R → R a function such 241

that p ∈ L∞loc(R), i.e., a function essentially bounded on any bounded interval of R. For 242

any ρ > 0 and t ∈ R let us define 243

pρ(t) := ess inf|t1−t |≤ρ p(t1) and pρ(t) := ess sup|t1−t |≤ρ p(t1).

Obviously, the monotonicity properties of ρ �→ pρ(t) and ρ �→ pρ(t) imply that the 244

limits as ρ → 0+ exist. Therefore, one may write that p(t) = lim
ρ→0+

pρ(t) and p(t) = 245

lim
ρ→0+

pρ(t), and define the multivalued function p̃ : R � R, p̃(t) := [
p(t), p(t)

]
, 246

where [·, ·] denotes a real interval. If there exist lim
s→t+

p(s) = p(t+) ∈ R and lim
s→t−

p(s) = 247

p(t−) ∈ R for each t ∈ R, it can be shown (see e.g. [1]) that 248

∂2
Cj (x, t) = p̃(t).

Assume that the tangential stress satisfies the multivalued relation 249

− στ (x) ∈ p̃(u(x)) on �3. (11.33)

We point out the fact that the multivalued friction law (11.33) is of the form (11.14) with 250

h(x, t) ≡ 1 and j defined by (11.31). It is easy to check that the functions h and j verify 251

(Hh) and (Hj ), respectively, if |p(t)| ≤ p0 for all t ∈ R with p0 > 0. 252
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A simple example of a function p which satisfies the required properties can be 253

p(t) :=
{
−k0, if t < 0

k0, if t ≥ 0,

with k0 > 0. 254
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1

122Weak Solvability of Frictional Problems 3

for Piezoelectric Bodies in Contact 4

with a Conductive Foundation 5

12.1 The Model 6

The piezoelectricity is a property of a class of materials, like ceramics, characterized by 7

the coupling between the mechanical and electrical properties. This coupling leads to 8

the appearance of electric potential when mechanical stress is present and, conversely, 9

mechanical stress is generated when electric potential is applied. The first effect is used 10

in mechanical sensors and the reverse effect is used in actuators, in engineering control 11

equipment. Models for piezoelectric materials can be found in [1, 2, 4, 5]. 12

Before describing the problem let us first present some notations and preliminary 13

material which will be used throughout this subsection. 14

Let � ⊂ R
m be an open bounded subset with a Lipschitz boundary � and let ν denote 15

the outward unit normal vector to �. We introduce the spaces 16

H := L2(�;Rm), H :=
{
τ = (τij ) : τij = τji ∈ L2(�)

}
= L2(�; Sm),

H1 := {u ∈ H : ε(u) ∈ H} = H 1(�;Rm), H1 := {τ ∈ H : Div τ ∈ H },

where ε : H1 → H and Div : H1 → H denote the deformation and the divergence 17

operators, defined by 18

ε(u) := (εij (u)), εij (u) = 1

2

(
∂ui

∂xj
+ ∂uj

∂xi

)
, Div τ :=

(
∂τij

∂xj

)
,

19
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The spaces H , H , H1, and H1 are Hilbert spaces endowed with the following inner 20

productsyd78 21

(u, v)H :=
∫
�

uividx, (σ, τ )H :=
∫
�

σ : τdx,

(u, v)H1
:= (u, v)H + (ε(u), ε(v))H , (σ, τ )H1

:= (σ, τ )H + (Div σ,Div τ )H .

The associated norms in H ,H , H1,H1 will be denoted by ‖·‖H , ‖·‖H , ‖·‖H1 and ‖·‖H1 , 22

respectively. 23

Given v ∈ H1 we denote by v its trace γ v on �, where γ : H 1(�;Rm) → 24

H 1/2(�;Rm) ⊂ L2(�;Rm) is the Sobolev trace operator. Recall that the following Green 25

formula holds: 26

(σ, ε(v))H + (Div σ, v)H =
∫
�

σν · vd�, ∀v ∈ H1. (12.1)

We shall describe next the model for which we shall derive a variational formulation. 27

Let us consider body B made of a piezoelectric material which initially occupies an open 28

bounded subset � ⊂ R
m (m = 2, 3) with smooth a boundary ∂� = �. The body 29

is subjected to volume forces of density f0 and has volume electric charges of density 30

q0, while on the boundary we impose mechanical and electrical constraints. In order to 31

describe these constraints we consider two partitions of �: the first partition is given by 32

three mutually disjoint open parts �1, �2, and �3 such that meas(�1 > 0) and the second 33

partition consists of three disjoint open parts �a , �b , and �c such that meas(�a) > 0, 34

�c = �3 and �a ∪ �b = �1 ∪ �2. The body is clamped on �1 and a surface traction of 35

density f2 acts on �2. Moreover, the electric potential vanishes on �a and a surface electric 36

charge of density qb is applied on �b. On �3 = �c the body comes in frictional contact 37

with a conductive obstacle, called foundation which has the electric potential ϕF . 38

Denoting by u : �→ R
m the displacement field, by ε(u) := (εij (u)) the strain tensor, 39

by σ : � → Sm the stress tensor, by D : � → R
m, D = (Di) the electric displacement 40

field and by ϕ : �→ R the electric potential we can now write the strong formulation of 41

the problem which describes the above process: 42

(P ) Find a displacement field u : �→ R
m and an electric potential ϕ : �→ R s.t. 43

Div σ + f0 = 0 in �, (12.2)

div D = q0 in �, (12.3)

σ = Eε(u)+ PT∇ϕ in �, (12.4)

D = Pε(u)− B∇ϕ in �, (12.5)

u = 0 on �1, (12.6)

ϕ = 0 on �a, (12.7)
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σn = f2 on �2, (12.8)

D · n = qb on �b, (12.9)

−σn = S; −σT ∈ ∂2
Cj (x, uT ); D · n ∈ ∂2

Cφ(x, ϕ − ϕF ) on �3, (12.10)

We point out the fact that once the displacement field u and the electric potential ϕ are 44

determined, the stress tensor σ and the electric displacement field D can be obtained via 45

relations (12.4) and (12.5), respectively. Similar 46

Let us now provide explanation of the equations and the conditions (12.2)–(12.10) in 47

which, for simplicity, we have omitted the dependence of the functions on the spatial 48

variable x. 49

First, Eqs. (12.2)–(12.3) are the governing equations consisting of the equilibrium 50

conditions, while Eqs. (12.4)–(12.5) represent the electro-elastic constitutive law. 51

In the sequel we assume that E : � × Sm → Sm is a nonlinear elasticity operator, 52

P : � × Sm → R
m and PT : � × R

m → Sm are the piezoelectric operator (third 53

order tensor field) and its transpose, respectively and B : � × R
m → R

m denotes the 54

electric permittivity operator (second order tensor field) which is considered to be linear. 55

The tensors P and PT satisfy the equality 56

Pτ · y = τ : PT y, ∀τ ∈ Sm and all y ∈ R
m

and the components of the tensor PT are given by pT
ijk := pkij . 57

When τ �→ E(x, τ ) is linear, E(x, τ ) := C(x)τ with the elasticity coefficients C := 58

(cijkl ) which may be functions indicating the position in a nonhomogeneous material. The 59

decoupled state can be obtained by taking pijk = 0, in this case we have purely elastic and 60

purely electric deformations. 61

Conditions (12.6) and (12.7) model the fact that the displacement field and the electrical 62

potential vanish on �1 and �a , respectively, while conditions (12.8) and (12.9) represent 63

the traction and the electric boundary conditions showing that the forces and the electric 64

charges are prescribed on �2 and �b, respectively. 65

Conditions (12.10) describe the contact, the frictional and the electrical conductivity 66

conditions on the contact surface �3, respectively. Here, S is the normal load imposed on 67

�3, the functions j : �3 × R
m → R

m and φ : �3 × R→ R are prescribed and ϕF is the 68

electric potential of the foundation. 69

12.2 Variational Formulation and Existence of Weak Solutions 70

The strong formulation of problem (P ) consists in finding u : � → R
m and ϕ : � → 71

R such that (12.2)–(12.10) hold. However, it is well known that, in general, the strong 72

formulation of a contact problem does not admit any solution. Therefore, we reformulate 73

problem (P ) in a weaker sense, i.e., we shall derive its variational formulation. With this 74
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end in view, we introduce the functional spaces for the displacement field and the electrical 75

potential 76

V :=
{
v ∈ H 1(�;Rm) : v = 0 on �1

}
, W :=

{
ϕ ∈ H 1(�) : ϕ = 0 on �a

}

which are closed subspaces of H1 and H 1(�). We endow V and W with the following 77

inner products and the corresponding norms 78

(u, v)V := (ε(u), ε(v))H , ‖v‖V := ‖ε(v)‖H
(ϕ, χ)W := (∇ϕ,∇χ)H , ‖χ‖W := ‖∇χ‖H

and conclude that (V , ‖ · ‖V ), (W, ‖ · ‖W) are Hilbert spaces. 79

Assuming sufficient regularity of the functions involved in the problem, using the Green 80

formula (12.1), the relations (12.2)–(12.10), the definition of the Clarke subdifferntial and 81

the equality 82

∫
�3

(σn) · vd� =
∫
�3

σnvnd� +
∫
�3

σT · vT d�

we obtain the following variational formulation of problem (P ) in terms of the displace- 83

ment field and the electric potential: 84

(PV ) Find (u, ϕ) ∈ V ×W such that for all (v, χ) ∈ V ×W 85

⎧⎪⎪⎨
⎪⎪⎩

(
Eε(u)+ PT∇ϕ, ε(v)− ε(u)

)
H
+

∫
�3

j0
,2(x, uT ; vT − uT )d� ≥ (f, v − u)V

(B∇ϕ − Pε(u),∇χ −∇ϕ)H +
∫
�3

φ0
,2(x, ϕ − ϕF ;χ − ϕ)d� ≥ (q, χ − ϕ)W ,

where f ∈ V and q ∈ W are the elements given by the Riesz’s representation theorem as 86

follows 87

(f, v − u)V :=
∫
�

f0 · vdx +
∫
�2

f2 · vd� −
∫
�3

Svnd�,

88

(q, χ)W :=
∫
�

q0χdx −
∫
�b

q2χd�.

In the study of problem (PV ) we shall assume fulfilled the following hypotheses: 89

(H1) The elasticity operator E : �× Sm → Sm such that 90

(i) x �→ E(x, τ ) is measurable for all τ ∈ Sm; 91

(ii) τ �→ E(x, τ ) is continuous for a.e. x ∈ �; 92
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(iii) there exist c1 > 0 and α ∈ L2(�) s.t. ‖E(x, τ )‖Sm ≤ c1(α(x)+‖τ‖Sm) for all 93

τ ∈ Sm and a.e. x ∈ �; 94

(iv) τ �→ E(x, τ ) : (σ − τ ) is weakly uu.sc for all σ ∈ Sm and a.e. x ∈ �; 95

(v) there exists c2 > 0 s.t. E(x, τ ) : τ ≥ c2‖τ‖2
Sm

for all τ ∈ Sm. 96

(H2) The piezoelectric operator P : �× Sm → R
m is such that 97

(i) P(x, τ ) = p(x)τ for all τ ∈ Sm and a.e. x ∈ �; 98

(ii) p(x) = (pijk(x)) with pijk = pikj ∈ L∞(�). 99

(H3) B : �× R
m → R

m is such that 100

(i) B(x, y) = β(x)y for all y ∈ R
m and a.e. x ∈ �; 101

(ii) β(x) = (βij (x)) with βij = βji ∈ L∞(�); 102

(iii) there exists m > 0 s.t. (β(x)y) · y ≥ m|y|2 for all y ∈ R
m and a.e. x ∈ �. 103

(H4) j : �3 ×R
m → R is such that 104

(i) x �→ j (x, y) is measurable for all y ∈ R
m; 105

(ii) ζ �→ j (x, y) is locally Lipschitz for a.e. x ∈ �3; 106

(iii) there exist c3 > 0 s.t. |∂2
Cj (x, y)| ≤ c3(1+ |y|) for all y ∈ R

m; 107

(iv) there exists c4 > 0 s.t. j0
,2(x, y; −y) ≤ c4|y| for all y ∈ R

m and a.e. x ∈ �3; 108

(v) y �→ j (x, y) is regular for a.e. x ∈ �3. 109

(H5) φ : �3 × R→ R is such that 110

(i) x �→ φ(x, t) is measurable for all t ∈ R; 111

(ii) t �→ φ(x, t) is locally Lipschitz for a.e. x ∈ �3; 112

(iii) there exist c5 > 0 s.t. |∂2
Cφ(x, t)| ≤ c5|t| for all t ∈ R and a.e. x ∈ �3; 113

(iv) t �→ φ(x, t) is regular for a.e. x ∈ �3. 114

(H6) f0 ∈ H , f2 ∈ L2(�2;Rm), q0 ∈ L2(�), qb ∈ L2(�2), S ∈ L∞(�3), S ≥ 0, 115

ϕF ∈ L2(�3). 116

The main result of this chapter is given by the following theorem. 117

Theorem 12.1 ([3, Theorem 4.4]) Assume conditions (H1)–(H6) hold. Then problem 118

(PV ) possesses at least one solution. 119

Proof We observe that problem (PV ) is in fact a system of two coupled hemivariational 120

inequalities. The idea is to apply one of the existence results obtained in Sect. 8.4 with 121

suitable choice of ψk , J , and Fk (k ∈ {1, 2}). 122

First, let us take n := 2 and define X1 := V , X2 := W , Y1 := L2(�3;Rm), Y2 := 123

L2(�3), K1 := X1 and K2 := X2. Next we introduce T1 : X1 → Y1 and T2 : X2 → Y2 124

defined by 125

T1 := iT ◦ γm ◦ im|�3, T2 := γ ◦ i|�3,

im : V → H1 = H 1(�;Rm) is the embedding operator γm : H1 → H 1/2(�;Rm) is 126

the Sobolev trace operator, iT : H 1/2(�;Rm) → L2(�3;Rm) is the operator defined by 127



384 12 Weak Solvability of Frictional Problems for Piezoelectric Bodies in Contact. . .

iT (v) := vT , i : W → H 1(�) is the embedding operator and γ : H 1(�) → H 1/2(�) 128

is the Sobolev trace operator. Clearly T1 and T2 are linear and compact operators. We 129

consider next ψ1 : X1 ×X2 ×X1 → R and ψ2 : X1 ×X2 ×X2 → R defined by 130

ψ1(u, ϕ, v) := (Eε(u), ε(v)− ε(u))H +
(
PT∇ϕ, ε(v)− ε(u)

)
H

,

131
ψ2(u, ϕ, χ) := (B∇ϕ,∇χ − ∇ϕ)H − (Pε(u),∇χ −∇ϕ)H ,

J : Y1 × Y2 → R defined by 132

J (w, η) :=
∫
�3

j (x,w(x))d� +
∫
�3

φ(x, η(x)− ϕF (x))d�,

and F1 : X1 ×X2 → X∗1 and F2 : X1 ×X2 → X∗2 defined by 133

F1(u, ϕ) := f, F2(u, ϕ) := q.

It is easy to check from the above definitions that if (H1)–(H6) hold, then J is a regular 134

locally Lipschitz functional which satisfies 135

J 0
,1(w, η; z) =

∫
�3

j0
,2(x,w(x); z(x))d�

136

J 0
,2(w, η; ζ ) =

∫
�3

φ0
,2(x, η(x)− ϕF (x); ζ(x))d�.

Moreover, all the conditions of Corollary 8.2 are fulfilled, therefore problem (PV )

possesses at least one solution. ��
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1

132The Bipotential Method for Contact Models with 3

Nonmonotone Boundary Conditions 4

13.1 The Mechanical Model and Its Variational Formulation 5

Let us consider a body B which occupies the domain � ⊂ R
m (m = 2, 3) with a 6

sufficiently smooth boundary � (e.g. Lipschitz continuous) and a unit outward normal 7

n. The body is acted upon by forces of density f0 and it is mechanically constrained on 8

the boundary. In order to describe these constraints we assume � is partitioned into three 9

Lebesgue measurable parts �1, �2, �3 such that �1 has positive Lebesgue measure. The 10

body is clamped on �1, hence the displacement field vanishes here, while surface tractions 11

of density f2 act on �2. On �3 the body may come in contact with an obstacle which 12

will be referred to as foundation. The process is assumed to be static and the behavior 13

of the material is modeled by a (possibly multivalued) constitutive law expressed as a 14

subdifferential inclusion. The contact between the body and the foundation is modeled 15

with respect to the normal and the tangent direction respectively, to each corresponding 16

an inclusion involving the sum between the Clarke subdifferential of a locally Lipschitz 17

function and the normal cone of a nonempty, closed and convex set. 18

It is well known that the subdifferential of a convex function is a monotone set-valued 19

operator, while the Clarke subdifferential is a set-valued operator which is not monotone 20

in general. This is why we say that the constitutive law is monotone and the boundary 21

conditions are nonmonotone. 22

The mathematical model which describes the above process is the following. For 23

simplicity we omit the dependence of some functions of the spatial variable. 24
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(P ) Find a displacement u : �→ R
m and a stress tensor σ : �→ Sm such that 25

Div σ = f0, in � (13.1)

σ ∈ ∂φ(ε(u)), a.e. in � (13.2)

u = 0, on �1 (13.3)

σν = f2, on �2 (13.4)

−σn ∈ ∂2
Cj1(x, un)+NC1(un), on �3 (13.5)

−σT ∈ h(x, uT )∂
2
Cj2(x, uT )+NC2(uT ), on �3 (13.6)

where φ : Sm → R is convex and lower semicontinuous, j1 : �3 × R→ R and j2 : �3 × 26

R
m → R are locally Lipschitz with respect to the second variable and h : �3 × R

m → R 27

is a prescribed function. Here, C1 ⊂ R and C2 ⊂ R
m are nonempty closed and convex 28

subsets and NCk denotes the normal cone of Ck (k = 1, 2). For a Banach space E and 29

a nonempty, closed and convex subset K ⊂ E, recall that the normal cone of K at x is 30

defined by 31

NK(x) := {
ξ ∈ E∗ : 〈ξ, y − x〉E∗×E ≤ 0,∀y ∈ K

}
.

It is well known that 32

NK(x) = ∂IK(x),

where IK is the indicator function of K , that is, 33

IK(x) :=
{

0, if x ∈ K,

+∞, otherwise.

Relation (13.1) represents the equilibrium equation, (13.2) is the constitutive law, 34

(13.3)–(13.4) are the displacement and traction boundary conditions and (13.5)–(13.6) 35

describe the contact between body and the foundation. 36

Relations between the stress tensor σ and the strain tensor ε of the type (13.2) describe 37

the constitutive laws of the deformation theory of plasticity, of Hencky plasticity with 38

convex yield function, of locking materials with convex locking functions etc. For concrete 39

examples and their physical interpretation one can consult Sections 3.3.1 and 3.3.2 in 40

Panagiotopoulos [7, Sections 3.3.1 & 3.3.2] (see also [8, Section 3]). A particular case of 41

interest regarding (13.2) is when the constitutive map φ is Gateaux differentiable, thus the 42

subdifferential inclusion reducing to 43

σ = φ′(ε(u)), (13.7)

which corresponds to nonlinear elastic materials. 44
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Some classical constitutive laws which can be written in the form (13.7) are presented 45

below: 46

(i) Assume that φ is defined by 47

φ(μ) := 1

2
Eμ : μ,

where E := (
Eijkl

)
, 1 ≤ i, j, k, l ≤ m is a fourth order tensor which satisfies the 48

symmetry property 49

Eμ : τ = μ : Eτ,∀μ, τ ∈ Sm,

and the ellipticity property 50

Eμ : μ ≥ c|μ|2,∀μ ∈ Sm.

In this case (13.7) reduces to Hooke’s law, that is, σ := Eε(u), and corresponds to 51

linearly elastic materials. 52

(ii) Assume that φ is defined by 53

φ(μ) := 1

2
Eμ : μ+ β |μ− PKμ|2 ,

where E is the elasticity tensor and satisfies the same properties as in the previous 54

example, β > 0 is a constant coefficient of the material, P : Sm → K is the 55

projection operator andK is the nonempty, closed and convex von Mises set 56

K :=
{
μ ∈ Sm : 1

2
μD : μD ≤ a2, a > 0

}
.

Here the notation μD stands for the deviator of the tensor μ. In this case (13.7) 57

becomes 58

σ := Eε(u)+ 2β(I − PK )ε(u),

which is known in the literature as piecewise linear constitutive law (see, e.g., Han 59

& Sofonea [3]). 60

(iii) Assume φ is defined by 61

φ(μ) := k0

2
T r(μ)I : μ+ 1

2
ϕ

(∣∣∣μD
∣∣∣2
)
,

where k0 > 0 is a constant and ϕ : [0,∞)→ [0,∞) is a continuously differentiable 62

constitutive function. 63
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In this case (13.7) becomes 64

σ = k0T r(ε(u))I + ϕ′
(∣∣∣εD(u)

∣∣∣2
)
εD(u),

and this describes the behavior of the Hencky materials (see, e.g., Zeidler [9]). 65

Boundary conditions of the type (13.5) and (13.6) can model a large class of contact 66

problems arising in mechanics and engineering. For the case h ≡ 1 many examples of 67

nonmonotone laws of the type 68

−σn ∈ ∂Cj1(un) and − σT ∈ ∂Cj2(uT ),

can be found in [8, Section 2.4], [6, Section 1.4] or [2, Section 2.8]. 69

The case when the function h actually depends on the second variable allows the study 70

of contact problems with slip-dependent friction law. This friction law reads as follows 71

− σT ≤ μ(x, |uT |), −σT = μ(x, |uT |) uT

|uT | if uT = 0, (13.8)

where μ : �3 × [0,+∞)→ [0,+∞) is the sliding threshold and it is assumed to satisfy 72

0 ≤ μ(x, t) ≤ μ0, for a.e. x ∈ �3 and all t ≥ 0,

for some positive constant μ0. It is easy to see that (13.6) can be put in the form (13.8) 73

simply by choosing 74

h(x, uT ) := μ(x, |uT |) and j2(x, uT ) := |uT |.

We point out the fact that the above example cannot be written in the form −σT ∈ 75

∂Cj2(uT ) as, in general, for two locally Lipschitz functions h, g there does not exists j 76

such that ∂Cj (u) = h(u)∂Cg(u). We would also like to point out that many boundary 77

conditions of classical elasticity are particular cases of (13.5) and (13.6), in most of 78

these cases the functions j1 and j2 being convex, hence leading to monotone boundary 79

conditions. We list below some examples: 80

(a) The Winkler boundary condition 81

−σn = k0un, k0 > 0.
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This law is used in engineering as it describes the interaction between a deformable 82

body and the soil and can be expressed in the form (13.5) by setting 83

C1 := R and j1(x, t) := k0

2
t2,

More generally, if we want to describe the case when the body may lose contact with 84

the foundation, we can consider the following law 85

{
un < 0 ⇒ σn = 0,

un ≥ 0 ⇒ −σn = k0un,

The first relation corresponds to the case when there is no contact, while the second 86

models the contact case. Obviously the above law can be expressed in the form (13.5) 87

by choosing 88

C1 := R and j1(x, t) :=
{

0, if t < 0,
k0
2 t2, if t ≥ 0,

In [5] the following nonmonotone boundary conditions were imposed to model the 89

contact between a body and a Winkler-type foundation which may sustain limited 90

values of efforts 91

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

un < 0 ⇒ σn = 0,

un ∈ [0, a)⇒ −σn = k0un,

un = a ⇒ −σn ∈ [0, k0a],
un > a ⇒ σn = 0.

This means that the rupture of the foundation is assumed to occur at those points in 92

which the limit effort is attained. The first condition holds in the noncontact zone, the 93

second describes the zone where the contact occurs and it is idealized by the Winkler 94

law. The maximal value of reactions that can be maintained by the foundation is given 95

by k0a and it is accomplished when un = a, with k0 being the Winkler coefficient. The 96

fourth relation holds in the zone where the foundation has been destroyed. The above 97

Winkler-type law can be written as an inclusion of the type (13.5) by setting 98

C1 := R and j1(x, t) :=

⎧⎪⎨
⎪⎩

0, if t < 0,
k0
2 t2, if 0 ≤ t < a,
k0
2 a2, if t ≥ a.

Since all of the above example only describe what happens in the normal direction, 99

in order to complete the model we must combine these with boundary conditions 100
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concerning σT , uT , or both. The simplest cases are uT = 0 (which corresponds 101

to C2 = {0}) and σT = ST , where ST = ST (x) is given (which corresponds to 102

j2(x, uT ) = −ST · uT ). 103

(b) The Signorini boundary conditions, which hold if the foundation is rigid and are as 104

follows 105

{
un < 0 ⇒ σn = 0,

un = 0 ⇒ σn ≤ 0,

or equivalently, 106

un ≤ 0, σn ≤ 0 and σnun = 0.

This can be written equivalently in form (13.5) by setting 107

C1 := (−∞, 0] and j1 ≡ 0.

(c) In [4] the following static version of Coulomb’s law of dry friction with prescribed 108

normal stress was considered 109

⎧⎪⎨
⎪⎩
−σn(x) = F(x)

|σT | ≤ k(x)|σn|,
σT = −k(x)|σn| uT|uT | , if uT (x) = 0.

We can write the above law in the form of (13.5) and (13.6) simply by setting 110

C1 := R, C2 := R
m, j1(x, t) := F(x)t

and 111

h(x, y) := k(x)|F(x)| and j2(x, y) := ‖y‖.

The assumptions on the functions f0, f2, φ, h, j1 and j2 required to prove our main 112

result are listed below. 113

(HC) The constraint sets C1 and C2 are convex cones, i.e., 114

0 ∈ Ck and λCk ⊂ Ck for all λ > 0, k = 1, 2.

(Hf ) The density of the volume forces and the traction satisfy f0 ∈ H and f2 ∈ 115

L2(�2;Rm). 116
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(Hφ) The constitutive function φ : Sm → R and its conjugate φ∗ : Sm → (−∞,+∞] 117

satisfy: 118

(i) φ is convex and lower semicontinuous; 119

(ii) there exists α1 > 0 such that φ(τ) ≥ α1|τ |2, for all τ ∈ Sm; 120

(iii) there exists α2 > 0 such that φ∗(μ) ≥ α2|μ|2, for all μ ∈ Sm; 121

(iv) φ(ε(v)) ∈ L1(�), for all v ∈ V and φ∗(τ ) ∈ L1(�), for all τ ∈ H . 122

(Hh) The function h : �3 × R
m → R is such that: 123

(i) �3 � x �→ h(x, y) is measurable for each y ∈ R
m; 124

(ii) R
m � y �→ h(x, y) is continuous for a.e. x ∈ �3; 125

(iii) there exists h0 > 0 such that 0 ≤ h(x, y) ≤ h0 for a.e. x ∈ �3 and all y ∈ R
m. 126

(Hj1) The function j1 : �3 × R→ R is such that: 127

(i) �3 � x �→ j1(x, t) is measurable for each t ∈ R; 128

(ii) there exists p ∈ L2(�3) such that for a.e. x ∈ �3 and all t1, t2 ∈ R 129

|j1(x, t1)− j1(x, t2)| ≤ p(x)|t1 − t2|;

(iii) j1(x, 0) ∈ L1(�3). 130

(Hj2) The function j2 : �3 × R
m → R is such that: 131

(i) �3 � x �→ jτ (x, y) is measurable for each y ∈ R
m; 132

(ii) there exist q ∈ L2(�3) such that for a.e. x ∈ �3 and all y1, y2 ∈ R
m

133

|j2(x, y1)− j2(x, y2)| ≤ q(x)|y1 − y2|;

(iii) j2(x, 0) ∈ L1(�3;Rm). 134

The strong formulation of problem (P ) consists in finding u : � → R
m and σ : 135

� → Sm, regular enough, such that (13.1)–(13.6) are satisfied. However, it is a fact that 136

for most contact problem the strong formulation has no solution. Therefore, it is useful to 137

reformulate problem (P ) in a weaker sense, i.e., we shall derive a variational formulation. 138

With this end in mind, we consider the following function space 139

V := {v ∈ H1 : v = 0 a.e. on �1} (13.9)

which is a closed subspace of H1, hence a Hilbert space. Since the Lebesgue measure of 140

�1 is positive, it follows from Korn’s inequality that the following inner product 141

(u, v)V := (ε(u), ε(v))H (13.10)

generates a norm on V which is equivalent with the norm inherited from H1. 142
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Let us provide a variational formulation for problem (P ). To this end, we consider u a 143

strong solution, v ∈ V a test function and we multiply the first line of (P ) by v− u. Using 144

the Green formula (see (12.1)) we have 145

(f0, v − u)H = − (Div σ, v − u)H

= −
∫
�

(σν) · (v − u)d� + (σ, ε(v) − ε(u))H

= −
∫
�2

f2 · (v − u)d� −
∫
�3

[σn(vn − un)+ σT · (vT − uT )] d�

+(σ, ε(v) − ε(u))H

for all v ∈ V . Since V � v �→ (f0, v)H +
∫
�2

f2 · vd� is linear and continuous, we can 146

apply Riesz’s representation theorem to conclude that there exists a unique element f ∈ V 147

such that 148

(f, v)V := (f0, v)H +
∫
�2

f2 · vd�. (13.11)

Consider now the following nonempty, closed and convex subset of V 149

� := {v ∈ V : vn(x) ∈ C1 and vT (x) ∈ C2 for a.e. x ∈ �3} ,

which is called the set of admissible displacement fields. 150

Since C1, C2 are convex cones, it follows that � is also a convex cone. Moreover, for 151

all v ∈ � the following inequalities hold 152

−
∫
�3

σn(vn − un)d� ≤
∫
�3

j0
1 (x, un; vn − un)d� (13.12)

and 153

−
∫
�3

σT · (vT − uT )d� ≤
∫
�3

h(x, uT )j
0
2 (x, uT ; vT − uT )d�. (13.13)

Here, and hereafter, the generalized derivatives of the functions j1 and j2 are taken 154

with respect to the second variable, i.e. of the functions R � t �→ j1(x, t) and R
m � y �→ 155

j2(x, y) respectively, but for simplicity we omit to mention that in fact these are partial 156

generalized derivatives. On the other hand, according to Theorem 1.4, we can rewrite 157

(13.2) as 158

ε(u) ∈ ∂φ∗(σ ), a.e. in �,
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and which after integration over � leads to 159

− (ε(u), μ− σ)H +
∫
�

φ∗(μ)− φ∗(σ )dx ≥ 0,∀μ ∈ H . (13.14)

Let us denote by ε∗ : H → V the adjoint of ε, i.e., 160

(ε∗(μ), v)V = (μ, ε(v))H ,∀v ∈ V and all μ ∈ H .

Using (13.11)–(13.14) we arrive at the following system of inequalities 161

(P̃ ) Find u ∈ � and σ ∈ H such that 162

⎧⎪⎨
⎪⎩

(ε∗(σ ) − f, v − u)V +
∫
�3

[
j 0
ν (x, un; vn − un)+ h(x, uT )j

0
τ (x, uT ; vT − uT )

]
d� ≥ 0,

−(ε(u), μ− σ)H +
∫
�

(
φ∗(μ) − φ∗(σ )

)
dx ≥ 0,

for all (v, μ) ∈ �×H . 163

The first inequality of (P̃ ) is related to the equilibrium relation, whereas the second 164

inequality represents the functional extension of the constitutive law (13.2). It is well- 165

known (see, e.g., [2, Theorem 1.3.21]) that it implies ε(u) ∈ ∂φ∗(σ ) a.e. in �. 166

We can connect the constitutive law, the function φ and its conjugate φ∗ through the 167

separable bipotential a : Sm × Sm → (−∞,+∞] defined by 168

a(τ, μ) := φ(τ)+ φ∗(μ),∀τ, μ ∈ Sm.

Using the bipotential a let us define A : V ×H → R by 169

A(v,μ) :=
∫
�

a(ε(v), μ)dx,∀v ∈ V,μ ∈ H .

and note that, due to (Hφ), A is well defined and 170

A(v,μ) ≥ α1‖v‖2
V + α2‖μ‖2

H ,∀v ∈ V,μ ∈ H .

Moreover, 171

A(u, σ) = (ε∗(σ ), u)V and A(v,μ) ≥ (ε∗(μ), v)V ,∀v ∈ V, μ ∈ H . (13.15)
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Combining the first line of (P̃ ) and (13.15) we get 172

A(v, σ)−A(u, σ)+
∫
�3

[
j 0

1 (x, un; vn − un)+ h(x, uT )j
0
2 (x, uT ; vT − uT )

]
d� ≥ (f, v−u)V ,

(13.16)

for all v ∈ �. 173

Let us define now the set of admissible stress tensors with respect to the displacement 174

u, to be the following subset ofH 175

$u :=

⎧⎪⎪⎨
⎪⎪⎩

(ε∗(μ), v)V +
∫
�3

[
j0

1 (x, un; vn)+ h(x, uT )j
0
2 (x, uT ; vT )

]
d�

μ ∈ H
≥ (f, v)V , ∀v ∈ �

⎫⎪⎪⎬
⎪⎪⎭

.

Let w ∈ � be fixed. Choosing v := u + w ∈ � in the first inequality of (P̃ ) shows that 176

σ ∈ $u, hence $u = ∅. It is easy to check that $u is an unbounded, closed and convex 177

subset ofH . Taking into account (13.15) we have 178

A(u,μ)+
∫
�3

[
j0
n(x, un; un)+ h(x, uT )j

0
2 (x, uT ; uT )

]
d� ≥ (f, u)V ,∀μ ∈ $u,

while for v = 0 ∈ � we have 179

−A(u, σ)+
∫
�3

[
j0
n(x, un; −un)+ h(x, uT )j

0
2 (x, uT ; −uT )

]
d� ≥ −(f, u)V .

Adding the above relations, for all μ ∈ $u we have 180

0 ≤ A(u,μ)− A(u, σ)+
∫
�3

[
j0

1 (x, un; un)+ j0
1 (x, un; −un)

]
d� (13.17)

+
∫
�3

h(x, uT )
(
j0

2 (x, uT ; uT )+ j0
2 (x, uT ; −uT )

)
d�.

On the other hand, Proposition 2.4 and (Hh) ensure that 181

∫
�3

[
j0

1 (x, un;un)+ j0
1 (x, un;−un)+ h(x, uT )

(
j0

2 (x, uT ;uT )+ j0
2 (x, uT ; −uT )

)]
d� ≥ 0,

(13.18)

as 182

0 = j0
1 (x, un; 0)+ h(x, uT )j

0
2 (x, uT ; 0)

= j0
1 (x, un; un − un)+ h(x, uT )j

0
2 (x, uT ; uT − uT )

≤
(
j0

1 (x, un; un)+ j0
1 (x, un; −un)

)
+ h(x, uT )

(
j0

2 (x, uT ; uT )+ j0
2 (x, uT ; −uT )

)
.
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Putting together (13.16)–(13.18) we derive the variational formulation in terms of 183

bipotentials of problem (P ) which reads as follows: 184(
Pb
var

)
Find u ∈ � and σ ∈ $u such that 185

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A(v, σ )− A(u, σ)+
∫
�3

h(x, uT )j
0
2 (x, uT ; vT − uT )d�

+
∫
�3

j0
1 (x, un; vn − un)d� ≥ (f, v − u)V , ∀v ∈ �,

A(u,μ)− A(u, σ) ≥ 0, ∀μ ∈ $u.

Each solution (u, σ ) ∈ � ×$u of problem
(
Pb
var

)
is called a weak solution for problem 186

(P ). 187

13.2 The Connection with Classical Variational Formulations 188

In this section we highlight the connection between the variational formulation in terms 189

of bipotentials and other variational formulations such as the primal and dual variational 190

formulations. As we have seen in the previous section, multiplying the first line of 191

problem (P ) by v − u, integrating over � and then taking the functional extension of the 192

constitutive law, we get a coupled system of inequalities, namely problem (P̃ ). The primal 193

variational formulation consists in rewriting (P̃ ) as an inequality which depends only on 194

the displacement field u, while the dual variational formulation consists in rewriting (P̃ ) in 195

terms of the stress tensor σ . The primal variational formulation can be derived by reasoning 196

in the following way. 197

The second line of (P̃ ) implies that ε(u) ∈ ∂φ∗(σ ) and this can be written equivalently 198

as σ ∈ ∂φ(ε(u)), hence 199

σ : (μ− ε(u)) ≤ φ(μ)− φ(ε(u)),∀μ ∈ Sm.

For each v ∈ �, taking μ := ε(v) in the previous inequality and integrating over � yields 200

(ε∗(σ ), v − u)V ≤
∫
�

φ(ε(v)) − φ(ε(u))dx,∀v ∈ �.

Now, combining the above relation and the first line of (P̃ ) we get the following problem 201(
Pp
var

)
Find u ∈ � such that for all v ∈ � 202

F(v)−F(u)+
∫
�3

[
j0

1 (x, un; vn − un)+ h(x, uT )j
0
2 (x, uT ; vT − uT )

]
d� ≥ (f, v−u)V ,

203
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where F : V → R is the convex and lower semicontinuous functional defined by 204

F(v) :=
∫
�

φ(ε(v))dx.

Problem
(
Pp
var

)
is called the primal variational formulation of problem (P ). 205

Conversely, in order to transform (P̃ ) into a problem formulated in terms of the stress 206

tensor we reason in the following way. First let us define G : H → R by 207

G(μ) :=
∫
�

φ∗(μ)dx,

and for a fixed w ∈ � let $w be the following subset ofH 208

$w :=

⎧⎪⎨
⎪⎩

(ε∗(μ), v)V +
∫
�3

[
j0

1 (x,wn; vn)+ h(x,wT )j
0
2 (x,wT ; vT )

]
d�

μ ∈ H
≥ (f, v)V , ∀v ∈ �

⎫⎪⎬
⎪⎭ .

Let us consider the following inclusion 209(
Pd
w

)
Find σ ∈ H such that 210

0 ∈ ∂G(σ)+ ∂I$w(σ ),

which we call the dual variational formulation with respect to w. 211

Now, looking at the first line of (P̃ ) and keeping in mind the above notations, we deduce 212

that $u = ∅ as σ ∈ $u. Moreover, for each μ ∈ $u we have 213

−(ε∗(μ− σ), u)V ≤
∫
�3

h(x, uT )
(
j0

2 (x, uT ; uT )+ j0
2 (x, uT ; −uT )

)
d�

+
∫
�3

j0
1 (x, un; un)+ j0

1 (x, un; −un)d�,

which combined with the second line of (P̃ ) leads to 214

G(μ)−G(σ) ≥−
∫
�3

h(x, uT )
(
j0

2 (x, uT ; uT )+ j0
2 (x, uT ; −uT )

)
d� (13.19)

−
∫
�3

[
j0

1 (x, un; un)+ j0
1 (x, un; −un)

]
d�,

for all μ ∈ $u. 215

A simple computation shows that any solution of
(
Pd
u

)
will also solve (13.19). 216
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A particular case of interest regarding problem
(
Pd
w

)
is if the set $w does not actually 217

depend on w. In this case problem
(
Pd
w

)
will be simply denoted

(
Pd

)
and will be called 218

the dual variational formulation of problem (P ). For example, this case is encountered 219

when the functions j1 and j2 are convex and positive homogeneous, as it is the case of 220

examples (a)− (c) presented in Sect. 13.1. 221

In the above particular case, problem
(
P̃
)

reduces to the following system of 222

variational inequalities 223

(P̃ ′) Find u ∈ � and σ ∈ H such that 224

{
(ε∗(σ ), v − u)V +H(v)−H(u) ≥ (f, v − u)V , ∀v ∈ �

− (ε(u), μ− σ)H +G(μ)−G(σ) ≥ 0, ∀μ ∈ H ,

where H := j ◦ T , j : L2 (�3;Rm)→ R is defined by 225

j (y) :=
∫
�3

j1(x, yn)+ j2(x, yT )d�,

and T : V → L2(�3;Rm) is given by T v := [(γ ◦ i)(v)]|�3 , with i : V → H1 being the 226

embedding operator and γ : H1 → H 1/2(�;Rm) being the trace operator. On the other 227

hand, for each w ∈ �, 228

$w = $ := {
μ ∈ H : (ε∗(μ), v)V +H(v) ≥ (f, v)V , ∀v ∈ �

}
,

and thus by taking v := 2u and v := 0 in the first line of (P̃ ′) we get 229

(ε∗(σ ), u)V +H(u) = (f, u)V ,

hence 230

−(ε(u), μ− σ)H ≤ 0,∀μ ∈ $.

Combining this and the second line of (P̃ ′) we get 231

G(μ)−G(σ) ≥ 0,∀μ ∈ $,

which can be formulated equivalently as 232(
Pd

)
Find σ ∈ H such that 233

0 ∈ ∂G(σ)+ ∂I$(σ).
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The following proposition points out the connection between the variational formulations 234

presented above. 235

Proposition 13.1 A pair (u, σ ) ∈ V ×H is a solution for
(
Pb
var

)
if and only if u solves 236(

Pp
var

)
and σ solves

(
Pd
u

)
. 237

Proof “ ⇒ ” Let (u, σ ) ∈ V ×H be a solution for
(
Pb
var

)
. Then u ∈ �, σ ∈ $u and 238

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A(v, σ )− A(u, σ)+
∫
�3

h(x, uT )j
0
2 (x, uT ; vT − uT )d�

+
∫
�3

j0
1 (x, un; vn − un)d� ≥ (f, v − u)V ,

A(u,μ)− A(u, σ) ≥ 0,

for all (v, μ) ∈ �×$u. 239

Taking into account the way A,F and G were defined we get 240

A(v, σ )− A(u, σ) = F(v) − F(u),∀v ∈ V, (13.20)

and 241

A(u,μ)− A(u, σ) = G(μ)−G(σ),∀μ ∈ H , (13.21)

which shows that u is a solution for
(
Pp
var

)
and 242

[
G(μ)+ I$u(μ)

]− [
G(σ)+ I$u(σ )

] ≥ 0,∀μ ∈ H .

The last inequality can be written equivalently as 243

0 ∈ ∂(G+ I$u)(σ ).

On the other hand, applying Proposition 1.3.10 in [2] we deduce that 244

∂(G+ I$u)(σ ) = ∂G(σ)+ ∂I$u(σ ),

hence σ solves
(
Pd
u

)
. 245

“ ⇐ ” Assume now that u ∈ V is a solution of
(
Pp
var

)
and σ ∈ H solves

(
Pd
var

)
. The fact 246

that σ solves
(
Pd
u

)
implies that D(∂I$u) = ∅ and 247

σ ∈ D(∂I$u).

248
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On the other hand, it is well known that 249

D(∂I$u) ⊆ D(I$u) = $u,

hence σ ∈ $u. Moreover, 250

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F(v) − F(u)+
∫
�3

h(x, uT )j
0
2 (x, uT ; vT − uT )d�

+
∫
�3

j0
1 (x, un; vn − un)d� ≥ (f, v − u)V ,

G(μ)−G(σ) ≥ 0,

for all (v, μ) ∈ �×$u, which combined with (13.20) and (13.21) shows that (u, σ ) is 251

a solution for problem
(
Pb
var

)
. 252

��

13.3 Weak Solvability of the Model 253

The main result of this chapter is given by the following theorem. 254

Theorem 13.1 ([1, Theorem 1]) Assume (HC), (Hf ), (Hh), (Hj1), (Hj2) and (Hφ) hold. 255

Then problem
(
Pb
var

)
has at least one solution. 256

Before proving the main result we need the following Aubin-Clarke type result 257

concerning the Clarke subdifferential of integral functions. Let us consider the function 258

j : L2 (�3;Rm)× L2 (�3;Rm)→ R defined by 259

j (y, z) :=
∫
�3

j1 (x, zn)+ h (x, yT ) j2 (x, zT ) d�. (13.22)

Lemma 13.1 Assume (Hh),
(
Hj1

)
and

(
Hj2

)
are fulfilled. Then, for each y ∈ 260

L2(�3;Rm), the function z �→ j (y, z) is Lipschitz continuous and 261

j0
,2 (y, z; z̄) ≤

∫
�3

j0
1 (x, zn; z̄n)+ h (x, yT ) j

0
2 (x, zT ; z̄T ) d�. (13.23)

Proof Let y, z1, z2 ∈ L2 (�3;Rm) be fixed. Then 262

∣∣∣j (
y, z1

)
− j

(
y, z2

)∣∣∣ =
∣∣∣∣
∫
�3

j1

(
x, z1

n

)
− j1

(
x, z2

n

)
+ h (x, yT )

(
j2

(
x, z1

T

)
− j2

(
x, z2

T

))
d�

∣∣∣∣
≤

∫
�3

∣∣∣j1

(
x, z1

n

)
− j1

(
x, z2

n

)∣∣∣ d� + h0

∫
�3

∣∣∣j2

(
x, z1

T

)
− j2

(
x, z2

T

)∣∣∣ d�.
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The equality 263

|z|2 = z · z = znzn + zT · zT = |zn|2 + |zT |2,

shows that if z ∈ L2 (�3;Rm), then zn ∈ L2 (�3) and zT ∈ L2 (�3;Rm) and 264

‖zn‖L2(�3)
, ‖zT ‖L2(�3;Rm) ≤ ‖z‖L2(�3;Rm).

Thus, from the hypotheses and Hölder’s inequality we get 265

∣∣∣j (
y, z1

)
− j

(
y, z2

)∣∣∣ ≤ ‖p‖L2(�3)

∥∥∥z1
n − z2

n

∥∥∥
L2(�3)

+ h0‖q‖L2(�3)

∥∥∥z1
T − z2

T

∥∥∥
L2(�3;Rm)

≤ (‖p‖L2(�3)
+ h0‖q‖L2(�3)

) ∥∥∥z1 − z2
∥∥∥
L2(�3;Rm)

,

which shows that j is Lipschitz continuous. 266

In order to prove (13.23) we use Fatou’s lemma and the fact that the convergence in 267

L2 (�3;Rm) implies, up to a subsequence, the pointwise convergence a.e. on �3 268

j0
,2 (y, z; z̄) = lim sup

u→z

λ↓0

j (y, u+ λz̄)− j (y, u)

λ

= lim sup
u→z

λ↓0

(∫
�3

j1 (x, un + λz̄n)− j1 (x, un)

λ
d�

+
∫
�3

h (x, yT )
j2 (x, uT + λz̄T )− j2 (x, uT )

λ
d�

)

≤
∫
�3

lim sup
u→z

λ↓0

j1 (x, un + λz̄n)− j1 (x, un)

λ
d�

+
∫
�3

h (x, yT ) lim sup
u→z

λ↓0

j2 (x, uT + λz̄T )− j2 (x, uT )

λ
d�

≤
∫
�3

j0
1 (x, zn; z̄n)+ h (x, yT ) j

0
2 (x, zT ; z̄T ) d�.

��

In order to prove Theorem 13.1 we consider the following system of nonlinear 269

hemivariational inequalities. 270
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(SK1,K2) Find (u, σ ) ∈ K1 ×K2 such that 271

⎧⎪⎨
⎪⎩

ψ1(u, σ, v) + J 0
,1(T u, Sσ ; T v − T u) ≥ (F1(u, σ ), v − u)X1, ∀v ∈ K1,

ψ2(u, σ, μ)+ J 0
,2(T u, Sσ ; Sμ− Sσ) ≥ (F2(u, σ ), μ− σ)X2, ∀μ ∈ K2,

where 272

• X1 := V , X2 := H , Ki ⊂ Xi is closed and convex (i = 1, 2), Y1 := L2(�3;Rm), 273

Y2 := {0}; 274

• ψ1 : X1 ×X2 ×X1 → R is defined by ψ1(u, σ, v) := A(v, σ )− A(u, σ); 275

• ψ2 : X1 ×X2 ×X2 → R is defined by ψ2(u, σ, μ) := A(u,μ)− A(u, σ); 276

• T : X1 → Y1 is defined by T v := [(γ ◦ i)(v)]|�3 , with i : V → H1 the embedding 277

operator and γ : H1 → H 1/2(�;Rm) is the trace operator; 278

• S : X2 → Y2 is defined by Sτ := 0, for all τ ∈ X2; 279

• J : Y1 × Y2 → R is defined by J
(
y1, y2

) = j
(
y0, y1

)
, where j : L2(�3;Rm) × 280

L2(�3;Rm)→ R is as in (13.22) and y0 is a fixed element of L2(�3;Rm); 281

• F1 : X1 ×X2 → X1 is defined by F1(v, μ) := f ; 282

• F2 : X1 ×X2 → X2 is defined by F2(v, μ) := 0. 283

Lemma 13.2 Assume (Hh), (Hj1), (Hj2) and (Hφ) are fulfilled. Then the following 284

statements hold: 285

(i) ψ1(u, σ, u) = 0 and ψ2(u, σ, σ ) = 0, for all (u, σ ) ∈ X1 ×X2; 286

(ii) for each v ∈ X1 and each μ ∈ X2 the maps (u, σ ) �→ ψ1(u, σ, v) and (u, σ ) �→ 287

ψ2(u, σ, μ) are weakly upper semicontinuous; 288

(iii) for each (u, σ ) ∈ X1 × X2 the maps v �→ ψ1(u, σ, v) and μ �→ ψ2(u, σ, μ) are 289

convex; 290

(iv) lim inf
k→+∞(F1(uk, σk), v − uk)X1 ≥ (F1(u, σ ), v − u)X1 and lim inf

k→+∞(F2(uk, σk), μ − 291

σk)X2 ≥ (F2(u, σ ), μ− σ)X2 whenever (uk, σk) ⇀ (u, σ) as k →+∞; 292

(v) there exists c : R+ → R+ with the property lim
t→+∞ c(t) = +∞ such that 293

ψ1(u, σ, 0)+ ψ2(u, σ, 0) ≤ −c
(√
‖u‖2

X1
+ ‖σ‖2

X2

)√
‖u‖2

X1
+ ‖σ‖2

X2
,

for all (u, σ ) ∈ X1 ×X2; 294

(vi) The function J : Y1×Y2 → R is Lipschitz with respect to each variable. Moreover, 295

for all
(
y1, y2

)
,
(
z1, z2

) ∈ Y1 × Y2 we have 296

J 0
,1

(
y1, y2; z1

)
= j0

,2

(
y0, y1; z1

)
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and 297

J 0
,2

(
y1, y2; z2

)
= 0;

(vii) There exists M > 0 such that 298

J 0
,1

(
y1, y2; −y1

)
≤ M

∥∥∥y1
∥∥∥
Y1

, for all
(
y1, y2

)
∈ Y1 × Y2;

(viii) there exist mi > 0, i = 1, 2, such that ‖Fi(u, σ )‖Xi ≤ mi , for all (u, σ ) ∈ X1×X2. 299

Proof 300

(i) Trivial. 301

(ii) Let v ∈ X1 be fixed and let {(uk, σk)}k be a sequence such that (uk, σk) converges 302

weakly in X1 × X2 to (u, σ ) as k → +∞. Using the fact that L is linear, φ is 303

convex and lower semicontinuous, hence weakly lower semicontinuous and Fatou’s 304

lemma, we have 305

lim sup
k→+∞

ψ1(uk, σk, v) = lim sup
k→+∞

[A(v, σk)− A(uk, σk)]

= lim sup
k→+∞

∫
�

φ(ε(v))− φ(ε(u)k)dx

≤
∫
�

φ(ε(v))dx −
∫
�

lim inf
k→+∞ φ(ε(u)k)dx

≤
∫
�

φ(ε(v))− φ(ε(u))+ φ∗(σ )− φ∗(σ )dx

= A(v, σ )− A(u, σ)

= ψ1(u, σ, v),

which show that the map (u, σ ) �→ ψ1(u, σ, v) is weakly upper semicontinuous. 306

In a similar fashion we prove that for μ ∈ X2 fixed, the map (u, σ ) �→ 307

ψ2(u, σ, μ) is weakly upper semicontinuous. 308

(iii) Follows from the convexity of φ and φ∗; 309

(iv) Let {(uk, σk)} be a sequence which converges weakly to (u, σ ) in X1 × X2 as 310

k →+∞. Then uk → u in X1 as k →+∞ and 311

lim inf
k→+∞ (F1(uk, σk), v − uk)X1

= lim inf
k→+∞(f, v − uk)X1 = (f, v − u)X1 ,

312
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and 313

lim inf
k→+∞ (F2(uk, σk), μ− σk)X2 = 0 = (F2(u, σ ), μ− σ)X2 .

(v) Let (u, σ ) ∈ X1 ×X2. Using (Hφ) we get the following estimates 314

ψ1(u, σ, 0)+ ψ2(u, σ, 0) = A(0, σ )− A(u, σ)+ A(u, 0)− A(u, σ)

=
∫
�

φ(0)+ φ∗(0)− (φ(ε(u))+ φ∗(σ ))dx

≤ c̃ −min{α1, α2}
(
‖u‖2

X1
+ ‖σ‖2

X2

)
.

Choosing c(t) := b0t , with b0 > 0 a suitable constant, we get the desired 315

inequality. 316

(vi) It follows directly from Lemma 13.1 and the definition of J . 317

(vii) From (vi) and Lemma 13.1 we deduce 318

J 0
,1

(
y1, y2; −y1

)
= j0

,2

(
y0, y1; −y1

)

≤
∫
�3

j0
ν

(
x, y1

n; −y1
n

)
+ h

(
x, y0

T

)
j0

2

(
x, y1

T ; −y1
T

)
d�

On the other hand, assumptions (Hj1) and (Hj1) imply 319

j0
n (x, t1; t2) ≤ p(x)|t2|,∀t1, t2 ∈ R,

and 320

j0
2 (x, ζ1; ζ2) ≤ q(x)|ζ2|,∀ζ1, ζ2 ∈ R

m.

Thus, invoking Hölder’s inequality we get 321

J 0
,1

(
y1, y2; −y1

)
≤ (‖p‖L2(�3)

+ h0‖q‖L2(�3;Rm)

) ∥∥∥y1
∥∥∥
L2(�3;Rm)

.

(viii) Trivial. 322��

Proof of Theorem 13.1 The proof will be carried out in three steps as follows. 323

Step 1. Let K1 ⊂ X1 and K2 ⊂ X2 be closed and convex sets. Then (SK1,K2) admits at 324

least one solution. 325

This will be done by applying a slightly modified version of Corollary 8.2. 326

Lemma 13.2 ensures that all the conditions of the aforementioned corollary are 327
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satisfied except the regularity of J . We point out the fact that in our case this 328

condition needs not be imposed because the only reason it is imposed there is to 329

ensure the following inequality 330

J 0
(
y1, y2; z1, z2

)
≤ J 0

,1

(
y1, y2; z1

)
+ J 0

,2

(
y1, y2; z2

)

which in this chapter is automatically fulfilled because J does not depend on the 331

second variable and the following equalities take place 332

J 0
(
y1, y2; z1, z2

)
= J 0

,1

(
y1, y2; z1

)

and 333

J 0
,2

(
y1, y2; z2

)
= 0,

and this completes the first step. 334

Step 2. Let K1
1 ,K

2
1 ⊂ X1 and K1

2 ,K
2
2 ⊂ X2 be closed and convex sets and let 335(

u1, σ 1
)

and
(
u2, σ 2

)
be solutions for

(
SK1

1 ,K
1
2

)
and

(
SK2

1 ,K
2
2

)
, respectively. 336

Then
(
u1, σ 2

)
solves

(
SK1

1 ,K
2
2

)
and

(
u2, σ 1

)
solves

(
SK2

1 ,K
1
2

)
. 337

The fact that
(
u1, σ 1

)
solves

(
SK1

1 ,K
1
2

)
means 338

⎧⎪⎨
⎪⎩
ψ1(u

1, σ 1, v) + J 0
,1(T u1, Sσ 1; T v − T u1) ≥ (F1(u

1, σ 1), v − u1),

ψ2(u
1, σ 1, μ)+ J 0

,2(T u1, Sσ 1; Sμ− Sσ 1) ≥ (F2(u
1, σ 1), μ− σ 1),

(13.24)

for all (v, μ) ∈ K1
1 ×K1

2 , while the fact that
(
u2, σ 2

)
solves

(
SK2

1 ,K
2
2

)
shows 339

⎧⎪⎨
⎪⎩
ψ1(u

2, σ 2, v) + J 0
,1(T u2, Sσ 2; T v − T u2) ≥ (F1(u

2, σ 2), v − u2),

ψ2(u
2, σ 2, μ)+ J 0

,2(T u2, Sσ 2; Sμ− Sσ 2) ≥ (F2(u
2, σ 2), μ− σ 2),

(13.25)

for all (v, μ) ∈ K2
1 ×K2

2 . Putting together the first line of (13.24) and the second 340

line of (13.25) we get 341

⎧⎪⎨
⎪⎩
ψ1(u

1, σ 1, v) + J 0
,1(T u1, Sσ 1; T v − T u1) ≥ (F1(u

1, σ 1), v − u1),

ψ2(u
2, σ 2, μ)+ J 0

,2(T u2, Sσ 2; Sμ− Sσ 2) ≥ (F2(u
2, σ 2), μ− σ 2),

(13.26)
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for all (v, μ) ∈ K1
1 × K2

2 . On the other hand, keeping in mind the way 342

ψ1, ψ2, J, F1, F2 were defined is it easy to check that for any (v, μ) ∈ K1
1 × K2

2 343

the following equalities hold 344

ψ1(u
1, σ 1, v) = ψ1(u

1, σ 2, v) and ψ2(u
2, σ 2, μ) = ψ2(u

1, σ 2, μ),

345

J 0
,1(T u1, Sσ 1; T v − T u1) = J 0

,1(T u1, Sσ 2; T v − T u1)

346

J 0
,2(T u2, Sσ 2; Sμ− Sσ 2) = J 0

,2(T u1, Sσ 2; Sμ− Sσ 1)

347

F1(u
1, σ 1) = F1(u

1, σ 2) and F2(u
2, σ 2) = F2(u

1, σ 2).

Using these equalities and (13.26) we obtain 348

⎧⎪⎨
⎪⎩

ψ1(u
1, σ 2, v)+ J 0

,1(T u1, Sσ 2; T v − T u1) ≥ (F1(u
1, σ 2), v − u1)X1,

ψ2(u
1, σ 2, μ)+ J 0

,2(T u1, Sσ 2; Sμ− Sσ 2) ≥ (F2(u
1, σ 2), μ− σ 2)X2,

hence
(
u1, σ 2

)
solves

(
SK1

1 ,K
2
2

)
. In a similar way we can prove that

(
u2, σ 1

)
349

solves
(
SK2

1 ,K
1
2

)
. 350

Step 3. There exist u ∈ � and σ ∈ $u such that (u, σ ) solves
(
Pb
var

)
. 351

Let us choose K1
1 := � and K1

2 := X2. According to Step 1 there exists a pair 352

(u1, σ 1) which solves
(
SK1

1 ,K
1
2

)
. Next, we choose K2

1 := � and K2
2 := $u1 and 353

use again Step 1 to deduce that there exists a pair (u2, σ 2) which solves
(
SK2

1 ,K
2
2

)
. 354

Then, according to Step 2, the pair (u1, σ 2) will solve
(
SK1

1 ,K
2
2

)
. Invoking the 355

way ψ1, ψ2, J, F1, F2,K
1
1 ,K

2
2 were defined, it is clear that the pair (u, σ ) := 356

(u1, σ 2) ∈ �×$u is a solution of the system 357

{
A(v, σ )− A(u, σ)+ j0

,2

(
y0, T u; T v − T u

) ≥ (f, v − u)V , ∀v ∈ �,

A(u,μ)− A(u, σ) ≥ 0, ∀μ ∈ $u,

for all y0 ∈ L2(�3;Rm), since y0 was arbitrary fixed. Choosing y0 := T u an 358

taking into account (13.23) we conclude that (u, σ ) ∈ �×$u solves
(
Pb
var

)
. 359��
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1

A2Functional Analysis 3

A.1 The Hahn-Banach Theorems 4

Theorem A.1 (Hahn-Banach, Analytic Form) Let X be a linear space and p : X→ R 5

be a Minkowski functional, i.e., a function satisfying 6

p(λu) = λp(u), ∀u ∈ X, ∀λ > 0,

and 7

p(u+ v) ≤ p(u)+ p(v), ∀u, v ∈ X.

Let Y ⊂ X be a linear subspace and assume ζ : Y → R is a linear functional dominated 8

by p, that is, 9

ζ(u) ≤ p(u), ∀u ∈ Y.

Then there exists a (not necessarily unique) linear functional ξ : X → R that extends ζ , 10

i.e., ξ(u) = ζ(u), ∀u ∈ Y , and it is dominated by p, i.e., 11

ξ(u) ≤ p(u), ∀u ∈ X. (A.1)

Now we give some simple applications of Theorem A.1 for normed vector spaces. 12
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We denote by X∗ the dual space of X, that is, the space of all continuous linear functionals 13

on X. The dual norm on X∗ is defined by 14

‖ζ‖∗ := sup
u∈X‖u‖≤1

|ζ(u)| = sup
u∈X‖u‖≤1

ζ(u). (A.2)

When there is no danger of confusion we shall simply write ‖ζ‖ instead ‖ζ‖∗. Given 15

ζ ∈ X∗ and u ∈ X we shall often write, 〈ζ, u〉 instead of ζ(u); we say that 〈·, ·〉 is the the 16

duality pairing for X∗ and X. It is well known that X∗ is a Banach space, following by the 17

fact that R is complete. 18

Corollary A.1 Let Y ⊂ X be a linear subspace. If ζ : Y → R is a continuous linear 19

functional, then there exists ξ ∈ X∗ such that ξ extends ζ and 20

‖ξ‖X∗ = sup
u∈Y‖u‖≤1

|ζ(u)| = ‖ζ‖Y ∗ . (A.3)

Corollary A.2 For every u ∈ X we have 21

‖u‖ = sup
ζ∈X∗
‖ζ‖≤1

|〈ζ, u〉| = max
ζ∈X∗
‖ζ‖≤1

|〈ζ, u〉|. (A.4)

Definition A.1 An affine hyperplane is a subsetH of X of the form 22

H := {u ∈ X : ζ(u) = α} ,

where ζ is a linear functional that does not vanish identically and α ∈ R is a given constant. 23

We writeH : [ζ = α] and say that ζ = α is the equation ofH . 24

In the previous definition we do not assume that ζ is continuous, as it is known that in 25

every infinite-dimensional normed space there exist discontinuous linear functionals, see, 26

e.g., Brezis [2, Exercise 1.5]. 27

Proposition A.1 The hyperplaneH : [ζ = α] is closed if and only if ζ is continuous. 28

Definition A.2 Let A and B be two subsets of X. We say that the hyperplaneH : [ζ = α] 29

separates A and B if 30

ζ(u) ≤ α ≤ ζ(v), ∀u ∈ A,∀v ∈ B.

31
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We say thatH strictly separates A and B if there exists some ε > 0 such that 32

ζ(u)+ ε ≤ α ≤ ζ(v)− ε, ∀u ∈ A,∀v ∈ B.

Theorem A.2 (Hahn-Banach, Weak Separation Theorem) Let X be a n.v.s. and 33

A,B ⊂ X be two nonempty convex subsets such that A ∩ B = ∅. Assume that one of 34

them is open. Then there exists a closed hyperplane that separates A and B. 35

Theorem A.3 (Hahn-Banach, Strong Separation Theorem) Let X be n.v.s. and 36

A,B ⊂ X be two nonempty convex subsets such that A ∩ B = ∅. Assume that A is 37

closed and B is compact. Then there exists a closed hyperplane that strictly separates A 38

and B. 39

A.2 Weak Topologies 40

In the sequel we briefly present the weak topology and weak*-topology of dual, respec- 41

tively. To this end, assume X is a set and {Yi}i∈I a collection of topological spaces. Given 42

a collection of maps {φi}i∈I , with φi : X→ Yi , we consider the following problem: 43

A. Construct a topology on X that makes all the maps {φi}i∈I continuous. If possible, find 44

a topology τ0 that is the most economical in the sense that it has the fewest open sets. 45

There is always a unique smallest topology τ0 on X for which every map φi is 46

continuous. It is called the coarsest or weakest topology associated to the collection 47

{φi}i∈I . If Oi ⊂ Yi is any open set, then φ−1
i (Oi) is necessarily an open set in τ0. As 48

Oi runs through the family of open sets of Yi and i runs through I we obtain a family 49

of subsets of X, each of which must be open in the topology τ0. Let us denote this 50

family by {Uj }j∈J . Of course this need not to be a topology. Therefore, we are led the 51

following problem: 52

B. Given a set X and a family {Uj }j∈J of subsets in X, construct the coarset topology τ0 53

on X in which Uj is open for all j ∈ J . 54

In other words, we must find the “smallest” family F of subsets of X that is stable 55

by finite intersections and arbitrary unions, and with the property that Uj ∈ F , for 56

every j ∈ J . 57

The construction undergoes the following steps. First, consider finite intersections 58

of sets in {Uj }j∈J , i.e.,
⋂

j∈J0
Uj where J0 ⊂ J is finite. In this way we obtain a new 59

family, called G, of subsets of X which includes {Uj }j∈J and which is stable under 60

finite intersections. Next, we consider the family F obtained by forming arbitrary 61

unions of elements from G. Thus, the family F is stable under finite intersections and 62

arbitrary unions. 63

Therefore we find the open sets of the topology τ0 in the following way. First we 64

consider
⋂

f inite φ
−1
i (Oi) and then

⋃
arbitrary. It follows that for every u ∈ X, we 65
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obtain a basis of neighborhoods of u for the topology τ0 by considering sets of the 66

form
⋂

f inite φ
−1
i (Vi), where Vi is a neighborhood of φi(u) in Yi . 67

In the following we equip X with the topology τ0 that is the weakest topology 68

associated to the collection {φi}i∈I . We have the following simple properties of the 69

topology τ0. 70

Proposition A.2 Let {un} be a sequence in X. Then un → u in τ0 if and only if φi(un)→ 71

φi(u) for every i ∈ I . 72

Proposition A.3 Let Z be a topological space and let � : Z → X be a function. Then � 73

is continuous if and only φi ◦� is continuous from Z into Yi for every i ∈ I . 74

We are now in position to introduce the weak topology in a Banach space X and its dual 75

X∗ and present some basic properties. For this let X be a Banach space and let ζ ∈ X∗. 76

We denote by φζ : X → R the linear functional φζ (u) := 〈ζ, u〉. As ζ runs through X∗ 77

we obtain a collection {φζ }ζ∈X∗ of maps from X into R. 78

Definition A.3 The weak topology on X, denoted by τw , is the coarsest topology 79

associated to the collection {φζ }ζ∈X∗ , with Yi := R and I := X∗. 80

We shall denote the space X endowed with the τw topology by w −X. 81

Proposition A.4 The space w −X is Hausdorff. 82

Remark A.1 The weak convergence is denoted by ⇀. 83

Theorem A.4 Let {un} be a sequence in X. Then 84

(i) un ⇀ u⇔ 〈ζ, un〉 → 〈ζ, u〉, ∀ζ ∈ X∗; 85

(ii) If un → u, then un ⇀ u; 86

(iii) If un ⇀ u , then {‖un‖} is bounded and ‖u‖ ≤ lim inf
n→∞ ‖un‖; 87

(iv) If un ⇀ x in X and ζn → ζ in X∗, then 〈ζn, un〉 → 〈ζ, u〉. 88

Remark A.2 Open (resp. closed) subsets in τw are automatically open (resp. closed) in the 89

strong topology. 90

If X is finite-dimensional, then the two topologies (weak and strong) coincide. In 91

particular, un ⇀ u if and only if un → u. 92

If X is infinite-dimensional, then the weak topology is strictly coarser than the strong 93

topology, i.e. there exist open (resp. closed) sets in the strong topology that are not weakly 94

open (resp. weakly closed). Simple examples are as follows: the unit ball B(0; 1) is not 95

weakly open, whereas the unit sphere of S := {u ∈ X : ‖u‖ = 1} is not weakly closed 96

(see, e.g., Brezis [2, Examples 1 and 2]). 97
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Theorem A.5 Let C be a convex subset of X. Then C is weakly closed if and only if it is 98

strongly closed. 99

Corollary A.3 (Mazur) If un ⇀ u in X, then there exists a sequence {vn} made up of 100

convex combinations of the un’ s that converges strongly to u. 101

So far we have two topologies on X∗: 102

(i) the usual strong topology associated to the norm of X∗, denoted by τs ; 103

(ii) the weak topology τw by performing on X∗ by above construction. 104

A third topology on X∗, called the weak∗-topology and denoted by τw∗ , can be defined 105

as follows: for every u ∈ X define φu : X∗ → R by φu(ζ ) = 〈ζ, u〉. As u runs through X 106

we obtain a collection (φu)u∈X mapping X∗ into R. 107

Definition A.4 The weak∗-topology τw∗ , is the coarsest topology on X∗ associated to the 108

collection (φu)u∈X. 109

Since X ⊂ X∗∗, it is clear that the topology τw∗ is coarser than the topology τw, i.e., 110

the topology τw∗ has fewer open sets (resp. closed sets) than the topology τw, which in 111

turn has fewer open sets (resp. closed sets) than the strong topology τs . 112

Remark A.3 Sometimes we shall denote (X∗, τs) by s − X∗, (X∗, τw) by w − X∗ and 113

(X∗, τw∗) by w∗ −X∗. Here and hereafter, the weak∗ convergence shall be denoted by ⇁. 114

Proposition A.5 The space w∗ −X∗ is Hausdorff. 115

Regarding the weak∗ convergence we have the following properties. 116

Proposition A.6 Let {ζn} be a sequence in X∗. Then 117

(i) ζn ⇁ ζ ⇔ 〈ζn, u〉 → 〈ζ, u〉, ∀u ∈ X; 118

(ii) If ζn → ζ , then ζn ⇀ ζ , and, if ζn ⇀ ζ , then ζn ⇁ ζ ; 119

(iii) If ζn ⇁ ζ , then {‖ζn‖} is bounded and ‖ζ‖ ≤ lim inf
n→∞ ‖ζn‖; 120

(iv) If ζn ⇁ ζ and un → u, then 〈ζn, un〉 → 〈ζ, u〉. 121

Proposition A.7 Let φ : X∗ → R be a linear functional that is continuous for the weak∗- 122

topology. Then there exists some u0 ∈ X such that 123

φ(ζ ) = 〈ζ, u0〉, ∀ζ ∈ X∗.
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Corollary A.4 Assume thatH is a hyperplane in X∗ that is closed in w∗ − X∗. ThenH 124

has the form 125

H := {
ζ ∈ X∗ : 〈ζ, u0〉 = α

}
,

for some u0 ∈ X \ {0}, and some α ∈ R. 126

The most important property of the τw∗ topology is given by the following result. 127

Theorem A.6 (Banach-Alaoglu) The closed unit ball of X∗, BX∗ := {ζ ∈ X∗ : ‖ζ‖ ≤ 1} , 128

is weak∗ compact. 129

A.3 Reflexive Spaces 130

Let X be a normed vector space and let X∗ be the dual with the norm 131

‖ζ‖∗ := sup
u∈X‖u‖≤1

|〈ζ, u〉|.

The bidual X∗∗ is the dual of X∗ with the norm 132

‖f ‖∗∗ := sup
ζ∈X∗
‖ζ‖≤1

|〈f, ζ 〉|.

There is a canonical injection I : X → X∗∗ defined as follows: given u ∈ X, the map 133

ζ �→ 〈ζ, u〉 is a continuous linear functional on X∗; thus it is an element of X∗∗, which we 134

denote by I (u). We have 135

〈I (u), ζ 〉X∗∗,X∗ := 〈ζ, u〉X∗,X ∀u ∈ X, ∀ζ ∈ X∗.

It is clear that I is linear and that I is an isometry, that is, 136

‖I (u)‖∗∗ = ‖u‖X.

Indeed, we have 137

‖I (u)‖∗∗ = sup
ζ∈X∗
‖ζ‖∗≤1

|〈I (u), ζ 〉| = sup
ζ∈X∗
‖ζ‖∗≤1

|〈ζ, u〉| = ‖u‖.
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Definition A.5 Let X be a Banach space and let I : X → X∗∗ be the canonical injection 138

from X into X∗∗. The space X is said to be reflexive if I is surjective, i.e., I (X) = X∗∗. 139

Due to this bijection, for a reflexive space X, we shall identify sometimes X∗∗ with X. We 140

have the following results regarding reflexive spaces. 141

Theorem A.7 (Kakutani) Let X be a Banach space. Then X is reflexive if and only if 142

BX := {u ∈ X : ‖u‖ ≤ 1} ,

is weakly compact. 143

Theorem A.8 (Eberlein-Šmulian) A Banach space X is reflexive if and only if every 144

bounded sequence X possesses a weakly convergent subsequence. 145

Theorem A.9 Assume that X is a reflexive Banach space and let Y ⊂ X be a closed 146

linear subspace of X. Then Y is reflexive. 147

Corollary A.5 A Banach space X is reflexive if and only if X∗ is reflexive. 148

Proposition A.8 Let X be a reflexive Banach space and assume K ⊂ X is a bounded, 149

closed and convex subset of X. Then K is weakly compact. 150



1

B2Set-Valued Analysis 3

B.1 Kuratowski Convergence 4

Definition B.1 (Kuratowski Convergence) Let (X, ρ) be a metric space and {An}n∈N be 5

a sequence of subsets of X. Then 6

(i) the upper limit or outer limit of the sequence {An}n∈N is the subset of X given by 7

lim sup
n→∞

An :=
{
u ∈ X : lim inf

n→∞ dist(u,An) = 0
}
;

(ii) the lower limit or inner limit of the sequence {An}n∈N is the subset of X given by 8

lim inf
n→∞ An :=

{
u ∈ X : lim

n→∞ dist(u,An) = 0
}
.

If lim supn→∞ An = lim infn→∞ An we say that the limit of {An}n∈N exists and 9

lim
n→∞An := lim sup

n→∞
An = lim inf

n→∞ An.

Remark B.1 For a fixed set A ⊂ X, the distance function dist(·, A) : X→ R is Lipschitz 10

continuous. This is straightforward from the fact that 11

dist(u,A) ≤ ρ(u, ū)+ dist(ū, A), ∀u, ū ∈ X.

12
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Thus, 13

|dist(u,A)− dist(ū, A)| ≤ ρ(u, ū),

which shows that, if un → ū in X, then limn→∞ dist(un,A) = dist(ū, A). 14

Proposition B.1 Let {An}n∈N be a sequence of subsets of a metric space X. Then 15

(i) lim infn→∞ An ⊆ lim supn→∞ An; 16

(ii) the sets lim supn→∞ An and lim infn→∞ An are closed in X. 17

Proposition B.2 If {An}n∈N is a sequence of sets in a metric space X, then 18

(i) lim supn→∞ An = {u ∈ X : ∃unk ∈ Ank s.t. unk → u}; 19

(ii) lim infn→∞ An = {u ∈ X : ∃un ∈ An s.t. un → u}. 20

That is, lim infn→∞ An is the collection of limits of sequences {un}n∈N, with un ∈ An; 21

whereas lim supn→∞ An is the collection of cluster points of sequences {un}n∈N, with 22

un ∈ An. 23

Proposition B.3 Let {An}n∈N be a sequence of subsets in a metric space (X, ρ). Then 24

(i) lim sup
n→∞

An = {u ∈ X : ∀ε > 0,∀N ∈ N, ∃n ≥ N : Bε(u) ∩An = ∅}; 25

(ii) lim inf
n→∞ An = {u ∈ X : ∀ε > 0, ∃N(ε) ∈ N : Bε(u) ∩ An = ∅,∀n ≥ N(ε)}. 26

Remark B.2 The statement in Propositions B.2 and B.3 can be used as alternative 27

definitions of inferior and superior limit of a sequence of sets, respectively. In particular, 28

from Proposition B.3, it follows that 29

(i) lim supn→∞ An =⋂
ε>0

⋂
N≥1

⋃
n≥N Uε(An); 30

(ii)
⋂

n≥1 cl
(⋃

n≥m Am

) ⊂ lim supm→∞ Am; 31

(iii) lim infn→∞ An =⋂
ε>0

⋃
N≥1

⋂
n≥N Uε(An). 32

Proposition B.4 If {An}n∈N is a sequence such that An+1 ⊂ An, n ∈ N, i.e. a decreasing 33

sequence, then limn→∞ An exists and limn→∞ An =⋂
n∈N cl(An). 34

Theorem B.1 Let {An}n∈N and {Bn}n∈N be two sequences of sets and K ⊂ X a compact 35

set. Assume for every neighborhood U of K , there exists N ∈ N such that An ⊂ U , 36

whenever n ≥ N . Then for every neighborhood V of K ∩ (
lim supn→∞ Bn

)
, there exists 37

N ∈ N such that An ∩ Bn ⊂ V , whenever n ≥ N. 38
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Theorem B.2 Let {An}n∈N be a sequence of sets in a metric space X and K ⊂ X. If for 39

every neighborhood U of K , there exists N ∈ N such that An ⊂ U , whenever n ≥ N , then 40

lim supn→∞ An ⊂ cl(K). 41

Conversely, if X is a compact metric space, then for every neighborhood U of 42

lim supn→∞ An, there exists N ∈ N such that An ⊂ U , whenever n ≥ N . 43

Proposition B.5 Let {An}n∈N and {Bn}n∈N be two sequences of subsets of a metric space 44

X. Then the following statements hold: 45

(i) lim sup
n→∞

(An ∩ Bn) ⊂ lim sup
n→∞

An ∩ lim sup
n→∞

Bn; 46

(ii) lim inf
n→∞ (An ∩ Bn) ⊂ lim inf

n→∞ An ∩ lim inf
n→∞ Bn; 47

(iii) lim sup
n→∞

(An ∪ Bn) = lim sup
n→∞

An ∪ lim sup
n→∞

Bn; 48

(iv) lim inf
n→∞ (An ∪ Bn) ⊃ lim inf

n→∞ An ∪ lim inf
n→∞ Bn; 49

(v) lim supn→∞(An × Bn) ⊂ lim supn→∞ An × lim supn→∞ Bn; 50

(vi) lim infn→∞(An × Bn) = lim infn→∞ An × lim infn→∞ Bn. 51

Lemma B.1 Let X be a real normed space, and let {An}, {Bn} be two sequences of subsets 52

of X. Then the following assertions are true: 53

(i) lim infn→∞ An + lim infn→∞ Bn ⊂ lim infn→∞(An + Bn); 54

(ii) If An ⊂ Bn for all n ∈ N, then lim infn→∞ An ⊂ lim infn→∞ Bn. 55

Proposition B.6 Let X and Y be metric spaces, {An}n∈N and {Bn}n∈N sequences of sets in 56

X and Y , respectively. If f : X→ Y is continuous function, then the following assertions 57

hold: 58

(i) f
(
lim supn→∞ An

) ⊂ lim supn→∞ f (An); 59

(ii) f (lim infn→∞ An) ⊂ lim infn→∞ f (An); 60

(iii) lim supn→∞ f−1(Bn) ⊂ f−1
(
lim supn→∞ Bn

)
; 61

(iv) lim infn→∞ f−1(Bn) ⊂ f−1 (lim infn→∞ Bn). 62

B.2 Set-Valued Maps 63

Definition B.2 Let X and Y be topological spaces. If for each u ∈ X, there is a 64

corresponding set F(u) ⊂ Y , then F(·) is called a set-valued map from X to Y . We 65

denote this F : X � Y . 66
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Definition B.3 Let X and Y be topological spaces and F : X � Y a set-valued map. 67

Then 68

• the domain of F(·), denoted by Dom(F ), is defined as 69

Dom(F ) := {u ∈ X : F(u) = ∅};

• the range of F(·), denoted by R(F ), is defined as 70

R(F ) :=
⋃

u∈Dom(F )

F (u);

• the graph of F(·), denoted by Graph(F ), is defined as 71

Graph(F ) := {(u, z) ∈ X × Y : z ∈ F(u), u ∈ Dom(F )}.

A set-valued map is said to be nontrivial if it’s graph is not empty, i.e. if there exists at 72

least an element u ∈ X such that F(u) = ∅. 73

If K ⊂ X, we denote by F |K the restriction of F to K , defined by 74

F |K(u) =
{
F(u), if u ∈ K

∅, otherwise.
(B.1)

Definition B.4 Let X and Y be topological spaces. 75

• A set-valued map F : X � Y is said to be closed valued, open valued or compact 76

valued if for each u ∈ X, F(u) is a closed, open or compact set in Y , respectively. 77

Furthermore, if Y is a topological linear space and F(u) is a convex set in Y for each 78

u ∈ X, the F(·) is called convex valued. 79

• F : X � Y is said to be a closed, open or compact set-valued map, if Graph(F ) is a 80

closed, open or compact set w.r.t. the product topology of X×Y . Furthermore, if X and 81

Y are topological vector spaces, then F(·) called a convex set-valued map if Graph(F ) 82

is convex set in w.r.t. X × Y . 83

Remark B.3 In Definition B.4 one must not confuse closed valued maps and closed set- 84

valued maps. The former refers to the values of the map, whereas the latter refers to the 85

graph of the map. 86
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Definition B.5 Let X and Y be topological spaces and F : X � Y a set-valued map. 87

Then 88

• the closure sv-map associated with F is the map cl(F ) : X � Y , where cl(F )(u) := 89

cl(F (u)), for each u ∈ X; 90

• the interior sv-map associated with F is the map int(F ) : X � Y , where int(F )(u) := 91

int(F (u)), for each u ∈ X, 92

• Moreover, if Y is a topological linear space, then the convex-hull sv-map associated 93

with F is the map conv(F ) : X � Y , where conv(F )(u) := co(F (u)), for each u ∈ X. 94

B.3 Continuity of Set-Valued Maps 95

Definition B.6 (Lower Inverse of a sv-Map) Let F : X � Y be a set-valued map. For 96

any V ⊂ Y the lower inverse image of V under F , denoted F−(V ), is defined by 97

F−(V ) := {u ∈ X : F(u) ∩ V = ∅} =
⋃
v∈V

F−(v).

Definition B.7 (Upper Inverse of a sv-Map) Let F : X � Y be a set-valued map. For 98

any V ⊂ Y the upper inverse image of V under F , denoted F+(V ), is defined by 99

F+(V ) := {u ∈ X : F(u) ⊂ V } .

F−(V ) is called sometimes the inverse image of V by F , whereas F+(V ) is called the 100

core of V by F . 101

Definition B.8 Let F : X � Y be a set-valued map and Dom(F ) = ∅. Then F is said 102

to be upper semicontinuous (u.s.c.) at u0 ∈ X iff, for any open set V ⊂ Y , such that 103

F(u0) ⊂ V , there exists a neighborhood U ⊂ X of u0 such that F(u) ⊂ V , for all u ∈ U . 104

The map F is said to be u.s.c. on X, if it is u.s.c. at every u ∈ X. 105

Definition B.9 Let F : X � Y be a set-valued map and Dom(F ) = ∅. Then F is said 106

to be lower semicontinuous (l.s.c.) at u0 ∈ X iff, for any open set V ⊂ Y , such that 107

F(u0) ∩ V = ∅, there exists a neighborhood U ⊂ X of u0 such that for every u ∈ U , we 108

have F(u) ∩ V = ∅. 109

The map F is said to be l.s.c. on X, if it is l.s.c. at every u ∈ X. 110

Definition B.10 A set-valued map F : X � Y is called continuous if it is both lower and 111

upper semicontinuous. 112
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The following two propositions give a useful characterization of lower semicontinuous 113

(upper semicontinuous) set-valued maps and are direct consequences of the above 114

definitions. 115

Proposition B.7 Let X,Y be Hausdorff topological spaces and F � Y a given sv-map. 116

Then the following statements are equivalent: 117

(i) F is l.s.c.; 118

(ii) F+(C) is closed in X whenever C is closed in Y ; 119

(iii) for any pair (u, v) ∈ Graph(F ) and any sequence {un} ⊂ X converging to u, there 120

exists a sequence vn ∈ F(un) such that vn → v; 121

Proposition B.8 Let X,Y be Hausdorff topological spaces and F � Y a given sv-map. 122

Then the following statements are equivalent: 123

(i) F is u.s.c.; 124

(ii) F−(C) is closed in X whenever C is closed in Y ; 125

(iii) For any sequence {un} ⊂ X converging to u and any open set V ⊂ Y such that 126

F(u) ⊂ V , there exists a rank n0 ≥ 1 such that F(un) ⊂ V for all n ≥ n0. 127

Proposition B.9 Let X,Y be two Hausdorff topological spaces and F : X � Y a set- 128

valued map. Then 129

(i) Let F(u) be closed for all u ∈ C ⊆ X. If F is u.s.c. and C is closed, then Graph(F ) 130

is closed. If F(C) is compact and C is closed, then F is u.s.c. if and only if Graph(F ) 131

is closed; 132

(ii) If K ⊆ X is compact, F is u.s.c. and F(u) is compact for all u ∈ K , then F(K) is 133

compact. 134

Remark B.4 It is clear from above that when F is single-valued, i.e. F(u) = {v} ⊂ Y , the 135

notions of lower and upper semicontinuity coincide with the usual notion of continuity of 136

a map between two Hausdorff topological spaces. 137

In general the notion of lower and upper semicontinuity are distinct. In order to see this 138

let us consider F : R � R be defined by 139

F(u) := [φ1(u), φ2(u)],

140
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where φi : R → R are prescribed functionals such that φ1(u) ≤ φ2(u) for all u ∈ X. 141

Then 142

• φ1 u.s.c. and φ2 l.s.c.⇒ F is l.s.c.; 143

• φ1 l.s.c. and φ2 u.s.c.⇒ F is u.s.c.; 144

• φ1, φ2 continuous⇒ F continuous. 145

Here, the l.s.c. (u.s.c.) of the functionals φi is understood in the sense of Section 1.2. 146

Definition B.11 Let X and Y be normed spaces and F : X � Y a set-valued map. We say 147

that F is Lipschitz around u ∈ X, if there exists a positive constant L and a neighborhood 148

U ⊂ Dom(F ) of u such that 149

∀u1, u2 ∈ U : F(u1) ⊂ F(u2)+ L‖u1 − u2‖BY (0, 1).

In this case F also called Lipschitz or L-Lipschitz on U . 150

F is said to be pseudo-Lipschitz around (u, v) ∈ Graph(F ) if there exists a positive 151

constant L, a neighborhood U ⊂ Dom(F ) of u and a neighborhood V of v such that 152

∀u1, u2 ∈ U : F(u1) ∩ V ⊂ F(u2)+ L‖u1 − u2‖BY (0, 1).

In particular, if F : X � R is a set-valued mapping, we say that F is Lipschitz around 153

u ∈ X if there exists a positive constant L and a neighborhood U of u such that for every 154

u1, u2 ∈ U we have 155

F(u1) ⊂ F(u2)+ L‖u1 − u2‖[−1, 1].

For a nonempty subset K of X, we say that F is K-locally Lipschitz if it is Lipschitz 156

around all u ∈ K . 157

Proposition B.10 If F : X � R is a K-locally Lipschitz sv-map, then the restriction 158

F |K : K � R is continuous on K . 159

B.4 Monotonicity of Set-Valued Operators 160

Unless otherwise stated, throughout this subsection X denotes a real Banach space with 161

dual X∗. A set-valued map A : X � X∗ shall often be called set-valued operator. In order 162

to increase the clarity of the exposition, we shall denote the elements of A(u) by u∗ instead 163

of using Greek letters (as we have done so far when referring to elements of X∗). 164
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If A(u) is a singleton, then we shall often identify A(u) with its unique element. The 165

inverse A−1 : X∗ � X of A is defined as 166

A−1(u∗) := {
u ∈ X : u∗ ∈ A(u)

}
.

Obviously Dom(A−1) = R(A), R(A−1) = Dom(A) and Graph(A−1) = {(u∗, u) ∈ 167

X∗ ×X : (u, u∗) ∈ Graph(A)}. 168

Definition B.12 A set-valued operator A : X � X∗ is said to be monotone if 169

〈v∗ − u∗, v − u〉 ≥ 0, ∀(u, u∗), (v, v∗) ∈ Graph(A). (B.2)

A monotone operator A : X � X∗ is called maximal motonone if Graph(A) is not 170

properly contained in the graph of any other monotone operator A′ : X � X∗. 171

We point out the fact that A is said to be strictly monotone if (B.2) holds with strict 172

inequality whenever u = v. Moreover, if there exists m > 0 such that the stronger 173

inequality holds 174

〈v∗ − u∗, v − u〉 ≥ m‖v − u‖2, ∀(u, u∗), (v, v∗) ∈ Graph(A), (B.3)

then A is called strongly monotone. Actually, (B.3) means that A−mJ is monotone, with 175

J being the normalized duality mapping. 176

We present next some generalizations of the monotonicity concept. 177

Definition B.13 Let η : K × K → X and α : X → R be two single-valued maps. A 178

set-valued map A : K � X∗ is said to be 179

• relaxed η − α monotone, if 180

〈v∗ − u∗, η(v, u)〉 ≥ α(v − u), ∀(u, u∗), (v, v∗) ∈ Graph(A); (B.4)

• relaxed η − α pseudomonotone, if 181

[∃u∗ ∈ A(u) : 〈u∗, η(v, u)〉 ≥ 0] ⇒ [〈v∗, η(v, u)〉 ≥ α(v − u), ∀v∗ ∈ A(v)];
(B.5)

• relaxed η − α quasimonotone, if 182

[∃u∗ ∈ A(u) : 〈u∗, η(v, u)〉 > 0] ⇒ [〈v∗, η(v, u)〉 ≥ α(v − u), ∀v∗ ∈ A(v)];
(B.6)
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If η(v − u) := v − u, then 183

(B.4) reduces to 184

〈v∗ − u∗, v − u〉 ≥ α(v − u), ∀(u, u∗), (v, v∗) ∈ Graph(A);

and A is said to be relaxed α monotone; 185

(B.5) reduces to 186

[∃u∗ ∈ A(u) : 〈u∗, v − u〉 ≥ 0] ⇒ [〈v∗, v − u〉 ≥ α(v − u), ∀v∗ ∈ A(v)];

and A is said to be relaxed α pseudomonotone; 187

(B.6) reduces to 188

[∃u∗ ∈ A(u) : 〈u∗, v − u〉 > 0] ⇒ [〈v∗, v − u〉 ≥ α(v − u), ∀v∗ ∈ A(v)];

and A is said to be relaxed α quasimonotone. 189



1

C2Geometry of Banach Spaces 3

C.1 Smooth Banach Spaces 4

Definition C.1 A Banach space X is called smooth if for every u = 0 there exists a unique 5

ζ ∈ X∗ such that ‖ζ‖ = 1 and 〈ζ, u〉 = ‖u‖. 6

Proposition C.1 For every u = 0 one has 7

∂‖u‖ = {
ζ ∈ X∗ : 〈ζ, u〉 = ‖u‖, ‖ζ‖ = 1

}
.

From this proposition and the fact that any proper convex continuous functional ϕ is 8

Gateaux differentiable at u ∈ int(D(ϕ)) if and only if ∂ϕ(u) is a singleton (see, e.g., 9

Ciorănescu [4, Corollary 2.7]) we have the following characterization of smooth spaces. 10

Theorem C.1 A Banach space X is smooth if and only if ‖ · ‖ is Gateaux differentiable 11

on X \ {0}. 12

Definition C.2 For a Banach space X the function ρ : (0,∞)→ (0,∞) defined by 13

ρ(t) := 1

2
sup

‖u‖=‖v‖=1
(‖u+ tv‖ + ‖u− tv‖ − 2)

is called the modulus of smoothness of X. 14

The modulus of smoothness at u ∈ X is defined as 15

ρ(t, u) := 1

2
sup
‖v‖=1

(‖u+ tv‖ + ‖u− tv‖ − 2‖u‖) .

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
N. Costea et al., Variational and Monotonicity Methods in Nonsmooth Analysis,
Frontiers in Mathematics, https://doi.org/10.1007/978-3-030-81671-1

425

https://doi.org/10.1007/978-3-030-81671-1


426 C Geometry of Banach Spaces

Definition C.3 A Banach space X is called uniformly smooth if 16

lim
t↘0

ρ(t)

t
= 0.

The space X is said to be locally uniformly smooth if 17

lim
t↘0

ρ(t, u)

t
= 0, ∀u ∈ X \ {0}.

Proposition C.2 For a Banach spaces X the following implications hold 18

X is uniformly smooth ⇒ X is locally uniformly smooth ⇒ X is smooth.

Theorem C.2 19

(i) A Banach space X is locally uniformly smooth if and only if ‖ · ‖ is Fréchet 20

differentiable on X \ {0}; 21

(ii) A Banach space X is uniformly smooth if and only if ‖ · ‖ is uniformly Fréchet 22

differentiable on the unit sphere, i.e., 23

lim
t↘0

sup
‖u‖=‖v‖=1

∣∣∣∣‖u+ tv‖ − ‖u‖
t

− 〈‖ · ‖′(u), v〉
∣∣∣∣ = 0.

C.2 Uniform Convexity, Strict Convexity and Reflexivity 24

Definition C.4 A Banach space is called uniformly convex if for any ε ∈ (0, 2] there 25

exists δ = δ(ε) > 0 such that for u, v ∈ X satisfying ‖u‖ = ‖v‖ = 1 and ‖u − v‖ ≥ ε 26

one has
∥∥u+v

2

∥∥ ≤ 1− δ. 27

In other words, X is uniformly convex if for any two distinct points on the sphere u, v the 28

midpoint of the line segment joining u and v is never on the sphere, but inside the unit ball. 29

Example C.1 The Lebesgue spaces Lp, 1 < p <∞, are uniformly convex. 30

This is a simple consequence of Clarkson’s inequalities (see, e.g., Diestel [5]): 31

∥∥∥∥u+ v

2

∥∥∥∥
p

+
∥∥∥∥u− v

2

∥∥∥∥
p

≤ ‖u‖
p + ‖v‖p

2
, ∀u.v ∈ Lp, p ∈ [2,∞), (C.1)

32
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and 33

∥∥∥∥u+ v

2

∥∥∥∥
p

+
∥∥∥∥u− v

2

∥∥∥∥
p

≤
(‖u‖p + ‖v‖p

2

)1/(p−1)

, ∀u.v ∈ Lp, p ∈ (1, 2]. (C.2)

Let ε ∈ (0, 2] and u, v ∈ X be such that ‖u‖ = ‖v‖ = 1 and ‖u−v‖ ≥ ε. Then Clarkson’s 34

inequalities ensure that 35

∥∥∥∥u+ v

2

∥∥∥∥ ≤
[
1−

(ε
2

)p]1/p
,

hence we can pick δ := 1− [
1− (ε/2)p

]1/p. 36

Example C.2 Any Hilbert space is uniformly convex. 37

In order to see this, fix ε ∈ (0, 2] and u, v ∈ H such that ‖u‖ = ‖v‖ = 1 and 38

‖u− v‖ ≥ ε. Then, according to the parallelogram law 39

∥∥∥∥u+ v

2

∥∥∥∥
2

+
∥∥∥∥u− v

2

∥∥∥∥
2

= ‖u‖2 + ‖v‖2

2
,

and thus 40

∥∥∥∥u+ v

2

∥∥∥∥ ≤ 1− δ, with δ := 1−
√

1− ε2

4
.

Definition C.5 A Banach space X is called strictly convex if for u, v ∈ X satisfying 41

u = v, ‖u‖ = ‖v‖ = 1 one has 42

‖λu + (1− λ)v‖ < 1, ∀λ ∈ (0, 1).

Proposition C.3 The following statements are equivalent: 43

(i) X is strictly convex; 44

(ii) The unit sphere contains no line segments; 45

(iii) If u = v and ‖u‖ = ‖v‖ = 1, then ‖u+ v‖ < 2; 46

(iv) If u, v,w ∈ X are such that ‖u − v‖ = ‖u − w‖ + ‖w − v‖, then there exists 47

λ ∈ [0, 1] such that w = λu+ (1− λ)v; 48

(v) Any ζ ∈ X∗ assumes its supremum in at most one point of the unit ball. 49

It is clear from this proposition that any uniformly convex space is strictly convex. 50

However, not all Banach spaces are strictly convex and there exist strictly convex spaces 51

that are not uniformly convex as it can be seen from the following examples. 52
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Example C.3 The space l1 is not strictly convex. 53

To see this take u := (1, 0, 0, 0, . . .) ∈ l1, v := (0,−1, 0, 0, . . .) ∈ l1. Clearly, ‖u‖1 = 54

‖v‖1 = 1 and ‖u+ v‖1 = 2, which shows that l1 is not strictly convex. 55

Example C.4 The space l∞ is not strictly convex. 56

Choose u := (1, 1, 0, 0, . . .) and v := (−1, 1, 0, 0, . . .). Again u, v ∈ l∞, ‖u‖∞ = 57

‖v‖∞ = 1 and ‖u+ v‖∞ = 2, showing that l∞ is not strictly convex. 58

Example C.5 (Goebel and Kirk [8]) 59

(i) The space (C[0, 1], ‖ · ‖∞) is not strictly convex, where ‖ · ‖∞ is the standard “sup 60

norm”; 61

(ii) The space (C[0, 1], ‖ · ‖μ) is strictly convex, but not uniformly convex, where for 62

μ > 0 63

‖u‖μ := ‖u‖∞ + μ

(∫ 1

0
u2(x)dx

)1/2

.

Definition C.6 Let X be a Banach space with dimX ≥ 2. The modulus of convexity of X 64

is the function 
 : (0, 2] → [0, 1] defined by 65


(ε) := inf

{
1−

∥∥∥∥u+ v

2

∥∥∥∥ : ‖u‖ = ‖v‖ = 1, ‖u− v‖ ≥ ε

}
.

Theorem C.3 A Banach space is uniformly convex if and only if 
(ε) > 0 for all ε ∈ 66

(0, 2]. 67

Theorem C.4 (Milman-Pettis) If X is a uniformly convex Banach space, then X is 68

reflexive. 69

Remark C.1 Uniform convexity is a geometric property of the norm: endowed with an 70

equivalent norm the space might not be uniformly convex. On the other hand, reflexivity 71

is a topological property: a reflexive space remains reflexive for an equivalent norm. 72

Proposition C.4 Let X be a uniformly convex Banach space and {un} ⊂ X be such that 73

un ⇀ u and lim supn→∞ ‖un‖ ≤ ‖u‖. Then un → u. 74

In order to establish the connection between the strict/uniform convexity and the 75

differentiability of the norm on a Banach space, we have the following duality results. 76
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Theorem C.5 For a Banach space X the following implications hold: 77

(i) X∗ is smooth⇒ X is strictly convex; 78

(ii) X∗ is strictly convex⇒ X is smooth. 79

Corollary C.1 (Weak Duality) If X is reflexive, then X is strictly convex (respectively 80

smooth) if and only if X∗ is smooth (respectively strictly convex). 81

Theorem C.6 (Strong Duality) Let X be a Banach space. Then 82

(i) X is uniformly smooth if and only if X∗ is uniformly convex; 83

(ii) X is uniformly convex if and only if X∗ is uniformly smooth. 84

Corollary C.2 If X is a uniformly smooth Banach space, then X is reflexive. 85

C.3 Duality Mappings 86

Definition C.7 A continuous and strictly increasing function φ : [0,∞) → [0,∞) such 87

that φ(0) = 0 and limt→∞ φ(t) =∞ is called a normalization function. 88

Lemma C.1 Let φ be a normalization function and 89

�(t) :=
∫ t

0
φ(s)ds.

Then � is convex function on [0,∞). 90

Definition C.8 Given a normalization function φ, the set-valued map Jφ : X � X∗ 91

defined by 92

Jφu :=
{
ζ ∈ X∗ : 〈ζ, u〉 = ‖ζ‖‖u‖, ‖ζ‖ = φ(‖u‖)}

is called the duality mapping corresponding to φ. 93

The duality mapping corresponding to φ(t) = t is called the normalized duality 94

mapping. 95

Remark C.2 For any normalization function φ, Jφu = ∅ for every u ∈ X, hence 96

D(Jφ) = X. 97

Proposition C.5 If H is a Hilbert space, then the normalized duality mapping is the 98

identity operator. 99
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Theorem C.7 (Asplund) If Jφ is the duality mapping corresponding to the normalization 100

function φ, then Jφu = ∂�(‖u‖), for all u ∈ X. 101

Corollary C.3 Let X be a Banach space and φ a normalization function. Then X is 102

smooth if and only if Jφ is single-valued. In this case 103

〈Jφu, v〉 = d

dt
�(‖u+ tv‖)

∣∣∣∣
t=0

, ∀u, v ∈ X. (C.3)

Theorem C.8 If Jφ is the duality mapping corresponding to the normalization function 104

φ, then 105

(i) For every u ∈ X the set Jφu is nonempty, convex and weak∗ closed in X∗; 106

(ii) Jφ is monotone; 107

(iii) Jφ(−u) = −Jφ(u), for all u ∈ X; 108

(iv) For every u ∈ X \ {0} and every λ > 0 we have 109

Jφ(λu) = φ(λ‖u‖)
φ(‖u‖) Jφ(u);

(v) If φ−1 is the inverse of φ, then φ−1 is a normalization function and ζ ∈ Jφu 110

whenever u ∈ J ∗
φ−1ζ , with J ∗

φ−1 being the duality mapping corresponding to φ−1
111

on X∗; 112

(vi) If Jψ is the duality mapping corresponding to the normalization function ψ , then 113

Jψu = ψ(‖u‖)
φ(‖u‖) Jφu, ∀u ∈ X \ {0}.

Proposition C.6 If X is uniformly convex and smooth, then Jφ satisfies the (S+) property, 114

i.e., if un ⇀ u and lim supn→∞〈Jφun, un − u〉 ≤ 0, then un → u. 115

Proposition C.7 If X is reflexive and smooth, then Jφ is demicontinuous, i.e., if un → u 116

in X, then Jφun ⇀ Jφu in X∗. 117



1

D2KKM-Type Theorems, Fixed Point Results 3

and Minimax Principles 4

D.1 Variants of the KKM Lemma and Fixed Point Results 5

In this subsection we present some variants of the KKM lemma. We begin with the well 6

known result of Knaster, Kuratowski and Mazurkiewicz. 7

Lemma D.1 (KKM Lemma [9]) Let P0P1 . . . Pn ⊂ R
n be a closed simplex and let 8

K0,K1, . . . ,Kn be compact subsets of Rn such that 9

Pi0Pi1 . . . Pik ⊂
k⋃

s=0

Kis ,

for every face of P0P1 . . . Pn. Then 10

n⋂
i=0

Ki = ∅.

Theorem D.1 (Fan [7, Theorem 4]) In a Hausdorff topological vector space E, let C be 11

a convex set and ∅ = K ⊂ C. Let F : K � C be a set-valued mapping such that 12

(i) for each u ∈ K , F(u) a relatively closed subset of C; 13

(ii) F is a KKM mapping, i.e., for any finite subset {u1, u2, . . . , un} ⊂ K one has 14

co{u1, . . . , un} ⊂
n⋃

i=1

F(ui);
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(iii) there exists a nonempty subset K0 of K such that the intersection
⋂

u∈K0
F(u) is 15

compact and K0 is contained in a compact convex subset K1 of C. 16

Then
⋂

u∈K F(u) = ∅. 17

The following result represents a generalization of the KKM-lemma and it was 18

originally proved by Ky Fan in [6]. Here it is stated here as a particular case of the previous 19

theorem. 20

Corollary D.1 (Fan-KKM) Let K be an arbitrary set in a Hausdorff topological vector 21

space E and F : K � E such that: 22

(i) for each u ∈ K , F(u) is closed in E; 23

(ii) F is a KKM mapping; 24

(iii) there exists u0 ∈ K such that F(u0) is compact. 25

Then
⋂

u∈K F(u) = ∅. 26

Theorem D.2 (Lin [10]) Let K be a nonempty convex subset of a Hausdorff topological 27

vector space E. Let A ⊆ K ×K be a subset such that 28

(i) for each u ∈ K , the set {v ∈ K : (u, v) ∈ A} is closed in K; 29

(ii) for each v ∈ K , the set {u ∈ K : (u, v) /∈ A} is convex or empty; 30

(iii) (u, u) ∈ A for each u ∈ K; 31

(iv) K has a nonempty compact subset K0 such that the set 32

B := {v ∈ K : (u, v) ∈ A, ∀u ∈ K0}

is compact. 33

Then there exists a point v0 ∈ B such that K × {v0} ⊂ A. 34

Theorem D.3 (Tarafdar [17]) Let K be a nonempty convex subset of a topological vector 35

space. Let f : K � K be a set valued mapping such that: 36

(i) for each u ∈ K, f (u) is a nonempty convex subset of K; 37

(ii) for each v ∈ K , f−1(v) := {u ∈ K : v ∈ f (u)} contains a relatively open subset 38

Ov of K (Ov may be empty for some v); 39

(iii)
⋃

u∈K Ou = K 40
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(iv) there exists a nonempty subset K0 ⊂ K such that K0 is contained in a compact 41

convex subset K1 of K and the set D := ⋂
u∈K0

Oc
u is compact, (D could be empty 42

and Oc
u denotes the complement of Ou in K). 43

Then there exists a point u0 ∈ K such that u0 ∈ f (u0). 44

Theorem D.4 (Ansari and Yao [1]) Let K be a nonempty closed and convex subset of 45

a Hausdorff topological vector space X and let S, T : K � K be two set-valued maps. 46

Assume that: 47

(i) for each u ∈ K , S(u) is nonempty and co{S(u)} ⊆ T (u); 48

(ii) K =⋃
v∈K intKS−1(v); 49

(iii) if K is not compact, assume that there exists a nonempty compact convex subset C0 50

of K and a nonempty compact subset C1 of K such that for each u ∈ K \ C1 there 51

exists v̄ ∈ C0 with the property that u ∈ intKS−1(v̄). 52

Then there exists u0 ∈ K such that u0 ∈ T (u0). 53

D.2 Minimax Results 54

In this subsection we present some minimax inequalities due to Ky Fan [6, 7], a variant 55

proved by Brezis, Nirenberg & Stampacchia [3] and an alternative due to Mosco [12] on 56

vector spaces, as well as minimax results on topological spaces due to McClendon [11] 57

and Ricceri [13–15]. 58

Definition D.1 Let K be a convex set of a topological vector space E and f : K → R 59

be a function. The function f is said to be quasi-convex if for every real number t the 60

set {x ∈ K : f (u) < t} is convex. The function f is said to be quasi-concave if −f is 61

quasi-convex. 62

Theorem D.5 (Fan Minimax Principle [7]) Let K be a nonempty convex set in a 63

Hausdorff topological vector space and let be f : K × K → R be a function such 64

that: 65

(i) For each fixed u ∈ K , v �→ f (u, v) is lower semicontinuous; 66

(ii) For each fixed v ∈ K , u �→ f (u, v) is quasi-concave; 67

(iii) f (u, u) ≤ 0, for all u ∈ K; 68
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(iv) K has a nonempty compact convex subset K0 such that the set 69

⋂
u∈K0

{v ∈ K : f (u, v) ≤ 0}

is compact. 70

Then there exists a point v̂ ∈ K , such that f (u, v̂) ≤ 0, for all u ∈ K . 71

Corollary D.2 Let K be a nonempty convex compact set in a Hausdorff topological vector 72

space and let be f : K ×K → R be a function such that: 73

(i) For each fixed u ∈ K , v �→ f (u, v) is lower semicontinuous; 74

(ii) For each fixed v ∈ K , u �→ f (u, v) is quasi-concave; 75

(iii) f (u, u) ≤ 0, for all u ∈ K; 76

Then there exists a point v̂ ∈ K , such that f (u, v̂) ≤ 0, for all u ∈ K . 77

Theorem D.6 (Brezis et al. [3]) Let X be a Hausdorff linear topological vector space 78

and K a convex subset in E. Let f : K ×K → R be a real function satisfying: 79

(1) f (u, u) ≤ 0 for all u ∈ K; 80

(2) For every fixed u ∈ K , the set {v ∈ K : f (u, v) > 0} is convex; 81

(3) For every fixed v ∈ K , f (·, v) is a lower semicontinuous function on the intersection 82

of K with any finite dimensional subspace of E. 83

(4) Whenever u, v ∈ K and uα is a filter on K converging to u, then f (uα, (1−t)u+tv) ≤ 84

0 for every t ∈ [0, 1] implies f (u, v) ≤ 0. 85

(5) There exists a compact subset L of E and v0 ∈ L∩K such that f (u, v0) > 0 for every 86

u ∈ K,u /∈ L. 87

Then there exists u0 ∈ L ∩K such that 88

f (u0, v) ≤ 0, ∀v ∈ K.

In particular, 89

inf
u∈K sup

v∈K
f (u, v) ≤ 0.

Now, let F be a Hausdorff topological vector space and let G be a vector space and let 90

A ⊂ F,B ⊂ G be convex sets. 91
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Theorem D.7 Let f : A× B → R be a function satisfying 92

(i) For each fixed v ∈ B, the function f (·, v) is quasi-convex and lower semicontinuous 93

on A. 94

(ii) For each fixed u ∈ A, the function f (u, ·) is quasi-concave on B and lower 95

semicontinuous on the intersection of B with any finite dimensional subspace. 96

(iii) For some ṽ ∈ B and some λ > supv∈B infu∈A f (u, v), the set {u ∈ A : f (u, ṽ) ≤ 97

λ } is compact. 98

Then 99

sup
v∈B

inf
u∈A f (u, v) = inf

u∈A sup
v∈B

f (u, v).

Theorem D.8 (Mosco’s Alternative [12]) Let K be a nonempty, compact and convex 100

subset of a Hausdorff topological vector space E and let ϕ : E → (−∞,∞] be a proper, 101

convex and lower semicontinuous functional such that D(ϕ) ∩ K = ∅. Assume f, g : 102

E × E → R are two functions that satisfy: 103

(i) f (u, v) ≤ g(u, v), for all u, v ∈ E; 104

(ii) for each u ∈ E, v �→ f (u, v) is lower semicontinous; 105

(iii) for each v ∈ E, u �→ g(u, v) is concave. 106

Then for every λ ∈ R holds the alternative: 107

(A1) there exists vλ ∈ D(φ) ∩K such that 108

f (u, vλ)+ ϕ(vλ)− ϕ(u) ≤ λ, ∀u ∈ E;

(A2) there exists u0 ∈ E such that g(u0, u0) > λ. 109

We conclude this part by a KyFan-type minimax result on topological spaces given by 110

McClendon [11]. To complete this, we need two notions. 111

Definition D.2 112

(a) An ANR (absolute neighborhood retract) is a separable metric space X such that 113

whenever X is embedded as a closed subset into another separable metric space Y , 114

it is a retract of some neighborhood in Y . 115

(b) A nonempty set X is acyclic if it is connected and its Čech homology (coefficients in 116

a fixed field) is zero in dimensions greater than zero. 117
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The following result can be viewed as a topological version of the Fan minimax 118

principle (see Corollary D.2): 119

Theorem D.9 (McClendon [11, Theorem 3.1]) Suppose that X is a compact acyclic 120

finite-dimensional ANR. Suppose h : X × X → R is a function such that {(x, y) : 121

h(y, y) > h(x, y)} is open and {x : h(y, y) > h(x, y)} is contractible or empty for 122

all y ∈ X. Then there is a y0 ∈ X with h(y0, y0) ≤ h(x, y0) for all x ∈ X. 123

Theorem D.10 (Ricceri [14, Theorem 4]) Let X be a real, reflexive Banach space, let 124

� ⊆ R be an interval, and let ϕ : X × � → R be a function satisfying the following 125

conditions: 126

1. λ �→ ϕ(u, λ) is concave for all u ∈ X; 127

2. u �→ ϕ(u, λ) is continuous, coercive and sequentially weakly lower semicontinuous in 128

for all λ ∈ �; 129

3. β1 := supλ∈� infu∈X ϕ(u, λ) < infu∈X supλ∈� ϕ(u, λ) =: β2. 130

Then, for each σ > β1 there exists a nonempty open set �0 ⊂ � with the following 131

property: for every λ ∈ �0 and every sequentially weakly lower semicontinuous function 132

φ : X → R, there exists μ0 > 0 such that, for each μ ∈ (0, μ0), the function ϕ(·, λ) + 133

μφ(·) has at least two local minima lying in the set {u ∈ X : ϕ(u, λ) < σ }. 134

Theorem D.11 (Ricceri [15, Theorem 1]) Let X be a topological space, I ⊆ R an open 135

interval and ψ : X × I → R a function satisfying the following conditions: 136

(i) for each u ∈ X, the function λ �→ ψ(u, λ) is quasi-concave and continuous; 137

(ii) for each λ ∈ I , the function u �→ ψ(u, λ) has compact and closed sub-level sets; 138

(iii) one has 139

sup
λ∈I

inf
u∈Xψ(u, λ) < inf

u∈X sup
λ∈I

ψ(u, λ).

Then there exists λ∗ ∈ I , such that the function u �→ ψ(u, λ∗) has at least two global 140

minimum points. 141

Theorem D.12 (Ricceri [13, Theorem 1 and Remark 1]) Let (X, τ) be a topological 142

space, I a real interval and ψ : X × I → R a functional satisfying: 143

(c1) for every u ∈ X, the function λ �→ ψ(u, λ) is quasi-concave and continuous; 144

(c2) for each λ ∈ I , the function u �→ ψ(u, λ) is l.s.c. and each of its local minima is a 145

global minimum; 146
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(c3) there exist ρ > supλ∈I infu∈X ψ(u, λ) and λ0 ∈ I such that the set 147

{u ∈ X : ψ(u, λ0) ≤ ρ}

is compact. 148

Then the following equality holds 149

sup
λ∈I

inf
u∈Xψ(u, λ) = inf

u∈X sup
λ∈I

ψ(u, λ).



1

E2Linking Sets 3

In this section we introduce various concepts of linking sets and highlight the connection 4

between different types of “linking” used in the literature to find, classify and locate the 5

critical points of a given smooth or nonsmooth functional. 6

Definition E.1 Let X be a topological space and let D ⊆ X be a nonempty subset. We 7

say that D is contractible, if there exists a continuous function h : [0, 1] × D → X (the 8

so-called homotopy) and a point u0 ∈ X, such that h(0, u) = u and h(1, u) = u0 for all 9

u ∈ D. 10

Definition E.2 Let X be a Banach space and A,C ⊆ Z two nonempty subset. We say 11

that A links C if and only if A ∩ C = ∅ and A is not contractible in X \ C. 12

In many books appears the following definition of the notion of linking. 13

Definition E.3 Let X be a Banach space and A and C be two nonempty subsets of X. 14

We say that A and C link if and only if there exists a closed set B ⊆ Z such that A ⊆ 15

B, A ∩ C = ∅ and for any map θ ∈ C(B,Z) with θ |A = idA, we have θ(B) ∩ C = ∅. 16

In some conditions the Definitions E.2 and E.3 are equivalent. We have the following 17

result. 18

Theorem E.1 Let X be a Banach space, A is relative boundary of a nonempty bounded 19

convex set B ⊆ X. Then the definitions E.2 and E.3 are equivalent. 20

Lemma E.1 If Y is a finite dimensional Banach space, U ⊆ Y is a nonempty, bounded, 21

open set and y0 ∈ U , then ∂U is not contractible in Y \ {y0}. 22
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Example E.1 Let X be a Banach space, A := {u1, u2}, C := SR(u1) = {u ∈ X : ‖u − 23

u1‖ = R} with R > 0 and ‖u1 − u2‖ > R. It is clear that A is not contractible in X \ C. 24

Note that if we use Theorem E.1 follows that the sets A and C also link in the sense of 25

Definition E.3. 26

Example E.2 Let X be a Banach space, X := Y ⊕ Z with dimY < +∞, A := {u ∈ Y : 27

‖u‖X = R} with R > 0 and C = Z. Then the set A links C. 28

By contradiction, suppose the statement is false. Then we can find h : [0, 1] × A → 29

X \C, a contraction of A in X \C. Let PY : X→ Y be the projection operator to the finite 30

dimensional subspace Y and let 31

ψ(t, x) := (PY ◦ h)(t, u), (t, u) ∈ [0, 1] × A.

Then ψ is a contraction of A in Y \ {0}, which contradicts Lemma E.1 (take U := BR = 32

{u ∈ Y : ‖u‖X < R}). Using Theorem E.1 follows that the sets A and C link in the sense 33

of Definition E.3. 34

Example E.3 Let X be a Banach space, X := Y ⊕Z, with dimY < +∞, v0 ∈ Z ‖v0‖X = 35

1 and 0 < r < R. Let 36

B := {v + tv0 : 0 ≤ t ≤ R, ‖v‖X ≤ R}

and let A be the boundary of B, hence 37

A = {v + tv0 : t ∈ {0, R}, ‖v‖X ≤ R or t ∈ [0, R], ‖v‖Z = R}

and let 38

C := {u ∈ Z : ‖u‖X = r}.

Then the set A links C. 39

We proceed by contradiction. Suppose that h : [0, 1] × A→ X \ C is a contraction of 40

A in X \ C. Consider the projections PY : X→ Y and PZ : X→ Z and set 41

ψ(t, u) := (PY ◦ h)(t, u)+ ‖(PZ ◦ h)(t, u)‖Xv0.

Then ψ is a contraction of A in (Y ⊕R) \ {rv0}, which contradicts Lemma E.1. As before 42

the two sets A and C link in the sense of Definition E.3. 43
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Next we present the linking notion introduced by Schechter, see [16]. Let X be a Banach 44

space. We introduce the set of admissible deformations � ⊂ C([0, 1] × X,X) whose 45

elements � satisfy the following properties: 46

(a) for each t ∈ [0, 1], �(t, ·) is a homeomorphism of X into itself and �−1(t, ·) is 47

continuous on [0, 1)×X; 48

(b) �(0, ·) = id; 49

(c) for each � ∈ � there is a u� ∈ X, such that �(1, u) = u� for all u ∈ X and 50

�(t, u)→ u� as t → 1 uniformly on bounded subsets of X. 51

Definition E.4 Let X be a Banach space and A,B ⊂ X. We say A links B w.r.t. � if 52

A ∩ B = ∅ and, for each � ∈ �, there is a t ∈ (0, 1] such that �(t,A) ∩ B = ∅. 53

If there is no danger of confusion we shall simply say that A links B. In the following 54

we present some properties of this notion of linking and some examples. 55

Proposition E.1 Let A,B be two closed, bounded subsets of X such that X \ A is path 56

connected. If A links B, then B links A. 57

Proposition E.2 Let A,B be subsets of X such that A links B. Let S(t) be a family of 58

homeomorphisms of X onto itself such that S(0) = I, S(t), S(t)−1 are in C([0, 1]×X,X) 59

and 60

S(t)A ∩ B = ∅, 0 ≤ t ≤ T . (E.1)

Then A1 := S(T )A links B. 61

Proposition E.3 Under the same hypotheses as in Proposition E.2, A links B1 := 62

S−1(T )B. 63

Proposition E.4 If H : X→ X is a homeomorphism and A links B, then HA links HB. 64

The next result gives a very useful method of checking the linking of two sets. 65

Proposition E.5 Let F : E → R
n be a continuous map, and let Q ⊂ E be such that 66

F0 = F |Q is a homeomorphisms of Q onto the closure of a bounded open subset � of Rn. 67

If p ∈ �, then F−1
0 (∂�) links F−1(p). 68

Remark E.1 The examples of linking sets given above, i.e., E.1, E.2 and E.3 are also valid 69

in the sense of Definition E.4. 70
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Few more examples due to Schechter [16] are provided below. 71

Example E.4 Let X be a Hilbert space and Y , Z two closed subspaces such that dimY < 72

∞ and X = Y ⊕ Z and let BR := {u ∈ X : ‖u‖ < R}. Let v0 = 0 be an element of Y . 73

We write Y := {v0} ⊕ Y ′. We take 74

A := {v′ ∈ Y ′ : ‖v′‖ ≤ R} ∪ {sv0 + v′ : v′ ∈ Y ′, s ≥ 0, ‖sv0 + v′‖ = R}
75

B := {w ∈ Z : ‖w‖ ≥ r} ∪ {sv0 +w : w ∈ Z, s ≥ 0, ‖sv0 +w‖ = r},

where 0 < r < R. Then A links B. 76

To see this let 77

Q := {sv0 + v′ : v′ ∈ Y ′, s ≥ 0, ‖sv0 + v′‖ ≤ R}.

For simplicity, we assume that ‖v0‖ = 1. Because X is a Hilbert space follows that the 78

splitting X := Y ′ ⊕ {v0} ⊕ Z is orthogonal. If 79

u := v′ +w + sv0, v
′ ∈ Y ′, w ∈ Z, s ∈ R, (E.2)

we define 80

F(u) :=
{
v′ +

(
s + r +√

r2 − ‖w‖2
)
v0, if ‖w‖ ≤ r

v′ + (s + r)v0, if ‖w‖ > r.
(E.3)

Note that F |Q = I while F−1(rv0) is precisely the set B. Then we can conclude via 81

Proposition E.5 that A links B. 82

Example E.5 This is the same as Example E.4 with A replaced by A := ∂BR ∩ Y . The 83

proof is the same with Q replaced by Q := BR ∩ Y . 84

Example E.6 Let Y, Z be as in Example E.4. Take A := ∂Br ∩ Y , and let v0 be any 85

element in ∂B1 ∩ Y . Take B to be the set of all u of the form 86

u := w + sv0, w ∈ Z

satisfying any of the following 87

(i) ‖w‖ ≤ R, s = 0; 88

(ii) ‖w‖ ≤ R, s = 2R0; 89

(iii) ‖w‖ = R, 0 ≤ s ≤ 2R0, 90

where 0 < r < min{R,R0}. Then A and B link each other. 91
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To see this take Y := {v0} ⊕ Y ′. Then any u ∈ X can be written in the form (E.2). 92

Define 93

F(u) :=
(
R0 −max

{
R0

R
‖w‖, |s − R0|

})
v0 + v′

and Q := Br ∩ Y . 94

We may identify Y with some R
n. Then F ∈ C(X, Y ) with F |Q = I . Moreover, 95

A = F−1(0). Hence A links B by Proposition E.5. Since X \A is path connected, B links 96

A by Proposition E.1. 97

We end this appendix with the notion of Schechter’s definition of linking for the ball 98

BR . To this end we introduce the family of admissible deformations to be the set �R ⊂ 99

C([0, 1] × BR,BR) whose elements � ∈ �R satisfy: 100

(a) For each t ∈ [0, 1), �(t, ·) : BR → BR is a homeomorphism; 101

(b) �(0, ·) = I ; 102

(c) For each � ∈ �R , there exists u� ∈ BR such that �(1, u) = u� for all u ∈ BR and 103

�(t, u)→ u� uniformly as t → 1. 104

Definition E.5 We say that A ⊂ BR links B ⊂ BR w.r.t. �R if 105

(L1) A ∩ B = ∅; 106

(L2) For every � ∈ �R there exists t ∈ (0, 1] such that �(t,A) ∩ B = ∅. 107

Using the above examples one can easily construct linking sets in a ball. 108
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